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This paper introduces a novel discrete-time stochastic volatility model that employs a countably infi-
nite mixture of AR(1) processes, with a Dirichlet process prior, to nonparametrically model the latent
volatility. Realized variance (RV) is incorporated as an ex post signal to enhance volatility estima-
tion. The model effectively captures fat tails and asymmetry in both return and log(RV) conditional
distributions. Empirical analysis of three major stock indices provides strong evidence supporting
the nonparametric stochastic volatility. The results reveal that the volatility equation components
exhibit significant variation over time, enabling the estimation of a more dynamic volatility process
that better accommodates extreme returns and variance shocks. The new model delivers out-of-
sample density forecasts with strong evidence of improvement, particularly for returns, log(RV), and
the left region of the return distribution, including negative returns and extreme movements below
−1% and −2%. The new approach provides improvements in forecasting the tail-risk measures of
value-at-risk and expected shortfall.

Keywords: Stochastic volatility; Realized variance; Bayesian nonparametrics; Dirichlet process
mixture; Density forecasting

JEL Classification: C11, C14, C58

1. Introduction

This paper introduces a new discrete-time stochastic volatility
model, where the volatility process is modelled nonparamet-
rically using a Dirichlet process mixture (DPM). Traditional
approaches to stochastic volatility often rely on a Gaus-
sian AR(1) process for the latent log-volatility. This paper
proposes modelling log-volatility with a countably infinite
mixture of AR(1) processes, enabling greater flexibility in
capturing complex volatility dynamics. Realized variance
(RV) is incorporated as an ex post signal to enhance volatil-
ity estimation. The proposed model effectively accounts for
non-Gaussian features in both return and log(RV) condi-
tional distributions. Empirical analysis of major stock indices
demonstrates the model’s ability to capture the evolving
dynamics of volatility. The findings reveal that the compo-
nents of the stochastic volatility equation exhibit significant
time variation, enabling the estimation of a more dynamic
process that accommodates negative returns and sudden vari-
ance shocks. The new model provides superior out-of-sample
density forecasts and favourable Bayes factors compared to

∗Corresponding author. Email: e.nikolakopoulos@essex.ac.uk

existing models. In a tail-risk application, the proposed frame-
work improves the forecasts of value-at-risk and expected
shortfall.

Discrete-time stochastic volatility (SV) models, first
introduced by Taylor (1982), extend GARCH models
(Engle 1982, Bollerslev 1986) by treating volatility as a
stochastic and latent process. These models conceptualize
volatility as the impact of an unobserved news flow process.
In standard SV frameworks, return distribution is modelled as
a mixture of normals, with the latent log-volatility following
an AR(1) process driven by normal innovations.

Several extensions to the standard SV model address non-
Gaussian return features. For instance, Mahieu and Schot-
man (1998), Liesenfeld and Jung (2000), Chib et al. (2002),
Jacquier et al. (2004), Abanto-Valle et al. (2010) and, Naka-
jima and Omori (2012), introduce models with fat-tailed
return distributions. Bayesian semiparametric approaches by
Jensen and Maheu (2010), Delatola and Griffin (2011), Dela-
tola and Griffin (2013), Jensen and Maheu (2014), Liu (2021)
and Li et al. (2024), among others, capture in different
ways asymmetry and fat tails in the return distribution. Real-
ized variance has also been integrated into volatility esti-
mation, as demonstrated by Takahashi et al. (2009), among
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others.† Another line of research explores regime-switching
volatility models, as seen in So et al. (1998), Kalimipalli and
Susmel (2004), Carvalho and Lopes (2007), Vo (2009), Vir-
bickaitė and Lopes (2019), which challenge the restrictive
Gaussian AR(1) assumption.

This paper adopts a Bayesian nonparametric framework
for stochastic volatility modelling. The volatility equation
components–namely the level, the AR(1) coefficient, and the
variance–are modelled using a DPM (Ferguson 1973). This
approach results in a countably infinite mixture of Gaussian
AR(1) processes, enabling a highly dynamic volatility struc-
ture that captures variance shocks, jumps, and clustering. We
incorporate RV in the proposed model to enhance volatil-
ity estimation.‡ We demonstrate that our new framework
results in an infinite mixture of normals in log(RV) mod-
elling, allowing for a non-Gaussian conditional distribution.
We additionally include the return mean within the mixture
framework to introduce asymmetry into the return conditional
distribution, complementing the model’s ability to handle fat
tails through nonparametric variance modelling. The DPM
framework learns from the data and adaptively uses the nec-
essary number of clusters to approximate the underlying data
distribution.

Our new model framework, to the best of our knowledge,
is the first attempt to model the stochastic volatility non-
parametrically. A related approach is found in the work of
Dufays (2016), which applies a similar framework to GARCH
models. Also, the proposed model extends multiple exist-
ing parametric and semiparametric approaches. Specifically,
it directly builds on the SV models of Takahashi et al. (2009),
Jensen and Maheu (2010), and Delatola and Griffin (2011),
while also nesting the model of Liu (2021).

Empirical analysis of major stock indices, including the
Dow Jones, Nasdaq 100, and S&P 500, demonstrates the
proposed model’s ability to capture the evolving dynamics
of volatility. The volatility equation components form 4.5 –
5.8 clusters, on average. Results indicate that time-invariant
parameters in SV modelling is a restrictive specification. All
the SV equation components vary substantially through time.
We find a trade-off between the AR(1) coefficient and the vari-
ance of log-volatility. The proposed model flexibly chooses
between persistence and randomness to adequately capture
the volatility dynamics. Out-of-sample predictive density
plots, show clear non-Gaussian shapes, with asymmetry and
fat tails, for the return, log(RV) and log-volatility densities.

Out-of-sample density forecasts provide strong evidence
supporting the nonparametric stochastic volatility. Compared
to widely used SV models, the proposed framework achieves
superior predictive likelihood scores and Bayes factors for
both return and log(RV) density forecasts. The flexible
volatility modelling provides the best description of the under-
lying data generating process. Furthermore, the proposed
framework delivers the best forecasts for specific regions of
the return distribution, particularly for negative returns and

† Ex post variance measures have been used in various parametric
frameworks, including GARCH (Hansen et al. 2012), asymmetric
SV (Zhang and Zhao 2023), and multivariate SV models (Shirota et
al. 2017, Yamauchi and Omori 2020).
‡ We only consider RV but any other ex post variance measure can
be used as well.

losses exceeding 1% and 2%. In a tail-risk forecasting applica-
tion, the value-at-risk and expected shortfall measures gener-
ated by the proposed framework deliver the best scores in the
loss function of Taylor (2019), highlighting the framework’s
potential for risk measurement applications.

The paper is organized as follows. Section 2 is a brief dis-
cussion on RV and the benchmark model of Takahashi et
al. (2009). Section 3 presents the proposed model, its esti-
mation algorithm and the forecasting process. Section 4 is
a brief simulation exercise. Section 5 is the empirical appli-
cation. Section 6 concludes. An Appendix details the model
estimation algorithm.

2. Realized stochastic volatility

We start this section with a brief discussion on ex post vari-
ance measures. The ex post variance of an asset’s return is
estimated with the nonparametric realized measures. In these,
high-frequency (e.g. intraday) returns are used to estimate
latent low-frequency (e.g. daily) variance. RV is the simplest
realized measure. The initial assumption is that the loga-
rithmic price of an asset during a period (day) t follows a
continuous-time stochastic volatility process.§ In practice, for
a trading day t, there are n intraday logarithmic returns rt,i, i =
1, . . . , n. Barndorff-Nielsen and Shephard (2002a) and Ander-
sen et al. (2003) show that the quadratic returns variation at t,
QVt, can be approximated by the RVt estimator which in its
basic form is the summation of the intraday squared returns,
RVt = ∑n

i=1 r2
t,i. RVt is a consistent ex post estimator of QVt,

under no market microstructure noise.¶
Takahashi et al. (2009) use the ex post variance as a

second information source, alongside returns, in the stochas-
tic volatility model. Their model here is referred to as
RSV-N and conditional on the information set It−1 =
{r1, RV1, . . . , rt−1, RVt−1} is defined as

rt = μ+ exp(ht/2)ut, ut
iid∼ N(0, 1), (1)

log(RVt) = ψ + ht + ξzt, zt
iid∼ N(0, 1), (2)

ht = γ + δht−1 + σet, et
iid∼ N(0, 1), (3)

with model parameters θ = {μ,ψ , ξ 2, γ , δ, σ 2}. rt is the log
return at time t, t = 1, . . . , T and log(RVt) denotes the natu-
ral logarithm of realized variance at time t. ht is the return’s
stochastic log-volatility at time t. Equations (1) and (2) are the
measurement equations. The basic stochastic volatility model,
referred to as SV-N, without RV, is defined with (1) and (3).
In (2) log(RVt) is used as extra informational signal to assist
the estimation of stochastic volatility. Parameter ψ captures
the deviation between log(RVt) and ht.

§ For the theoretical foundation and applications of RV see
Andersen et al. (2001a, 2001b), Barndorff-Nielsen and Shep-
hard (2002a, 2002b), and Andersen et al. (2003).
¶ See Zhang et al. (2005) and Aït-Sahalia and Mancini (2008)
for the use of subsampling for realized measures robust to noise
and Barndorff-Nielsen et al. (2008) for the use of realized kernel
measures robust to market frictions.
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Following the standard approach in literature, the RSV-N
model can be estimated using Bayesian analysis and with a
hybrid of Gibbs and Metropolis-Hastings sampling steps.

3. Bayesian nonparametric stochastic volatility

The standard literature approach for stochastic volatility mod-
elling is an AR(1) specification, as in (3). This is a restrictive
assumption as shown by the the parametric extensions of
So et al. (1998), Carvalho and Lopes (2007), Virbickaitė
and Lopes (2019) and the semiparametric model of Jensen
and Maheu (2014). We are building up on these extensions
and we develop a SV model in which all the stochastic
volatility equation components are time-varying. We nonpara-
metrically model the latent volatility with the DPM. Thus we
model stochastic volatility with a countably infinite mixture
of Gaussian AR(1) processes instead of just one.

We extend the RSV-N model of Takahashi et al. (2009)
with a DPM in the latent volatility equation. The ex post
variance assists the latent volatility estimation under the non-
parametric modelling. Conditional on the information set It−1

the proposed model referred to as DPM-SV (Dirichlet process
mixture in stochastic volatility) has the following hierarchical
specification

rt = mt + exp(ht/2)ut, ut
iid∼ N(0, 1), (4)

log(RVt) = ψ + ht + ξzt, zt
iid∼ N(0, 1), (5)

ht = gt + dtht−1 + vtet, et
iid∼ N(0, 1), (6)

mt, gt, dt, v2
t |G

iid∼ G, (7)

G | G0,α ∼ DP(α, G0), (8)

G0(mt, gt, dt, v2
t )

≡ N(m0, v2
m)− N(g0, v2

g)− N(d0, v2
d)1|dt |<1 − IG(v0, s0).

(9)

Model parameters are θ = {ψ , ξ 2,α}. Equations (7)–(9) place
an infinite mixture of normals in returns and log-volatility.
The mixing components are: the return mean mt, the stochas-
tic volatility level gt, the AR(1) coefficient dt and the volatility
of volatility vt. For identification we do not include parameters
ψ and ξ 2 in the mixture.

The mixing components are distributed according to the
latent G which is nonparametrically modelled with a Dirich-
let process (DP) prior. A draw from a DP, G ∼ DP(α, G0), is
almost surely a discrete distribution and has two parameters,
the base measure G0 and the concentration parameter α > 0.
The DP is centred around G0 since E[G] = G0 and α deter-
mines how close is G to G0 since Var[G] = G0[1 − G0]/(α +
1). In this case the base measure of the DP in (9) consists
of three normal priors, N(.), for mt, gt and dt, and an inverse
gamma, IG(.), for v2

t .
G has a support of infinite distributions. Let μ =

{μ1,μ2, . . .}, γ = {γ1, γ2, . . .}, δ = {δ1, δ2, . . .} and σ 2 =
{σ 2

1 , σ 2
2 , . . .} denote the unique points of support in G with

base measure prior’s

μj
iid∼ N(m0, v2

m), γj
iid∼ N(g0, v2

g), δj
iid∼ N(d0, v2

d)1|δj|<1,

σ 2
j

iid∼ IG(v0, s0), (10)

and j = 1, 2, . . .. In practice, a finite set {(r1, RV1, h1), . . . ,
(rT , RVT , hT )} will be associated with a finite set {(m1, g1, d1,
v2

t ), . . . , (mT , gT , dT , v2
T )} of draws from G in (7). The DPM

allows data clustering in identical sets of (mt, gt, dt, v2
t ). This

truncates the theoretically infinite mixture into a practical
finite mixture with k unique clusters, {μj, γj, δj, σ 2

j }k
j=1, k <

T . The DPM concentration parameter α controls the num-
ber of mixture clusters. Estimating α in a Bayesian fashion
makes the DPM cluster consistent (Ascolani et al. 2023). The
DPM-SV model has the flexibility to capture non-Gaussian
behaviour in both returns and log(RVt). It also nests all
parametric specifications. For instance, when α → 0 then all
data are assigned to one cluster {μ1, γ1, δ1, σ 2

1 } and stochastic
volatility follows a Gaussian AR(1). In this case the DPM-SV
is equivalent to RSV-N. If α → ∞ then we have as many mix-
ing clusters as data points. If on top of that the mixing clusters
have an identical μj = μ, then returns follow a Student’s t-
distribution. The model learns from the data and adaptively
uses the necessary number of clusters to approximate the
underlying data distribution.

Typically, finite mixture models face a label-switching
issue, which necessitates parameter constraints to address.
This issue, however, does not arise in DPM models. In these,
the mixture components are primarily a tool for approxi-
mating the underlying data distribution, and the number of
clusters often lacks intrinsic interpretability beyond represent-
ing a flexible mixture of normals. In our case, we impose the
mixture mainly on a latent variable. Consequently, the number
of clusters primarily provides flexibility in modelling volatil-
ity, allowing the model to better capture latent dynamics and
accommodate shocks.

The DPM-SV model can also be written with the Sethura-
man (1994) stick-breaking specification as

rt = μst + exp(ht/2)ut, ut
iid∼ N(0, 1), (11)

log(RVt) = ψ + ht + ξzt, zt
iid∼ N(0, 1), (12)

ht = γst + δst ht−1 + σst et, et
iid∼ N(0, 1), (13)

st ∼ Multinominal(w), w = {w1, w2, . . .}, (14)

wj = vj

j−1∏
l=1

(1 − vl), vj
iid∼ Beta(1,α), (15)

and base measure (10). w is the infinite set of weights asso-
ciated with the mixing clusters, with the stick-breaking prior
as in (15), w1 = v1 and

∑∞
j=1 wj = 1. st = 1, 2, . . ., is a clus-

ter (or state) indicator auxiliary variable which maps each
observation set (rt, ht) to a cluster j. The above representation
shows clearly the model’s assumption that there is a latent
state variable governing the return and volatility dynamics.
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The mixture conditional distribution of stochastic volatility is,

p(ht | It−1, w, γ , δ, σ 2) =
∞∑

j=1

wjN
(

ht | γj + δjht−1, σ 2
j

)
.

(16)
Conditional on ht the return conditional distribution has the
following stick-breaking representation

p(rt | It−1, w, ht,μ) =
∞∑

j=1

wjN
(
rt |μj, exp(ht)

)
. (17)

The DPM-SV model has the ability, through ht, to cap-
ture non-Gaussian effects in the conditional distribution of
log(RV). Conditional on ht, the log(RV) conditional distribu-
tion has the following stick-breaking representation

p(log(RVt) | It−1, w, ht, γ , δ, σ 2)

=
∞∑

j=1

wjN
(

log(RVt) |ψ + γj + δjht−1, ξ 2 + σ 2
j

)
. (18)

We also estimate a restricted version of the DPM-
SV model with parametric return mean, μj = μ, ∀j. In
this restricted version the latent state variable governs
only the stochastic volatility dynamics. This enables a
straightforward comparison with RSV-N to examine the
impact of nonparametric modelling of stochastic volatil-
ity. We refer to this model as DPM-SV-h and it is spec-
ified with equations (1), (2), (13)–(15) and base mea-

sure G0(γj)
iid∼ N(g0, v2

g), G0(δj)
iid∼ N(d0, v2

d)1|δj|<1, G0(σ
2
j )

iid∼
IG(v0, s0), ∀j. The DPM-SV-h model captures fat tails in
return distribution but lacks the ability to account for asym-
metry. However, it effectively models non-Gaussian effects,
namely asymmetry and fat tails, in log(RV).

3.1. DPM-SV model estimation

In this section, we discuss the estimation algorithm for the
DPM-SV model, which is newly proposed. This algorithm can
be easily modified to estimate the DPM-SV-h model.

For the DPM model we use the stick-breaking formulation
and the slice sampler by Walker (2007) and Kalli et al. (2011),
which truncates the infinite mixture into a finite number κ ,
κ ≤ k < T , of unique clusters, {μj, γj, δj, σ 2

j }κj=1, with at least
one data observation assigned in each cluster. To do so,
the parameter space is expanded by introducing two latent
vectors. The first one, already discussed, is the cluster indi-
cator s1:T . The second auxiliary vector is u1:T = {u1, . . . uT },
with ut ∈ (0, 1), which helps to convert the infinite sum
in (16), (17) and (18) into a finite mixture.

The joint posterior of the DPM-SV model p({μj, γj, δj,
σ 2

j }∞j=1, s1:T , u1:T , h1:T , θ | IT ) is proportional to

p(θ)p(w1:k)

k∏
j=1

p(μj, γj, δj, σ
2
j )

×
T∏

t=1

1ut<wst
N
(
rt|μst , exp(ht)

)
N
(
log(RVt)|ψ + ht, ξ

2
)

N
(
ht|γst + δst ht−1, σ 2

st

)
. (19)

with the first line being the prior and the second one the likeli-
hood. 1 is the indicator function and k is the smallest positive
integer that satisfies the condition

∑k
j=1 wj > 1 − min(u1:T ).

The above posterior does not have a known form. We follow
standard Markov chain Monte Carlo (MCMC) techniques and
a hybrid algorithm of Gibbs and Metropilis-Hastings steps to
sample from a series of conditional distributions.

After giving starting values to θ , k, w1:k , s1:T ,μ1:k , γ1:k , δ1:k ,
σ 2

1:k ,α and h1:T , we collect a large number of posterior
draws {θ(i), k(i), s(i)1:T ,μ(i)1:k , γ (i)1:k , δ(i)1:k , σ 2(i)

1:k ,α(i), h(i)1:T }R
i=1 by iter-

ating through the following MCMC steps:

(1) Sample ht from p(ht|h−t, It, θ ,μ1:k , γ1:k , δ1:k , σ 2
1:k , s1:T ),

t = 1, . . . , T .†
(2) Sample (a) ψ from p(ψ | RV1:T , h1:T , ξ 2) and (b) ξ 2

from p(ξ 2 | RV1:T , h1:T ,ψ).
(3) Sample (a) μ1:k from p(μ1:k|r1:T , h1:T , s1:T ), (b)

γ1:k from p(γ1:k|r1:T , h1:T , δ1:k , σ 2
1:k , s1:T ) (c) δ1:k from

p(δ1:k|r1:T , h1:T , γ1:k , σ 2
1:k , s1:T ) and (d) σ 2

1:k from
p(σ 2

1:k|r1:T , h1:T , γ1:k , δ1:k , s1:T ).
(4) Update w1:k , u1:T , k|s1:T ,α.
(5) Sample st from p(st|It, h1:T , θ ,μ1:k , γ1:k , δ1:k , σ 2

1:k ,
w1:k , u1:T , k), t = 1, . . . , T .

(6) Sample α from p(α|κ , T).

See the Appendix for details.

3.2. Forecasting

The interest of Bayesian nonparametrics forecasting is on
the predictive density. This is approximated in the DPM
framework by first integrating out the uncertainty about the
future cluster of the mixture parameters. Conditional on It =
{r1:t, RV1:t}, the predictive densities of return, log(RV) and
stochastic volatility, for the DPM-SV model, can be approxi-
mated with the use of R posterior draws as

p(rt+1 | It, st+1, ht+1) ≈ 1

R

R∑
i=1

N

(
rt+1

∣∣∣∣μ(i)s(i)t+1

, exp
(

h(i)t+1

))
,

(20)

p(log(RVt+1) | It, st+1, ht+1)

≈ 1

R

R∑
i=1

N
(

log(RVt+1)

∣∣∣ψ(i) + h(i)t+1, ξ 2(i)
)

, (21)

† A popular approach in the standard SV models is sampling h1:T
in random blocks (Fleming and Kirby 2003). This would be chal-
lenging to use since we do not have fixed SV equation parameters.
Instead we use an extension of the single-move SV sampler from
Kim et al. (1998). Also, the path dependence issue observed in
regime-switching GARCH models (e.g. Bauwens et al. 2010) is not
found in the SV model literature (e.g. So et al. 1998, Carvalho and
Lopes 2007) since the latent volatility is not a deterministic function
of its previous values.
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p(ht+1|It, st+1) ≈ 1

R

R∑
i=1

N

(
ht+1

∣∣∣∣γ (i)s(i)t+1

+ δ
(i)

s(i)t+1

h(i)t , σ 2(i)

s(i)t+1

)
,

(22)

where s(i)t+1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

j, if
j−1∑
l=0

w(i)l < φ <

j∑
l=0

w(i)l ,

k(i) + 1, if φ ≥
k(i)∑
l=0

w(i)l ,

(23)

with w(i)o = 0, j ≤ k(i), φ ∼ U(0, 1) and future volatility con-
ditional on s(i)t+1 is simulated as

h(i)t+1 | s(i)t+1, It ∼ N

(
γ
(i)

s(i)t+1

+ δ
(i)

s(i)t+1

h(i)t , σ 2(i)

s(i)t+1

)
. (24)

The future value of s(i)t+1 in (23) is one of the existing clus-
ters with probability equal to the associated weights and
there is a nonzero probability of introducing a new cluster
(μ

(i)
k(i)+1, γ (i)k(i)+1, δ(i)k(i)+1, σ 2(i)

k(i)+1) from the base measure G0.
We can also approximate the joint return and log(RV) pre-

dictive density. Conditional on st+1 and ht+1, returns and
log(RV) have independent conditional distributions and their
joint predictive density can be approximated as

p(rt+1, log(RVt+1) | It, st+1, ht+1)

≈ 1

R

R∑
i=1

N

(
rt+1

∣∣∣∣μ(i)s(i)t+1

, exp
(

h(i)t+1

))

N
(

log(RVt+1)

∣∣∣ψ(i) + h(i)t+1, ξ 2(i)
)

. (25)

The predictive density serves as the building block for the
predictive likelihood (PL) (Geweke 1994). This measure pro-
vides an out-of-sample density forecast record that facilitates
straightforward model comparisons. The log-predictive likeli-
hood (log-PL) for a τ -length vector of returns, rT−τ+1:T (with
1 < τ < T), is the summation of individual log predictive
densities evaluated at the rt+1 data as

log − PL(rT−τ+1:T | IT ) =
T−1∑

t=T−τ
log

(
p(rt+1 | It, st+1, ht+1)

)
.

(26)
Similarly, the log predictive likelihood for a τ -length vector
of realized variances, log(RV)T−τ+1:T is calculated as

log − PL(log(RV)T−τ+1:T | IT )

=
T−1∑

t=T−τ
log

(
p(log(RVt+1) | It, st+1, ht+1)

)
, (27)

and the joint return, log(RV) predictive likelihood is calcu-
lated as

log − PL(rT−τ+1:T , log(RV)T−τ+1:T | IT )

=
T−1∑

t=T−τ
log

(
p(rt+1, log(RVt+1) | It, st+1, ht+1)

)
. (28)

The out-of-sample density forecasting exercise is done with
recursive posterior model estimations and likelihood evalua-
tions.

In a two-model comparison, the log-Bayes factor (log-BF)
is the difference between the log-predictive likelihoods of the
two models. As noted by Kass and Raftery (1995), a higher
log-BF indicates preference for one model over the other, with
values greater than 3 indicating strong preference and very
strong preference for values greater than 5. The Bayes factor
measure favours complicated model specifications only when
they provide better data density explanation.

In many finance applications, the objective is to forecast
specific regions of a distribution. For example, in risk mea-
surement, the focus is often on the left tail of the return
distribution. We evaluate the model tail forecasting with the
measure of tail predictive density (Diks et al. 2011). Follow-
ing Jensen and Maheu (2013), the region predictive density of
rt+1 < η, η ∈ R, is defined as

p(rt+1 | rt+1 < η, It, st+1, ht+1)

= p(rt+1 | It, st+1, ht+1)1rt+1<η∫ η
−∞ p(yt+1 | It, st+1, ht+1) dyt+1

≈
1
R

∑R
i=1 N

(
rt+1

∣∣∣∣μ(i)s(i)t+1

, exp
(

h(i)t+1

))
1rt+1<η

1
R

∑R
i=1

((
η − μ

(i)

s(i)t+1

)
/ exp

(
h(i)t+1/2

)) , (29)

where (.) denotes the standard Gaussian c.d.f. The denom-
inator in (29) is an integrating constant ensuring that the
predictive density integrates to one. The region log-predictive
likelihood can be calculated as the log-PL in (26).

3.3. Benchmark models

We compare our proposed models DPM-SV and DPM-SV-h
with popular SV models. These are:

(1) The standard Gaussian SV-N model (Kim et al. 1998),
defined with equations (1) and (3).

(2) The SV model with fat tails of Jacquier et al. (2004)
which is referred to as SV-t and defined as

rt = μ+ exp(ht/2)λ
1/2
t ut, ut

iid∼ N(0, 1) (30)

λt ∼ IG(ν/2, ν/2), (31)

and volatility equation (3). Conditional on λt, returns
follow a Student’s t-distribution with ν degrees of
freedom.

(3) The SV-DPM of Jensen and Maheu (2010) which uses
a DPM in the return distribution while having a Gaus-
sian AR(1) stochastic volatility. This model has the
following stick-breaking form

rt = μst + λst exp(ht/2)ut, ut
iid∼ N(0, 1), (32)

ht = δht−1 + σvet, et
iid∼ N(0, 1), (33)

with st following a Multinominal distribution as
in (14), stick-breaking mixture weights as in (15) and
base measure G0(μj, λ2

j ) ≡ N(m0, v2
m)− IG(vl, sl), ∀j.
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(4) The RSV-N model discussed in Section 2.
(5) The final benchmark model is the RSV-DPM of

Liu (2021) which has the following stick-breaking
representation

rt = μst + λst exp(ht/2)ut, ut
iid∼ N(0, 1), (34)

log(RVt) = ψst + ht + ξst zt, zt
iid∼ N(0, 1), (35)

ht = γ + δht−1 + σvet, et
iid∼ N(0, 1), (36)

with cluster variable st as in (14), mixture weights
as in (15) and base measure G0(μj, λ2

j ,ψj, ξ 2
j ) ≡

N(m0, v2
m)− IG(vl, sl)− N(c0, v2

c)− IG(v0, s0), ∀j.
The difference of this model compared to our pro-
posed DPM-SV(-h) lies in the stochastic volatility
equation. Here it is fully parametric with fixed inter-
cept, persistence and volatility of volatility parameters.
The DPM-SV framework flexibly models these latent
volatility dynamics with time-varying components.

4. Simulation exercise

In this section we perform a simulation exercise to illus-
trate the models estimation. We generate T = 2000 return and
log(RV) values from

rt ∼ N(0, exp(ht)),

log(RVt) ∼ N(0.1 + ht, 0.1).

We test two different data generating processes for the log-
volatility. The first one is a standard 1-state Gaussian volatil-
ity, generated as

ht ∼ N(−0.1 + 0.95ht−1, 0.05).

The second volatility generating process is the following 2-
states mixture of normals

ht ∼
{

N(0.95ht−1, 0.05), w.p. 0.9

N(−0.1 + 0.80ht−1, 0.2), w.p. 0.1.

In DPM-SV we set the priors as: μj ∼ N(0, 0.1), γj ∼
N(0, 0.1), δj ∼ N(0.9, 0.1)1|δj|<1 and σ 2

j ∼ IG(10/2, 1/2),
with E(σ 2

j ) = 1/8, j = 1, 2, . . .. The precision parameter of
DPM has a Gamma prior, α ∼ �(2, 10), with E(α) = 0.2. For
the log(RV) measurement equation we set ψ ∼ N(0, 1) and
ξ 2 ∼ IG(10/2, 1/2). For the rest of the models we use the
above priors in their associated parameters.

Table 1 displays the estimation results from models RSV-N,
RSV-DPM, DPM-SV and DPM-SV-h for the two data gen-
erating processes. Overall, the posterior mean and median
values are very close to the true ones. The 95% density inter-
vals for most of the parameters contain the true value. The
DPM-SV(-h) models use an average number of clusters close
to the true number. RSV-DPM uses roughly the same num-
ber of clusters for both cases. In the 2-states case, the latent

volatility dynamics cannot be detected by the RSV-DPM
specification. The RSV-N and RSV-DPM stochastic volatil-
ity equation parameters are close to a weighted average of the
2-states true values. A similar trend is also observed in the
models empirical application that follows.

5. Empirical application

5.1. Data

We consider three datasets consisting of daily open-to-close†
(log) returns and their ex post measures of realized vari-
ance from Oxford-Man Institute’s Realized Library‡ (Heber
et al. 2009). The datasets are: Dow Jones Industrial Average
Index (DJI), Nasdaq 100 (IXIC) and S&P 500 Index (SPX).
Summary statistics are in table 2. Returns have been converted
to percentages while RV has been scaled by 1002.

5.2. Posterior estimation

Table 3 reports the posterior estimation results for the three
datasets. The priors used are the same as in Section 4. Results
are from 30,000 posterior draws, after discarding 20,000 ones.
We report the posterior mean and 95% posterior density
interval.

The proposed DPM-SV and DPM-SV-h models use a mix-
ture of normals in stochastic volatility modelling. On average
the SV equation mixing components form 4.5–5.8 clusters.
The DPM precision parameter α is estimated in the range
0.3405–0.4277 and its trace plots in figure 1 show good con-
vergence. The benchmark RSV-DPM model uses less than 3
clusters on average.

In the log(RV) measurement equations, the parameters
from the proposed DPM-SV-h model are close to the bench-
mark RSV-N. In the more flexible DPM-SV, for the cases
of IXIC and SPX, variance parameter ξ 2 is lower in value
compared to the other two models and parameter ψ is closer
to zero. This indicates less noise between log(RV) and the
estimated volatility.

Figure 2 displays the DPM-SV posterior mixture compo-
nents and smooth volatility against the associated RSV-N
parameters and volatility. The estimated log-volatilities from
both models have similar patters but, the DPM-SV one shows
more flexibility in the extreme low and high volatility days.

All the SV equation components vary substantially through
time. Time-invariant log-volatility parameters is a restrictive
specification. Among the series the patterns are similar. γst

fluctuates around the parametric γ and around zero with val-
ues ranging from −0.7 to 1. δst is mostly close to 0.95 and
δ but, often adjusts to lower values, as low as 0.65. σ 2

st
is

mostly below 0.05 and σ 2 from SV-N and often spikes to
values larger than σ 2 from RSV-N.

There is an observed trade-off between δst and σ 2
st

in figure
2. Table 4 reports the correlations of the posterior estimated
volatility mixing components. The correlation between δst

† Following a big part of the relevant literature we only consider
trading hours returns but overnight returns can be included as well.
‡ The Oxford-Man Realized Library was discontinued in 2022.
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Table 1. Model estimation results on simulated data.

True RSV-N RSV-DPM DPM-SV-h DPM-SV

Mean Median 95% D.I. Mean Median 95% D.I. Mean Median 95% D.I. Mean Median 95% D.I.

Panel A: 1 state
µ 0.00 0.006 0.006 [ − 0.008, − 0.003] 0.017 0.017 [0.014, 0.019]
ψ 0.10 0.110 0.110 [0.044, 0.174] 0.142 0.142 [0.077, 0.206] 0.142 0.142 [0.080, 0.207]
ξ2 0.10 0.110 0.110 [0.100, 0.121] 0.097 0.097 [0.088, 0.107] 0.097 0.097 [0.088, 0.107]
γ − 0.10 − 0.101 − 0.100 [ − 0.131, − 0.099] − 0.094 − 0.094 [ − 0.126, − 0.065]
δ 0.95 0.950 0.950 [0.934, 0.965] 0.952 0.952 [0.936, 0.966]
σ 2 0.05 0.052 0.052 [0.044, 0.062] 0.050 0.050 [0.042, 0.059]
α 0.144 0.118 [0.018, 0.414] 0.145 0.121 [0.018, 0.407] 0.138 0.114 [0.016, 0.398]
κ 1.00 1.393 1.000 [1.000, 3.000] 1.404 1.000 [1.000, 3.000] 1.305 1.000 [1.000, 3.000]
Panel B: 2 states
µ 0.00 0.006 0.006 [ − 0.013, 0.001] − 0.026 − 0.026 [ − 0.033, − 0.019]
ψ 0.10 0.145 0.145 [0.085, 0.206] 0.122 0.123 [0.050, 0.183] 0.127 0.127 [0.064, 0.191]
ξ2 0.10 0.105 0.105 [0.093, 0.117] 0.091 0.091 [0.081, 0.102] 0.092 0.091 [0.081, 0.103]
γ − 0.020 − 0.020 [ − 0.034, − 0.007] − 0.005 − 0.004 [ − 0.007, 0.016]
δ 0.910 0.910 [0.886, 0.932] 0.921 0.921 [0.900, 0.941]
σ 2 0.072 0.072 [0.060, 0.086] 0.070 0.070 [0.059, 0.083]
α 0.133 0.110 [0.015, 0.379] 0.172 0.144 [0.021, 0.481] 0.194 0.158 [0.022, 0.560]
κ 2.00 1.479 1.000 [1.000, 3.000] 2.137 2.000 [1.000, 5.000] 2.113 2.000 [1.000, 5.000]

Notes: Results are from 20,000 MCMC posterior draws after 10,000 burnin sweeps. The simulated data are 2000 return and log(RV) values generated as rt ∼ N(0, exp(ht)) and log(RVt) ∼ N(0.1 +
ht, 0.1). The log-volatility in panel A is generated as ht ∼ N(−0.1 + 0.95ht−1, 0.05), while in panel B follows a 2-states mixture generated as ht ∼ N(0.95ht−1, 0.05), with probability 0.9 and
ht ∼ N(−0.1 + 0.8ht−1, 0.2), with probability 0.1.
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Table 2. Summary statistics.

Mean St. Dev. Skewness Kurtosis Min Max

DJI returns 0.020 1.097 − 0.033 11.790 − 8.405 10.754
RV 1.082 2.609 14.003 332.380 0.019 86.240
log(RV) − 0.653 1.109 0.380 3.419 − 3.952 4.457

IXIC returns − 0.012 1.308 0.020 10.540 − 8.046 14.908
RV 1.350 2.813 9.956 170.158 0.017 73.045
log(RV) − 0.431 1.122 0.433 3.136 − 4.071 4.291

SPX returns 0.007 1.119 − 0.192 11.594 − 9.351 10.220
RV 1.067 2.422 11.940 258.703 0.012 77.477
log(RV) − 0.678 1.132 0.340 3.306 − 4.408 4.350

Note: Data period: January 3rd, 2000 – December 31st, 2021. DJI: 5512 days. IXIC:
5516 days. SPX: 5515 days.

Figure 1. Trace plots of 30,000 MCMC posterior draws of DPM precision parameter, α, and their smoothed histogram, for DJI dataset. (a)
DPM-SV-h (b) DPM-SV.

and σ 2
st

is consistently below − 0.72. The DPM-SV(-h) mod-
els flexibly choose between persistence and randomness to
adequately capture the volatility dynamics. The correlation
between the level γst and the other two components varies
substantially depending on the data. Including the return
mean in the mixture mostly reduces the absolute value of the
correlations.

5.3. Out-of-sample forecasting

Panel A of table 5 reports the cumulative log-predictive like-
lihood for returns, from (26), and the log-Bayes factor of
each model against SV-N. These are calculated from τ =
2500 recursive posterior estimations and likelihood evalu-
ations at the out-of-sample returns. The forecasting period
covers almost 10 years, from early 2012 until the end of 2021.
Across all datasets, DPM-SV emerges as the best model,
with the highest log-predictive likelihood scores and log-
Bayes factors. The log-Bayes factor between DPM-SV and

the restrictive DPM-SV-h ranges from 9.05 to 19.4, showing
decisive evidence in favour of DPM-SV.

Overall, among the models, DPM-SV provides the best
description of the underlying return-generating process. This
performance can be attributed to the fact that DPM-SV effec-
tively nests all the benchmarks. For instance, parametrically
restricting δst and σ 2

st
in DPM-SV results in a conditional

return distribution equivalent to RSV-DPM. The time-varying
δst and σ 2

st
provide DPM-SV with the flexibility to estimate a

more dynamic latent volatility. The difference between DPM-
SV-h and RSV-N provides strong evidence supporting the
nonparametric SV modelling.

Panel B of table 5 reports the cumulative log-predictive
likelihood for log(RV), from (27), and the log-Bayes fac-
tor of each model against RSV-N. For all data series, there
is decisive evidence favouring nonparametric SV modelling
over the benchmarks. This is explained by the fact that both
DPM-SV and DPM-SV-h nest the benchmarks in modelling
log(RV). Compared to the semiparametric log(RV)modelling
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Table 3. Posterior estimation results.

SV-N SV-t RSV-N RSV-DPM DPM-SV-h DPM-SV

Mean 95% D.I. Mean 95% D.I. Mean 95% D.I. Mean 95% D.I. Mean 95% D.I. Mean 95% D.I.

Panel A: DJI
µ 0.0631 [0.057, 0.069] 0.0569 [0.050, 0.064] 0.0727 [0.069, 0.076] 0.0725 [0.069, 0.076]
ν 15.3146 [9.983, 26.297]
ψ − 0.0780 [ − 0.117, − 0.038] − 0.0750 [ − 0.116, − 0.036] 0.0871 [0.039, 0.139]
ξ2 0.1948 [0.181, 0.208] 0.1899 [0.177, 0.203] 0.1895 [0.178, 0.201]
γ − 0.0121 [ − 0.020, − 0.005] − 0.0126 [ − 0.020, − 0.006] − 0.0313 [ − 0.043, − 0.020] − 0.0314 [ − 0.042, − 0.021]
δ 0.9759 [0.968, 0.983] 0.9798 [0.973, 0.986] 0.9469 [0.936, 0.957] 0.9543 [0.944, 0.964]
σ 2 0.0579 [0.046, 0.073] 0.0479 [0.037, 0.060] 0.1115 [0.097, 0.127] 0.0951 [0.082, 0.109]
α 0.2163 [0.042, 0.550] 0.4277 [0.100, 0.960] 0.4048 [0.123, 0.875]
κ 2.6802 [2.000, 5.000] 5.8244 [3.000, 11.000] 5.5063 [4.000, 9.000]
Panel B: IXIC
µ 0.0538 [0.047, 0.061] 0.0545 [0.047, 0.063] 0.0829 [0.078, 0.088] 0.0827 [0.078, 0.088]
ν 24.8326 [14.846, 37.147]
ψ − 0.2321 [ − 0.272, − 0.193] − 0.2282 [ − 0.269, − 0.189] − 0.0069 [ − 0.052, 0.040]
ξ2 0.1641 [0.152, 0.177] 0.1620 [0.150, 0.174] 0.1502 [0.139, 0.162]
γ − 0.0021 [ − 0.007, 0.003] − 0.0031 [ − 0.008, 0.002] − 0.0109 [ − 0.020, − 0.002] − 0.0212 [ − 0.031, − 0.012]
δ 0.9829 [0.976, 0.989] 0.9844 [0.978, 0.990] 0.9483 [0.938, 0.958] 0.9528 [0.943, 0.962]
σ 2 0.0389 [0.030, 0.049] 0.0354 [0.027, 0.045] 0.1114 [0.098, 0.127] 0.1020 [0.089, 0.116]
α 0.2258 [0.045, 0.566] 0.3405 [0.069, 0.804] 0.3770 [0.116, 0.810]
κ 2.8096 [2.000, 5.000] 4.5393 [2.000, 9.000] 5.1011 [4.000, 8.000]
Panel C: SPX
µ 0.0580 [0.052, 0.064] 0.0540 [0.047, 0.061] 0.0750 [0.071, 0.079] 0.0741 [0.071, 0.078]
ν 18.0444 [10.928, 30.714]
ψ − 0.1198 [ − 0.160, − 0.081] − 0.1170 [ − 0.158, − 0.078] 0.0819 [0.034, 0.131]
ξ2 0.1644 [0.152, 0.177] 0.1645 [0.153, 0.177] 0.1555 [0.145, 0.167]
γ − 0.0111 [ − 0.019, − 0.004] − 0.0118 [ − 0.019, − 0.005] − 0.0322 [ − 0.044, − 0.021] − 0.0361 [ − 0.048, − 0.025]
δ 0.9775 [0.970, 0.985] 0.9802 [0.973, 0.987] 0.9450 [0.934, 0.955] 0.9496 [0.939, 0.960]
σ 2 0.0553 [0.043, 0.070] 0.0480 [0.037, 0.061] 0.1253 [0.110, 0.141] 0.1142 [0.100, 0.130]
α 0.2185 [0.043, 0.557] 0.3545 [0.076, 0.847] 0.3954 [0.121, 0.849]
κ 2.7012 [2.000, 5.000] 4.7598 [2.000, 9.000] 5.3851 [4.000, 9.000]

Notes: Results are from 30,000 MCMC posterior draws after 20,000 burnin sweeps. The benchmark model specifications are in Section 3.3. The priors used are discussed in Section 4. In the SV-t
model, parameter ν is the Student’s-t degrees of freedom, with a uniform prior, p(ν) ∼ U(3, 50).
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Figure 2. Full sample posterior estimations of the time-varying stochastic volatility equation mixing components from the DPM-SV model
against the parametric RSV-N specification. From top to bottom: intercept E(γst |Model), AR(1) coefficient E(δst |Model), variance of
volatility E(σ 2

st
|Model) and smooth estimation of stochastic volatility E(ht|Model). (a) DJI (b) IXIC (c) SPX.

Table 4. Posterior correlations of the volatility mixing components.

DJI IXIC SPX

DPM-SV-h DPM-SV DPM-SV-h DPM-SV DPM-SV-h DPM-SV

Corr[E(γst |IT ), E(δst |IT )] 0.373 0.147 − 0.894 − 0.476 − 0.331 − 0.301
Corr[E(γst |IT ), E(σ 2

st
|IT )] 0.239 0.139 0.963 0.553 0.587 0.108

Corr[E(δst |IT ), E(σ 2
st
|IT )] − 0.796 − 0.809 − 0.968 − 0.824 − 0.937 − 0.724

Notes: This table reports the correlations of the posterior estimated volatility mixture components, E(γst |IT ),
E(δst |IT ) and E(σ 2

st
|IT ), t = 1, . . . , T .

of RSV-DPM, the DPM-SV(-h) models, as seen in (18),
provide more flexibility through ht. Both RSV-DPM and
DPM-SV(-h), model log(RV) semiparametrically, combining
in its conditional mean and variance a parametric compo-
nent with a nonparametric DPM component. The difference
is in the volatility persistence adjustment from δst , which is
absent in RSV-DPM. This adjustment enhances the flexibility
of DPM-SV(-h) models, improving their volatility forecasts.

Panel C of table 5 reports the joint return and log(RV)
cumulative log-predictive likelihood, from (27), and the
log-Bayes factor of each model against RSV-N. The
results provide decisive evidence in favour of the pro-
posed nonparametric SV modelling. The DPM-SV(-h) mod-
els, against the RSV benchmarks, have log-Bayes factors
values higher that 16. Between the two model specifica-
tions the general DPM-SV is very strongly preferred against
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Table 5. Density forecasts.

DJI IXIC SPX

log-PL log-BF log-PL log-BF log-PL log-BF

Panel A: Returns
SV-N − 2569.25 − 2932.50 − 2537.95
SV-t − 2563.17 6.08 − 2928.24 4.26 − 2537.14 0.81
SV-DPM − 2564.02 5.23 − 2931.18 1.32 − 2537.31 0.64
RSV-N − 2466.57 102.68 − 2835.87 96.63 − 2418.74 119.21
RSV-DPM − 2459.28 109.97 − 2835.14 97.36 − 2411.74 126.21
DPM-SV-h − 2461.99 107.26 − 2832.35 100.15 − 2417.50 120.45
DPM-SV − 2452.94 116.31 − 2812.95 119.55 − 2402.69 135.26
Panel B: Realized variance
RSV-N − 2500.86 − 2534.57 − 2520.26
RSV-DPM − 2502.27 − 1.41 − 2529.76 4.81 − 2522.16 − 1.9
DPM-SV-h − 2498.32 2.54 − 2525.09 9.48 − 2510.21 10.05
DPM-SV − 2491.64 9.22 − 2520.93 13.64 − 2500.46 19.80
Panel C: Joint return and log(RV) density
RSV-N − 4770.70 − 5175.80 − 4736.10
RSV-DPM − 4766.95 3.75 − 5179.70 − 3.9 − 4740.50 − 4.4
DPM-SV-h − 4750.63 20.07 − 5151.57 24.23 − 4713.12 22.98
DPM-SV − 4725.48 45.22 − 5091.91 83.89 − 4656.25 79.85
Forecasting period 9/1/2012 – 31/12/2021 17/1/2012 – 31/12/2021 11/1/2012 – 31/12/2021

Notes: The table reports the log-predictive likelihood (log-PL) and log-Bayes Factors (log-BF) from
2500 out-of-sample model forecasts. The log-BFs are computed against the basic benchmark model on
top, SV-N for panel A and RSV-N for panels B and C. Bold indicates the best value among the models
in each column.

Table 6. DPM-SV sensitivity analysis to the choice of G0(σ
2
st
).

G0(σ
2
st
) log-PL

Base measure Mean Returns log(RV) Joint

IG(22/2, 1/2) 0.050 − 1050.58 − 991.42 − 1931.91
IG(10/2, 1/2) 0.125 − 1048.91 − 991.66 − 1927.58
IG(6/2, 1/2) 0.250 − 1048.91 − 992.96 − 1930.49
IG(4/2, 1/2) 0.500 − 1049.72 − 995.39 − 1930.71

Notes: This table reports the DPM-SV model log-predictive like-
lihoods (log-PL) for the SPX dataset. These are calculated from
1000 out-of-sample forecasts (27/12/2017–31/12/2021) for different
choices of the base measure G0(σ

2
st
), from very informative to less

informative.

the restrictive DPM-SV-h with log-Bayes factors values
exceeding 25.

SV models are known for their sensitivity to volatility of
volatility prior choice. Table 6 presents a sensitivity anal-
ysis in the DPM-SV model, based on log-PL, for different
volatility of volatility base measure choices, from very infor-
mative, E(σ 2

st
) = 0.05, to less informative, E(σ 2

st
) = 0.5. The

log-Bayes Factors among the models range from 0 to 4.33
Specifically, for the return density, log-Bayes Factors are in
values 0 − 1.67, indicating indifference among the different
cases. Overall, the analysis implies robustness of DPM-SV to
the volatility of volatility base measure choice.

Figure 3 offers insights into the models’ forecasting per-
formance. It illustrates the cumulative log-Bayes factors over
time of the proposed DPM-SV against the restricted DPM-
SV-h and the benchmarks RSV-DPM and RSV-N. For all
datasets, DPM-SV exhibits consistent ongoing gains after
2015. DPM-SV-h and RSV-N are competitive during the
period 2012–2015, while RSV-DPM is very competitive

during the first two forecasting years. The plots highlight the
DPM-SV(-h) models ability to capture variance shocks, with
significant predictive likelihood gains during notable market
events such as the flash crash on August 24, 2015 and the
market drop on February 8, 2018.

To better understand the models forecasting differences we
turn to plots of log-predictive distributions. Figure 4 illustrates
the one day ahead out-of-sample predictive density plots from
the DPM-SV(-h) models compared to the RSV benchmarks,
for the crash of Monday February 5th, 2018. The densities are
computed over a grid of values with data up to and including
Friday February 2nd, 2018.

The DPM-SV model captures non-Gaussian features in
returns, log(RV), and stochastic volatility. Both DPM-SV
and DPM-SV-h models yield a posterior distribution for the
stochastic volatility that is clearly a mixture–exhibiting fat
tails, asymmetry, and substantial deviation from the Gaussian
shape.

Simulating ht+1 from the mixture distribution in (24), pro-
duces fat-tailed return densities† , as well as fat-tailed and
asymmetric log(RV) densities. For returns, both DPM-SV
and DPM-SV-h predictive density plots display thicker tails
compared to RSV-DPM. The DPM-SV model, in particular,
provides stronger evidence of tail asymmetry, more evident
than in RSV-DPM. The proposed DPM-SV model allocates
more probability mass to the left tail of the return distribution,
resulting in higher predictive likelihood scores for the real-
ized return values. In log(RV), all models incorporating DPM
exhibit density shapes distinct from RSV-N. The DPM-SV(-h)
models assign more probability mass to upward shocks than
to downward RV movements.

† See also Jin and Maheu (2016).
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Figure 3. Joint return and log(RV) density forecasting. Top: cumulative log-Bayes factors for the pairs DPM-SV vs. DPM-SV-h (blue),
DPM-SV vs. RSV-DPM (red) and DPM-SV vs. RSV-N (green). Middle: returns. Bottom: log(RV). (a) DJI (b) IXIC (c) SPX.

Figure 4. One day ahead out-of-sample logarithmic predictive density plots for Monday February 5th, 2018. The densities are computed
over a grid of values from model posterior estimations with data up to and including Friday February 2nd, 2018. (a) Returns (b) log(RV) (c)
Stochastic volatility.
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Table 7. Region density forecasts.

DJI IXIC SPX

η(%): −2% −1% 0% −2% −1% 0% −2% −1% 0%
SV-N − 35.54 − 143.02 − 465.58 − 46.71 − 181.28 − 668.85 − 36.49 − 137.20 − 459.27
SV-t − 34.36 − 138.91 − 455.71 − 44.00 − 177.33 − 664.15 − 35.32 − 132.16 − 452.25
SV-DPM − 34.98 − 141.31 − 455.55 − 44.88 − 175.11 − 666.28 − 34.07 − 132.35 − 450.59
RSV-N − 33.34 − 134.68 − 412.81 − 37.98 − 164.91 − 621.98 − 33.41 − 130.27 − 398.31
RSV-DPM − 32.95 − 131.95 − 409.12 − 38.42 − 165.68 − 622.86 − 33.01 − 127.56 − 395.36
DPM-SV-h − 32.10 − 133.56 − 407.98 − 38.62 − 160.97 − 616.77 − 32.87 − 128.12 − 394.45
DPM-SV − 32.24 − 132.14 − 404.97 − 37.69 − 157.71 − 605.08 − 31.80 − 125.71 − 389.77
Forecasts 45 206 1146 69 252 1113 47 201 1138
Forecasting period 9/1/2012 – 31/12/2021 17/1/2012 – 31/12/2021 11/1/2012 – 31/12/2021

Notes: The table displays the region log-predictive likelihood (log-PL), constructed from: p(rt+1|rt+1 < η,It), for η = {−2, −1, 0}. The
chosen regions are negative returns (rt+1 < 0) and greater than 1% (rt+1 < −1) and 2% (rt+1 < −2) losses. Bold indicates the best value
among the models.

Table 8. Tail-risk forecasting results.

DJI IXIC SPX

ε(%) : 1% 5% 1% 5% 1% 5%

SV-N 2.0847 1.6208 2.2532 1.8118 2.1350 1.6439
SV-t 2.0689 1.6284 2.2436 1.8122 2.0995 1.6385
SV-DPM 2.1574 1.6412 2.3091 1.8431 2.1844 1.6660
RSV-N 1.9937 1.5464 2.2204 1.7474 2.0438 1.5580
RSV-DPM 1.9551 1.5439 2.1871 1.7420 2.0244 1.5515
DPM-SV-h 1.9241 1.5411 2.1792 1.7411 2.0064 1.5480
DPM-SV 1.9051 1.5256 2.0819 1.7183 1.9325 1.5338
Forecasting period 9/1/2012 – 31/12/2021 17/1/2012 – 31/12/2021 11/1/2012 – 31/12/2021

Notes: This table displays the average out-of-sample loss function of Taylor (2019) Lε(rt+1, VaRεt+1, ESεt+1)
from (37). Bold indicates the best value among the models.

The ability of the proposed models to accommodate
return plummets is further demonstrated in their forecasts
for specific regions of the return density. We examine three
cases relevant to risk measurement: negative returns, and
losses greater than 1% and 2%. The region density forecasting
results are presented in table 7. DPM-SV(-h) models achieve
the highest region log-PL score in all cases except one, where
RSV-DPM is marginally the best, with a log-Bayes factor of
0.19. The DPM-SV model is the best in 7 out of 9 occasions.
This result is attributed to the tail asymmetry of the DPM-
SV model, as shown in figure 4. For negative returns, the
DPM-SV outperforms the best benchmark in each case, with
log-Bayes factors exceeding 3. For losses greater than 1%,
the log-Bayes factor of DPM-SV against the best benchmark
ranges from −0.19 to 7.2, while for losses greater than 2%,
the log-Bayes factor of DPM-SV(-h) against the best bench-
mark ranges from 0.29 to 1.21. We further explore the tail
benefits of the proposed models with the following tail-risk
forecasting application.

5.3.1. Tail-risk forecasting. A popular application of vola
tility models is in tail-risk forecasting for the measures of
value-at-risk (VaR) and expected shortfall (ES). For rt+1,
the VaRεt+1 at level ε is the conditional tail quantile defined
as P[rt+1 ≤ VaRεt+1 | It] = ε. This denotes the least potential
loss for return rt+1 with probability ε. VaR does not consider
the loss magnitude. This is better evaluated with ES which is

the average expected loss, conditional on exceeding the VaR,
and is defined as ESεt+1 = E[rt+1 | rt+1 ≤ VaRεt+1, It].

To estimate the out-of-sample VaR and ES, we simulate a
large number of return draws from each model’s predictive
density {r(i)t+1}R

i=1. For the DPM-SV the predictive density is
in (20). The empirical ε% quantile of the simulated return
values is the VaRεt+1. The expected shortfall is calculated as

ESεt+1 =
∑R

i=1 r(i)t+11r(i)t+1≤VaRεt+1∑R
i=1 1r(i)t+1≤VaRεt+1

.

The joint VaR and ES model forecasts are compared with the
loss function of Taylor (2019) defined as

Lε(rt+1, VaRεt+1, ESεt+1)

= − log

(
ε − 1

ESεt+1

)

−
(
rt+1 − VaRεt+1

) (
ε − 1rt+1≤VaRεt+1

)
εESεt+1

+ rt+1

ESεt+1

. (37)

Smaller average Lε(rt+1, VaRεt+1, ESεt+1) values over the out-
of-sample data indicate more accurate tail measures.

Table 8 displays the average out-of-sample loss from (37)
for the 1% and 5% VaR and ES measures. Across all the three
indices considered, the proposed DPM-SV model produces
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the best VaR and ES values, with the least average loss score.
The second best model is consistently the restricted DPM-
SV-h. These results further highlight the forecasting benefits
of the proposed flexible volatility framework for extreme tail
events.

Overall, the proposed DPM-SV(-h) models offer enhanced
density forecasts along with an improved ability to capture tail
risks and volatility shocks, making them highly appealing for
financial risk measurement applications.

6. Concluding remarks

This paper introduces a novel discrete-time stochastic volatil-
ity model, where the latent volatility is modelled nonparamet-
rically using a Dirichlet process mixture. Our findings reveal
that the stochastic volatility equation components exhibit sig-
nificant variation over time. The model dynamically balances
volatility persistence and randomness, effectively capturing
variance shocks and extreme returns. Out-of-sample density
forecasts demonstrate substantial improvement, particularly
for returns, log(RV), and the left tail of the return distri-
bution. In addition, the proposed model offers economic
gains by enhancing joint forecasts of the tail-risk measures
value-at-risk and expected shortfall.

The proposed framework offers two potential extensions.
First, it can be adapted to the asymmetric stochastic volatil-
ity model. Second, the independent infinite mixture can be
replaced with a Markovian structure. These will be pursued in
future research.
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Appendix

DPM-SV sampling steps
Following are details for the DPM-SV model estimation steps

discussed in Section 3.1.

(1) Sample ht from p(ht | h−t,It, θ ,μ1:k , γ1:k , δ1:k , σ 2
1:k , s1:T ),

t = 1, . . . , T .

To estimate the stochastic volatility vector ht, t =
1, . . . , T we use an extension of the single-move sampler
from Kim et al. (1998). Following the Bayes rule twice, the
conditional posterior above is proportional to

p(rt |μst , ht) p(log(RVt) | ht,ψ , ξ2) p(ht | h−t, γst
, δst , σ

2
st
),

(A1)

p(rt |μst , ht) p(log(RVt) | ht,ψ , ξ2) p(ht | ht−1, γst
, δst , σ

2
st
))

p(ht+1 | ht, γst+1
, δst+1 , σ 2

st+1
), (A2)

p(rt |μst , ht) p(log(RVt) | ht,ψ , ξ2) fN(ht | h̄, v2
h), (A3)

p(rt |μst , ht) fN(ht | Mh, Vh), (A4)

with fN(.) being the normal density. The posterior in (A2) has
an unknown form. By combining the last two densities we get
that p(ht | h−t, γst

, δst , σ
2
st
) ∝ fN(ht | h̄, v2

h) with

h̄ = δst+1σ
2
st
(ht+1 − γst+1)+ σ 2

st+1
(δst ht−1 + γst )

σ 2
st+1

+ δ2
st+1
σ 2

st

,

v2
h = σ 2

st
σ 2

st+1

σ 2
st+1

+ δ2
st+1
σ 2

st

.

Using the log(RVt) data in (A3) we get that ht|h−t, log(RVt),
θ , γ1:k , δ1:k , σ 2

1:k , s1:T ∼ N(Mh, Vh) with

Mh = (log(RVt)− ψ)v2
h + h̄ξ2

v2
h + ξ2

,

Vh = ξ2v2
h

v2
h + ξ2

.

The posterior in (A4) does not have a known form so a
Metropolis-Hastings (MH) algorithm is used to sample from
it. The proposal distribution is found following the results of
Kim et al. (1998). They show that exp(−ht) is bounded and

p(rt |μst , ht) ∝ f (rt, ht,μst )

= exp{−.5ht − .5 exp(−ht)(rt − μst )
2}

≤ exp{−.5ht − .5 exp(−Mh)(rt − μst )
2(1 + Mh − ht)}

= g(rt, ht,μst , Mh).

Combining this with (A4) we get the proposal

p(rt |μst , ht) fN(ht | Mh, Vh)

≤ g(rt, ht,μst , Mh)fN(ht | Mh, Vh) ∝ fN(ht | M , Vh),

with M = Mh + .5Vh((rt − μst )
2 exp(Mh)− 1). The candi-

date h′
t ∼ N(M , Vh) is accepted as a draw of ht with proba-

bility

min

{
p(h′

t|h−t ,It , θ ,μ1:k , γ1:k , δ1:k , σ 2
1:k , s1:T )/N(h′

t | M , Vh)

p(ht|h−t ,It , θ ,μ1:k , γ1:k , δ1:k , σ 2
1:k , s1:T )/N(ht | M , Vh)

, 1

}
.

(2) Sample (a) ψ from p(ψ | RV1:T , h1:T , ξ2) and (b) ξ2 from
p(ξ2 | RV1:T , h1:T ,ψ).

Let xt = log(RVt)− ht, t = 1, . . . , T , from the mea-
surement equation (2)

xt = ψ + ξzt, zt
iid∼ N(0, 1).

Parameters ψ and ξ2 are sampled with Gibbs draws from
linear model conjugate priors as
(a) With prior p(ψ) ∼ N(c0, c2) parameter ψ is sampled

with a Gibbs draw from

p(ψ | RV1:T , h1:T , ξ2) ∼ N(Mψ , Vψ)
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with Mψ = Vψ

(
ξ−2

T∑
t=1

xt + c−2c0

)
and

Vψ =
(

Tξ−2 + c−2
)−1

.

(b) With prior p(ξ2) ∼ IG(vξ , sξ ) parameter ξ2 is sampled
with a Gibbs draw from

p(ξ2 | RV1:T , h1:T ,ψ)

∼ IG

(
T + vξ

2
,

∑T
t=1(xt − ψ)2 + sξ

2

)
.

(3) Sample (a) μ1:k from p(μ1:k | r1:T , h1:T , s1:T ), (b) γ1:k from
p(γ1:k | r1:T , h1:T , δ1:k , σ 2

1:k , s1:T ) (c) δ1:k from
p(δ1:k | r1:T , h1:T , γ1:k , σ 2

1:k , s1:T ) and (d) σ 2
1:k from

p(σ 2
1:k | r1:T , h1:T , γ1:k , δ1:k , s1:T ).

The mixing parameters are drawn with Gibbs sampling
from linear model conjugate priors:
(a) p(μj) ∼ N(m0, v2

m), j = 1, . . . , k. Its conditional poste-
rior is proportional to

p(μj | r1:T , h1:T , st = j)

∝ p(μj)
∏

t:st=j

p(rt|μj, ht)

∼ N
(

mμ, v−1
μ

)

with vμ =
∑
t:st=j

exp(−ht)+ u−2
0 and

mμ = v−1
μ

⎛
⎝∑

t:st=j

rt exp(−ht)+ m0v−2
m

⎞
⎠ .

For the parametric mean in DPM-SV-h, the above sam-
pling step is used with t = 1, . . . , T .

(b) p(γj) ∼ N(g0, v2
g), j = 1, . . . , k. Its conditional posterior

is proportional to

p(γj | h1:T , δj, σ
2
j , st = j)

∝ p(γj)
∏

t:st=j

p(ht | γj, δj, σ
2
j )

∼ N
(

mγ , v2
γ

)

with v2
γ =

σ 2
j v2

g

njv2
g + σ 2

j

and

mγ = v2
γ

⎛
⎝σ−2

j

∑
t:st=j

(ht − δjht−1)+ g0v−2
g

⎞
⎠ ,

where nj = ∑
t:st=j 1{st = j}, is the number of observa-

tions in the cluster j.
(c) p(δj) ∼ N(d0, v2

d )1|δj|<1, j = 1, . . . , k. Its conditional
posterior is proportional to

p(δj | h1:T , γj, σ
2
j , st = j)

∝ p(δj)
∏

t:st=j

p(ht | γj, δj, σ
2
j )

∼ N
(

mδ , v2
δ

)

with v2
δ = v2

d

v2
d

∑
t:st=j h2

t−1σ
−2
j + 1

and

mδ = v2
δ

⎛
⎝∑

t:st=j

ht−1(ht − γj)σ
−2
j + d0

v2
d

⎞
⎠ .

(d) p(σ 2
j ) ∼ IG(v0/2, s0/2), j = 1, . . . , k. Its conditional

posterior is proportional to

p(σ 2
j | h1:T , δj, γj, st = j)

∝ p(σ 2
j )
∏

t:st=j

p(ht | γj, δ, σ
2
j )

∼ IG

(
nj + v0

2
,

∑
t:st=j(ht − γj − δjht−1)

2 + s0

2

)
.

(4) Update w1:k , u1:T , k | s1:T ,α.
(a) Update the mixture weights in w1:k | s1:T ,α with a stick-

breaking process as

vj | s1:T ,α ∼ B

(
1 +

T∑
t=1

1st=j,α +
T∑

t=1

1st>j

)
,

w1 = v1, wj = vj

j−1∏
l=1

(1 − vl), j = 2, . . . , k.

(b) Update the slice vector u1:T | w1:k , s1:T from a uniform
draw as: ut | w1:k , s1:T ∼ U(0, wst ).

(c) Update the number of mixture clusters k to the smallest
positive integer that satisfies:

∑k
j=1 wj > 1 − min(u1:T ).

If new clusters are needed to satisfy the inequality,
their mixing components are drawn from the base mea-
sure (9).

(5) Sample st from p(st |It, h1:T , θ ,μ1:k , γ1:k , δ1:k , σ 2
1:k , w1:k ,

u1:T , k), t = 1, . . . , T .
Each element st of the vector s1:T takes an integer value j

which is drawn from a multinomial distribution with proba-
bilities

p(st = j | r1:T , h1:T ,μ1:k , γ1:k , δ1:k , σ 2
1:k , w1:k , u1:T ,α)

∝ 1ut<wj N
(
rt |μj, exp(ht)

)
N
(

ht | γj + δjht−1, σ 2
j

)
,

for j = 1, . . . , k. The number of active clusters κ , can be
calculated as the ones with at least one assigned data obser-
vation.

(6) Sample α from p(α | κ , T).
The DPM precision parameter α with a gamma prior

α ∼ �(a0, b0) is drawn following the two steps algorithm of
Escobar and West (1995):
(i) draw the random variable ξ |α, k ∼ B(α + 1, T).

(ii) sample α from

α | ξ ∼ πξ�(a0 + κ , b0 − log(ξ))

+ (1 − πξ )�(a0 + κ − 1, b0 − log(ξ)),

with πξ
1−πξ = a0+k−1

T(b0−log(ξ)) .
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