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Abstract—This paper studies Doppler resilient complementary
sequences (DRCSs) whereby the ambiguity functions (AFs) of
multiple element sequences are summed to attain low/zero AF
values. We first derive a set of AF lower bounds for unimodular
DRCS sets, which include the existing bounds on AFs as special
cases. These bounds may be used as theoretical design guidelines
to measure the optimality of DRCS sets against Doppler effect.
In addition, we introduce some constructions of DRCS sets based
on mathematical tools such as orthogonal matrices, circular
Florentine rectangles and difference sets, which can generate the
optimal DRCS set. Finally, we evaluate the feasibility of DRCSs
for pulse train waveform design.

Index Terms—Doppler resilient complementary sequence, am-
biguity function, orthogonal matrices, theoretical bounds, Flo-
rentine rectangles, difference sets.

I. INTRODUCTION

The concept of “complementary sequence (CS)” was in-
troduced by Marcel J. E. Golay in the 1960s [1]. Formally,
a pair of equal-length sequences is referred to as a Golay
complementary pair (GCP) if the two constituent sequences
have zero aperiodic auto-correlation sums for all the non-zero
time-shifts. In this case, each constituent sequence is called
a CS. In 1972, Tseng and Liu studied mutually orthogonal
sets of CSs each consisting of two or more constituent
sequences and any distinctive two having zero aperiodic cross-
correlation sums for any time-shifts [2]. Later, Suehiro and
Hatori proposed complete complementary codes, which are
essentially mutually orthogonal sets of CSs with largest set
size (i.e., equal to the number of constituent sequences) [3].
Inspired by Golay, Bomer et al. and Luke further investigated
periodic CSs [4] and odd-periodic CSs [5], respectively.

Due to their ideal correlation properties, CSs have found
numerous applications in, for example, channel estimation
[6], Doppler resilient waveform design [7], [8], omnidirec-
tional precoding for massive multiple-input multiple-output
(MIMO) [9], preamble sequence development for grant-free
non-orthogonal multiple access (NOMA) [10], spreading code
design for asynchronous multicarrier code-division multiple-
access (MC-CDMA) [11], [12], peak-to-average power ratio
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(PAPR) reduction in orthogonal frequency-division multiplex-
ing (OFDM) [13], and integrated sensing and communication
(ISAC) [14], [15], etc.

The maximum number of mutually orthogonal sets of CSs
is upper bounded by the number of constituent sequences. This
may not be satisfactory for some application scenarios (e.g.,
the aforementioned MC-CDMA systems). To address this
issue, quasi-complementary sequence sets (QCSSs) having low
correlation magnitude are studied [16]. In fact, the theoretical
lower bound of QCSSs was studied as early as 1974, but Welch
did not use the term “QCSS” at that time, instead it became
“multichannel aperiodic correlation”. This lower bound is as
follows [17, Theorem (Multichannel Aperiodic Correlation)]:

θ̃max ≥ MN

√
K/M − 1

K(2N − 1)− 1
, (1)

where θ̃max, K, M , N denote the maximum aperiodic cor-
relation magnitude, the set size, the number of constituent
sequences, and the constituent sequence length, respectively.
In 2011, Liu et al. obtained a number of lower bounds on the
maximum correlation magnitude for aperiodic, periodic, and
odd periodic QCSS [16]:

θ̃max ≥ MN

√
(K/M − 1)Z −N + 1

(KZ − 1)(N + Z − 1)
, (2)

θmax = θ̂max ≥ MN

√
KZ −MN

(KZ − 1)MN
, (3)

where θmax and θ̂max denote the maximum periodic and
odd periodic correlation magnitude, respectively, Z is the
correlation zone width. In 2014, Liu et al. extended the idea
of Levenshtein bound and provided a tighter correlation lower
bound for aperiodic QCSSs when K ≥ 3M , M ≥ 2 and
N ≥ 2 [18]:

θ̃max ≥

√√√√MN

(
1− 2

√
M

3K

)
. (4)

Representative constructions on QCSSs with low correlation
properties can be found in [19]–[24].

Modern communication and radar systems must deal with
the notorious Doppler effect in high mobility environments.
Conventional sequences including CSs may not work well in
this case. New sequences highly robust to Doppler are ex-
pected. Such sequences are called Doppler resilient sequences
(DRSs) [25]. Unlike the traditional sequence design theory,
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ambiguity function (AF) is defined to measure the receiver’s
response to both delay and Doppler shifts. In 2013, Ding et al.
generalized the maximum periodic AF lower bound for DRS
sets in [26]. DRS sets meeting the derived bound in [26] are
not known. In 2022, Ye et al. improved the lower bound in
[26] by utilizing the property that the auto-AF at zero delay
in a unimodular sequence is equal to zero for any non-zero
Doppler [25]. In addition, several DRS sets that can (or almost)
meet their proposed periodic AF lower bound are developed.

Conventional CSs are defined based on correlation sums, but
this may not guarantee low AF sidelobes [27]. In [7], Pezeshki
et al. proposed a construction of Doppler resilient Golay com-
plementary waveform (DRGCW) based GCPs and Prouhet-
Thue-Morse (PTM) sequences. The core idea of DRGCW is
to transmit a GCP several times over a pulse train according
to the unique structure of a PTM sequence. In such a way, the
Taylor expansion of its AF near zero Doppler exhibits high-
order zeros, thus leading to Doppler-resilient AF. Tang et al.
extended DRGCW to MIMO scenarios by leveraging complete
complementary codes and generalized PTM sequences [28].
To improve the Doppler resilience of DRGCWs, Dang et al.
adopted weighting of the receiving filter, albeit at the cost of
compromised signal-to-noise ratio (SNR) [29]. A number of
subsequent research works alongside this direction can also be
found in [30]–[34]. It is worth noting that DRGCW assumes
that the Doppler shift is significantly smaller than the pulse
repetition frequency (PRF), or the pulse duration is much
shorter than the pulse repetition interval (PRI). Based on this
assumption, the Doppler shift inside the pulse can be ignored,
and only the Doppler shift between different pulses needs to
be considered [35]. In some cases, this assumption does not
hold due to large Doppler shifts.

Inspired by CSs and DRSs, this paper aims to study DRCS
sets, whereby the AF of a DRCS is characterized by the
summation of AFs of all constituent sequences. The main
contributions are summarized as follows:

• Theoretical AF lower bounds on unimodular DRCS sets
with respect to the set size K, the number of constituent
sequences M , the sequence length N , and the zone
size (−Zx, Zx)× (−Zy, Zy) of low/zero ambiguity zone
(LAZ/ZAZ) are derived. It is shown that our derived
bounds include the existing ones as special cases. Addi-
tionally, our derived bounds also indicate that the DRCS
can achieve thumbtack-shaped AFs across the global
delay-Doppler area.

• To validate the concept of DRCSs and the above the-
oretical bounds, some constructions of DRCS sets are
presented, using mathematical tools such as orthogonal
matrices, Florentine rectangles and difference sets, which
can generate the optimal DRCS set. The effectiveness
of DRCS-based pulse train radar waveform in target
detection is evaluated by simulation.

The structure of this paper is outlined as follows: In Section
II, we introduce the essential mathematical tools and notations
utilized in this work. In Section III, we aim to derive three
types of lower bounds on DRCS sets. These bounds are tight
in the sense that they can be achieved with equality by some

optimal DRCS sets, which are presented in Section IV. Then,
we verified the target detection capability of DRCS-based
radar waveform in Section V. Lastly, Section VI concludes
this paper.

Notation: ξN = exp(2π
√
−1/N) denotes the primitive N -

th root of unity; ZN = {0, 1, · · · , N − 1} denotes the set
of all integers modulo N ; x∗ denotes the conjugate of the
complex number x; ⌊x⌋ denotes the largest integer less than
x; ⊙ denotes the Hadamard product.

II. PRELIMINARIES

A. Doppler Resilient Complementary Sequence

A conventional sequence set A contains K sequences of
length N , and each of which has all of its entries tak-
ing values from a set, called the alphabet. Namely, A =
{a0,a1, · · · ,aK−1}, ak = (ak,0, ak,1, · · · , ak,N−1), where
0 ≤ k < K. In this paper, the alphabet of interest is the set of
the complex roots of unity, i.e., unimodular sequence. For two
sequence au and av in A, their aperiodic cross-AF is defined
as follows:

ÃFau,av
(τ, f) =



N−1−τ∑
i=0

au,ia
∗
v,i+τξ

fi
N , 0 ≤ τ < N ;

N−1∑
i=−τ

au,ia
∗
v,i+τξ

fi
N , −N < τ < 0;

0, |τ | ≥ N.

(5)

Specially, the aperiodic cross AF shall become periodic/odd-
periodic cross AF when the summation variable t = 0 to N−1
(mod N), that is,

AFau,av (τ, f) =

N−1∑
i=0

au,ia
∗
v,i+τξ

fi
N , (6)

ÂFau,av
(τ, f) =

N−1∑
i=0

au,ia
∗
v,i+τ (−1)⌊

i+τ
N ⌋ξfiN , (7)

where τ and f are called delay- and Doppler- shifts, respec-
tively, |τ |, |f | ∈ ZN , and the summation i + τ is modulo N .
If u = v, we call them auto-AF, and denoted by ÃFau

(τ, f),
AFau

(τ, f), ÂFau
(τ, f), respectively.

An ideal ambiguity function could be depicted as a spike
peaking at the origin and having a value of zero everywhere
else. This type of ambiguity function offers perfect resolution
between adjacent targets, regardless of their proximity to
each other. Due to the limitations of the theoretical bounds,
conventional sequences cannot realize the ideal ambiguity
function [25], but the DRCS proposed in this paper can achieve
it.

A DRCS set C contains K (i.e., set size) DRCSs, each
DRCS consists of M (i.e., flock size) elementary sequences
of length N . Namely, C = {C(0),C(1), · · · ,C(K−1)},
C(k) = {c(k)0 , c

(k)
1 , · · · , c(k)M−1}, and c

(k)
m =

(c
(k)
m,0, c

(k)
m,1, · · · , c

(k)
m,N−1), where 0 ≤ k < K and

0 ≤ m < M . Therefore, it is helpful to write each
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DRCS as a 2-D matrix by vertically stacking all of its
indexed elementary sequences row by row, e.g.,

C(k) =


c
(k)
0

c
(k)
1
...

c
(k)
M−1



=


c
(k)
0,0 c

(k)
0,1 · · · c

(k)
0,N−1

c
(k)
1,0 c

(k)
1,1 · · · c

(k)
1,N−1

...
...

. . .
...

c
(k)
M−1,0 c

(k)
M−1,1 · · · c

(k)
M−1,N−1

 . (8)

For two DRCSs C(k1) and C(k2), their periodic cross-AF is
defined as the periodic cross-AF sum, i.e.,

AFC(k1),C(k2)(τ, f) =

M−1∑
m=0

AF
c
(k1)
m ,c

(k2)
m

(τ, f), (9)

when k1 = k2 = k, it is abbreviated to AFC(k)(τ, f).
Similarly, the aperiodic AF and odd-periodic AF of the DRCS
are represented by ÃF and ÂF respectively. This paper will
focus on investigating periodic AF with the aid of certain
mathematical tools.
Remark 1. Please note that although the concept of DRCSs
is introduced in this paper, its idea was proposed by Turyn as
early as 1963. In [36], Turyn studied the mean square value
of the AF of binary DRCS containing two element sequences.

Given a low ambiguity zone (LAZ) Π ⊆ (−N,N) ×
(−N,N), the maximum periodic ambiguity magnitude of
DRCS set C over a region Π is defined as θmax = {θa, θc},
where the maximal periodic auto-ambiguity magnitude

θa = max{|AFC(τ, f)| : C ∈ C, (τ, f) ̸= (0, 0) ∈ Π}, (10)

and the maximal periodic cross-ambiguity magnitude

θc = max{|AFC,D(τ, f)| : C,D ∈ C, (τ, f) ∈ Π}. (11)

If θmax = 0, the LAZ is called the zero ambiguity zone (ZAZ).
Likewise, the symbols θ̃max and θ̂max represent the maximum
aperiodic and odd-periodic ambiguity amplitudes, respectively.

A DRCS set C with maximum ambiguity magnitude θmax
over region Π is denoted by (K,M,N, θmax,Π)-DRCS set.
In addition, if we consider global AF with Π = (−N,N) ×
(−N,N), then C is denoted by (K,M,N, θmax)-DRCS set.
Further, if θmax = 0, then C is called a perfect DRCS set,
denoted by (K,M,N)-DRCS set, and each one is called a
perfect DRCS. In particular, the DRS set [25] can be seen as
a special case of the DRCS set, where M = 1, denoted by
(K,N, θmax,Π)-DRS set.

B. Circular Florentine Rectangle

Definition 1. A Tuscan-k rectangle of size r ×N has r rows
and N columns such that
C1: each row is a permutation of the N symbols and
C2: for any two distinct symbols a and b and for each 1 ≤

m ≤ k, there is at most one row in which b is m steps
to the right of a.

When k = N − 1, it is called a Tuscan-(N − 1) rectangle or
Florentine rectangle (FR). When the circularly-shifted versions
of the rows of a Florentine rectangle satisfying the condition
that b is N − m steps to the right of a is equivalent to the
fact that b is m steps to the left of a, it is called a circular FR
(CFR).

For any integer N > 0, let F̃ (N) denote the largest integer
such that CFR of size F̃ (N)×N exists. Some known results
of F̃ (N) are given in the following lemma [37].

Lemma 1. For N ≥ 2, we have the following bounds for
F̃ (N):

• F̃ (N) = 1 when N is even,
• p − 1 ≤ F̃ (N) ≤ N − 1, where p is the smallest prime

factor of N ,
• F̃ (N) = N − 1 when N is a prime,
• F̃ (N) ≤ N − 3 when N = 15 (mod 18).

Lemma 2. Let N be a positive integer, and p is the smallest
prime factor of N . Define a rectangle F = [fi,j ] of size (p−
1)×N , fi,j = (i+1)×j (mod N), 0 ≤ i < p−1, 0 ≤ j < N ,
then F is a CFR.

Example 1. Let N = 7. According to Lemma 2, we can get
a CFR of size 6× 7 over Z7 as follows:

F =


0 1 2 3 4 5 6
0 2 4 6 1 3 5
0 3 6 2 5 1 4
0 4 1 5 2 6 3
0 5 3 1 6 4 2
0 6 5 4 3 2 1

 . (12)

To proceed, let us present the following lemmas which are
useful for our subsequent proof.

Lemma 3. Let F be an M ×N CFR over ZN . For 0 ≤ i ̸=
j < M , fi,t−fj,t+τ (mod N) = 0 exactly has one solution for
each 0 ≤ τ < N , where t ∈ [0, N).

Lemma 4. Let F be an M × N FR over ZN . For 0 ≤ i ̸=
j < M , fi,t − fj,t+τ = 0 has at most one solution for each
0 ≤ τ < N , where t ∈ [0, N − τ).

C. Difference Set

Definition 2. For any subset D = {d0, d1, · · · , dM−1} ⊆ ZN ,
the difference function of D is defined as

dD(τ) = |(τ +D) ∩D|, τ ∈ ZN . (13)

D is said to be a (N,M, λ) difference set (DS) if and only if
dD(τ) takes on the value λ for N − 1 times when τ ranges
over the nonzero elements of ZN .

For a (N,M, λ)-DS, obviously, we have M(M−1) = (N−
1)λ. Moreover, we have the following lemma.

Lemma 5. For a (N,M, λ)-DS, τ ̸= 0 (mod N), we have∣∣∣∣∣
M−1∑
m=0

ξτdm

N

∣∣∣∣∣ = √
M − λ =

√
M(N −M)

N − 1
. (14)
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III. BOUNDS OF DRCS SETS

For different ambiguity functions, this section will give the
theoretical lower bound of maximum ambiguity magnitude
of DRCS sets. Before giving the main theorem, we give the
following lemma [25], which is helpful for the derivation of
the theoretical lower bound.
Lemma 6. For any unimodular sequence a, we have

|AFa(0, f)| = |ÃFa(0, f)| = |ÂFa(0, f)| = 0 (15)

for any f ̸= 0.

A. Periodic Theoretical Bound of DRCS Set

In this subsection, we introduce our main theorem and
provide a straightforward derivation by constructing a big
matrix comprising all possible delay- and Doppler-shifted
versions of complementary sequences.
Theorem 1. For a (K,M,N, θmax,Π)-DRCS set, where LAZ
Π = (−Zx, Zx)× (−Zy, Zy), 1 ≤ Zx, Zy ≤ N , we have

θmax ≥ MN√
Zy

√
KZxZy

MN − 1

KZx − 1
. (16)

Specially, if θmax = 0, it reduces to

K ≤ MN

ZxZy
. (17)

Proof. Let us construct a matrix H of size KZxZy ×MN ,
which is expressed as

H =


H(0)

H(1)

...
H(Zy−1)

 . (18)

For H(y), its (kZx + λ)-th row is

h
(y)
kZx+λ =

[
T (c

(k)
0 , λ)⊙ py, T (c

(k)
1 , λ)⊙ py,

· · · , T (c(k)M−1, λ)⊙ py

]
, (19)

where 0 ≤ k < K, 0 ≤ λ < Zx, py =

(ξ0×y
N , ξ1×y

N , · · · , ξ(N−1)×y
N ), and

T (a(k)
m , λ) =

(
a
(k)
m,λ, a

(k)
m,λ+1, · · · , a

(k)
m,N−1,

a
(k)
m,0, a

(k)
m,1, · · · , a

(k)
m,λ−1

)
(20)

represents periodic cyclic shift. It is not difficult to find that
the inner product of h(y1)

k1Zx+λ1
and h

(y2)
k2Zx+λ2

can be expressed
as the AF between C(k1) and C(k2), or more precisely,〈
h
(y1)
k1Zx+λ1

,h
(y2)
k2Zx+λ2

〉
= AFC(k1),C(k2)(λ2 − λ1, y1 − y2).

(21)

Therefore,

||HHH||2F =

K−1∑
k=0

Zx−1∑
τ=1−Zx

Zy−1∑
f=1−Zy

(Zx − |τ |)

× (Zy − |f |)|AFC(k)(τ, f)|2

+

K−1∑
k1,k2=0
k1 ̸=k2

Zx−1∑
τ=1−Zx

Zy−1∑
f=1−Zy

(Zx − |τ |)

× (Zy − |f |)|AFC(k1),C(k2)(τ, f)|2. (22)

Based on Lemma 6, we have
K−1∑
k=0

Zy−1∑
f=1−Zy

Zx(Zy − |f |)|AFC(k)(0, f)|2 = KZxZy(MN)2.

(23)

Further, we obtain

||HHH||2F
≤ KZxZy(MN)2 +KZx(Zx − 1)Z2

yθ
2
a

+K(K − 1)Z2
xZ

2
yθ

2
c

≤ KZxZy(MN)2 +KZxZ
2
y(KZx − 1)θ2max. (24)

On the other hand, ||HHH||2F ≥ MN(KZxZy)
2. Because

||HHH||2F = ||HHH||2F , we have

MN(KZxZy)
2 ≤KZxZy(MN)2

+KZxZ
2
y(KZx − 1)θ2max. (25)

The result then follows.

Remark 2. As a special case, certain known bounds can be
derived from Theorem 1. When M = 1, Theorem 1 reduces
to the Ye-Zhou-Fan-Liu-Lei-Tang bound for DRS sets in [25].
When Zy = 1, Theorem 1 reduces to the Liu-Guan-Ng-
Chen bound for low correlation zone complementary sequence
(LCZ-CS) sets in [16].

According to Theorem 1, the following corollary can also
be derived.
Corollary 1. With the same notations as Theorem 1. When
Zx = Zy = N , a lower bound of global ambiguity is given as

θmax ≥ M
√
N

√
KN/M − 1

KN − 1
. (26)

In particular, if θmax = 0, we have

K ≤ M

N
, (27)

which means that it is impossible to find two perfect DRCSs to
achieve the zero cross-AF when M ≤ N < 2M . In addition,
we can get the Sarwate bound [38] of DRCS sets as follows

N − 1

MN(KN −M)
θ2a +

K − 1

M(KN −M)
θ2c ≥ 1. (28)

B. Odd-Periodic Theoretical Bound of DRCS Set
In [39], Pursley highlighted the significance of odd-periodic

correlations in digital signal processing. Generally, the same
scenarios that apply to periodic sequences apply to odd-
periodic sequences. This subsection will give the odd-periodic
theoretical bound of the DRCS set.
Theorem 2. For a (K,M,N, θ̂max,Π)-DRCS set, where LAZ
Π = (−Zx, Zx)× (−Zy, Zy), 1 ≤ Zx, Zy ≤ N , we have

θ̂max ≥ MN√
Zy

√
KZxZy

MN − 1

KZx − 1
. (29)
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Proof. Construct a ‘big” matrix Ĥ through odd-periodic
cyclic shifts, that is,

ĥ
(y)

kZx+λ =
[
T̂ (c

(k)
0 , λ)⊙ py, T̂ (c

(k)
1 , λ)⊙ py,

· · · , T̂ (c(k)M−1, λ)⊙ py

]
, (30)

where

T̂ (a(k)
m , λ) =

(
a
(k)
m,λ, a

(k)
m,λ+1, · · · , a

(k)
m,N−1,

− a
(k)
m,0,−a

(k)
m,1, · · · ,−a

(k)
m,λ−1

)
(31)

represents odd-periodic cyclic shift. The rest of the proof is
exactly the same as Theorem 1.

Remark 3. Obviously, the right-hand sides of (16) and (29) are
the same. In particular, when N is odd, a DRCS set satisfying
(16) also satisfies (29) after the even-odd transformation [40].

In [25], Ye et al. provided lower bounds for the maximum
ambiguity magnitude of periodic DRS sets and aperiodic DRS
sets, but the case of odd-periodic was not given. Based on
Theorem 2, we have the following corollary.

Corollary 2. For a (K,N, θ̂max,Π)-DRS set, where LAZ Π =
(−Zx, Zx)× (−Zy, Zy), 1 ≤ Zx, Zy ≤ N , then its maximum
odd-periodic ambiguity magnitude is lower bounded by

θ̂max ≥ N√
Zy

√
KZxZy

N − 1

KZx − 1
. (32)

C. Aperiodic Theoretical Bound of DRCS Set

In this subsection, we will give the aperiodic theoretical
bound of DRCS sets, which is similar to Theorem 1. The key
point is to replace the right side of (19) with

T
(
[c

(k)
0 ⊙ py,0Zx−1, c

(k)
1 ⊙ py,0Zx−1,

· · · , c(k)M−1 ⊙ py,0Zx−1], λ
)

(33)

in the derivation, where 0Zx−1 is all-0 sequence of length
Zx − 1.

Theorem 3. For a (K,M,N, θ̃max,Π)-DRCS set, where LAZ
Π = (−Zx, Zx)× (−Zy, Zy), 1 ≤ Zx, Zy ≤ N , we have

θ̃max ≥ MN√
Zy

√
KZxZy

M(N+Zx−1) − 1

KZx − 1
. (34)

Theorem 3 is directly obtained through Theorem 1, and it
can be further improved, especially when θ̃max = 0. Below, we
will give a tighter aperiodic theoretical bound for the aperiodic
DRCS set when θ̃max = 0.

Theorem 4. For an aperiodic (K,M,N, θ̃max,Π)-DRCS set,
where ZAZ Π = (−Zx, Zx) × (−Zy, Zy), 1 ≤ Zx, Zy ≤ N ,
if θ̃max = 0, we have

K ≤ MN

ZxZy
. (35)

The AF is a two-dimensional correlation function, it be-
comes a traditional correlation function when f = 0. In this

case, the DRCS set degenerates into the CS set, and its pa-
rameter is expressed as (K,M,N, θ̃max, Z), where Z ∈ [1, N ]
represents the low correlation zone (LCZ) width. In particular,
if θ̃max = 0, the LCZ is called a zero correlation zone (ZCZ).
The following restriction exist among the parameters of the
CS set with ZCZ [41].

Lemma 7. For an aperiodic (K,M,N, 0, Z)-CS set, we have
K ≤ MN/Z.

Next, we will prove Theorem 4.

Proof. Let C = {C(0),C(1), · · · ,C(K−1)} be an aperi-
odic (K,M,N, θ̃max = 0,Π)-DRCS set, where LAZ Π =
(−Zx, Zx) × (−Zy, Zy), 1 ≤ Zx, Zy ≤ N . Let us construct
a matrix C(k,y) of size M × N , such that the m-th row of
C(k,y) is

c(k,y)m = c(k)m ⊙ py, (36)

where py is shown in (19). Because C(k) is a DRCS with ZAZ
Π, so is C(k,y) is a CS with ZCZ width Zx and {C(k,y) : 0 ≤
k ≤ K−1, 0 ≤ y ≤ Zy −1} is a (KZy,M,N, 0, Zx)-CS set.
According to Lemma 7, we have

KZy ≤ MN/Zx. (37)

The result then follows.

IV. CONSTRUCTIONS OF DRCS SETS

In the previous section, the relevant theoretical bounds of
the DRCS sets were derived. This section will construct the
DRCS set that can reach the theoretical bounds (that is, the
parameters of the DRCS set can make the equality sign in
the theoretical bounds hold, also known as optimal) based on
some mathematical tools.

A. DRCS Sets Based on Orthogonal Matrices

Before giving the first construction, we first give the fol-
lowing theorem about perfect DRCS.

Theorem 5. Let N ≥ 2 be an integer, and b =
(b0, b1, · · · , bN−1) be a random unimodular sequence. De-
fine a DRCS A = {a0,a1, · · · ,aN−1}, each am =
(am,0, am,1, · · · , am,N−1), and

am,n = bnξ
mn
N , (38)

where 0 ≤ m < N , 0 ≤ n < N . Then A is a perfect aperiodic
DRCS.

Proof. For any (τ, f) ̸= (0, 0), since b is a random unimodular
sequence, then we have

ÃFA(τ, f) =

N−1∑
m=0

N−1−τ∑
i=0

am,ia
∗
m,i+τξ

if
N

=

N−1−τ∑
i=0

bib
∗
i+τξ

if
N

N−1∑
m=0

ξ−mτ
N

= 0. (39)

Therefore, A is a perfect aperiodic DRCS.
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Based on Theorem 5, we propose the following construction
of perfect DRCS sets.

Theorem 6. Let A = {a0,a1, · · · ,aN−1} be a perfect DRCS
of size N and of length N as shown in Theorem 5, and O =
{oi,j}P−1

i,j=0 be a orthogonal matrix of order P , where |oi,j | =
1. Define a DRCS set A = {A(0),A(1), · · · ,A(P−1)}, each
A(k) = {a(k)

0 ,a
(k)
1 , · · · ,a(k)

PN−1}, and a
(k)
rN+u = ok,rau,

where 0 ≤ r, k < P , 0 ≤ u < N . Then A is a perfect
aperiodic DRCS set.

Proof. Since A is a perfect DRCS, so is A(k) for 0 ≤ k < P .
For 0 ≤ s ̸= t < P , we have

ÃFA(s),A(t)(τ, f) =

PN−1∑
m=0

ÃF
a

(s)
m ,a

(t)
m
(τ, f)

=

P−1∑
r=0

N−1∑
u=0

os,ro
∗
t,rÃFau,au(τ, f)

= 0. (40)

Therefore, A is a perfect aperiodic DRCS set.

Remark 4. For two DRCSs A and B, according to the
definition, we have

AFA,B(τ, f) = ÃFA,B(τ, f) + ÃF
∗
B,A(N − τ, f), (41)

ÂFA,B(τ, f) = ÃFA,B(τ, f)− ÃF
∗
B,A(N − τ, f), (42)

which implies that the A obtained from Theorem 6 is also a
perfect periodic/odd-periodic DRCS set.

Remark 5. The parameters of the perfect DRCS set generated
by Theorem 6 is (P, PN,N), which can make the equal sign
of (27) and (35) hold, so it is the optimal.

B. DRCS Sets Based on Circular Florentine Rectangles

In Theorem 6, as the set size increases, the flock size will
also increase. This is not what we want because flock size
usually represents time domain or frequency domain resources.
To avoid increasing the flock size, the maximum ambiguity
magnitude can be relaxed, leading to our next theorems, which
is about the periodic DRCS set.

Theorem 7. For any positive integer N ≥ 2, let K = F̃ (N)
and F be a CFR of size K×N over ZN . For each 0 ≤ k < K,
define a DRCS C(k) = {c(k)0 , c

(k)
1 , · · · , c(k)N−1}, where c

(k)
m =

(c
(k)
m,0, c

(k)
m,1, · · · , c

(k)
m,N−1), and

c(k)m,n = ξ
m×fk,n

N (43)

for 0 ≤ m < N , 0 ≤ n < N , fk,n is (k, n)-th element of F .
Then C = {C(k) : 0 ≤ k < K} is a periodic (K,N,N,N)-
DRCS set.

Proof. For any 0 ≤ k < K, and (τ, f) ̸= (0, 0), we have

AFC(k)(τ, f) =

N−1∑
m=0

N−1∑
i=0

ξ
m(fk,i−fk,i+τ )
N ξifN

=

N−1∑
i=0

ξifN

N−1∑
m=0

ξ
m(fk,i−fk,i+τ )
N

= 0, (44)

which means that C(k) is a perfect periodic DRCS. Now
consider the cross-AF of C(s) and C(t) for 0 ≤ s ̸= t < K.
In this case, we have

AFC(s),C(t)(τ, f) =

N−1∑
m=0

N−1∑
i=0

ξ
m(fs,i−ft,i+τ )
N ξifN . (45)

According to Lemma 3, fs,i− ft,i+τ = 0 for 0 ≤ i ≤ i+ τ <
N , 0 ≤ s ̸= t < K, has one solution. Suppose this solution is
i′, we have

AFC(s),C(t)(τ, f) =

N−1∑
m=0

N−1∑
i=0

ξ
m(fs,i−ft,i+τ )
N ξifN

= ξi
′f
N N +

N−1∑
m=0

N−1∑
i=0,i̸=i′

ξ
m(fs,i−ft,i+τ )
N ξifN

= ξi
′f
N N. (46)

Therefore, |AFC(s),C(t)(τ, f)| = N for all s ̸= t, 0 ≤ τ, f <
N . This completes the proof.

Remark 6. For a periodic (K,M,N, θmax,Π)-DRCS set C,
where LAZ Π = (−Zx, Zx) × (−Zy, Zy), 1 ≤ Zx, Zy ≤ N ,
define the optimal factor ρ [19] as

ρ =
θmax

MN√
Zy

√
KZxZy

MN −1

KZx−1

, (47)

which is a measure of optimality. Obviously, ρ ≥ 1 and C is
optimal when ρ = 1. For the DRCS set generated by Theorem
7, its optimal factor is

ρ =
N

N

√
F̃ (N)N−N

F̃ (N)N−1

. (48)

Since lim
p→∞

F̃ (N) = ∞, so lim
p→∞

ρ = 1, where p is minimum

prime factor of N . Hence, the DRCS set generated by Theorem
7 is asymptotically optimal. The optimal factor when N is a
prime is shown in Table I.
Remark 7. Since each DRCS in Theorem 7 is a perfect DRCS,
then θa = 0 and θc = N . Furthermore,

N − 1

MN(KN −M)
θ2a +

K − 1

M(KN −M)
θ2c = 1 (49)

when N is a prime, M = N and K = F̃ (N) = N − 1. This
means that the DRCS set obtained by Theorem 7 is strictly
optimal for the Sarwate bound in (28).

Example 2. Let N = 11, and

F =



0 1 2 3 4 5 6 7 8 9 10
0 2 4 6 8 10 1 3 5 7 9
0 3 6 9 1 4 7 10 2 5 8
0 4 8 1 5 9 2 6 10 3 7
0 5 10 4 9 3 8 2 7 1 6
0 6 1 7 2 8 3 9 4 10 5
0 7 3 10 6 2 9 5 1 8 4
0 8 5 2 10 7 4 1 9 6 3
0 9 7 5 3 1 10 8 6 4 2
0 10 9 8 7 6 5 4 3 2 1


(50)
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TABLE I: The optimal factor of DRCS sets generated by Theorem 7

Sequence length N 5 7 11 13 17 19 23 29 31 37 41
Optimal factor ρ 1.1255 1.0823 1.0493 1.0411 1.0309 1.0275 1.0225 1.0177 1.0165 1.0138 1.0124

Sequence length N 43 47 53 59 61 67 71 73 79 83 89
Optimal factor ρ 1.0118 1.0108 1.0096 1.0086 1.0083 1.0075 1.0071 1.0069 1.0064 1.0061 1.0057

TABLE II: The DRCS set C in Example 2

C(0) C(1) C(2) C(3) C(4)

00000000000
01234567890̄
024680̄13579
03691470̄258
048159260̄37
050̄49382716
0617283940̄5
0730̄6295184
08520̄741963
0975310̄8642
00̄987654321





00000000000
024680̄13579
048159260̄37
0617283940̄5
08520̄741963
00̄987654321
01234567890̄
03691470̄258
050̄49382716
0730̄6295184
0975310̄8642





00000000000
03691470̄258
0617283940̄5
0975310̄8642
01234567890̄
048159260̄37
0730̄6295184
00̄987654321
024680̄13579
050̄49382716
08520̄741963





00000000000
048159260̄37
08520̄741963
01234567890̄
050̄49382716
0975310̄8642
024680̄13579
0617283940̄5
00̄987654321
03691470̄258
0730̄6295184





00000000000
050̄49382716
00̄987654321
048159260̄37
0975310̄8642
03691470̄258
08520̄741963
024680̄13579
0730̄6295184
01234567890̄
0617283940̄5


C(5) C(6) C(7) C(8) C(9)

00000000000
0617283940̄5
01234567890̄
0730̄6295184
024680̄13579
08520̄741963
03691470̄258
0975310̄8642
048159260̄37
00̄987654321
050̄49382716





00000000000
0730̄6295184
03691470̄258
00̄987654321
0617283940̄5
024680̄13579
0975310̄8642
050̄49382716
01234567890̄
08520̄741963
048159260̄37





00000000000
08520̄741963
050̄49382716
024680̄13579
00̄987654321
0730̄6295184
048159260̄37
01234567890̄
0975310̄8642
0617283940̄5
03691470̄258





00000000000
0975310̄8642
0730̄6295184
050̄49382716
03691470̄258
01234567890̄
00̄987654321
08520̄741963
0617283940̄5
048159260̄37
024680̄13579





00000000000
00̄987654321
0975310̄8642
08520̄741963
0730̄6295184
0617283940̄5
050̄49382716
048159260̄37
03691470̄258
024680̄13579
01234567890̄



be a CFR of size 10× 11 from Lemma 2. Based on Theorem
7, we get a DRCS set C as shown in Table I, where each
element represents a power of ξ11 and “0̄” is recorded as 10.
The auto-AF and cross-AF of C(0) and C(5) are shown in
Fig. 1.

According to the proof of Theorem 7 and Lemma 4, the
following aperiodic DRCS set can be obtained.
Corollary 3. With the same notations as Theorem 7. If F is a
FR of size K×N , then C is an aperiodic (K,N,N,N)-DRCS
set.
Remark 8. Compared with CFR, FR has a wider range of
parameters, please see [23]. The current best situation is that
when Ñ is a prime, there is a FR of size N × N , where
N = Ñ − 1. In this case, the optimal factor of the aperiodic
DRCS set obtained by Corollary 3 is

ρ̃ =
θ̃max

MN√
Zy

√
KZxZy

M(N+Zx−1)
−1

KZx−1

=
√
2, N → ∞, (51)

where θ̃max = K = M = Zx = Zy = N . Liu et al. [19]
referred to the situation of 1 < ρ̃ < 2 near optimal.

C. DRCS Sets Based on Difference Sets

The Theorem 7 provides a framework for constructing
optimal DRCS set using circular Florentine rectangles. In order
to obtain more DRCS sets, this subsection will propose another
framework based on difference sets.
Theorem 8. Let D = {d0, d1, · · · , dM−1} be a (N,M, λ)-
DS, S = {s0, s1, · · · , sK−1} be a (K,N,αmax,Π)-DRS set,

where Π = (−Zx, Zx)× (−Zy, Zy). Define a DRCS set C =

{C(k) : 0 ≤ k ≤ K − 1}, C(k) = {c(k)0 , c
(k)
1 , · · · , c(k)M−1},

c
(k)
m = (c

(k)
m,0, c

(k)
m,1, · · · , c

(k)
m,N−1), and

c(k)m,n = sk,n × ξndm

N , (52)

where 0 ≤ k < K − 1, 0 ≤ m < M , and 0 ≤ n < N .
Then C is a periodic (K,M,N, θmax,Π)-DRCS set, where
θmax = max{θτ ̸=0, θτ=0}, and

θτ ̸=0 = αmax

√
M(N −M)

N − 1
, (53)

θτ=0 = M · max
k1 ̸=k2

|AFsk1
,sk2

(0, f)|. (54)

Proof. For 0 ≤ k1, k2 ≤ K − 1, we have

AFC(k1),C(k2)(τ, f) =

M−1∑
m=0

ξ−τdm

N

N−1∑
i=0

sk1,is
∗
k2,i+τξ

if
N

= AFsk1
,sk2

(τ, f)

M−1∑
m=0

ξ−τdm

N . (55)

Next, we continue the discussion into two cases: (1) For
τ ̸= 0, then max

∣∣AFC(k1),C(k2)(τ, f)
∣∣ = αmax

√
M(N−M)

N−1 .
(2) For τ = 0, then max

∣∣AFC(k1),C(k2)(τ, f)
∣∣ =

M × max |AFsk1
,sk2

(0, f)|. When k1 = k2, since
f ̸= 0, then max |AFsk1

,sk2
(0, f)| = 0. This means

max |AFsk1
,sk2

(0, f)| = max
k1 ̸=k2

|AFsk1
,sk2

(0, f)|. This com-

pletes the proof.
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Fig. 1: Periodic ambiguity functions of C(0) and C(5) in Example 2.
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Fig. 2: Periodic ambiguity functions of C(0) and C(1) in Example 3.

Lemma 8. Let N be an odd prime and 2 ≤ K ≤ N .
Define S = {sk : 0 ≤ k ≤ K − 1}, where sk =
(sk,0, sk,1, · · · , sk,N−1), and

sk,n = ξ
n3+k⌊N/K⌋n
N . (56)

Then S is a DRS set with maximum periodic ambiguity
magnitude αmax =

√
N and Π = (−N + 1, N − 1) ×

(−⌊N/K⌋, ⌊N/K⌋).
Corollary 4. Let N = 2n − 1 be a Mersenne prime, D be
a difference set of parameters (N,M, λ), and S be a LAZ
sequence set obtained based on Lemma 8, where n ≥ 2. Then
C obtained through Theorem 8 is a asymptotically optimal
with respect to the ambiguity lower bound in (16).

Proof. When τ = 0, AFsk1
,sk2

(0, f) = 0 for
f ∈ (−⌊N/K⌋, ⌊N/K⌋). Therefore, the maximum
periodic ambiguity magnitude θmax of C is θ1 =
αmax

√
M(N −M)/(N − 1). According to Corollary 4,

Zx = N , Zy = ⌊N/K⌋. When N → ∞, the optimal factor ρ
of the DRCS set C is

ρ =

√
NM(N−M)

N−1

MN√
Zy

√
KZxZy

MN −1

KZx−1

≈

√
1 +

N − Zy

N(N − 1)
= 1, (57)

which indicates that C is asymptotically optimal.

Example 3. Let N = 25 − 1 = 31, K = 2, D =
{0, 1, 6, 18, 22, 29} be a (31, 6, 1)-DS. According to Lemma
8, define

s0,n = ξn
3

N and s1,n = ξn
3+15n

N , (58)

where 0 ≤ n ≤ 30. Based on {s0, s1} and Corollary 4, we
obtained a (2, 6, 31, 12.45,Π)-DRCS set C = {C(0),C(1)},
where Π = (−31, 31) × (−15, 15), the magnitudes of ambi-
guity function value of DRCS C(0) and C(1) are presented in
Fig 2.

Consider a difference set D of parameters (N = 2n −
1,M = 2n−1 − 1, λ = 2n−2 − 1). Based on the Corollary
4, the optimal DRCS set can be generated. Table III lists the
changes in the optimal factor when the parameters K and N
change.

TABLE III: The optimal factor of DRCS sets generated by
Corollary 4

K

ρ N
N = 23 − 1 N = 25 − 1 N = 27 − 1 N = 213 − 1 N = 217 − 1

K = 2 1.1127 1.0244 1.0059 1.0001 1.0000
K = 3 1.1269 1.0272 1.0066 1.0001 1.0000
K = 4 - 1.0675 1.0151 1.0002 1.0000
K = 5 - 1.0295 1.0112 1.0001 1.0000

V. APPLICATION OF DRCSS IN PULSE TRAIN WAVEFORM

The application of DRCSs in engineering can be achieved
through frequency division multiplexing or time-division mul-
tiplexing. Below we will briefly introduce an example of time-
division multiplexing (i.e., pulse train waveform). Prior to that,
we provide a concise introduction to the concept of phase
encoding waveforms.

Let Ω(t) be a unit energy pulse shaping waveform with
a duration of Tc, i.e.,

∫ Tc/2

−Tc/2
|Ω(t)|2dt = 1. A baseband
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waveform constructed by phase coding of Ω(t), with a length-
N unimodular sequence z = (z0, z1, · · · , zN−1) can be
expressed as

z(t) =

N−1∑
n=0

znΩ(t− nTc). (59)

Consider a coherent processing interval (CPI) containing M
pulses, and the m-th pulse waveform zm(t) is obtained by
length-N sequence zm = (zm,0, zm,1, · · · , zm,N−1) through
phase coding technology, and the pulse repetition interval
(PRI) is Tpri. Further, the pulse train waveform can be ex-
pressed as

u(t) =

M−1∑
m=0

zm(t−mTpri). (60)

Without loss of generality, let us assume that the distance of
detection targets does not exceed the maximum unambiguous
distance. The discrete AF of u(t) can be represented as

χu(τ, fd) =

M−1∑
m=0

N−1−τ∑
n=0

zm,nz
∗
m,n+τ

× exp(j2πfd(nTc +mTpri)). (61)

In [7], Pezeshki et al. assume Tpulse = NTc ≪ Tpri (or
fd ≪ 1/Tpri). Therefore (61) becomes

χu(τ, θ) ≈
M−1∑
m=0

R̃zm
(τ)ejmθ, (62)

where θ = 2πfdTpri, R̃z(τ) = ÃF z(τ, 0) denotes the ape-
riodic auto-correlation function of sequence z. One possible
solution is to design perfect sequences with zero aperiodic
auto-correlation sidelobes [42]. Since this is challenging in
general, Pezeshki et al. proposed DRGCWs based on GCP and
PTM sequences. The special combination structure of a PTM
sequence allows the Taylor expansion of χu(τ, θ) at θ = 0 has
high-order zeros, thus giving rise to Doppler resilience.

In practice, the assumption Tpulse ≪ Tpri (or fd ≪ 1/Tpri)
does not always hold, which may severely affect the perfor-
mance of DRGCWs. Here, we consider Tpri = xTpulse and
fd = f∆f , where ∆f = B/N is Doppler resolution [43],
B = 1/Tc is bandwidth, x ≥ 1 and 1−N ≤ f ≤ N − 1 are
two integers. Therefore, (61) can be represented as

χu(τ, f) =

M−1∑
m=0

ÃF zm(τ, f). (63)

At the receiver, the waveform processing flow is shown in Fig.
3.

TABLE IV: The delay and Doppler of 5 targets for integer f

No. Delay Doppler RCS
1 200× Tc = 0.1 ms 0×∆f = 0 Hz (0 m/s) 0.8 m2

2 600× Tc = 0.3 ms 4×∆f = 3096.2 Hz (195.3 m/s) 0.4 m2

3 600× Tc = 0.3 ms 10×∆f = 9765.6 Hz (488.3 m/s) 0.4 m2

4 200× Tc = 0.1 ms −4×∆f = −3096.2 Hz (−195.3 m/s) 0.8 m2

5 800× Tc = 0.4 ms −6×∆f = −5859.4 Hz (−293.0 m/s) 0.2 m2

In the simulation, we consider DRCS length N = 2048,
carrier frequency fc = 3 GHz, bandwidth B = 2 MHz, chip
duration Tc = 500 ns, Doppler resolution ∆f = 976.6 Hz,

⋯

𝒂0 𝒂1 𝒂𝑀−1

𝑇pulse

𝑇pri = 𝑥𝑇pulse

෪𝐴𝐹𝒂0 𝜏, 𝑓 𝜉𝑁
𝑓𝑥𝑁෪𝐴𝐹𝒂1 𝜏, 𝑓 𝜉𝑁

𝑓 𝑀−1 𝑥𝑁෪𝐴𝐹𝒂𝑀−1 𝜏, 𝑓
⋯

෪𝐴𝐹𝑨 𝜏, 𝑓 = 

𝑚=0

𝑀−1

𝜉𝑁
𝑓𝑚𝑥𝑁෪𝐴𝐹𝒂𝑚 𝜏, 𝑓 = 

𝑚=0

𝑀−1

෪𝐴𝐹𝒂𝑚 𝜏, 𝑓

𝑥 is an integer

Fig. 3: Application of DRCSs in pulse train waveform, where
fd = f ×∆f and f is an integer.

pulse duration Tpulse = 1 ms, PRI Tpri = 10 ms and number
of pulses M = 2048. Let us consider 5 targets as shown
in Table IV. We modeled these targets using the Swerling II
model with model parameter σ = 0.2, which refers to the
variance of the target Radar cross section (RCS) oscillation
and by considering a signal-to-noise ratio (SNR) of −15 dB. In
Fig. 4(a), we present the normalized delay-Doppler radar map
after passing through a matched filter bank. From Fig. 4(a), we
can see that the five targets listed in Table IV can be clearly
reflected on the delay-Doppler map. Due to the excellent AF
properties of DRCSs, the sidelobes in the delay-Doppler map
are also very low (all are less than −30 dB), which has a
relatively small impact on radar detection. As a comparison,
we also provide the delay-Doppler map of DRGCWs, as
shown in Fig. 4(b). By observation, the five targets can also be
reflected in the delay-Doppler map of DRGCWs, but there are
a large number of high sidelobes, and the maximum sidelobe is
−12.6 dB. This may significantly impact the detection of target
5, given its normalized amplitude of −14.0 dB. To understand
the poor performance of DRGCWs, we can explain from the
following perspectives:

• Firstly, in the simulation, assuming Tpri = 10 ms, but
Tpri = 1 ms, which cannot satisfy the constraint of
Tpulse ≪ Tpri;

• Secondly, the Doppler shift of the targets in the scenario
is relatively large, which does not meet fd ≪ 1/Tpri;

• Thirdly, DRGCW inherently exhibits Doppler resilience,
primarily around the zero Doppler axis, limiting its ef-
fectiveness with large Doppler shifts.

In the above simulation, we utilized DRCS with length
N = 2048 to achieve a Doppler resolution of ∆f = 976.6
Hz. For short DRCS, the Doppler resolution may become very
poor. For example, if we take N = 64, the Doppler resolution
then is ∆f = B/N = 31.25 kHz, and the corresponding
velocity resolution is ∆v = 1562.5 m/s, which is not friendly
for the velocity detection of moving targets. In this case,
we can adopt the waveform transmission and processing
method shown in Fig. 5, where “MF” is the abbreviation of
matched filter. Below, we give a simulation example. Here,
we consider DRCS length N = 64, carrier frequency fc = 3
GHz, bandwidth B = 2 MHz, chip duration Tc = 500 ns,
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(a) DRCS-Based (b) DRGCW [7]

Fig. 4: Normalized multi-target delay-Doppler map for integer f .
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Fig. 5: Application of DRCSs in pulse train waveform, where fd = f ×∆f and f is a fraction.

∆f = B/N = 31.25 kHz, pulse duration Tpulse = 62 µs, PRI
Tpri = 620 µs and number of pulses M ′ = 128× 64 = 8192.

TABLE V: The delay and Doppler of 3 targets for fraction f

No. Delay Doppler RCS
1 200× Tc = 0.1 ms 0.02×∆f = 625.0 Hz (31.250 m/s) 0.8 m2

2 400× Tc = 0.2 ms 0.01×∆f = 312.5 Hz (15.625 m/s) 0.4 m2

3 400× Tc = 0.2 ms 0.02×∆f = 625.0 Hz (31.250 m/s) 0.4 m2

In this scenario, we consider 3 targets as shown in Table V.
Similarly, we modeled the targets using the Swerling II model
with model parameter σ = 0.2 and considering a SNR of
−15 dB. In Fig. 6, we provide the normalized delay-Doppler
radar map. From Fig. 6, we can see that the three targets
listed in Table V can be clearly reflected on the delay-Doppler
map. This shows that DRCSs can provide good target detection
performance even for fractional f .

VI. CONCLUSION

This paper has introduced a new concept called DRCS aim-
ing for attaining zero/low AF zone properties. Based on this
new concept, three types of theoretical bounds on unimodular
DRCS sets with respect to the set size, the flock size, the
sequence length, and the zone size of low/zero ambiguity
zone have been derived. Additionally, for aperiodic ambiguity
functions, based on the upper bound of the number of CS sets
with zero correlation zone, an upper bound on the number of
DRCS sets with zero ambiguity zone has been derived. Then,
based on the orthogonal matrix, the Florentine rectangle and
the difference set, some types construction of DRCS sets have
been proposed. These DRCS sets are proved to be optimal
with respect to the derived lower bounds, as shown in Table
VI. Finally, we have introduced the application of DRCS in
the waveform design of pulse train radar and verified the
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TABLE VI: Parameters of the proposed DRCS set

Source Parameters Type Notes

Theorem 5 (N,N)
aperiodic
periodic

odd-periodic
perfect DRCS based on order-N Fourier matrix and random sequence

Theorem 6 (P, PN,N)
aperiodic
periodic

odd-periodic

perfect DRCS set based on order-N Fourier matrix and
order-P orthogonal matrix

Theorem 7 (K,N,N,N) periodic optimal DRCS set based on CFR of size K ×N
Corollary 3 (K,N,N,N) aperiodic near-optimal DRCS set based on FR of size K ×N

Theorem 8 (K,M,N, θmax,Π) periodic
DRCS set based on (N,M, λ)-DS and (K,N,αmax,Π)-DRS, where

θmax = max

{
αmax

√
M(N−M)

N−1
,M · max

k1 ̸=k2

∣∣∣AFsk1
,sk2

(0, f)
∣∣∣}

Corollary 4
(
K,M,N,

√
NM(N−M)

N−1
,Π

)
periodic optimal DRCS set from Theorem 8, where N = 2n − 1 is a prime

and Π = (−N + 1, N − 1)× (−⌊N/K⌋, ⌊N/K⌋)

Fig. 6: Normalized multi-target delay-Doppler map for fraction
f .

practicality of DRCS based waveforms through simulation.
In the future, it would be interesting, albeit more challenging,
to explore tighter aperiodic ambiguity lower bounds and the
corresponding optimal DRCS constructions.
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[14] P. Kumari, J. Choi, N. González-Prelcic, and R. W. Heath, “IEEE 802.11
ad-based radar: An approach to joint vehicular communication-radar
system,” IEEE Transactions on Vehicular Technology, vol. 67, no. 4,
pp. 3012–3027, 2017.

[15] G. Duggal, S. Vishwakarma, K. V. Mishra, and S. S. Ram, “Doppler-
resilient 802.11 ad-based ultrashort range automotive joint radar-
communications system,” IEEE Transactions on Aerospace and Elec-
tronic Systems, vol. 56, no. 5, pp. 4035–4048, 2020.

[16] Z. Liu, Y. Guan, B. C. Ng, and H.-H. Chen, “Correlation and set size
bounds of complementary sequences with low correlation zone,” IEEE
Transactions on Communications, vol. 59, no. 12, pp. 3285–3289, 2011.

[17] L. Welch, “Lower bounds on the maximum cross correlation of signals
(corresp.),” IEEE Transactions on Information theory, vol. 20, no. 3, pp.
397–399, 1974.

[18] Z. Liu, Y. L. Guan, and W. H. Mow, “A tighter correlation lower
bound for quasi-complementary sequence sets,” IEEE Transactions on
Information Theory, vol. 60, no. 1, pp. 388–396, 2014.

[19] Z. Liu, U. Parampalli, Y. L. Guan, and S. Boztas, “Constructions
of optimal and near-optimal quasi-complementary sequence sets from
singer difference sets,” IEEE Wireless Communications Letters, vol. 2,
no. 5, pp. 487–490, 2013.

[20] Y. Li, L. Tian, T. Liu, and C. Xu, “Constructions of quasi-complementary
sequence sets associated with characters,” IEEE Transactions on Infor-
mation Theory, vol. 65, no. 7, pp. 4597–4608, 2019.

[21] G. Luo, X. Cao, M. Shi, and T. Helleseth, “Three new constructions
of asymptotically optimal periodic quasi-complementary sequence sets
with small alphabet sizes,” IEEE Transactions on Information Theory,
vol. 67, no. 8, pp. 5168–5177, 2021.

[22] T. Liu, C. Xu, and Y. Li, “Binary complementary sequence set with low
correlation zone,” IEEE Signal Processing Letters, vol. 27, pp. 1550–
1554, 2020.

[23] A. R. Adhikary, Y. Feng, Z. Zhou, and P. Fan, “Asymptotically optimal
and near-optimal aperiodic quasi-complementary sequence sets based on
florentine rectangles,” IEEE Transactions on Communications, vol. 70,
no. 3, pp. 1475–1485, 2022.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

[24] P. Sarkar, C. Li, S. Majhi, and Z. Liu, “New correlation bound and
construction of quasi-complementary sequence sets,” IEEE Transactions
on Information Theory, vol. 70, no. 3, pp. 2201–2223, 2024.

[25] Z. Ye, Z. Zhou, P. Fan, Z. Liu, X. Lei, and X. Tang, “Low ambiguity
zone: Theoretical bounds and doppler-resilient sequence design in inte-
grated sensing and communication systems,” IEEE Journal on Selected
Areas in Communications, vol. 40, no. 6, pp. 1809–1822, 2022.

[26] C. Ding, K. Feng, R. Feng, M. Xiong, and A. Zhang, “Unit time-phase
signal sets: Bounds and constructions,” Cryptography and Communica-
tions, vol. 5, pp. 209–227, 2013.

[27] S. Li, “The ambiguity function analysis of complete complementary
sequence in MIMO system,” in IEEE International Conference on Signal
Processing, Communications and Computing, 2015, pp. 1–5.

[28] J. Tang, N. Zhang, Z. Ma, and B. Tang, “Construction of Doppler
resilient complete complementary code in MIMO radar,” IEEE Trans-
actions on Signal Processing, vol. 62, no. 18, pp. 4704–4712, 2014.

[29] W. Dang, A. Pezeshki, S. Howard, W. Moran, and R. Calderbank,
“Coordinating complementary waveforms for sidelobe suppression,” in
2011 Confer‘ence Record of the Forty Fifth Asilomar Conference on
Signals, Systems and Computers, 2011, pp. 2096–2100.

[30] J. Zhu, X. Wang, X. Huang, S. Suvorova, and B. Moran, “Range sidelobe
suppression for using Golay complementary waveforms in multiple
moving target detection,” Signal Processing, vol. 141, pp. 28–31, 2017.

[31] J. Zhu, N. Chu, Y. Song, S. Yi, X. Wang, X. Huang, and B. Moran,
“Alternative signal processing of complementary waveform returns for
range sidelobe suppression,” Signal Processing, vol. 159, pp. 187–192,
2019.

[32] F. Wang, C. Pang, H. Wu, Y. Li, and X. Wang, “Designing constant
modulus complete complementary sequence with high doppler tolerance
for simultaneous polarimetric radar,” IEEE Signal Processing Letters,
vol. 26, no. 12, pp. 1837–1841, 2019.

[33] Z.-J. Wu, C.-X. Wang, P.-H. Jiang, and Z.-Q. Zhou, “Range-doppler
sidelobe suppression for pulsed radar based on golay complementary
codes,” IEEE Signal Processing Letters, vol. 27, pp. 1205–1209, 2020.

[34] J. Wang, P. Fan, Z. Zhou, and Y. Yang, “Quasi-orthogonal z-
complementary pairs and their applications in fully polarimetric radar
systems,” IEEE Transactions on Information Theory, vol. 67, no. 7, pp.
4876–4890, 2021.

[35] G. Duggal, S. Vishwakarma, K. V. Mishra, and S. S. Ram, “Doppler-
resilient 802.11 ad-based ultrashort range automotive joint radar-
communications system,” IEEE Transactions on Aerospace and Elec-
tronic Systems, vol. 56, no. 5, pp. 4035–4048, 2020.

[36] R. Turyn, “Ambiguity functions of complementary sequences (corresp.),”
IEEE Transactions on Information Theory, vol. 9, no. 1, pp. 46–47,
1963.

[37] H. Y. Song, “On aspects of tuscan squares,” Ph.D. dissertation, Depart-
ment of Electrical Engineering, University of Southern California, Los
Angeles, CA, USA, 1991.

[38] D. Sarwate, “Bounds on crosscorrelation and autocorrelation of se-
quences (Corresp.),” IEEE Transactions on Information Theory, vol. 25,
no. 6, pp. 720–724, 1979.

[39] M. Pursley, “Performance evaluation for phase-coded spread-spectrum
multiple-access communication-Part II: code sequence analysis,” IEEE
Transactions on Communications, vol. 25, pp. 800–803, 1977.

[40] W. H. Mow, “Even-odd transformation with application to multiuser
CW radars,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 35, no. 4, pp. 1466–1470, 1999.

[41] P. Fan, W. Yuan, and Y. Tu, “Z-complementary binary sequences,” IEEE
Signal Processing Letters, vol. 14, no. 8, pp. 509–512, 2007.

[42] J. Wang, P. Fan, Q. Shi, and Z. Zhou, “Doppler resilient integrated
sensing and communication waveforms design,” Journal of Radars,
vol. 12, no. 2, pp. 275–286, 2023.

[43] X. Liu, Y. L. Guan, R. Jagannath, Y. Lu, J. Wang, and P. Fan, “Joint radar
communication with novel GCC preamble and point-wise minimum
fusion,” IEEE Transactions on Vehicular Technology, vol. 72, no. 3,
pp. 3321–3334, 2022.

Bingsheng Shen (Member, IEEE) received the B.S.
and Ph.D degrees in Chengdu University (CDU),
Chengdu, China, in 2018, and in Southwest Jiao-
tong University (SWJTU), Chengdu, China in 2023,
respectively. Since 2023, he has been in the School
of Information Science and Technology, Southwest
Jiaotong University, where he is currently an asso-
ciate researcher. His research topic concentrates on
sequence design in modern communication systems
and radar.

Yang Yang (Member, IEEE) received the B.S. and
M.S. degrees in Hubei University, Wuhan, China, in
2005 and 2008, respectively and the Ph.D. degree
in Southwest Jiaotong University, Chengdu, China
in 2012. Since 2013, he has been in the School of
Mathematics, Southwest Jiaotong University, where
he is currently a professor. His research interests
include applied mathematics, sequence design and
its applications, integrated signal for radar and com-
munication.

Zhengchun Zhou (Member, IEEE) received the
B.S. and M.S. degrees in mathematics and the Ph.D.
degree in information security from Southwest Jiao-
tong University, Chengdu, China, in 2001, 2004, and
2010, respectively. From 2012 to 2013, he was a
postdoctoral member in the Department of Computer
Science and Engineering, the Hong Kong University
of Science and Technology. From 2013 to 2014,
he was a research associate in the Department of
Computer Science and Engineering, the Hong Kong
University of Science and Technology. Since 2004,

he has been in Southwest Jiaotong University, where he is currently a
professor. His research interests include sequence design, Boolean function,
coding theory, and compressed sensing. He is an associated editor of IEEE
Transactions on Cognitive Communications and Networking, Advances in
Mathematics of Communications and IEICE Transactions on Fundamentals,
and was a Guest Editor for special issues of Cryptography and Commu-
nications. Dr. Zhou was the recipient of the National excellent Doctoral
Dissertation award in 2013 (China).



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

Zilong Liu (Senior Member, IEEE) is an Associate
Professor and the 6G Lab Manager with the School
of Computer Science and Electronic Engineering,
University of Essex. His research generally lies
in the interplay of coding, signal processing, and
communications, with a major objective of bridging
theory and practice. His recent research interests
include advanced 6G V2X communication, sensing,
and localization technologies for future connected
autonomous vehicles as well as machine learning
for enhanced communications and networking.

He received his PhD (2014) from School of Electrical and Electronic
Engineering, Nanyang Technological University (NTU, Singapore), advised
by Prof Yong Liang Guan, Master Degree (2007) in the Department of
Electronic Engineering from Tsinghua University (China), advised by Prof
Huazhong Yang (IEEE Fellow), and Bachelor Degree (2004) in the School
of Electronics and Information Engineering from Huazhong University of
Science and Technology (HUST, China). He was also a Visiting PhD student
to Hong Kong University of Science and Technology (HKUST, hosted by
Prof Wai Ho Mow) and the University of Melbourne (hosted by Prof Udaya
Parampalli). From Jan. 2018 to Nov. 2019, he was a Senior Research
Fellow at the Institute for Communication Systems (ICS), Home of the 5G
Innovation Centre (5GIC), University of Surrey, during which he studied the
air-interface design of 5G communication networks. Prior to his career in
UK, he spent nine and half years in NTU, first as a Research Associate
(Jul. 2008 to Oct. 2014) and then a Research Fellow (Nov. 2014 to Dec.
2017). His PhD thesis “Perfect- and Quasi- Complementary Sequences”,
focusing on fundamental limits, algebraic constructions, and applications of
complementary sequences in wireless communications, has settled a few long-
standing open problems in the field. He is a Senior Member of IEEE and an
Associate Editor of IEEE Transactions on Wireless Communications, IEEE
Transactions on Vehicular Technology, IEEE Transactions on Neural Networks
and Learning Systems, IEEE Wireless Communications Letters, IEEE Open
Journal of the Communication Society, and Advances in Mathematics of
Communications. He was the Hosting General Chair of the 12th Sequences
and Their Applications (SETA’2024, https://seta-2024.github.io/) and the 10th
IEEE International Workshop on Signal Design and its Applications in
Communications (iwsda2022.github.io). He was named the 2024 Outstanding
Mid-Career Researcher in the Faculty of Science and Health, the University of
Essex. He was a Red Bird Visiting Scholar in HKUST from December 2023 to
January 2024. He was a Consultant to the Japanese government on 6G assisted
autonomous driving in January 2023. He is/was the Leading Track Chair on
Signal Processing for Wireless Communications in IEEE VTC2025-Fall. He
was a Track Co-Chair on Networking and MAC in IEEE PIMRC’2023. Details
of his research can be found at: https://sites.google.com/site/zilongliu2357.

Pingzhi Fan (Life Fellow, IEEE) received the M.Sc.
degree in computer science from Southwest Jiaotong
University (SWJTU), China, in 1987, and the Ph.D.
degree in electronic engineering from Hull Univer-
sity, U.K., in 1994. He is currently a Presidential
Professor with SWJTU, the Honorary Dean of the
SWJTU-Leeds Joint School, and has been a Visiting
Professor with Leeds University, U.K., since 1997.
His research interests include high mobility wire-
less communications, massive random-access tech-
niques, and signal design and coding. He is an IEEE

VTS Distinguished Speaker (2019–2025); and a fellow of IET, CIE, and CIC.
He served as an EXCOM Memberfor the IEEE Region 10, IET (IEE) Council,
and the IET Asia-Pacific Region. He was a recipient of U.K. ORS Award
in 1992, the National Science Fund for Distinguished Young Scholars in
1998 (NSFC), IEEE VT Society Jack Neubauer Memorial Award in 2018,
IEEE SP Society SPL Best Paper Award in 2018, IEEE/CIC ICCC2020
Best Paper Award, IEEE WCSP2022 Best Paper Award, and IEEE ICC2023
Best Paper Award. He served as a Chief Scientist for the National 973 Plan
Project (National Basic Research Program of China) between January 2012
and December 2016.


