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 A B S T R A C T

The advancements in 5G mobile networks and Edge computing offer great potential for services like augmented 
reality and Cloud gaming, thanks to their low latency and high bandwidth capabilities. However, the practical 
limitations of achieving optimal latency on real applications remain uncertain. This paper investigates the 
latency, bandwidth, and energy consumption of 5G Networks and leverages YouTube Edge service as the 
practical use case. We analyze how latency, bandwidth, and energy consumption differ between 4G LTE 
and 5G networks and how the location of YouTube Edge servers impacts these metrics. Surprisingly, our 
observations show that the 5G ecosystems have average latency hikes of up to 2×, demonstrating that they 
are far from achieving their proclaimed promises. Our research study reveals over 10 significant observations 
and implications, indicating that the primary constraints on 4G/LTE and 5G capabilities are the ecosystem and 
energy efficiency of mobile devices’ when receiving data. Moreover, our study demonstrates that to unlock the 
potential of 5G and its applications fully, it is crucial to prioritize efforts to improve the 5G ecosystem and 
introduce better methods and techniques to enhance energy efficiency.
1. Introduction

The number of intelligent Internet-connected devices is projected 
to reach tens of billions [2] soon. All these devices use Internet and 
Cloud data centers to transfer and store the data. As a result, the 
size of data transferred through the Internet will exceed 24.3 exabytes 
soon [3]. Today, mobile devices are one of the primary sources of data 
transferred to and from the Cloud; the mobile internet traffic generated 
by 4.7 billion mobile Internet users worldwide is about 57%.

The performance of numerous mobile applications, including
YouTube, navigation services, and games, is highly dependent on 
network latency and bandwidth, which should be sufficient to meet 
user expectations. Moreover, a new class of emerging applications, 
such as interactive augmented reality, mobile AI pilots and Cloud 
gaming applications, generate much more data than state-of-the-art 
applications and are more critical to network latency and bandwidth.

Edge computing was introduced to address the challenge of increas-
ing mobile data traffic [4]. By bringing computing resources closer 
to the network’s edge, Edge computing can help reduce latency and 
increase bandwidth, thus improving the performance of applications 

∗ Corresponding author.
E-mail address: ahmed.sayed@qmul.ac.uk (A.M. Abdelmoniem).

1 A limited 6-page version of this work has appeared in IEEE Edge [1]. This work presents a significant extension with more analysis and experiments to 
provide a comprehensive understanding of the operational 4G/5G networks.

that require real-time processing. This can be especially beneficial for 
applications such as augmented reality and self-driving cars.

Google has already implemented 7500 Edge servers to enable the 
Stadia service, a Cloud gaming service [5], which, however, was depre-
cated recently. This study demonstrates that Google also places Youtube 
Edge servers near the base stations. However, the latency and band-
width achieved in real applications that utilize 5G networks and Edge 
servers in the UK remains unclear. While some studies suggest that 
5G networks can theoretically achieve an average latency as low as 
1 ms [6], the real-world implementation may encounter significant 
overhead due to the 4G/5G ecosystem, i.e. base stations, wired or fiber 
communication networks and Cloud/Edge servers.

The main goal of our study is to investigate what is the best latency 
and bandwidth that can be achieved by real mobile applications that 
use 5G networks and Edge servers. Moreover, the study aims to under-
stand how the location of servers handling data requests from mobile 
devices affects latency.1 This work also extends the prior work [1] 
and investigates how downstreaming affects the energy consumption 
of mobile devices. Studying all these aspects provides a better under-
standing of what emerging 5G applications can be enabled nowadays 
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and what factors prevent exploiting the full capabilities of 4G/LTE 
and 5G networks. Overall, based on the results of our study, we 
find that fully enabling crucial 5G applications necessitates substan-
tial improvements in the ecosystem and the energy efficiency of 5G 
modems.

To enable our study, we use a Google Pixel 4a smartphone, which 
supports 5G networks. We test the latency and bandwidth the 5G and 
4G LTE networks provide when downstreaming YouTube videos for 
three major mobile network operators in London, UK. We track the lo-
cation of servers which handle data requests and measure downstream 
latency and bandwidth, as well as the energy consumed by the mobile 
device. We use the collected data to analyze the relationships between 
latency, bandwidth and servers’ geographical locations. In addition, 
we measure the device current and power to investigate the energy 
efficiency of the mobile device when downstreaming YouTube videos. 
Given that YouTube is one of the most popular services in the world 
with billions of users [7], we believe that it is well-optimized to provide 
the best possible availability, latency and bandwidth. Thus, YouTube 
can be a reliable indicator of the expected 5G network quality when 
running real applications that utilize Edge and Cloud servers. Based 
on the results of our experiments, we make conclusions about which 
emerging 5G applications can be implemented nowadays, given the 
constrained ecosystem and battery capacity. In our prior work, we 
presented limited results of our study on latency and bandwidth for 
downstreaming in 4G LTE and 5G mobile networks operated by three 
major operators in London, UK [1]. This work’s extends that work and 
makes the following contributions:

• We present extended results and observations on latency and 
bandwidth and include energy measurements to understand en-
ergy implications of 4G/5G networks.

• We expand our work with key observations about latency and 
bandwidth such as: (i) the smallest average latency was obtained 
for 4G LTE, approximately 25 ms, as opposed to 5G; (ii) the 
average 5G latency varies from 37 ms to 150 ms depending on 
server location and mobile operator; (iii) the minimum latency 
measured in our experiments for both 4G LTE and 5G is 20.7 ms 
and 24.3 ms, respectively; (iv) the average downstreaming band-
width for 4G LTE and 5G networks typically range around 0.24 
Gbps and 0.5 Gbps, respectively.

• We reveal that the 4G/5G ecosystem is a major bottleneck which 
prevents the full potential of 4G LTE and 5G networks. Enhancing 
the ecosystem can reduce the average latency by up to 2×. We 
demonstrate that enabling 1 ms latency for emerging 5G applica-
tions will require a network of Edge servers, a distance between 
which does not exceed 227 km.

• We highlight that energy efficiency is another major bottleneck 
preventing mobile applications that utilize 4G LTE and 5G im-
plementation. To be more specific, we show that the smart-
phone current and power increases by 68% on average when 
downstreaming data and, as a result, some mobile games, such 
as Realm Grinder, can consume more energy when running on 
NVIDIA Cloud/Edge servers compared to the version of these 
games which use only mobile GPUs. Moreover, we show that en-
abling global YouTube downstreaming on mobile devices would 
require significant energy, equivalent to a nuclear plant.

• Finally, we discuss which applications can benefit from 5G net-
works. Our findings indicate that existing London-based 4G LTE 
and 5G networks, along with the smartphones used in our study, 
fail to meet the latency requirements for crucial applications such 
as Autonomous Driving Vehicles and AR/VR 3D rendering.

We hope that the results of our study will serve as a baseline 
for future studies targeting the optimization and simulation of large-
scale 5G networks [8], as well as the dynamic optimization of service 
placement and eviction for Edge servers [9,10].
2 
The paper is organized as follows: Section 2 presents background 
and related work; Section 3 presents our experimental framework and 
methodology; Section 4 presents the results of our experimental study; 
Section 5 discusses the energy efficiency challenge and if the obtained 
latency and bandwidth measurements meet the demands of emerging 
5G applications; Section 6 demonstrates the limitations of our study 
and Section 7 presents the conclusion.

2. Background and related work

In 2022, the exponential growth of Internet-connected mobile de-
vices resulted in the generation of a staggering 129.4 Exabytes of data, 
necessitating its processing in Cloud data centers [11]. However, many 
user mobile services, such as navigation, Cloud gaming and Augmented 
reality applications, must receive a reply from servers with a small 
latency. For example, Cloud gaming implies that the graphical pipeline 
runs remotely on Cloud servers [12].

Introducing 5G networks should significantly improve latency and 
bandwidth for mobile data transfers. However, the data should travel 
between base stations and Cloud data centers, which can negatively 
affect latency and bandwidth. To address this issue, the concept of Edge 
computing proposed to place servers close to base stations [4]. Our 
study aims to understand what latency and bandwidth can be achieved 
over 5G networks using Edge servers and real applications in practice 
today. To this end, we use a YouTube mobile application to test 5G 
network characteristics in London, UK. We specifically use YouTube 
since this is one of the most popular global services, having 2.56 billion 
active users [7], which should be well-optimized to achieve the best 
latency and bandwidth characteristics.

There are several experimental studies which measure the propa-
gation of mmWaves in suburban and vegetated environments [13–19]. 
These studies comprehensively investigate mmWave propagation under 
various conditions, encompassing urban environments, suburban and 
vegetated areas, human body blockage, and rain-induced fading. The 
main goal of our study is to estimate the latency and bandwidth of 5G 
that can be achieved in commercial applications with an analysis of the 
mobile operators in London.

Previous studies tried to investigate possible characteristics of 5G 
networks in London based on the location of base stations [20]. How-
ever, this study uses a simulation-based framework to estimate latency 
and bandwidth. It does not consider the delays Cloud/Edge networks 
require to process the user requests and send the data back. Recent 
papers present the results of extensive research studies on 5G la-
tency, bandwidth and energy efficiency measured on real devices [21–
24]. However, these studies use custom applications (or Speedtest) 
and servers to test the quality of 5G networks. A recent study [1] 
investigated the characteristics of commercial YouTube applications 
and commercial servers that mobile operators integrate with base sta-
tions. Thus, they could estimate latency and bandwidth, which can be 
achieved by commercial applications using Edge and Cloud servers in 
practice. This work presents a significant extension with more relevant 
analysis, experiments and observations to provide a deep dive into 
quality and energy efficiency for unlocking the power of 4G/5G mobile 
networks.

3. Experimental design

The tested mobile device. To enable our study, we use a Google 
Pixel 4a (5G) mobile device which supports 4G LTE (Advanced) and 5G 
networks. The specification of the device is provided in Table  1.

YouTube service. To test the latency of mobile 5G networks, 
we use a mobile YouTube application which downstreams data from 
Edge servers [25]. In particular, we test the mobile network using the 
YouTube application since it is one of the most demanding commercial 
applications for latency and bandwidth. We perform our experiments 
by downstreaming a 5 min YouTube video, which is available by the 
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Table 1
Specifications of Google Pixel 4a 5G.
 Description Value  
 Processor Snapdragon 765G 5G  
 
Cores

1 × 2.4 GHz Cortex-A76  
 1 × 2.2 GHz Cortex-A76  
 6 × 1.8 GHz Cortex-A55  
 L3 cache/DRAM 2.00 MB/6GB LPDDR4X  
 GPU 3 × 750 MHz Adreno 620 
 Network technology GSM/HSPA/LTE  
 5G (Sub-6 and mmWave)  
 OS Android 10  

Fig. 1. Base station locations.

Fig. 2. Video screenshot.

following link.2 We specifically use this video since it contains contrast 
figures in the HDR (Ultra HD) format; the maximum resolution is 4096p 
at 60 FPS (Frame Per Second). To test latency under different conditions, 
we use different resolutions of the video, i.e. 360p (480×360 pix-
els), 720p (1280×720 pixels), 1080p (1920×1080 pixels) and 4096p 
(4096p×2160 pixels). In each experiment, we downstreamed the video 
5 times to obtain representative measurements (see Fig.  2). Latency 
profiling. To measure the network latency, we use the Round-Trip 
Time (RTT ) metric [26]. RTT is the time between when a package is 
sent to a destination address and when the acknowledgment is received 
from the destination address.

To transfer the data over 4G LTE and 5G networks, Android uses
User Datagram Protocol (UDP) but not Transmission Control Protocol 
(TCP) [27]. Android devices also use QUIC (Quick UDP Internet Con-
nections) as the encrypted transport layer on the top of UDP, which im-
proves the Quality-Of-Experience (QOE) and reduces the latency [28].

2 https://www.youtube.com/watch?v=LXb3EKWsInQ
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In the TCP protocol, RTT can be measured by the time between a 
packet being sent and its acknowledgment received. However, QUIC 
is encrypted and multiplexed, making it hard to measure RTT since 
a QUIC packet and its acknowledgment might not be on the same 
path [28]. Nonetheless, QUIC accurately calculates the Round-Trip 
Time (RTT) by including in its acknowledgment packets the time it 
takes to receive the packet and send the acknowledgment. This helps 
QUIC estimate the total RTT for different paths, considering both 
the inbound and outbound paths. Since QUIC acknowledgments are 
encrypted and only the RTT from the initial handshake is visible, we 
use it to estimate latency.

To measure bandwidth and latency, we run tcpdump tool [29] with 
the following parameters: tcpdump -vv -i any -s 0 -w /sdcard/cap.pcap.

We parse the log files provided by tcmpdump to estimate RTT. 
Meanwhile, we use a specific network protocol analyzer tool to capture 
bandwidth and latency, Wireshark[30].

Bandwidth profiling. We also parse the QUIC traces to estimate 
bandwidth and record the number of bytes received every second. 
Subsequently, we calculate the average bandwidth by aggregating data 
over one-second intervals. Note that we aggregate data over 1 ms 
periods to measure the peak bandwidth and project it for one second.

Energy profiling. We use Perfetto [31] to profile energy consump-
tion. Perfetto uses the data exposed through the charge counters in
Android IHealth HAL to get the battery current [32]. In particular, 
this framework measures current in micro ampere, mA, within a small 
period. Note that we measure the current for the entire mobile device, 
which includes SOC (i.e. the processor), screen and 4G LTE/5G modem. 
We estimate energy consumption using the current measurements and 
battery voltage of 3.85 V on average.

Finding the location of the servers. To find the servers’ location, 
we parse the QUIC logs and extract information about the IP addresses 
downstreaming the video. We identify servers’ location by IP using 
six web services.3 Unfortunately, IP geo-location can be inaccurate 
due to dynamic IP addresses, VPNs, shared IP addresses, inaccurate 
geolocation databases and limited information [33–36].

We use the results of geo-location services to filter the measure-
ments taken in our experiments; in particular, we remove all the 
measurements if the same IP address points to different locations in 
different services. At the second stage of our filtering, we remove all 
the experiments with the downstreaming servers for which latency is 
lower than the time required for the light to travel, in the fiber,4 to the 
location of these servers and back [34–36].

Location and mobile operators. In our experiments, we test 4G 
LTE (Advanced) and 5G mobile networks for three major mobile op-
erators, each serving approximately 30% of mobile users in the UK. 
Thus, we expect that the base stations have almost the same load. 
To the best of our knowledge, all three operators use 5G NSA (Non-
Standalone) [20], which relies on 4G networks to send the control 
information, at the moment when our study was done, i.e. March 2022.

We test mobile networks in the border area near London. We chose 
this area specifically since the local London servers that stream the 
video for 2 operators are located in the same building, according to 
the geo-location web services (see Fig.  1). Furthermore, this building 
also serves as the location for the base stations of these operators (see
operator 2 and operator 3 in Fig.  1). We use an online service5 to find 
the position of base stations and estimate the signal strength (RSRP) 
at our specific location. Although the local servers for operator 1 are 
located in a different area, one of the base stations of this operator is 
only 200 meters away from the building. Such a location allows us to 
minimize the distance between the servers, base stations, and mobile 

3 https://www.ip2location.com/; https://ipapi.co/; https://ipinfo.io/; 
https://ipgeolocation.io/; https://ipregistry.co/; https://db-ip.com/

4 The speed of light in the fiber is 2.18 × 108 m/s
5 https://www.cellmapper.net/

https://www.youtube.com/watch?v=LXb3EKWsInQ
https://www.ip2location.com/
https://ipapi.co/
https://ipinfo.io/
https://ipgeolocation.io/
https://ipregistry.co/
https://db-ip.com/
https://www.cellmapper.net/
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Table 2
Wave frequency spectrum for 5G and 4G.
 Bands Frequency Support Bandwidth Latency 
 Low-bands <1 GHz 5G/4G 50–100 Mbps 20 ms  
 Mid-bands 1 GHz–6 GHz 5G/4G 100–900 Mbps 10 ms  
 High-bands 24 GHz–47 GHz 5G 10–25 Gbps 1 ms  

Fig. 3. Server locations streaming the video. The colored pie chart indicates the 
percentage of packets sent from servers at each location. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

devices. Note that operator 1 does not provide 5G service in this area. 
At the location where we conduct our experiments, all three operators 
provide strong signals, with Reference Signal Received Power (RSRP) 
values ranging from −40 dBm to −85 dBm.6 All the operators use low-
band and mid-band base stations in this area for 4G and 5G (see Fig.  1). 
Each  operates a of frequency spectrum frequencies defining defines the 
maximum possible bandwidth and minimum latency [37,38]. Note that 
many more parameters, such as channel bandwidth, modulation and 
types of MIMO antennas, can affect bandwidth and latency [39,40]. 
Table  2 shows the spectrum of operating frequencies, the maximum 
bandwidth and minimum latency for each band [37,38,41]. To the best 
of our knowledge, as of March 2022, there were no publicly available 
5G high-band stations in London during the time of our experiments. 
More importantly, since the experimental area is sparsely populated, we 
expect a low mobile network load. Considering all the facts provided 
above, we believe that the area where we conduct our experiments 
provides optimal conditions for testing the maximum performance of 
commercial mobile networks.

4. Experimental evaluations

This section presents our experimental results organized into IP-
based geo-location, Latency, bandwidth, and Energy Consumption anal-
ysis.

4.1. IP-based geo-location analysis

We start our study by investigating the location of the servers 
that stream the video when we run the YouTube application in the 

6 The average signal strength, measured in terms of Reference Signal 
Received Power (RSRP), is provided at https://www.cellmapper.net/.
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Table 3
Distribution of regions streaming the video.
 Operator Network # of IPs UK Europe USA Asia 
 #1 4G 4 75% 25% 0% 0%  
 #2 4G 4 75% 25% 0% 0%  
 #2 5G 3 67% 0% 33% 0%  
 #3 4G 13 23% 38% 30% 8%  
 #3 5G 9 11% 56% 33% 0%  

abovementioned area. To find the location of the YouTube servers, we 
downstream the video using 4G LTE and 5G and trace the IP addresses 
of the servers streaming the video by parsing the tcpdump logs. Note 
that a video streamed by YouTube is split into packages that are down-
loaded by the YouTube application over some period. The YouTube 
service is organized so each package can be sent from different servers. 
In our experiments, we identify all the IP addresses of the servers 
streaming the test video. Fig.  3 shows the location of YouTube servers 
streaming the video for three UK mobile operators. Within this figure, 
each location is depicted with a pie chart indicating the percentage of 
servers used by a specific operator that were streaming the video from 
that particular location. The distinct colors within the chart correspond 
to different mobile operators. We make the following observation. 

Observation 1.  Based on our initial observation, it is evident that the 
servers streaming the video are not exclusively located in London. Although 
a significant number of servers are situated in London, we have noticed 
instances where video streaming has taken place through servers in other 
locations, such as Sofia, Brussels, and even Mountain View (California).

The distribution of the streaming servers among different countries 
for each operator and type of the network is summarized in Table  3. 
Our observation reveals that for operator 1 and operator 2, all the servers 
streaming the video in 4G are located in the UK (London) or Europe 
(Dublin for operator 1 and Brussels for operator 2). Meanwhile, operator 
3 utilizes servers mostly located in Europe, Asia, and the USA. For 
5G networks, we also see that the servers from different regions were 
used. Importantly, all the servers streaming the video belong to Google, 
according to the IP geo-location services used. We attribute this differ-
ence in the distribution of streaming servers to varying ISP (Internet 
Service Provider) Peering Agreements between operators and Google. 
According to these agreements, operators may use different content 
delivery networks and servers to optimize congestion management and 
routing policies [42].

Observation 2.  The location of servers streaming the video to the mobile 
device depends on mobile operators.

Interestingly, the number of servers streaming the video varies 
across operators and network types. As an example, Operator 2 em-
ploys four servers, which are situated in both London and Brussels, 
to facilitate video streaming via 4G LTE. However, when utilizing 5G 
technology, the same operator relies on only three servers located in 
London and Mountain View for video streaming. Meanwhile, operator 3
uses 13 and 9 different servers distributed across the UK, Europe, Asia, 
and the USA for 4G LTE and 5G. We presume that Google chooses the 
servers and streaming route based on each operator’s facilities and the 
network load.

4.2. Latency analysis

Fig.  4 presents the distribution of measured latencies of down-
streaming the video for each operator and network type. We present the 
distribution as a violin plot that depicts the median values (black lines 
within rectangles),7 the average values (white dots), the interquartile 

https://www.cellmapper.net/
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Fig. 4. Latency distribution for different operators and network types.

ranges (black rectangles), and the densities of measured latencies. We 
see that the mean values fall within the corresponding interquartile 
ranges for all estimates. These results imply that the mean values are 
not strongly affected by outliers and can serve as statistically reliable 
estimates of the average latencies. Note that we also measure latency 
per packet sampled by QUIC and use approximately 100 samples to 
estimate the average latency for each experiment.

Surprisingly, we observe the smallest average latency, which is 
about 25 ms, for the first operator for which only the 4G LTE network is 
available at the location where we made the measurements; the average 
5G latency is about 110 ms and 59 ms for the second operator and third 
operator, respectively.

Observation 3.  When comparing different operators, the smallest average 
latency was achieved with 4G LTE, not 5G. This latency was at least half 
the minimum average latency observed in 5G networks.

In Fig.  4, when comparing average latencies between 4G LTE and 
5G networks from the same operator, we observe that in the case of
operator 3, 5G latency is only 10% lower than that of 4G LTE. However, 
we observe that these latencies are identical for operator 2.

Observation 4.  When comparing measurements taken for the same 
operator, it was observed that the average latency of video downstreaming 
on 5G is either similar to or only 10% lower than the latency experienced 
on 4G LTE.

We observe that the smallest median latency is also obtained for
operator 2, which provides only 4G LTE service. However, the median 
latency, which is about 20 ms, is slightly lower than the average 
latency, i.e. 25 ms. The median latencies coincide with the average 
latencies for 4G LTE provided by operator 2 and operator 3. These 
results imply that the downstreaming latencies are evenly distributed 
around the average values. We also see that the highest distribution 
of the latencies is obtained for both 4G LTE and 5G services provided 
by operator 3. Importantly, this operator uses the highest number of 
servers located outside the UK. According to Table  3, it appears that 

7 Unfortunately, there is a significant variation in our measurements, 
despite having approximately one hundred samples for each estimate. This 
variation is due to multiple factors, including 5G transmission obstacles, base 
station processing delays, data packet routing in networks, server delays, and 
base station load. To address this, we use interquartile ranges, represented 
as black rectangles. Specifically, these ranges encompass samples that fall 
between the first quartile (Q1) and the third quartile (Q3). Thus, any values 
outside these ranges are considered outliers.
5 
Fig. 5. QUIC latency distribution for different locations obtained for 4G LTE.

only 23% of the servers used by this operator for 4G LTE and 11% for 
5G are located in the UK. Overall, there is a clear correlation between 
the geographic distribution of the servers used for downstreaming and 
latency. For example, the lowest latencies are observed for operator 1
and operator 2 in 4G LTE, which stream videos from servers located in 
the UK and Europe 75% and 25% of the time, respectively. Meanwhile, 
the highest latencies and variations are observed for operator 3, which 
uses servers distributed across the UK, Europe, the USA, and Asia for 
both 4G LTE and 5G.

Observation 5.  The highest distribution of downstream latencies is ob-
tained for 4G LTE and 5G networks where the operators use servers 
distributed across several countries.

To further investigate how latency changes with the location of 
servers, we construct latency distributions for each city where the 
servers are positioned. Fig.  5 illustrates latency distribution across cities 
in our experiments for 4G LTE. As anticipated, the downstreaming 
of the video originating from London exhibits the lowest average 
latency, approximately 35 ms. Interestingly, this latency is 1.4× higher 
than the average 4G LTE latency for operator 1, which uses servers 
located in London, UK, and Dublin, Ireland. These results imply that, 
in addition to the location, the major factor that affects latency is the 
4G/5G ecosystem, i.e., base stations, internal network hardware and 
configuration, and Cloud/Edge servers.

We see that the average latency for servers located in Sofia and 
Mountain View (California) is about 135 ms, which is 3.85× higher than 
the average latency obtained in London. We also see that the variation 
of latencies measured for London servers is lower than those obtained 
for Sofia and Mountain View. Thus, we may conclude that using the 
servers located in London reduces the average latency and the variation 
of latencies.

Although the average latency for Dublin and Brussels is nearly 
twice as high as the average latency in London, the limited number 
of measurements obtained for these cities makes it difficult to quantify 
this difference accurately. There are also not enough measurements for 
Seoul servers with access latency exceeding 200 ms to draw meaningful 
conclusions.

Fig.  6 shows the 5G latency variation across different cities. Similar 
to the experiments with 4G LTE, we observe the lowest average latency, 
which is about 37 ms, for London. Moreover, the 5G average latency, 
which is 150 ms, is almost the same as the 4G latency measured for the 
servers located in Sofia. However, the 5G latency is only 75 ms, which 
is almost 2× smaller than the 4G latency measured for servers located in 
Mountain View. We attribute this to the superior network infrastructure 
employed by 5G for connecting servers in London and Mountain View. 
This also clarifies why the average 5G latency obtained for servers 
in Mountain View is 2× smaller than the 5G latency experienced by 
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Table 4
Max distance to achieve a specific latency.
 Latency Distance  
 <1 ms <227 km  
 <10 ms <2270 km 
 <20 ms <4540 km 
 <40 ms <9080 km 

Fig. 6. QUIC latency distribution for different locations obtained for 5G Network.

Table 5
The minimum latency measured for operators.
 Op1(4G) Op2(4G) Op2(5G) Op3(4G) Op3(5G) 
 20.7 ms 35.1 ms 27.8 ms 20.7 ms 24.3 ms  

servers in Sofia. It is important to note that Sofia is only 2000 km 
from London, whereas Mountain View is 8631 km apart. Note that the 
average latency estimate for Sofia does not fall within the interquartile 
range, indicating that it is strongly affected by outliers due to the high 
variation in measurements. We attribute the disparity in latencies and 
the variation in measurements obtained for servers in Sofia by the 
networking and 4G/5G ecosystem.

We use the average latencies measured for different cities to project 
the maximum distance between servers and mobile devices to achieve 
a particular latency. To be more specific, we use the difference in the 
average latency obtained for London and Mountain View to estimate 
how the latency increases with distance as follows: 

𝐿𝑎𝑡_𝑝𝑒𝑟_𝑘𝑚 =
𝐿𝑎𝑡𝑀𝑜𝑢𝑛𝑡𝑎𝑖𝑛𝑉 𝑖𝑒𝑤

𝐴𝑣𝑟 − 𝐿𝑎𝑡𝐿𝑜𝑛𝑑𝑜𝑛𝐴𝑣𝑟

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐿𝑜𝑛𝑑𝑜𝑛𝑀𝑜𝑢𝑛𝑡𝑎𝑖𝑛𝑉 𝑖𝑒𝑤

(1)

Note that we specifically rely on the 5G measurements taken for 
Mountain View, as they represent the minimum latency increase per 
km. Thus, we project the maximum distance required to achieve a 
specific latency for the best-case scenario.

Table  4 shows the projected maximum distance between a server 
and mobile devices required to achieve a specific latency. As we can 
see, to provide a latency of 1 ms, the distance between servers and 
mobile devices should not exceed 227 km. Hence, a network of Edge 
servers, the distance between which does not exceed 227 km, is re-
quired to enable 5G applications, such as Autonomous driving vehicles 
(see Section 5), demanding 1 ms latency. Importantly, this projection 
does not include the latency introduced by mobile devices and base sta-
tions to handle data. Thus, we expect the maximum distances provided 
in Table  4 maybe even smaller.

Finally, Table  5 shows the minimum absolute latency that each 
operator can provide. We see that the minimum absolute latency of 
20.7 ms is provided by operator 1 and operator 3 for 4G LTE. Remark-
ably, this latency is 17% lower than the minimum latency achieved 
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Fig. 7. The correlation between ping latency and number of hops.

on 5G by operator 3. Additionally, it outperforms the minimum latency 
of both 4G LTE and 5G provided by operator 2 by 70% and 34%, 
respectively. Similar to our previous results, we attribute this difference 
to the current limitations within the state-of-the-art 4G/5G ecosystem.

Observation 6.  The average latency of the video downstreaming per-
formed by servers located in London is 35 ms and 37 ms for 4G LTE and 
5G, respectively.

Observation 7.  The minimum absolute latency achieved on a mobile 
device in London is 20.7 ms and 24.3 ms for 4G LTE and 5G, respectively.

Based on our experimental results, we identify the following major 
implications:

Implication 1.  In addition to the geographical location, the 4G/5G 
ecosystem can contribute to latency increases of up to 2 times.

Implication 2.  Enabling 1 ms latency will require a network of Edge 
servers, the distance between should not exceed 227 km.

The impact of routing on latency. The downstreaming latency is 
significantly impacted by routing and the number of hops. To quantify 
this effect, we conduct two correlation evaluations. In the first evalua-
tion, we examine the correlation between the number of hops required 
to reach a server with a specific IP address and the downstream latency 
measured using ping. We perform a similar correlation in the second 
evaluation using latencies measured with QUIC.

Figs.  7 and 8 display the correlation between latency and the num-
ber of hops averaged over different servers and operators. Interestingly, 
we observe no strong correlation between the number of hops and 
latency for both ping and QUIC measurements. However, a clear pattern 
emerges: the average 4G LTE and 5G latencies are at their minimum 
for 4 hops in the ping correlation figure, while the minimum average 
latencies for 4G LTE and 5G are obtained for 5 hops in the QUIC 
correlation figure. Moreover, we find that the highest average 5G 
latency is measured for the servers that can be reached within 4 to 7 
hops. These results also suggest that latency is primarily influenced by 
internal network hardware and configuration in the 4G/5G ecosystem.

4.3. Bandwidth analysis

Bandwidth. We measure the bandwidth and device current down-
streaming the video with different resolutions in our next experiments. 
Similar to the previous experiments, we get the bandwidth measure-
ments by parsing the QUIC traces. In our initial experiments, we mea-
sure the bandwidth using QUIC traces for operator 2, which provides 
5G service with the minimum average downstream latency.

Fig.  A.15 of Appendix shows how the bandwidth measured for 5G 
and 4G LTE changes when we downstream the video with 4K, 1080, 
720, and 360 resolution. We clearly see that in all the cases, the video is 
downstreamed with some periods, and thus, we obtain the bandwidth 
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Fig. 8. The correlation between QUIC latency and number of hops.

Fig. 9. Average and peak bandwidths for operator 2.

spikes. This is explained by the fact that YouTube streams the video 
in chunks, some of which are buffered in advance, allowing for a 
smoother playback experience. Our second observation indicates that, 
on average, the amplitude of bandwidth spikes decreases as the video 
resolution decreases.

We obtain these results for both 4G LTE and 5G. Nonetheless, the 
amplitude of spikes differs for 5G and 4G LTE. We observe that the 
bandwidth amplitude is lower for the 4G LTE measurements; however, 
as expected, the downstreaming periods are longer. To quantify this 
difference, we averaged the bandwidth for the spikes, i.e. the moments 
when the video is downstreamed by the YouTube application. Fig.  9(A 
and B) shows the average bandwidth with a 95% confidence interval 
for data transfer spikes when we downstream the video for 5G and 4G 
LTE for operator 2, respectively. We see that the average bandwidth 
grows with the video resolution and size, and it achieves up to 0.5 Gbps 
and 0.25 Gbps for 5G and 4G LTE, respectively. Note that we obtain a 
similar increasing trend in network bandwidth with increasing data size 
for the other operators.

Bandwidth Across Different Operators. Our experimental study 
also measures the bandwidth across different operators when down-
streaming the 4K video. We employ the same approach as our previous 
experiments to measure the bandwidth: parsing the QUIC traces and es-
timating the bandwidth exclusively for downstream periods. Fig.  10(A) 
shows the average bandwidth with a 95% confidence interval measured 
for different operators. We observe that the average bandwidth reaches 
0.24 Gbps and 0.5 Gbps on average for 4G LTE and 5G, respectively. 
Thus, we may conclude that the 5G bandwidth is 2× higher than the 
4G LTE bandwidth on average.
7 
Fig. 10. Average and peak bandwidths across different operators.

Fig. 11. Device current for operator 2.

Observation 8.  The average downstreaming bandwidth for 4G LTE and 
5G networks typically range around 0.24 Gbps and 0.5 Gbps, respectively, 
when considering various operators.

Peak Bandwidth: Importantly, in Fig.  A.15 of Appendix, we see 
that the peak bandwidth can be much higher for both 5G and 4G 
LTE. To estimate the peak bandwidth, we parse the traces and sample 
the highest bandwidth for each period when the smartphone down-
streams the videos. Fig.  9(C and D) shows the peak bandwidth with 
95% confidence interval measured for 5G and 4G LTE provided by
operator 2 when downstreaming the videos with different resolutions. 
Like the average bandwidth, the peak bandwidth grows with the video 
resolution and size. However, the peak bandwidth achieves up to 5.81 
Gpbs and 1 Gpbs for 5G and 4G LTE, respectively. Note that these 
values are higher than the maximum bandwidth, which can be achieved 
on mid-band base stations used in our experiments (see Section 3). We 
explain these results later.

We believe that the difference in bandwidth is because 5G uses base 
stations operating at 3.4 GHz, while 4G uses base stations operating 
mostly at 2.4 GHz (see Fig.  1). These findings can also be attributed 
to differences in channel bandwidth between 5G and 4G base stations. 
In 5G base stations used in our study, the channel bandwidth can 
extend up to 100 MHz, whereas in 4G base stations, the channel band-
width reaches a maximum of 20 MHz [39,40]. Note that 5G can also 
benefit from other optimizations, such as OFDM [43]. Interestingly, 
we notice a consistent average bandwidth among various operators, 
whereas the average latency exhibits substantial variation across these 
operators. These findings suggest that latency is more responsive to the 
networking infrastructure.

If we compare the peak bandwidths across diferent operators (see 
Fig.  10, B), then we observe that the 5G bandwidth is nearly 10 
times higher than the 4G LTE bandwidth for operator 3, whereas 
this difference is approximately 6 times for operator 2. The highest 
absolute peak bandwidth, reaching approximately 10 Gbps, is achieved 
through 5G services offered by operator 3. Meanwhile, the peak 4G 
LTE bandwidth is almost the same for all the operators, which is 
about 1 Gbps. Importantly, 1 Gbps and 10 Gbps are the maximum 
bandwidths which can be achieved for 4G LTE (Advanced) and 5G 
networks [44]. Nonetheless, the achieved peak bandwidths are higher 
than the maximum bandwidth, i.e., 0.9 Gbps, which can be achieved 
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Fig. 12. The average energy consumption.

on mid-band base stations used in our experiments (see Section 3). We 
explain this byt the fact that the 4G/5G modem cannot instantaneously 
transfer the received data to the CPU since the CPU reads the data with 
some delay through a buffer. Thus, the CPU may fetch data that has 
been received previously, and the size of the fetched data may exceed 
the maximum size that can be received by the modem per second. These 
results imply that the mobile CPU may also increase latency.

4.4. Power and energy consumption analysis

When downstreaming the videos, we measure the mobile device 
current to quantify the system power. Fig.  A.15 of Appendix shows 
the device current measured for each experiment with bandwidth for
operator 2.

Our first observation is that, similarly to the experiments with 
bandwidth, we clearly obtain the device current spikes. Moreover, the 
amplitudes of the device’s current spikes decrease when we reduce the 
video resolution. We explain the correlation between the bandwidth 
and device current spikes by the current required data transfer by the 
modem.

To investigate this, we averaged the current when downstreaming 
the video. Fig.  11(A) shows the average current with a 95% confidence 
interval measured for each downstreamed video. We notice that the 
average current increases by 32% for both 5G and 4G LTE when we 
down-stream the 4K video compared to 1080p, 720p, and 360p videos. 
Meanwhile, there is almost no difference between the average current 
for 1080p, 720p, and 360p videos. Note that the size of the video 
changes with the resolution; the sizes of 4K, 1080p, 720p, and 360p are 
578Mb, 178Mb, 142Mb, and 28Mb, respectively. Thus, we expect the 
average current to grow with the transferred data size. To investigate 
this further, we measured the peak current for each experiment with 
bandwidth; see Fig.  11(B). Note that we measure the peak current by 
sampling the highest current values for each period when the video 
was downstreamed. We see that the peak current grows with the video 
resolution, i.e., the size of transferred data, for both 5G and 4G LTE. 
Moreover, apart from the average current, we see that the peak current 
is 15% higher on average for 5G compared to 4G LTE.

Observation 9.  On average, 5G enhances the peak current by approxi-
mately 15% in comparison to 4G LTE.

This observation aligns well with the observations made in a previ-
ous work paper [21]. To explore the power consumption of a mobile 
device while streaming videos, we measure current and voltage while 
playing downloaded video content. We use the YouTube downloading 
option to do this experiment. Importantly, a video with 4K resolution 
cannot be downloaded and played without downstreaming, so we do 
experiments only for 1080p, 720p, and 360p videos. Fig.  12 shows the 
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average power with a 95% confidence interval estimated using mea-
sured current and voltage; in this figure, Sys corresponds to the power 
incurred when playing the videos without downstreaming, i.e., the 
power incurred by the mobile system without the power induced by 
downstreaming.

We observe that the downstreaming significantly increases the mo-
bile battery power by 68% on average for both 5G and 4G LTE. These 
results also imply that the 4G/5G modem consumes 40% of the total 
mobile energy on average when downstreaming the data. Thus, the 
modem receiving the data is one of the biggest contributors to the total 
mobile energy among screen, CPU, GPU, and memory [22].

Observation 10.  The modem downstreaming the data increases the mobile 
system power by 68% and consumes 40% of the total mobile energy.

Interestingly, no significant disparity is observed in terms of power 
and average current between 5G and 4G LTE downstream. However, 5G 
radio should consume more power due to more powerful baseband and 
RF hardware [21,45]. Nonetheless, our experiments’ average power for 
5G and 4G LTE was the same. We explain this by a higher bandwidth 
incurred by 5G, which implies that the modem spends more time in 
an idle state without transferring the data when using 5G [21]. In 
Figs.  A.15(A and I) of Appendix, it is evident that 5G offers a higher 
bandwidth in comparison to 4G LTE. However, it is worth noting that 
5G transmits data in shorter bursts, while 4G LTE maintains a constant 
flow of data to the modem despite having a lower bandwidth. The ab-
sence of distinction can also be attributed to mobile operators utilizing 
5G Non-Standalone (NSA), which leverages 4G LTE for command data 
transfer.

Observation 11.  On average, the power incurred when downstreaming 
data is comparable for 5G and 4G LTE.

5. Discussion and summary

Many services can benefit from 5G and Edge computing; how-
ever, these services have different requirements. For example, Table  6 
shows the list of services which are most demanding to latency and 
bandwidth.

One of the prominent applications for 5G and Edge computing is 
autonomous driving vehicles [46]. Autonomous driving vehicles should 
have low latency and high bandwidth connection to enable teleopera-
tion, which will be implemented in nearly all commercial autonomous 
vehicles. It is required for remote supervision, assistance, and direct 
operation [46]. However, teleoperation requires a latency of 1 ms, 
which is 20× lower than the minimum average latency obtained in 
our experiments. Thus, the existing 4G/5G cannot facilitate a driverless 
fleet operation in London.

However, we note that autonomous driving and teleoperation re-
quire the use of specific wireless networks, such as Ultra-Reliable Low 
Latency Communications (URLLC) [47] and Massive Machine-Type 
Communications (mMTC) [48]. URLLC and mMTC are also essential 
for remote medical services, such as telesurgery [49] and emergency 
diagnostics [50], as well as for industrial automation (Industry 4.0 [51,
52]), including real-time robot control [53], autonomous robotics [51], 
and safety and control systems [52]. All these applications demand 
latencies below 10 ms. Importantly, URLLC and mMTC networks are 
distinct from the standard 5G networks used by mobile operators, 
namely Enhanced Mobile Broadband (eMBB). Both URLLC and mMTC 
are specifically optimized to reduce latency. For example, these tech-
nologies implement lightweight protocols that optimize the scheduling 
of data transfers through smaller time slots, prioritization, and pre-
emption [47,48]. Nonetheless, to the best of our knowledge, there are 
currently no production deployments of URLLC and mMTC in the UK.

Another potential application is Augmented/Virtual Reality (AR/VR)
technology, which has not been adopted at scale [55]. AR/VR promises 
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Table 6
5G/Edge computing applications.
 Application Latency Bandwidth  
 Mobile cloud gaming [54] <40 ms >45 Mbps  
 Autonomous driving/teleoperation [46] 1 ms >100 Mbps 
 AR/VR (3D rendering) [55] <20 ms >100 Mbps 
 Unmanned Aerial Vehicles (UAV) [56] 50 ms 50 Mbps  

Fig. 13. The average power measured for mobile games running rendering on Cloud 
and local GPU.

to enable real-time remote collaboration, guided maintenance, and 
online education to a new level. This technology often uses Edge and 
Cloud for remote rendering. For example, Table  6 shows the latency 
and bandwidth requirements, which are 20 ms and 100 Mbps, respec-
tively, for remote 3D rendering used by AR/VR. Thus, our experimental 
study suggests that the London 4G/5G ecosystem cannot effectively 
support the implementation of AR/VR technologies, specifically 3D 
rendering, since the minimum latency obtained in our experiments is 
20.71 ms.

Unmanned Aerial Vehicles (UAV) are another potential promising 
direction which needs 5G and Edge computing. Amazon started Prime 
Air delivery in the United States [57]. To ensure effective operational 
control of UAVs, 3GPP has established specific requirements for com-
mand and control [58]. These requirements include data rates of up to 
100 Kbps and a latency bound of 50 ms (see Table  6). Meanwhile, use 
cases involving flying cameras and remote surveillance rely on UAVs 
to transmit real-time telemetry data, pictures, or videos. The primary 
connectivity requirement for such data communication is the data rate, 
which can reach up to 50 Mbps [58]. The 4G LTE and 5G networks 
tested in our experiments can meet all these requirements.

Mobile cloud gaming is one of the most promising applications of 
5G networks for mobile devices [54,59,60]. The main idea behind this 
approach is to offload the GPU graphical pipeline in the cloud for 
remote rendering and all the frames downstream. The network latency 
and bandwidth should satisfy specific criteria to enable high-quality 
gaming. For example, Nvidia GeForce nowadays demands a latency 
of less than 40 ms and bandwidth higher than 45 Mbps for the best 
experience, i.e., 3840x2160 pixel resolution at 120 FPS [54]. Although 
the 4G/5G ecosystem tested in our experiments meets these criteria, 
downstreaming significantly increases the mobile system power, as we 
demonstrated earlier. To investigate this further, we run 2 different 
games using the Cloud gaming service provided by NVidia Now. Specif-
ically, we use popular GenShin Impact and Realm Grinder games. Fig. 
13 shows the average power with a 95% confidence interval incurred 
when running the games on NVidia Now Cloud and mobile GPU. Note 
that NVidia Now uses Edge servers placed in London, where the latency 
varies from 37 ms to 145 ms. We observe that the GPU version of
9 
Fig. 14. The projected worldwide energy consumption.

GenShin Impact uses 50% more power than the Cloud version. However, 
for Realm Grinder we observe opposite results since the Cloud version 
consumes 31% more power than the GPU version. Such a difference is 
explained by the fact that GenShin Impact is a social simulation game 
that uses the maximum capacity of GPU. In contrast, Realm Grinder is 
an RPG game that does not use GPU heavily. Note that GenShin Impact
is one of the most demanding mobile games that use the OpenGLES 
interface, while many games these days use Vulcan, which requires 
significantly less power [61]. Based on these results, we may conclude 
that offloading GPU workloads into Cloud/Edge may be inefficient. 
Moreover, using Cloud and Edge facilities for other applications, such 
as AR/VR and Unmanned Aerial Vehicles, may be inefficient. Thus, 
apart from bandwidth and latency, the energy efficiency of offloading 
computing in Cloud/Edge should be considered an important challenge 
for future 5G applications, especially for those applications where 
energy consumption is critical.

Implication 3.  Offloading computation to Cloud/Edge presents a signifi-
cant energy consumption challenge, as local computing units can prove more 
energy-efficient than transmitting computation results.

5.1. Carbon emissions

Next, we examine global energy consumption and carbon emissions 
due to down-streaming. Expanding the utilization of Cloud/Edge tech-
nology for downstreaming on mobile devices may also inadvertently 
increase global carbon emissions. Subsequently, we present a projec-
tion of the worldwide energy consumption and smartphone emissions 
downstreaming YouTube videos. There are 6592 million smartphone 
users today, which grows yearly. It is projected that this number will 
achieve 7861 million users by 2028 [62] (see Fig.  14, left y-axis). 
It is also estimated that each smartphone user spends 23.1 h per 
month watching YouTube on average [63]. Assuming that each user 
watches YouTube videos at 720p resolution, we can estimate the global 
energy consumption due to watching YouTube on smartphones using 
the average Pixel power consumption measured in our experiments 
for the 720p video, the average time spent watching YouTube per 
month and the number of smartphone users. Fig.  14 (right y-axis) 
shows the total global energy spent by smartphones (Smartphones) and 
5G modems (5G modems) when downstreaming YouTube videos at 
720p resolution. Note the total power estimated will be almost the 
same for 360p resolution videos according to the power measurement 
taken for the mobile device used in our experiments (see Fig.  10). 
In these projections, we assume that the average power consumption 
of smartphones, including modem power, is equivalent to that of the 
Google Pixel 4a used in our experiments.
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We see that smartphone users spent an average of almost 0.4 
TWh per month in 2022 on watching YouTube videos, while this 
number will exceed 0.45 TWh by 2028. Note that almost 40% of 
this energy, which is about 0.15 TWh in 2022, is spent by mobile 
modems to receive the data from Cloud/Energy. As per the United 
States Environmental Protection Agency (EPA), the utilization of 0.4 
TWh and 0.15 TWh corresponds to emissions equivalent to 73038 tons 
and 64889 tons of carbon dioxide (CO2), respectively [64]. Moreover, 
0.43 TWh is the amount of energy produced per month by R.E. Ginna 
reactor [65]. Thus, the infrastructure equivalent to an entire nuclear 
power plant must only facilitate global mobile YouTube downstreaming 
and smartphone watching. Moreover, we projected only the energy 
consumption for smartphones. However, the total amount of energy 
spent on streaming videos is much higher due to base stations and 
Cloud/Edge data centers, as previous studies show [66]. Hence, the 
worldwide energy consumption resulting from mobile device usage for 
streaming YouTube videos and accessing other online services and its 
impact on global CO2 emissions is significantly greater. Thus, when 
developing 4G/5G applications that utilize Cloud and Edge technolo-
gies, putting energy efficiency first is crucial for managing energy 
consumption and mitigating global carbon emissions.

5.2. Summary

Our study reveals that the 5G ecosystem is currently in its early im-
plementation stage. Although 5G offers a bandwidth two times higher 
than 4G LTE, it is worth noting that certain operators still demonstrate 
lower latency with their 4G LTE networks compared to 5G. This is in 
some way in line with findings from other recent work conducted in 
different countries such as the USA [67], Finland [68] and private 5G 
testbeds [69]. We attribute this disparity to the inadequacy of the 5G 
ecosystem in London, including base stations, Cloud/Edge servers, and 
interconnection networks, which are not yet prepared to deliver low-
latency data transfers. Unfortunately, understanding the root causes 
of this issue requires access to and profiling of private Google and 
operator networks — an option that is not available to us. We assume 
that the observed disparity is primarily due to the fact that 5G base 
stations and networking hardware require substantial investment, as 
well as time for installation. To be more specific, significant resources 
are needed for: (i) setting up base stations, which requires approval 
from local governments, a process that may take months or even years; 
(ii) deploying base stations, which includes 5G and telecommunications 
hardware, power infrastructure, and labor, all of which are costly; and 
(iii) testing, integrating, and optimizing new base stations within the 
network. All of these factors prevent operators from fully enabling 5G 
capabilities in a rapid way. In addition, as we mentioned previously, 
all three operators use 5G NSA (Non-Standalone), which relies on 4G 
networks to transmit control information, leading to increased latency.

Edge offloading and orchestration: Given all these limitations and 
variations in 5G network quality, dynamic Edge service offloading 
based on latency, bandwidth, load of Edge servers, or energy con-
sumption become vital optimizations to facilitate the efficient use of 
5G networks [70–75]. However, the most challenging aspect of such 
optimizations is considering all the possible factors that can affect 
latency, bandwidth, the total energy consumption, and other quality-of-
service parameters to predict the best offloading policy [76]. Thus, it is 
important to use the most advanced ML techniques to address this prob-
lem [76,77]. Meanwhile, mobile and datacenter operators need to focus 
specifically on optimizing Edge/Cloud orchestration [78], proactive 
load balancing [79] and Edge-aware caching technologies [80].

5G network and Edge Modeling: Although we do not have access 
to private Google and operator networks, one possible approach to 
understanding the 5G ecosystem’s network and hardware configura-
tion is through simulation. By conducting simulations with different 
parameter settings, we can identify a highly likely configuration for 
each operator. To be more specific, such a simulation might include 
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different types of antennas, such as MIMO [81], beamforming anten-
nas [82], and Reconfigurable Intelligent Surfaces (RIS) [83], as well 
as base stations at the system level [84,85], operating under various 
weather [86,87] and urban conditions [88]. The simulation might also 
account for inter-cell interference [89] and congestion arising in high-
load usage scenarios [90–92]. Additionally, it is important to simulate 
Cloud and Edge network traffic originating from base stations [84,93]. 
Overall, to understand the configuration of existing commercial 4G 
LTE and 5G ecosystems, it is crucial to develop a fully integrated 
system-level simulation that incorporates all the types described above. 
Although this is quite a challenging task, it will enable researchers 
to identify bottlenecks in the current ecosystem and propose effective 
optimizations.

High-band base stations and mmWaves: To achieve ultra-low la-
tency and average bandwidth close to 10 Gbps, it is essential to deploy 
high-band base stations and cells supporting mmWaves throughout 
London. This endeavour necessitates substantial investment because 
mmWaves base stations have significantly shorter effective ranges com-
pared to mid-band stations [20]. Furthermore, as demonstrated in 
this study, achieving a latency of 1 ms will necessitate a network 
of Edge servers positioned no farther than 227 km. Moreover, recent 
studies [94] have showed that the bottlenecks are not limited to the 
radio latency but is also attributed to protocol (the latency for protocol 
mechanisms and configurations) [95] and processing (the latency for 
decision-making and data processing) [96].

Energy efficiency: Another concern revolves around the energy 
efficiency of mobile devices and 4G/5G modems, rendering certain 
services impractical, such as Mobile Cloud gaming or remote AR 3D 
rendering, which heavily rely on offloading computing to Cloud or 
Edge. Therefore, aside from enhancing the 5G ecosystem and imple-
menting 6G standards, it is imperative to prioritize optimizing the 
energy efficiency of mobile devices, especially 4G/5G modems. This 
task is highly significant as the number of devices utilizing mobile 5G 
networks continues to grow, and the escalating mobile Internet traffic 
is projected to reach 329 Exabytes per month by 2028 [11].

6. Limitation of our study

Usage and mobility scenarios: In our experiments, we use a sta-
tionary position for the experiments. It is important to acknowledge 
that prior research has established a correlation between the separation 
distance of a smartphone from base stations and degradation of latency 
and bandwidth [21,23]. The impact of buildings, tunnels, cars bodies 
and atmospheric even conditions further influences these metrics [13–
16].

The quality of 4G/5G connections can also be significantly affected 
by mobility [23,97–102]. Specifically, it can be impacted by frequency 
shifts due to high speeds, which degrade signal quality [101,103], 
as well as by handovers [97,101]. For example, the duration of a 
handover in 5G NSA can be as high as 167 ms [97]. In addition to 
these factors, the quality of 5G networking can be degraded by inter-
cell interference [89] and congestion [90–92], particularly when too 
many mobile devices are served by a single base station. Nevertheless, 
it is crucial to emphasize that our study’s primary objective revolved 
around understanding the minimum latency and maximum bandwidth 
that can be achieved when the distance between the smartphone, base 
stations and Edge servers is minimized.

Upstreaming vs downstreaming: In our study, we exclusively focus 
on downstreaming scenarios, even though mobile network performance 
varies between downstreaming and upstreaming activities. Past re-
search has shown that the up-link bandwidth is notably lower than 
the down-link bandwidth, while energy consumption remains relatively 
consistent [23]. Meanwhile, our study aims to comprehend the attain-
able maximum performance of real-world applications on commercial 
mobile 5G networks.
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Fig. A.15. Bandwidth and current measurements for operator 2.
Reliability: One of the key requirements for emerging 5G appli-
cations, such as Autonomous Vehicles and Telesurgery [104,105] is 
reliability. Unfortunately, in our study, we could not measure the 
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packet loss rate since QUIC encrypts this information, which we could 
not decrypt. Nonetheless, a prior study revealed that when utiliz-
ing UDP for data transfer, the packet loss rates can reach up to 4% 



P. Song et al. Computer Networks 267 (2025) 111344 
for 5G and 0.9% for 4G LTE, particularly under conditions of high 
bandwidth [21]. Note that 5G URLLC (Ultra Reliable and Low La-
tency Communications) used for Autonomous Driving Vehicles requires 
0.0001% packet error rate. Thus, apart from latency, 5G reliability also 
prevents a driverless fleet operation in London.

Load of base stations: In our study, we assume a uniform dis-
tribution of load across base stations from different operators. This 
assumption is based on the following: (i) We have tested latency and 
bandwidth for three major operators each of which has an almost equal 
market share and, presumably, a similar number of customers. (ii) Our 
experimental study was conducted in an area where all operators have 
base stations within a 500-meter radius. (iii) The area is on the border 
of London and is not highly populated, implying that the load on base 
stations should not be high. Nonetheless, we acknowledge that this is 
an assumption, and the real load distribution may differ.

The experimental SoC: In our study, we are conducting experiments 
with one particular device, i.e. Google Pixel 4a. However, the device 
features the widely used Snapdragon 765G 5G SoC, which has been 
also implemented in OnePlus Nord, Nokia 8.3 5G, TCL 10 5G, ZTE 
Axon 11 5G, Motorola Edge (2020), LG Wing 5G, Samsung Galaxy 
A71 5G. We expect similar measurements to be obtained on devices 
from other vendors that use this processor. Notably, over 10 million 
units of the OnePlus Nord alone have been sold globally [106]. Thus, 
our experiments are representative of a broad range of mobile de-
vices. Nonetheless, it is important to investigate variations in latency, 
bandwidth, and energy consumption across various 5G SoCs, including 
different SoC generations, in future research studies.

7. Conclusion and future work

This paper presents the findings of our experimental study con-
ducted in London, which aims to understand what latency and band-
width for 4G LTE and 5G can be achieved on a real commercial device 
using Edge servers in practice. Our study reveals that despite the 5G 
networks providing an average bandwidth up to 2× higher than 4G 
LTE, the 4G LTE networks in London often exhibit lower latency than 
their 5G counterparts. We explain these results by the inadequacy 
of the early stage 5G ecosystem in London, including base stations, 
Cloud/Edge servers, and wired/fiber networks.

Our study demonstrates that the 4G/5G ecosystem can contribute to 
latency increases up to 2 times. Thus, the 4G/5G ecosystem is a major 
bottleneck which prevents exploiting the full capabilities of 4G LTE and 
5G networks. Additionally, our study uncovers a critical issue with the 
energy consumption of mobile devices, particularly 4G/5G modems, 
which contribute to 40% of the total mobile energy consumption. We 
demonstrate that high latency and significant energy consumption pose 
obstacles to leveraging 5G for crucial applications like Cloud gaming 
and Autonomous driving/teleoperation. We firmly believe that to fully 
unlock 5G’s potential, efforts aimed at improving the 5G ecosystem and 
enhancing mobile device energy efficiency must be prioritized.
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