
Poster Abstract: OpenIoT-Lab1: an Open Source cost-efficient
sensor based Fog-IoT Testbed: An initial prototype
Sahil Kumar
Jagpreet Singh

sahil.22csz0018@iitrpr.ac.in
jagpreets@iitrpr.ac.in

Indian Institute of Technology
Ropar, Punjab, India

Amit Kumar Dhar
amitkdhar@iitbhilai.ac.in

Indian Institute of Technology
Bhilai, Chhattisgarh, India

Vishal Krishna Singh
v.k.singh@essex.ac.uk
University of Essex

Colchester, United Kingdom

Abstract
The need for reliable test environments grows as IoT applications
become more complex. The hardware testbeds are crucial for eval-
uating network protocols, device interoperability, security mech-
anisms, and performance optimization. However, because of the
growing demand, most state-of-the-art IoT testbeds are either not
available or are costly and are not open-source for reproduction. In
this paper, we propose OpenIoT-Lab1, which uses low-cost devices,
and with its code available online, it can be easily reproduced at
scale in various industries and academic institutions to support
research in sensor networks and Fog/IoT networks.

Keywords
IoT, Contiki-NG, nRF52840 dongle, Sensor, Testbed

ACM Reference Format:
Sahil Kumar, Jagpreet Singh, Amit Kumar Dhar, and Vishal Krishna Singh.
2025. Poster Abstract: OpenIoT-Lab1: an Open Source cost-efficient sensor
based Fog-IoT Testbed: An initial prototype. In The 23rd ACM Conference on
Embedded Networked Sensor Systems (SenSys ’25), May 6–9, 2025, Irvine, CA,
USA. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3715014.
3724066

1 Introduction
The rapid expansion of Internet of Things (IoT) technologies and
their applications across diverse domains has promoted the devel-
opment of IoT testbeds as a critical area for research. IoT testbeds
offer realistic conditions for the experimentation, validation, and
optimization of IoT devices, systems, and applications. These plat-
forms enable researchers, developers, and industry stakeholders to
address the complexities of the IoT ecosystem, including scalability,
security, interoperability, and performance challenges. To cater to
the requirements of today’s IoT applications, a testbed needs to
have the following features:

• Open access: Users can submit jobs and collect traces of the
experiments.

• Sensors: Real-time data collection through various sensors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SenSys ’25, Irvine, CA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1479-5/25/05
https://doi.org/10.1145/3715014.3724066

• Fog/Cloud Support: Compute nodes to perform local com-
putation and forward data to the cloud.

• Wireless Technologies: Support for various wireless com-
munication standards like IEEE 802.15.4, BLE.

• Reproducible: Availability of the software stack to locally
replicate the testbed.

Table 1 lists some of the prominent state-of-the-art testbeds used
by the researchers for experimentation. None of these testbeds
can fulfill all of the above mentioned features. Hence, we propose
OpenIoT-Lab1, which is capable of providing all the functionalities
and reproducible if someone wants to set up their own testbed.

2 OpenIoT-Lab1 Architecture
Fig. 1 shows the high-level overview of the testbed. A three-tier ar-
chitecture is used in the development of the testbed, which consists
of a sensor layer, a compute layer, and a server layer.

Figure 1: OpenIoT-Lab1 Architecture Overview

2.1 Sensor layer
The sensor layer comprises IoT nodes that have sensors connected
to them.We have used the nRF52840 dongle as the IoT end node that
supports BLE, Zigbee, and 802.15.4 communication stacks. These
sensor nodes are connected to the fog nodes (in our case, Raspberry
PI) with the help of USB cables. Hence, the length of the cables can
be varied to cover a larger area. In our tests, we realized that even
with 10 meters of cable length, there is no significant delay in the
transmission of code/data.

We have also interfaced various sensors with IoT nodes, such
as temperature, humidity, hall, flame, ultrasonic, and mq2. These
nodes can run different IoT OSes viz: Contiki-NG, RIOT-OS, and
Zephyr. Currently, we have programmed the sensors in Contiki-
NG. The support for these sensors is not available by default in

90

https://orcid.org/0009-0006-3838-2720
https://doi.org/10.1145/3715014.3724066
https://doi.org/10.1145/3715014.3724066
https://doi.org/10.1145/3715014.3724066
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3715014.3724066&domain=pdf&date_stamp=2025-05-06

SenSys ’25, May 6–9, 2025, Irvine, CA, USA Sahil Kumar, Jagpreet Singh, Amit Kumar Dhar, and Vishal Krishna Singh

Table 1: Existing Testbed comparison with OpenIoT-Lab1

Testbed Open Access External Sensors Fog Support Wireless Technology Reproducibility

Fit Iot-LAB [1] ✓ — ✗ BLE, LoRA, 802.15.4 ✗
UMBRELLA [5] ✓ Camera, VOC,𝑁𝑂2 , Pressure, Accelerometer, Temperature, Humidity ✓ BLE, Sub-GHz ✗
Indriya2 [2] ✓ Pressure, Accelerometer, Temperature, Humidity ✗ BLE, 802.15.4 ✗
LinkLab2 [3] ✗ Temperature, Humidity, Light, Pressure, PIR ✓ LoRa, BLE, 802.15.4 ✗
FlockLab2 [6] ✓ — ✗ BLE, Sub-GHz, 802.15.4 ✓

OpenIoT-Lab1 (proposed) ✓ Temperature, Humidity, Flame, MQ2, Ultrasonic ✓ 802.15.4, BLE, LoRa ✓

Contiki-NG, so to add functionality to OpenIoT-Lab1, the code for
these sensors is written and made public on the GitHub repository.
OpenIoT-Lab1 users can design their application in Contiki-NG and
can submit the code to the testbed interface. The code is made to
run on these IoT end nodes.

2.2 Compute layer
The compute layer consists of the Raspberry Pi network, which is
connected via ethernet. Raspberry Pi 5, with an 8GB variant and
64GB SD card, is used in the testbed. Each Pi can directly connect to
four IoT nodes with USB cables. The Pi runs a serial logger service
to gather the experiment logs from the sensor nodes and also runs a
service to upload the code onto the nodes. Importantly, the nrf52840
supports automatic programming without human intervention. In
the experiments, the compute nodes can act as fog nodes at run-time.
For security reasons, the user code on Pi is run using containers.

2.3 Server layer
The server layer comprises a server system that hosts a database to
implement user authentication, store job details, and save traces
of the experiments. OpenIoT-Lab1 supports multiple job runs at
the same time on non-overlapped IoT nodes with the help of the
scheduler service. The server compiles the user code for the end
devices to generate a .hex file, which is forwarded to the relevant
compute nodes through a wired network that programs the end
devices.

Figure 2: Interface for experiment scheduling

3 Experiment overview and Conclusion
Upon successful authentication of the user credentials on the portal,
the user is redirected to the web interface. The preliminary interface
for OpenIoT-Lab1 is shown in Fig. 2. Users can select the device on
which they want to run the application, check the availability of
those nodes, and schedule their experiment. After completion, the
user is provided with experiment logs, which can be downloaded
for further analysis.

Figure 3: Overview of Experiment

Fig. 3 illustrates the experiment in which multiple sensor nodes
sense the data and then relay the information to one of the IoT nodes
(border router) through the 6LowPAN protocol stack. The border
router pushes data to the MQTT broker that runs on the Raspberry
Pi node as a container service. The broker publishes the received
data from sensor nodes to the cloud, from where subscribers can
get data. In the near future, we plan to host our testbed in the public
domain and support long-range communication. Also, because it
is cost-effective, anyone can purchase nrf52840 devices (approx.
$12 each) with a few Pi nodes ($80), a server, and USB cables to
set up the infrastructure. The entire software stack of OpenIoT-
Lab1 is distributed in an open-source license on GitHub and can be
accessed through [4].

Acknowledgments
We thank C3ihub IIT Kanpur for supporting this research with
grant ID IHU -NTIHAC/2023/01/8.

References
[1] Cedric Adjih, Emmanuel Baccelli, Eric Fleury, Gaetan Harter, Nathalie Mitton,

Thomas Noel, Roger Pissard-Gibollet, Frederic Saint-Marcel, Guillaume Schreiner,
Julien Vandaele, et al. 2015. FIT IoT-LAB: A large scale open experimental IoT
testbed. In 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT). IEEE, 459–
464.

[2] Paramasiven Appavoo, Ebram Kamal William, Mun Choon Chan, and Mobashir
Mohammad. 2019. Indriya 2: a heterogeneous wireless sensor network (WSN)
testbed. In Testbeds and Research Infrastructures for the Development of Networks
and Communities: 13th EAI International Conference, TridentCom 2018, Shanghai,
China, December 1-3, 2018, Proceedings 13. Springer, 3–19.

[3] Wei Dong, Borui Li, Haoyu Li, Hao Wu, Kaijie Gong, Wenzhao Zhang, and Yi Gao.
2023. {LinkLab} 2.0: A multi-tenant programmable {IoT} testbed for experimen-
tation with {Edge-Cloud} integration. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). 1683–1699.

[4] Sahil Kumar. [n. d.]. OpenIot-Lab1. https://kumars45.github.io/OpenIoT-Lab1/.
[Accessed 24-02-2025].

[5] Ioannis Mavromatis, Yichao Jin, Aleksandar Stanoev, Anthony Portelli, Ingram
Weeks, Ben Holden, Eliot Glasspole, Tim Farnham, Aftab Khan, Usman Raza, et al.
2024. UMBRELLA: A One-Stop Shop Bridging the Gap From Lab to Real-World
IoT Experimentation. IEEE Access 12 (2024), 42181–42213.

[6] Roman Trüb, Reto Da Forno, Lukas Sigrist, Lorin Mühlebach, Andreas Biri, Jan
Beutel, and Lothar Thiele. 2020. FlockLab 2: Multi-modal testing and validation
for wireless IoT. In 3rd Workshop on Benchmarking Cyber-Physical Systems and
Internet of Things (CPS-IoTBench 2020). OpenReview. net.

91

https://kumars45.github.io/OpenIoT-Lab1/

	Abstract
	1 Introduction
	2 OpenIoT-Lab1 Architecture
	2.1 Sensor layer
	2.2 Compute layer
	2.3 Server layer

	3 Experiment overview and Conclusion
	Acknowledgments
	References

