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Abstract—Research on electroencephalogram (EEG)-based
person identification is increasing because EEG signals must be
collected from the living body, making them difficult to steal or
alter. However, EEG signals are greatly influenced by subjects’
states, and most studies on EEG-based person identification
have overlooked this influence. In this study, we proposed
an interpretable contrastive learning transformer to tackle the
impact of state changes on EEG-based person identification.
Contrastive learning transformers construct pairs of EEG signal
feature samples to capture state-independent and identity-distinct
features. Specifically, the power spectral density (PSD) of EEG
signals from the same user in different paradigms is used
as positive samples, while the PSD from other users is used
as negative samples. Pairs of samples are encoded to obtain
corresponding features and then projected into a contrastive
space through a multi-layer perceptron. Then, the NT-Xent loss
function minimizes the distance between positive samples within
the same batch and maximizes the distance between negative
samples. Finally, to eliminate bias between positive sample pairs
from different paradigms, we introduced the cross-paradigm
alignment loss for the first time to capture individual consistency.
We evaluated our model on two datasets. Dataset 1 contains EEG
signals from 109 individuals, recorded across multiple paradigms
designed to elicit different states. Dataset 2 consists of EEG
signals from 71 individuals, collected across two sessions, with
each session including two paradigms. We evaluated the accuracy
of both single-paradigm and cross-paradigm recognition. Our
proposed model outperforms state-of-the-art models for EEG-
based person identification. We also conducted experiments on
electrode attention visualization to capture the brain regions that
the model focuses on, and the results demonstrate that, unlike
in a single-paradigm, models trained in cross-paradigm focus on
fewer electrodes and more concentrated regions.

Index Terms—EEG, biometrics, person identification, con-
trastive learning, transformer.

I. INTRODUCTION

IN the era of the information explosion, safeguarding an
individual’s identity information has emerged as a critical

concern, necessitating the development of innovative, precise,
and secure identity recognition technologies. While several
biometric recognition technologies, such as fingerprint [1],
face [2], and iris [3] recognition, have achieved remarkable
accuracy, the progression of AI technology has raised concerns
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about the vulnerability of these biometric features to theft and
replication. Electroencephalogram (EEG)-based person identi-
fication (PI), compared to traditional biometric characteristics,
has garnered heightened attention from researchers [4][5].
This method captures brain electrical activity recorded through
ion currents resulting from significant neural activations, with
amplitudes ranging from 10-200 µV and frequencies between
0.5-40 Hz [6]. EEG serves as a biometric feature due to
the distinctiveness and universality of EEG signals. EEG
needs to be collected from the living body, making it hard
to pilfer or imitate [7]. The inherent nature of EEG signals
prevents users from subjectively or inadvertently disclosing
their identifiers [8]. EEG collection is straightforward and can
be accomplished using portable, cost-effective devices [9][10].

EEG-based PI typically consists of two components:
paradigms and algorithms. Paradigms are utilized to elicit
specific EEG patterns in experimental settings. The predomi-
nant paradigms encompass resting state, stimulus potentials,
and cognitive tasks. The resting state does not necessitate
any user response or task completion, including eyes-open
(EO) resting-state and eyes-closed (EC) resting-state [11][12].
Stimulus potentials are produced by using external triggers
to evoke brain responses that lead to neural activity, such
as steady-state visually evoked potentials (SSVEP) [13] and
event-related potentials (ERP) [14]. Cognitive tasks involve
active user engagement, with a classic example being motor
imagery, which entails users imagining motor intentions [15].

There are currently two mainstream approaches in EEG-
based PI algorithms: the first involves combining feature
extraction methods with classifiers, while the second utilizes
deep learning techniques. Common feature extraction meth-
ods include autoregressive (AR) [16], power spectral density
(PSD) [17], wavelet transform (WT) [18], fuzzy entropy
(FE) [19], and phase locking value (PLV) [20]. EEG signals
are inherently non-stationary, and brain functionality is often
associated with specific frequency bands and brain regions. It
has been proved that the frequency domain features of EEG,
such as PSD and PLV, are better than the time domain features
in EEG-based PI [20]. Classifier options encompass K-nearest
neighbor (KNN) [21], support vector machine (SVM) [22][23],
linear discriminant analysis (LDA) [24], and random forest
[25]. With the advancement of deep learning, numerous neural
network models are gaining popularity in the field of brain-
wave recognition, including convolutional neural networks
(CNN) [26][27], long short-term memory networks (LSTM)
[5], graph convolutional neural networks (GCNN) [28], and
transformer [29], among others.

EEG-based PI is currently in the early stages of development
and has not yet been put into practical application. In labora-



tory settings, EEG-based PI often utilizes various paradigms
to stimulate specific EEG signals. This method is effective
in standardizing the state-related components of EEG signals
and highlighting differences in identity-related information.
However, in real-world environments, users may not adhere
perfectly to the prescribed paradigms, resulting in the failure
to record the expected EEG signals. Moreover, user states
may vary at different times because EEG signals are prone
to rapid changes influenced by various factors such as tasks
[30], emotions [31], and dietary habits [32]. When paradigms
or user states change, a considerable amount of new state data
is typically required to train the model, wasting computational
resources. From an algorithmic perspective, most methods
focus solely on a user’s single state, lacking generalizability.
While limited literature [26][33] explores state-independent
EEG-based PI, these studies mainly propose models with-
out delving into state-independent identity features from an
interpretability perspective. Thus, designing an interpretable
novel cross-state recognition model is essential for applying
brainwave recognition.

In response to the above issue, this study presents a con-
trastive learning model based on PSD features to mitigate
the impact of different states on brainwave recognition. The
model incorporates electrode attention, spectral attention, and
a transformer module, customizes sample pairs, and extracts
frequency and spatial information from EEG signals. Our
model was evaluated on two datasets, with experimental results
demonstrating superior performance in brainwave recognition
and extraction of state-independent frequency and spatial fea-
tures. Furthermore, by visually analyzing electrode attention,
we explore brain regions that are minimally affected by states
and possess sufficient identity recognition qualities. This study
aids in feature selection for subsequent brainwave recognition
research. In summary, our contributions are as follows:

• We proposed a self-supervised framework contrastive
learning transformer (CLT), which can effectively extract
individual differences in EEG signals in the frequency
and spatial domains. Even for cross-paradigm EEG-based
PI, fine-tuning can be performed using a small dataset to
ensure recognition accuracy. Experimental results have
demonstrated that the performance of CLT exceeds that
of state-of-the-art models for EEG-based PI.

• We also explored the roles of electrode encoder and
spectral encoder in EEG-based PI.

• We proposed the cross-paradigm alignment loss for the
first time to capture individual consistency and improve
model performance.

• We visualized electrode attention and explored the chan-
nels and frequency regions differentiating individuals in
single-paradigm and cross-paradigm conditions.

II. RELATED WORK

A. EEG-Based Person Recognition

EEG-based PI systems are mainly divided into two
branches. One is the traditional machine learning method,
which extracts features first and then classifies them. This
method has the advantage of being interpretable. Another

is the deep learning approach, which has the advantage of
high classification accuracy. Yildirim et al. developed a multi-
layered stacked 1D CNN model to extract individual-specific
features from EEG signals [34]. Kong et al. proposed that
EEG comprises background EEG inherent in each person’s
brain and residue EEG caused by tasks and noise, suggesting
the presence of identity-related features in the former. They
decomposed the EEG using a low-rank matrix decomposition
method, and the maximum correlation criterion algorithm was
utilized for classification purposes [35]. Wang et al. suggested
that the functional connectivity of the brain can reflect identity
uniqueness, employing PLV and GCNN for recognition [20].
Du et al. introduced a transformer-based method utilizing self-
attention mechanism to extract spatial features from EEG,
achieving state-of-the-art accuracy levels [29]. Cai et al.
presented an affective temporal-spatial transformer (AITST)
designed to capture temporal and spatial characteristics of
EEG signals through interconnected temporal and spatial at-
tention modules, achieving an outstanding accuracy rate of
99.21±0.03% on a single state of the DEAP dataset [36].

B. Contrastive Learning
Contrastive learning is a self-supervised method that de-

termines whether data pairs are similar. It achieves advanced
performance in computer vision [37], natural language pro-
cessing [38], and biometrics [39][40]. According to the way
of constructing the contrast set, contrastive learning is mainly
divided into two types: one is global-local comparison, such
as comparing an instance (a specific data point) to the
broader context to which it belongs; Another is sample-
sample comparison, such as comparing the converted original
image with the original image [41]. Contrastive learning
has good generalization ability, flexibility and adaptability,
and can improve feature representation. Mohsevand et al.
enhanced the similarity between different views of samples
in the same original data by using time masking, linear
scaling, and Gaussian noise to enhance the samples. It has
achieved excellent results in sleep stage classification, clinical
abnormal detection, emotion recognition, and other aspects
[42]. Shen et al. proposed a contrastive learning of subject-
invariant approach for cross-subject emotion recognition that
minimizes inter-individual differences by maximizing the sim-
ilarity of the cross-individual EEG representation under the
same emotional stimulus, thus achieving the most advanced
cross-individual emotion recognition performance on THU-EP
dataset and publicly available SEED dataset [43]. Wang et al.
employed multiple self-supervised contrastive tasks to enable
the model to extract semantically rich, subject-independent
features, thereby helping it extract meaningful and robust EEG
data representations from both tinnitus patients and healthy
controls [44]. Li et al. combined self-supervised contrastive
learning with supervised classification learning to create a joint
learning model, which demonstrated exceptional accuracy on
the SEED dataset, highlighting its effectiveness in emotion
recognition and its potential applicability to other EEG-based
classification tasks [45]. Cheng et al. addressed inter-subject
differences by calculating subject-based contrastive loss, en-
suring that the learned representations effectively capture



individual characteristics. They also introduced adversarial
training to enhance the model’s subject invariance, reducing
the impact of subject differences and enabling the model
to better learn subject-general representations [46]. Song et
al. proposed a self-supervised framework that verifies the
feasibility of learning image representations from EEG signals
by using image and electroencephalogram (EEG) encoders to
extract paired features of image stimuli and EEG responses
and applying contrastive learning to ensure the similarity of
the two modes. The framework achieved significant results
above the chance level across 200 zero-sample tasks [47].
For EEG-based PI, changes in user status may lead to model
performance degradation. In this study, we proposed a method
to compare different states, which can capture the identity
characteristics of the same user in different states.

III. METHODS

This paper proposes a self-supervised framework, the CLT,
for EEG-based PI. The overall framework is shown in Fig. 1.
The CLT framework is mainly divided into the enrollment
stage and the identification stage, corresponding to model
training and testing, respectively. During enrollment stage,
pairs of EEG signals from the same individual in different
states are fed into the framework. EEG signals undergo pre-
processing and feature extraction to obtain the corresponding
PSD features. The proposed encoder then encodes the PSD
features to obtain the corresponding embeddings. Contrastive
learning is used to optimize the similarity between matched
feature pairs and reduce it for unmatched feature pairs, which
increases the similarity between different states of the same
subject and decreases the similarity between different sub-
jects. The multilayer perceptron (MLP) comprises a linear
transformation layer, a ReLU activation layer, and another
linear transformation layer. The MLP projects embeddings into
the contrastive space, which is trained using the normalized
temperature-scaled cross entropy loss (NT-Xent) function [37].
Before the identification stage, the MLP was discarded, and
the fully connected layer (FCL) was fine-tuned for optimal
performance. The FCL, a linear transformation layer, trans-
forms the intermediate representation of the model into the
final classification result.

A. Dataset

The dataset provided by PhysioNet [48] was collected
using the BCI2000 system and includes EEG data from six
paradigms involving 109 subjects. The six paradigms consist
of two baseline runs and four task runs. The paradigms for
the two baseline runs are to record EEG signals when the
subjects’ eyes are open and closed, respectively. The paradigm
of task 1 is to open and close the corresponding fist when
the target is located on the left or right side of the computer
screen. The paradigm of task 2 is to imagine opening and
closing the corresponding fist when the target is on the left
or right side of the computer screen. The paradigm of task
3 is to open and close both fists when the target appears
at the top or bottom of the computer screen. The paradigm
of task 4 is to imagine opening and closing both fists when

the target appears at the top or bottom of the computer
screen. EO and EC have 1 session each lasting 1 minute,
while the other four paradigms have 3 sessions each lasting 2
minutes, making a total of 14 sessions. Raw EEG data were
recorded using 64 channels according to the 10-10 system,
with an initial sampling frequency of 160 Hz, which was later
downsampled to 125 Hz. In this study, we simplified these six
paradigms into four, including EO, EC, actual completion of
corresponding physical actions (PHY) including task 1 and
task 3, and imagined completion of corresponding actions
(IMA) including task 2 and task 4. After splitting the training
and testing sets according to the temporal sequence, we used
a 1-second window with 50% overlap to generate the samples.
For each subject, each session of the EO and EC paradigms has
118 samples, while each session of the other four paradigms
has 236 samples. The size of each sample is 64×125, where
64 represents the number of channels and 125 represents the
number of sampling points.

The second dataset provided by Xu et al. [49] was col-
lected using the EEG system (Brain Products GmbH, Steing-
rabenstr, Germany, 61 electrodes) and contains EEG data from
71 subjects in 2 experimental sessions, with each session
including two paradigms: EO and EC. These two sessions were
collected after normal sleep (NS) and under sleep deprivation
(SD) conditions, with the original EEG signal lasting for 300
seconds and a sampling frequency of 500Hz. We downsampled
the data to 125Hz and segmented it into 1-second time
windows with a 0% overlap. This approach aims to simulate
real-world scenarios in order to prevent data leakage. Each
paradigm consists of 300 samples for each subject. The size
of each sample is 61×125, where 61 represents the number of
channels and 125 represents the number of sampling points.

B. Preprocessing and Feature Extraction

Before extracting power spectral density (PSD) features
from the original EEG signal, we preprocessed the raw EEG
data. This involved applying a bandpass filter to limit the
raw EEG signal to the frequency range of 0.5 Hz to 40
Hz, removing artifacts using independent component analysis
(ICA), and performing z-score normalization:

x̂s,c =
xs,c − x̄c

σc
, (1)

where s, c denotes the sampling point and the channel, x̄ and
σc represents the average value and standard deviation of the
sample on channel c.

The original EEG signal was decomposed into five fre-
quency bands using bandpass filters for the feature extraction:
delta (0.5-4Hz), theta (4-8Hz), alpha (8-13Hz), beta (13-
30Hz), and gamma (30-40Hz). Therefore, the dimensions
of the EEG signals per second for the two datasets be-
come 64×125×5 and 61×125×5, respectively. Next, the Welch
method was used to compute the power spectral density (PSD)
of EEG signals across five distinct frequency bands. The
shapes of the PSD features per second are 64×63×5 and
61×63×5, respectively, where the three dimensions represent
channels, features, and frequency bands.
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Fig. 1. Overview of the architecture of the CLT.

C. The Proposed Encoder

Figure 2 shows the architecture of the proposed encoder. It
consists of an electrode attention encoder, a spectral attention
encoder, patching and position embedding, and a transformer
encoder, which help preserve the frequency and spatial fea-
tures, thus reflecting the intrinsic patterns of brain activity.
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Fig. 2. Architecture of the proposed encoder.

1) The Electrode Attention Encoder: Inspired by the re-
search of graph attention [50], we regard the PSD features
xp ∈ RC×P from each frequency band as C nodes ci ∈ R1×P ,
i = 1, . . . . . . , C, and the connections between electrodes as
edges Ci, where P is the number of PSD samples. We utilize
the information from all nodes to update one of the nodes ci:

c′i = αi,iWci +
∑
j∈Ci

αi,jWcj , (2)

where c′i represents the updated features of electrode i, αi,j

denotes the attention weight between electrodes i and j, and
W is the coefficients of the linear transformation. αi,j is
calculated as follows:

αi,j =
exp

(
aT LeakyReLU (W [ci∥cj ])

)∑
k∈Ci∪{i} exp (a

T LeakyReLU (W [ci∥ck]))
, (3)

where the attention parameter a represents the weight of the
feedforward layer. LeakyReLU is a variant of the rectified
linear unit (ReLU) activation function that allows a non-zero
gradient of 0.2 when the input is negative. In this encoder, we
utilize residual connections to facilitate stable training.

2) The Spectral Attention encoder: As each PSD segment
represents a specific spectral response, we use two convo-
lutional layers and a batch normalization layer to focus on
spectral information, as shown in Fig 3. To enhance the ro-
bustness of the encoder and save computational costs, the first
convolutional layer reduces the dimensionality of electrodes,
and the second convolutional layer restores the dimension
of electrodes. The size of feature map xp changed from
C×63×5 to (C/r)×63×5 and then back to C×63×5, where
C is the number of channels and r is the reduction ratio.
The convolution kernels in two convolutional layers are 6×6
matrices. To avoid overfitting, we add a dropout layer at the
end of the module with a dropout rate set to 0.1.

6×6
Conv

6×6
Conv

Feature map xp Feature map xp' 

Size:(64,81,5) Size:(64,81,5)Size:(64/  ,81,5)

Fig. 3. The structure of the spectral attention encoder.

3) Patching and Position Embedding: To feed the feature
sequence into the transformer, we divide the PSD features
xp ∈ RC×P processed by electrode attention encoder and
spectral attention encoder into a fixed-size map of patches
xm ∈ RN×(Pw×Ph×F ), where N , F , Pw, Ph represent
the number of patches, the number of the frequency bands,
width and height of each patch respectively. Then, we map



the features to the embedding vector through a linear map-
ping denoted by E and introduce ordered one-dimensional
positional embeddings into the embedding vector. Finally,
the sequence of embedded vectors is obtained as z0 =[
zcls, x

p
1E, xp

2E, . . . , xp
np
E
]
+ Epos, where np denotes the

length of the feature block.
4) The Transformer Encoder: We employ a multi-head

transformer module to encode the PSD features across various
frequency bands to capture the influence and dependency
relationships between patches at different positions. Each en-
coding module comprises alternating multi-head self-attention
(MSA) and MLP layers. Each module’s beginning and end are
equipped with residual connections and normalization layers.
For a given input, self-attention within the transformer is
computed to estimate the characteristics of each frequency
band. Then, we weight and obtain a new representation. The
calculation of self-attention is as follows:

Attention (Q,K, V ) = Softmax

(
QKT

√
dk

)
V, (4)

where Q, K, and V are all matrices obtained by linear input
projections, and dk is a scalar factor. The process equation is
expressed as:

z′p = LN (MSA (zp−1) + zp−1)

zp = LN
(
MLP

(
z′p
)
+ z′p

)
,

(5)

where zp−1 is the input to the pth encoding module and LN
represents layernorm [51].

D. Contrastive Learning

The framework is constructed with contrastive learning, as
shown in Algorithm 1. First, construct the dataset {x̃2k}2Nk=1

using the signal sets {ak}Nk=1 and {bk}Nk=1 from two
paradigms. Then, {x̃2k}2Nk=1 is processed through the proposed
encoder t to obtain the corresponding representations. Next,
these representations {z̃2k}2Nk=1 are projected into the con-
trastive space using the projection head m. In the contrastive
space, the pairwise similarity is calculated as shown in (6):

si,j = z⊤
i zj/ (∥zi∥ ∥zj∥) (6)

Next, the NT-Xent loss is used to minimize the distance
between positive samples, as shown in (7):

ℓ(i, j) = − log
exp (si,j/τ)∑2N

k=1 1[k ̸=i] exp (si,k/τ)

L =
1

2N

N∑
k=1

[ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1)],

(7)

where 1[k ̸=i] means that the value is 1 only when k ̸= i,
and the value is 0 when k = i. By updating the networks
t and m, the NT-Xent loss is minimized. After training, the
projection head m(·) is discarded, and the proposed encoder
t(·) is retained for identification tasks [37].

E. Cross-Paradigm Alignment Loss

The function ℓ(i, j) discussed in the previous section re-
duces the distance between positive samples while increasing
the distance between negative samples. However, it overlooks
the fact that differences still exist between positive sample
pairs obtained from different paradigms. To address this issue,
we introduce the cross-paradigm alignment loss for the first
time, aiming to minimize the differences in representations of
the same subject across different paradigms, thereby enabling
the model to better capture individual consistency. Specifically,
the cross-paradigm alignment loss maximizes the cosine sim-
ilarity s2k,2k−1 using the Kullback-Leibler divergence, where
2k and 2k − 1 represent positive samples from the same
user across different paradigms. Maximizing s is equivalent
to minimizing the cosine distance d = 1 − s, thus, for each
ℓ(2k, 2k − 1), we incorporate a penalty term:

DKL ({p2k} ∥ {p2k−1}) =
E∑

e=1

pe2k log
pe2k

pe2k−1

, (8)

pe2k =
exp(ze2k)∑E
j=1 exp(zj2k)

, (9)

where E represents the length of each representation in
the projection space. In practice, their symmetric version
ℓCPA = DKL ({p2k} ∥ {p2k−1})+DKL ({p2k−1} ∥ {p2k}) can
be used, which is the Jeffreys divergence. For each batch:

LCPA =
1

2N

N∑
k=1

ℓCPA (10)

Here,we propose to minimize the following objective func-
tion,where λ is positive hyperparameters:

LCPA = L+ λLCPA, (11)

when there is no paradigm difference between positive sample
pairs, λ = 0; when a paradigm difference exists between
positive sample pairs, λ = 0.1.

F. Experiment Setup

In this study, all experiments were conducted using the
NVIDIA GeForce RTX 3090 GPU. For the two datasets, the
ratio of the training set to the testing set was 80% to 20%. The
numbers of the spectral encoder and transformer were both
set to 8 [36]. In the transformer encoder, the number of heads
was set to 16. The reduction ratio was set to 4 in the spectral
encoder, and the temperature parameter τ was set to 0.5 in
NT-Xent. We employed 8-fold cross-validation in the training
process, considering the size of the dataset. To optimize the
network, we used the Adam optimizer with a learning rate set
to 1e-4 and a batch size of S, where S represents the number
of participants in the current dataset. For statistical testing,
we employed ANOVA to assess the significance of the model
comparisons.



Algorithm 1 Contrastive Learning Transformer Framework
1: INPUT : structure of the proposed encoder t, the projection head m, constant τ , batch size N
2: for sampled minibatch {ak}Nk=1 from task a and {bk}Nk=1 from task b do
3: for all k ∈ {1, . . . , N} do
4: # the first mapping
5: x̃2k−1 = ak

6: h2k−1 = t (x̃2k−1) # representation
7: z2k−1 = m (h2k−1) # projection
8: # the second mapping
9: x̃2k = bk

10: h2k = t (x̃2k) # representation
11: z2k = m (h2k) # projection
12: for all i ∈ {1, . . . , 2N} and j ∈ {1, . . . , 2N} do
13: si,j = z⊤

i zj/ (∥zi∥ ∥zj∥) # pairwise similarity
14: end for
15: define ℓ(i, j) as ℓ(i, j) = − log

exp(si,j/τ)∑2N
k=1 1[k ̸=i] exp(si,k/τ)

16: L = 1
2N

∑N
k=1[ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1)]

17: update networks t and m to minimize L
18: end for
19: return encoder network t(·), and throw away m(·)

IV. EXPERIMENTS AND RESULTS

To validate the proposed CLT, we employed several ad-
vanced methods as baseline models and conducted compar-
isons on two datasets. These comparisons included both train-
ing and testing in same paradigm and cross-paradigms. We
also captured the attention weights and visualized them across
channels and spectral, in same paradigm and cross-paradigms.
Finally, we conducted ablation studies on the proposed model
to confirm the functionality of each module.

A. Baseline Models

• Fuzzy entropy and SVM: The fuzzy entropy derived from
the feature extraction module serves as input for the SVM
[29].

• CNN: A classic CNN model with input as raw EEG time-
series [29].

• GCNN: A graph convolutional neural network model
with an input of phase-locking value (PLV) [20].

• AITST: The EEG temporal–spatial transformers for
EEG-based personal identification, which includes spa-
tial–temporal attention mechanism [36].

The aforementioned methods will be evaluated using the
same dataset as in this study.

B. Training and Testing in Same Single-Paradigm

Following comprehensive evaluations of the proposed
model, we have obtained results for training and testing
on same single state. In this experimental scenario, we se-
lected EEG signals of the same paradigm as sample pairs
for contrastive learning with epochs to 500 and fine-tuning
for 20 epochs. The four paradigms tested separately in this
experiment include EO, EC, PHY, and IMA from Dataset
1, as well as EO and EC under NS and SD conditions
from Dataset 2 (denoted as NS-EO, NS-EC, SD-EO, and

SD-EC, respectively). Table I shows the results. Among the
four different paradigms, GCNN, AIRST, and our proposed
algorithm have good performance. The average accuracy of
these three algorithms exceeds 98%.

Since our proposed algorithm shares commonalities with the
AITST structure, both containing a transformer encoder, we
compared the confusion matrices of our proposed method and
AITST on Dataset 1, as shown in Fig. 4, which displays the
confusion matrices used to observe the correct and incorrect
classifications in each category of the study. The dark diagonal
in the confusion matrix represents a large number of correctly
classified samples for each category, whereas the light color
off-diagonal signifies a small number of incorrectly classified
samples. The high number of correct classifications by CLT
and AITST demonstrates their effectiveness when trained and
tested within a single paradigm.

C. Training and Testing in Cross-Paradigms

EEG signals exhibit pronounced fluctuations corresponding
to the user’s state. For example, beta waves augment when the
user is concentrated, and alpha waves augment during relax-
ation or when the eyes are closed. Although the results in of
training and testing in the same single paradigm are favorable,
it is crucial to ensure that the model retains adequate accuracy
across different paradigms to facilitate its use in daily settings.
In this part of the experiment, we assessed the robustness of
the proposed model by utilizing diverse datasets in the training
and testing phases. Specifically, during the training phase, we
used EC and EO datasets for comparison to capture identity
features that are independent of the state. Specifically, for
Dataset 1, during the testing phase, the PHY and IMA datasets
were utilized for evaluation. In Dataset 2, we used the NS-
EC and NS-EO datasets for comparison and the SD-EC and
SD-EO datasets for evaluation. It is noteworthy that, due to
37 users in Dataset 2 not undergoing the EC experiment, the



TABLE I
RESULTS OF MODELS TRAINED AND TESTED WITHIN EACH PARADIGM. RESULTS ARE TESTING ACCURACY (AVERAGE ± STANDARD DEVIATION)%.

Dataset 1 Dataset 2

Method EO EC PHY IMA NS-EO NS-EC SD-EO SD-EC

Fuzzy entropy [29] 82.07±0.71 81.12±0.52 79.43±0.45 79.97±0.25 85.22±0.17 84.31±0.79 84.90±0.98 85.73±0.91
CNN [29] 93.54±0.87 94.78±1.44 95.28±1.65 95.86±0.61 96.54±0.70 95.72±1.29 97.52±0.96 97.58±0.52
GCNN [20] 98.92±0.12 97.88±0.09 98.67±0.07 99.06±0.12 99.12±0.09 98.84±0.06 98.89±0.15 99.31±0.04
AITST 97.60±0.17 97.73±0.08 99.18±0.18 97.28±0.21 98.64±0.19 98.86±0.12 99.27±0.09 98.65±0.17
CLT 98.68±0.09 99.32± 0.03 99.10±0.06 98.79±0.04 98.75±0.33 98.99±0.18 99.12±0.04 99.82±0.02

(a) (b)

(c) (d)

(e)
Fig. 4. Confusion matrices for the identification results of 109 subjects. (a) Results when the model is CLT and both the training and test sets are EO; (b)
Results when the model is AITST and both the training and test sets are EO; (c) Results when the model is CLT and both the training and test sets are EC;
(d) Results when the model is AITST and both the training and test sets are EC; (e) Color bar.



TABLE II
RESULTS OF MODELS TRAINED AND TESTED IN CROSS-PARADIGMS. RESULTS ARE TESTING ACCURACY (AVERAGE ± STANDARD DEVIATION)%.

Dataset 1 Dataset 2

Training set EO&EC EO&EC NS-EO&NS-EC NS-EO&NS-EC
Testing set PHY IMA SD-EO SD-EC

Fuzzy entropy [29] 18.64±2.21 15.45±3.75 30.40±1.63 35.37±0.82
CNN [29] 47.93±2.02 50.84±0.47 54.51±0.52 57.60±1.01
GCNN [20] 83.13±1.67 84.75±0.73 86.43±0.57 87.24±0.78
AITST 80.15±1.37 80.88±0.40 84.09±1.35 83.25±1.13
CLT (without LCPA) 91.11±0.62 91.24±0.43 93.53±0.73 94.73±0.53
CLT 92.05±0.56 92.14±0.28 95.86±0.66 96.91±0.71

total number of participants in the second scenario is 34. Table
II displays the results of this experiment, revealing notable
enhancements in the proposed model when compared with
the baseline models. The results indicate that, for Dataset
1, the accuracy of CLT exceeds 92%, whereas for Dataset
2, the accuracy of CLT exceeds 95%. Compared to GCNN,
our proposed CLT demonstrated performance improvements
of 8.92%, 7.93%, 9.43%, and 9.67% on the four evaluation
test sets, respectively. When the paradigms in the training
and testing sets differ, all methods exhibited varying levels
of performance degradation. Specifically, the performance of
AITST decreased by approximately 12%, that of CNN by
about 42%, and the accuracy of fuzzy entropy dropped below
40%. This indicates that the model proposed in this paper
possesses the capability to extract identity features across
diverse states.

Additionally, on Dataset 1, CLT with LCPA improved by
0.94% and 0.90% on the two evaluation datasets, respectively
(p <0.05), compared to the version without LCPA. On Dataset
2, this improvement reached 2.53% and 2.23% on the two
evaluation datasets, respectively (p <0.05), demonstrating that
LCPA contributes positively to improving accuracy.

Figure 5 shows the confusion matrices in cross-paradigm
scenarios of Dataset 1. Figures 5a and 5c indicate that the
number of correct classifications by the CLT model is sig-
nificantly higher than the number of incorrect classifications.
Figures 5b and 5d show that although the AITST model has an
overall higher correct classification rate than the incorrect clas-
sification rate, the number of incorrect classifications increases
significantly. The numbers of noise points in Fig. 5a and Fig.
5c are significantly fewer than those in Fig. 5b and Fig. 5d,
confirming the effectiveness of the CLT model in cross-state
scenarios.

D. Electrode Attention Visualization

In this section, we visualize the importance of the electrodes
in EEG-based PI by extracting the attention parameters a in
the electrode encoder, as shown in equation (2). For electrode
i, we consider Ai =

∑
j aj,i as the attention of electrode i. Ac-

cording to equation (2), aj,i represents the influence weight of
electrode i on electrode j. Figures 6 and 7 present the visual-
ization results of electrode attention across different frequency
bands for Datasets 1 and 2 during contrastive training using
the same paradigm samples. The color red indicates strong
attention of the model to that region, while blue represents the

opposite. The electrode attention of various frequency bands
of IMA is significantly focused on FC5, while other paradigms
have multiple electrodes receiving attention. These focused
electrodes are task-specific. For example, attention increases in
the occipital area and the frontal lobe during eye closure, and
in motor imagery, attention near the motor cortex increases.
After sleep deprivation, during eye closure, attention increases
in the central region (near the Cz channel). This indicates
that in a single-paradigm, the identity features captured by
the model come from task-induced EEG, and this attentional
method is not sufficiently stable when the paradigm changes.
It is important to note that the EEG acquisition devices
used for Dataset 1 and Dataset 2 are different. Additionally,
Dataset 2 is missing five electrode channels (AFz, FCz, Iz,
P9, P10) compared to Dataset 1, and includes two additional
electrode channels (TP9 and TP10), which may result in slight
differences in the electrode attention captured by the model.
Figures 8 and 9 display the visualization results of electrode
attention across different frequency bands for Datasets 1 and 2
during contrastive training using different paradigm samples,
the number of electrodes receiving attention decreases signif-
icantly, and the attention range becomes noticeably focused.
When comparing the EC and EO states, electrode positions
such as FC1, PO3, CP2, AF8, and T8 are highlighted at
different frequency bands, while in the comparison between
PHY and IMA, electrode positions like FC5, PO7, and Pz are
emphasized. When comparing the NS-EC and NS-EO states,
electrode positions such as Pz, P2, P4, FC1, T8, and AF8
are highlighted across different frequency bands. In contrast,
during the comparison between SD-EC and SD-EO, electrode
positions such as CP3, AF8, CP1, and AF4 are emphasized.
Compared to Fig. 6, some electrodes that receive attention in
Fig. 8 are the same, such as FC5 and FC1. Some electrodes
that receive attention in Fig. 8 do not receive special attention
in Fig. 6. However, their weights increase in Fig. 8. This
phenomenon is also observed when comparing Fig. 7 and Fig.
9. This indicates that during the comparison process, the model
has learned spatial features that better represent identity under
different paradigms.

E. Performance Comparison in Different Frequency Bands

To explore the contribution of different frequency bands
to the performance of CLT in single-paradigm scenarios, we
conducted an experiment to investigate the performance of
the CLT model across five frequency bands. The results in



(a) (b)

(c) (d)

(e)
Fig. 5. Confusion matrices for the cross-paradigm identification results of 109 subjects. (a) Results when the model is CLT and the training set uses EO, EC
comparison, and the test set uses PHY; (b) Results when the model uses AITST and the training set is EO and EC, and the test set uses PHY; (c) Results
when the model uses CLT and the training set is EO, EC comparison, and the test set uses IMA; (d) Results when the model is AITST and the training set
uses EO and EC, and the test set uses IMA; (e) Color bar.

Fig. 10 indicate that for the four paradigms, EEG data in
the alpha band contributes more to recognition performance.
Additionally, in the EC paradigm, the gamma band also plays
an important role, while in the IMA paradigm, both the beta
and gamma bands are equally important.

F. Ablation Experiment

The proposed CLT consists of a contrastive framework,
electrode attention encoder, spectral attention encoder and
transformer. Electrode attention focuses on the importance of
different electrodes; spectral attention focuses on the impor-
tance of different frequency bands and spectral features, and
transformer focuses on global context information. We further
conducted ablation experiments on the various modules in the

model to evaluate the contributions of each module when train-
ing and testing in diverse paradigms, as shown in Table III.
We compared the model without the contrastive framework,
without the electrode attention encoder, without the spectral
encoder, and the whole model. The case of ”without the
contrastive framework” is divided into two situations: training
on a single paradigm and joint training. The results show
that each module has a positive impact on the performance
of the model. When any module is missing, the accuracy
of the model will be reduced, among which the contrastive
framework and the spectral module have the most significant
impact. Without the contrastive framework (single paradigm
training), the cross-paradigm recognition accuracy is reduced
by 38.92% and 37.87% respectively in PHY and IMA test sets,



Fig. 6. Electrode attention visualization in Dataset 1 for sample comparison
under the same paradigm.

Fig. 7. Electrode attention visualization in Dataset 2 for sample comparison
under the same paradigm.

Fig. 8. Electrode attention visualization in Dataset 1 for sample comparison
under the different paradigms.

Fig. 9. Electrode attention visualization in Dataset 2 for sample comparison
under the different paradigms.

(a) (b)

(c) (d)
Fig. 10. Results of the CLT model in different frequency bands in individual
paradigms: (a) EO, (b) EC, (c) PHY, (d) IMA.

in the case of joint training, the recognition accuracy is reduced
by 11.68% and 11.38%, respectively. The spectral attention
module has the second largest impact due to the PSD feature
used as input. When the spectral attention module is missing,
the accuracy decreases by 22.27% and 21.63% respectively.
When the electrode attention encoder is absent, the accuracy
decreases by 6.69% and 5.73%, respectively. These results
indicate that each module is necessary for the CLT.

G. Effect of Sample Lengh

In this section, we conducted experiments using samples
of different time lengths in cross-paradigm contexts, and the
results obtained are the mean accuracy when the test sets are
PHY and IMA. To reduce the overlap of longer samples, we set
the sample size for all durations to 120. To save computational
resources and time, we adjusted the number of training epochs
to 100. Figure 11 shows the recognition rate of the CLT model
for different sample lengths after 100 epochs of training. The
results indicate that the recognition rate increases as the sample
length increases. When the sample length was extended from
1s to 3s, the accuracy was increased by 6.74%.

Fig. 11. Results of the CLT model in different segment lengths



TABLE III
ABLATION STUDY ON THE CLT MODEL WHEN TRAINED AND TESTED IN CROSS-PARADIGMS.

Models PHY IMA

Without contrastive framework (single paradigm training) 53.13 54.27
Without contrastive framework (joint training) 80.37 80.76
Without electrode attention encoder 85.36 86.41
without spectral attention encoder 69.78 70.51
CLT 92.05 92.14

V. CONCLUSION

In this study, a CLT was proposed for EEG-based PI, which
achieves significant performance in cross-paradigm PI. The
CLT was evaluated using two datasets: one comprised 109
subjects, while the other included 71 subjects. The model
extracts both frequency domain and spatial features, utilizing
contrastive learning and cross-paradigm alignment loss to
maximize the similarity of features from the same subject
across different paradigms. The electrode attention decoder
acquires important electrodes, while the frequency attention
decoder focuses on acquiring essential spectra. Additionally,
the transformer is employed to extract discernible represen-
tations. Experimental results demonstrate that our proposed
model achieves superior accuracy in single-paradigm and
cross-paradigm EEG-based PI. Electrode attention visualiza-
tion reveals differences in electrode focus between same-
paradigm and cross-paradigm contrastive learning, with fewer
electrodes receiving attention and more concentrated brain ar-
eas during cross-paradigm contrastive learning. This suggests
that identity classification features are not entirely dependent
on a user’s state change. Ablation experiments confirm that our
contrastive framework and the electrode and spectral attention
encoders are indispensable components of the proposed CLT.
Validation in real-world non-overlapping cases also demon-
strates the great potential of CLT in practical applications.
Furthermore, sufficient negative samples are necessary for
ensuring performance when applying contrastive learning to
EEG data, thus necessitating further exploration into methods
for EEG data augmentation in future studies.
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