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Managing patient flow in hospitals is a critical part of effective secondary care. Considering a 
hospital as a multi-compartment system through which patients pass, we will derive relevant 
equations to allow a description of patient flow through these departments as a series of 
interconnected dynamic relationships. These relationships are determined by many factors, some 
known, and many interdependent. We do not need to, and indeed cannot, know all of these factors 
(as needed for discrete event simulation, or agent-based modelling), but will merely examine the 
net changes between compartments (i.e. a ‘system dynamics’ approach). Using this approach, we 
were able to identify two relevant states of equilibrium: the first (trivial) is when the hospital is 
empty; the second, is when there is activity. We plan to use bed usage data from a UK hospital in 
an attempt to validate this methodology and then assess its generalizability.

1. Introduction

The United Kingdom National Health Service (NHS) is currently under great pressure, not least in relation to hospital bed avail-

ability. One of the main factors causing problems in secondary (i.e. hospital) care is that the UK has one of the lowest ratios of hospital 
beds per capita among Organisation for Economic Co-operation and Development (OECD) countries [3]. As a result, the management 
of patient flow through hospital has become a major problem. This relative lack of beds, together with increasing demand means that 
bed occupancy gradually rose from 87.7% in quarter 3 of 2010/11 to 92% in Q3 of 2019/20 (i.e. pre-pandemic) [4].

Health care is becoming increasingly complex, especially in secondary care. Hospital bed numbers often represent the limiting 
factor in delivering secondary care. Mechanisms to improve the efficiency of their use (and reduce opportunity costs) are therefore 
important to managers. There have been attempts to model bed usage in departments (micro-level) and across whole health systems 
(macro-level), however so far, there have been few models developed allowing reliable description and analysis of hospital bed use 
across a whole hospital (looking at the interactions between parts of a hospital as patients move through) from admission to dis-

charge or death. Patients with serious medical conditions (e.g. COVID-19 [hereafter, 𝐶𝑜𝑣𝑖𝑑]) pass into, through, and out of, hospital. 
Considering the hospital as a multi-compartment system, we aimed to derive the relevant equations to allow a description of these 
departments’ dynamic relationships. These relationships are determined by many factors, some known, and many interdependent. 
The primary research question this study addresses is: How can a dynamical systems approach effectively model patient flow through 
hospital departments to optimize bed usage and improve resource allocation? This work is necessary because existing models of 
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Fig. 1. The diagram shows schematically the dynamical equilibrium between the various hospital departments, from admission via the emergency department (E), 
via different wards (G, C, I), to discharge (H) or death (M).

hospital bed usage often focus on specific units or limited scenarios (e.g., emergency departments or COVID-19 patient flows) and do 
not comprehensively capture the interconnected dynamics of a hospital-wide system.

We do not need to, and indeed cannot, know all of these factors (as needed for discrete event simulation, or agent-based modelling), 
but will merely look at the net changes between compartments (i.e. a ‘system dynamics’ approach).

Background Because of this pressure on hospital beds, hospital managers are always keen to develop systems to maximize their 
use. To achieve this depends on understanding what sort of patients the system mainly deals with, and how they are moved through 
the system (patient flow). Fifty years ago, it was identified that using mathematical modelling could help managers to improve bed 
usage [18]. Various methods, including deterministic and stochastic approaches, multistage models, and algorithmic methodologies, 
have been used to model bed usage in hospitals. These have all had shortcomings. For example: focusing on planned admissions 
[26], [5]; being confined to a single (often highly specialised) unit [24], [23], [20], [6], [17]; only part of the medical caseload (and 
with no definition of the patient groups) [2]; or medium-term planning for a whole hospital [15] or city’s healthcare system [22], 
[7]. Perhaps the most nearly useful model was StratBAM [9], devised for a hospital with fully electronic patient records, in the USA 
health system—both factors very different from NHS practice. The only systematic review of computer simulation modelling in the 
field was devoted to examining patient flow within UK emergency departments [20]. Even within that (organisationally) very limited 
speciality, they found the evidence base to be ‘small and poorly developed’.

The 𝐶𝑜𝑣𝑖𝑑 pandemic placed even greater stresses on many hospitals around the world. This generated a number of studies trying 
to model the impact and help predict bed needs. The focus of these studies varied, but most did not examine all general medical 
admissions (𝐶𝑜𝑣𝑖𝑑 and otherwise) passing through one hospital. A systematic review of hospital surge capacity planning found 690 
articles, but identified six models that projected both caseload and hospital capacity requirements over time [14]. None of these 
examined intra-hospital patient flow patterns. Other papers only considered 𝐶𝑜𝑣𝑖𝑑 patients’ use of hospital resources (in an effort to 
optimise use of scarce intensive care resources) [8], national healthcare-wide efficiency of hospital bed management [25], or planning 
the building of new bed capacity [19].

2. General model and description

To answer the question of how waiting in the admissions affects the death rate, we discuss the links between each compartment 
presented in Fig. 1 as follows:

1. Direct effects There is strong empirical evidence of the importance of the following:

• The number of beds currently available and used for medical patients, as opposed to patients under other the care of other 
specialties—e.g. surgery, orthopedics, gynaecology, etc (see above), and

• The number of patients admitted under the care of the on-call medical team in a 24 hour period. Patients admitted under the 
care of the medical team will have usually a relatively predictable case mix (heart attacks, strokes, complications of diabetes, 
infections, etc.). The proportion of each of these conditions, although unpredictable from day to day, and season to season, 
remains fairly stable over longer periods of time (year to year). It is also well established that the numbers of emergency 
admissions vary by day of the week, with weekdays having over twice the number of daily admissions than weekends.

2. Indirect effects The low flow in the ED may be a marker of other local cultural or resource challenges. For example, there might 
be poor trust leadership affecting all other departments. Equally, there may be particular problems with local social services, 
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resulting in delayed discharges of patients medically fit for discharge from all wards, including the ED (i.e. vectors 1–4 in 
Fig. 1)—as we are seeing in most NHS hospitals, currently.

For example, during the pandemic (up to March 2024) the weekly number of patients admitted to hospital with 𝐶𝑜𝑣𝑖𝑑 in England 
varied from 45 to 3800. The average total number of emergency medical admissions in England for 2020–2021 was about 7,300 in 
the largest wave of 𝐶𝑜𝑣𝑖𝑑 infections to date, the doubling time of hospital admissions in England was 26 days in early March and the 
halving time was 20 days in April. The number of emergency medical admissions is largely determined by the empty beds available 
on any given day (the threshold for admission being adjusted to reflect this by the admitting medical team). The proportion of 𝐶𝑜𝑣𝑖𝑑
admissions is obviously closely associated with the number of overall cases in the community at any given time. We have made the 
assumption that knowing the number of patients in the hospital at any given time and the number of available beds, we can estimate 
the number of cases that will need critical care (i.e., in the ICU) over the subsequent 24 hours. Given that the effective time constant 
for changes in case mix usually is in the order of months to years, but that for infectious epidemics is in the order of days, and we 
are modelling changes over a 24 hour period, we can safely assume that non-epidemic case mix is a constant, for the purposes of this 
model, the various components of the model are presented in Fig. 1. This can thus be presented in Eq. (1) as follows:

𝑑𝐸

𝑑𝑡 
= 𝐹1(𝐸,𝐶) = 𝑟𝐸

(
1 − 𝐸

𝐾

)
− 𝑎𝐸𝐶

1 + 𝑏1𝐸
,

𝑑𝐶

𝑑𝑡 
= 𝐹2(𝐸,𝐶,𝐺, 𝐼) =

Γ1𝑎𝐸𝐶
1 + 𝑏1𝐸

−𝑚1𝐶 − 𝛽𝐺𝐶

1 + 𝑏2𝐶
(1 + 𝜁𝐼

1 + 𝜖𝐼
),

𝑑𝐺

𝑑𝑡 
= 𝐹3(𝐶,𝐺, 𝐼) =

Γ2𝛽𝐼𝐶
1 + 𝑏2𝐶

(1 + 𝜁𝐼

1 + 𝜖𝐼
) −𝑚2𝐺,

𝑑𝐼

𝑑𝑡 
= 𝐹4(𝐸,𝐶, 𝐼) =

𝛽𝑎𝐸𝐶

1 + 𝑏1𝐸
−𝑚3𝐼 +𝜔𝐸. (1)

Here 𝐹𝑖, 𝑖 = 1,2,3,4, is the interaction function of the developed model. The definition of endogenous (dependent) variables is given 
as follows:

• 𝐄 emergency department population

• 𝐂 specialist ward(s) (here for 𝐶𝑜𝑣𝑖𝑑 patients) population

• 𝐆 general medical ward population

• 𝐈 ICU population

• 𝐇 population of patients at home (encapsulated in 𝜔𝐸 term).

• 𝐦 mortality.

The initial conditions for the model system in Eq (1) are chosen as 𝐸(0) ≥ 0, 𝐶(0)≥ 0, 𝐺(0) ≥ 0, and 𝐼(0) ≥ 0. The model describes 
the flow of patients into the ED (emergency department). This will depend on the prevalence of the prevailing infection and the 
flow of patients out of the hospital (discharges and deaths), in a system that is diminished of 𝐶𝑜𝑣𝑖𝑑. The parameter 𝑟 represents 
the admissions number, 𝑎 is the movement process rate, i.e. the average of time spent on processing the patients from ED to 𝐶𝑜𝑣𝑖𝑑
ward (𝐶), when there is less number of infections, 𝑎 is half occupation constants, 𝛽 is the linear rate of hospitality (flow) number of 
patients in the IC unit (𝐼), Γ𝑖 𝑖 = 1,2, is the patients’ flow number between 𝐸 and other departments. 𝜁 is the virus changing rate per 
day, i.e. the infected population in Ed department per day. 𝜖 is a key parameter that we are going to use to reduce the general four 
compartment model to a special case model, 𝑀𝑖, 𝑖 = 1,2,3 is the death rate and 𝜔 is the discharge fixed parameter.

In Eq. (1) the first term in this equation of the model we are using the logistic model to describe the hospital’s daily performance 
with 𝐾 as hospital full resources and 𝑟𝐸 refers all medical admissions including all medical condition looked after by a physician, such 
as patients with heart attacks, strokes, sepsis, segues and complications of diabetes and so forth- the proportion of these individual 
medical conditions remains relatively constant, is recruitment (admission) rate of the susceptible population and the per capita natural 
death rate of the population i.e. 𝛼 = 𝑟 − 𝑑, where the total population is encapsulated in 𝐸 = 𝐶 +𝐺 + 𝐼 , where 𝐶 refers to a 𝐶𝑜𝑣𝑖𝑑
medical ward, 𝐺 refers to a general medical ward and 𝐼 refers to the IC unit. We can model each compartment of the hospital 
separately and end with a 7 equations model. However, we simplified the idea into 4-equations model. The second term of the first 
equation in Eq. (1) is Holling II functional response to describe the movement of patients from the admission department to the 𝐶𝑜𝑣𝑖𝑑
medical ward.

We can define the confirmed infected cases in 𝐼 , which is the IC unit, using the Holling II functional response with Γ1 as patients 
flow parameter to describe the movement of susceptible cases from 𝐶𝑜𝑣𝑖𝑑 department 𝐶 into the intensive care unit 𝐼 as infected 
population. The death rate 𝑀 used in the second, third and fourth equations of the model in Eq (1) to describe the death happening 
in different departments, and in practice it depends on the time of recovery process, which can be related to the total infectious 
individuals seeking treatment, and how many beds are occupied during this event. The third term also represents the increase of 
death with 𝛽 as a linear death rate 𝛽𝐶 represents the affect of 𝐶𝑜𝑣𝑖𝑑 on infected population at the ICU unit, the infected population 
could also reach its maximum limit by (1 + 𝜖𝐶) factor.

The second and third equations in the model system in Eq (1) represent patients flow from 𝐶𝑜𝑣𝑖𝑑 ward 𝐶 to the general medical 
ward 𝐺 using Holling type II functional response with 𝑎 to describe the time spent transferring patients from one department to other.
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Table 1
Potential equilibria, both clinically significant and insignificant, of the model system given by Eq. (1).

Equilibrium Definition Value in parametrized system Description 
𝐸1 (𝐸𝑒,𝐶𝑒,𝐺𝑒, 𝐼𝑒) (0,0,0,0) trivial equilibrium 
𝐸2 (𝐸𝑒,𝐶𝑒,𝐺𝑒, 𝐼𝑒) (𝐾,0,0, 𝐾𝜔

𝑚3
) hospital resources and the ICU equilibrium 

𝐸3 (𝐸𝑒,𝐶𝑒,𝐺𝑒, 𝐼𝑒) (0, 𝐶,−𝐺,0) clinically irrelevant point given in Eq. (2) 
𝐸4 (𝐸𝑒,𝐶𝑒,𝐺𝑒, 𝐼𝑒) (𝐸,𝐶,0, 𝐼) general medical ward free equilibrium is given by Eq. (3) 
𝐸5 (𝐸𝑒,𝐶𝑒,𝐺𝑒, 𝐼𝑒) (𝐸,𝐶,𝐺, 𝐼) the full dynamical equilibrium is given in Eq. (4) 

The last equation of the model refers to the hospital main source during 𝐶𝑜𝑣𝑖𝑑, the first term describes the movement of 
patients population between the IC unit and the rehabilitation unit, where 𝐸 refers to the emergency department, 𝜔 could 
be defined as the recovery rate or patients leaving the hospital rate and 𝑀 reflects the mortality number per day. There 
is a minimum of seven compartments in any hospital and patient flow between them is affected by several factors, includ-

ing:

• Administrative procedures and the quality of service, this is represented by the logistic equation in Eq. (1).

• The clinical workforce establishment (which can be affected in turn by other factors such as sickness, etc), represented in 𝐾 the 
hospital resources.

• Level of illness or infection in 𝐶𝑜𝑣𝑖𝑑 case, defined in the second equation of the model Eq. (1).

• The capacity of each ward (how many patients can be hospitalised in each department + how many beds are available to 
hospitalised patients), defined in the third and last equation of the model Eq. (1).

3. Analysis of the model equilibrium

This section provides a thorough analysis of the original findings and the nature of the equilibrium determined by the system in 
Eq. (1). We derive analytical expressions to determine the location and stability of the equilibria in the general case, and present 
results for specific values of 𝐾 = 500 and 𝐾 = 100. In the following section, we will extend this analysis to cover the entire range of 
0 ≤𝐾 ≤ 1000

3.1. Location of equilibria

The equilibrium points 𝐸(𝑡) = 𝐸𝑒, 𝐶(𝑡) = 𝐶𝑒, 𝐺(𝑡) = 𝐺𝑒 and 𝐼(𝑡) = 𝐼𝑒 of Eq. (1) corresponding to 𝑑𝐸∕𝑑𝑡 = 𝑑𝐶∕𝑑𝑡 = 𝑑𝐺∕𝑑𝑡 =
𝑑𝐼∕𝑑𝑡 = 0. From where the steady state can be defined as, in the aspect of the autonomous system 𝑦′ = 𝑓 (𝑦), as that point, say 𝜖 > 0, 
where 𝛿 > 0 such that if, 𝜓(𝑡) is any solution, of 𝑦′ = 𝑓 (𝑦) having ‖‖𝜓(𝑡) − 𝑦0‖‖ < 𝛿. A solution is then said to exist, that is, 𝜓(𝑡)∀𝑡 ≥ 𝑡0
and ‖‖𝜓(𝑡) − 𝑦0‖‖ < 𝜖∀𝑡 ≥ 𝑡0. Thus stability occurs in two perspectives: stable if there exist a number 𝛿0 > 0|𝜓(𝑡) is the solution of 
𝑦′ = 𝑓 (𝑦), having ‖‖𝜓(𝑡) − 𝑦0‖‖ < 𝛿0 then lim𝑡→+∞𝜓(𝑡) = 𝑦0. From this definition, the system in Eq. (1) possesses five possible points 
are presented in Table 1, to explain the four different steady state (𝐸𝑒,𝐶𝑒,𝐺𝑒, 𝐼𝑒) obtained in this system. 

• The third clinically (irrelevant) equilibrium is

𝐸3 = (0,
𝑚2

𝛽Γ2 − 𝑏2𝑚2
,

−𝑚1Γ1
𝛽Γ2 − 𝑏2𝑚2

,0) (2)

• The fourth and the general medical ward free equilibrium is given as follows:

𝐸4 = (𝐸,𝐶,0, 𝐼),

𝐸 = 1 
𝑎Γ1 − 𝑏1𝑚1

𝑚2
𝛽Γ2 − 𝑏2𝑚2

,

𝐶 =
𝑟Γ1

(
𝑎𝑘Γ1 − 𝑘𝑏1𝑚1 −𝑚1

)
𝑘
(
𝑎Γ1 − 𝑏1𝑚1

)2 ,

𝐺 = 0,

𝐼 =
𝑚1

(
𝑎𝛽𝑘𝑟Γ1 − 𝛽𝑘𝑟𝑏1𝑚1 + 𝑎𝑘𝜔Γ1 − 𝑘𝜔𝑏1𝑚1 − 𝛽𝑟𝑚1

)
𝑘𝑚3

(
𝑎Γ1 − 𝑏1𝑚1

)2 . (3)

• The fifth and the full dynamical equilibrium is the full dynamical persistence state given by a quartic polynomial as follows;

4 ∑
𝑖=0 

𝐴𝑖𝐸
4−𝑖
𝑒

= 0, (4)

where 𝐴𝑖, 𝑖 = 0, ..,4 are cascading parameters given in the Appendix A.
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4. Qualitative analysis of the location of the equilibria

The Jacobian of the four-species model is given by

𝐽 =
⎡⎢⎢⎢⎣

𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34
𝑎41 𝑎42 𝑎43 𝑎44

⎤⎥⎥⎥⎦
,

here, 𝑎𝑖𝑗 , where 𝑖, 𝑗 = 1, ...,4, represent the partial derivatives of the Jacobian matrix. The stability of the four equilibria is determined 
by the eigenvalues of this matrix. In the following section, we will explore the behaviour of each equilibrium point.

𝑎1,1 = −2 𝐸3𝑟𝑏1
2−𝐸2(𝑘𝑟𝑏12+4 𝑟𝑏1)−2 𝐸(𝑘𝑟𝑏1+𝑟)−𝑘𝑟+𝑎𝐶𝑘+2}

𝑘
(
𝐸𝑏1+1

)2
𝑎1,2 = − 𝑎𝐸

(𝐸𝑏1+1)
𝑎1,3 = 0, 𝑎1,4 = 0
𝑎2,1 =

Γ1𝑎𝐶(1+𝑏1𝐸)−Γ1𝑎𝐸𝐶⋅𝑏1
(1+𝑏1𝐸)2

𝑎2,2 =
Γ1𝑎𝐸𝐶
1+𝑏1𝐸

−𝑚1𝐶 − 𝛽𝐺(1+𝑏2𝐶)−𝛽𝐺𝐶⋅𝑏2
(1+𝑏2𝐶)2

(
1 + 𝜁𝐼

1+𝜖𝐼

)
𝑎2,3 = − 𝛽 𝐶

𝐶𝑏2+1
+ 𝛽 𝐶(𝜁)𝐼

(1+𝐼)
(
𝐶𝑏2+

)
𝑎2,4 =

𝛽 𝐺𝐶𝜁

(1+𝐼)2
(
𝐶𝑏2+1

)
𝑎3,1 = 0
𝑎3,2 =

Γ1𝑎𝐸𝐶
1+𝑏1𝐸

−𝑚1𝐶 − 𝛽𝐺(1+𝑏2𝐶)−𝛽𝐺𝐶⋅𝑏2
(1+𝑏2𝐶)2

(
1 + 𝜁𝐼

1+𝜖𝐼

)
𝑎3,3 = −𝑚2

𝑎3,4 =
Γ2𝛽𝐶(1+𝑏2𝐶)−Γ2𝛽𝐼𝐶⋅𝑏2

(1+𝑏2𝐶)2
⋅ 𝜁(1+𝜖𝐼)−𝜁𝐼 ⋅𝜖(1+𝜖𝐼)2

𝑎4,1 =
𝛽 𝑎𝐶

𝐸𝑏1+1
− 𝛽 𝑎𝐸𝐶𝑏1(

𝐸𝑏1+
)2 +𝜔

𝑎4,2 =
𝛽 𝑎𝐸

𝐸𝑏1+1
𝑎4,3 = 0
𝑎4,4 = −𝑚3

System behaviour near the origin 𝐸1

A straightforward calculation shows that the hyperbolic equilibrium or the first trivial equilibrium is a stable fixed point.

𝜆𝐸1
= (−𝑟,𝑚1,𝑚2,𝑚3) (5)

System behaviour near the hospital resources and the ICU equilibrium 𝐸2

The Jacobian matrix of the system Eq (1) around the non feasible point, 𝐸2 = (𝐾,0,0, 𝐾𝜔

𝑀3
) gives the following eigenvalues.

𝜆1 = −𝑟, 𝜆2 =
𝑎𝑘Γ1 − 𝑘𝑏1𝑚1 −𝑚1

𝑘𝑏1 + 1 
, 𝜆3 = −𝑚2, 𝜆4 = −𝑚3 (6)

which is saddle point. The three negative eigenvalues imply stability along three directions in state space, meaning that small per-

turbations in those directions will tend to return to the equilibrium point over time. The one positive eigenvalue implies instability 
along one direction in state space, indicating that small perturbations in that direction will grow over time, leading the system away 
from the equilibrium point. In summary, a saddle point is characterized by a combination of stable and unstable directions.

System behaviour near the clinically irrelevant point 𝐸3 given in Eq. (2) 

The Jacobian matrix of the system Eq (1) around the non feasible point, for point 𝐸3 = (0,𝐶,−𝐺,0) gives the following eigenvalues.

𝜆1 = −
−𝛽𝑟Γ2 + 𝑟𝑏2𝑚2 + 𝑎𝑚2

𝛽Γ2 − 𝑏2𝑚2
(7)

where 𝜆2,3 is given in Eq (8) as follows:

𝜆2,3 = ±1
2

−𝑚1𝑚2𝑏2 +
√

4𝛽2Γ22𝑚1𝑚2 − 4𝛽Γ2𝑏2𝑚1𝑚
2
2 + 𝑏22𝑚

2
1𝑚

2
2

𝛽Γ2
(8)

𝜆4 = −𝑚3 (9)

The equilibrium is a saddle-focus point, exhibiting a combination of stability and instability along with oscillatory behaviour. The 
real eigenvalues govern the stability aspects, while the complex conjugate eigenvalues contribute to the oscillatory dynamics.
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System behaviour near general medical ward free equilibrium 𝐸4 is given by Eq. (3) 

The Jacobian matrix of the system Eq. (1) for the fourth equilibrium with no population in the general medical ward 𝐺 = 0.

𝜆1 =
−𝛼
𝛽

(10)

where 𝛼 and 𝛽 are two cascading parameters given in Eq. (23) and Eq. (24) in the Appendix C.

𝜆2,3 = ±
(𝑎Γ1 − 𝑏1𝑚1)

2𝑎𝑘Γ1 √
𝑎2𝑘Γ2𝑚1 − 𝑎2𝑘Γ22𝑚1 − 𝑎𝑘𝑟Γ1𝑏1𝑚1 − 𝑎𝑘Γ1𝑏1𝑚2

1 + 𝑎𝑘Γ1𝑏1𝑚2
1

+ 𝑘𝑟𝑏21𝑚
2
1 + 𝑟𝑚1𝑎Γ1 + 𝑟𝑏1𝑚

2
1 − 4𝑎4𝑘2𝑟Γ41𝑚1

+ 𝑎4𝑘2Γ41𝑚
2
1 − (2𝑎4𝑘2Γ41𝑚

2
1 + 𝑎4𝑘2Γ41𝑚

2
1 + 2𝑎3𝑘2𝑟Γ31𝑏1𝑚

2
1

+ 10𝑎3𝑘2𝑟Γ21Γ1𝑏1𝑚
2
1 − 2𝑎3𝑘2Γ31𝑏1𝑚

3
1 + 4𝑎3𝑘2Γ31𝑏1𝑚

3
1 − 2𝑎3𝑘2Γ31)𝑏1𝑚

3
1

𝑎2𝑘2𝑟2Γ21𝑏
2
1𝑚

2
1 − 4𝑎2𝑘2𝑟Γ21𝑏

2
1𝑚

3
1 − (8𝑎2𝑘2𝑟Γ21)𝑏

2
1𝑚

3
1 + 𝑎2𝑘2Γ21𝑏

2
1𝑚

4
1

− (2𝑎2𝑘2Γ21𝑏
2
1𝑚

4
1 + 𝑎2𝑘2Γ21𝑏

2
1𝑚

4
1 − 2𝑎𝑘2𝑟2Γ1𝑏31𝑚

3
1 + 2𝑎𝑘2𝑟Γ1𝑏31𝑚

4
1 + 2𝑎𝑘2𝑟Γ1𝑏31𝑚

4
1

+ 𝑘2𝑟2𝑏41𝑚
4
1 − 2𝑎3𝑘𝑟Γ31𝑚

2
1 + 6𝑎3𝑘𝑟Γ21Γ1)𝑚

2
1 − 2𝑎2𝑘𝑟2Γ21𝑏1𝑚

2
1 − (8𝑎2𝑘𝑟Γ21𝑏1𝑚

3
1

+ 2𝑎𝑘𝑟Γ1𝑏21𝑚
4
1 + 2𝑎𝑘𝑟Γ1𝑏1𝑚4

1 + 2𝑘𝑟2𝑏31𝑚1 + 𝑎2𝑟2Γ21𝑚
2
1 + 2𝑎𝑟2Γ1𝑏1𝑚1 + 𝑟2𝑏1𝑚1. (11)

𝜆4 = −𝑚3 (12)

The eigenvalues are unstable saddle focus because we obtained four eigenvalues with opposite signs. We could also identify this 
point as a saddle-node or bifurcation point. The presence of two negative real eigenvalues implies stability along two directions 
in state space. Small perturbations in those directions will tend to return to the equilibrium point over time. Complex conjugate 
eigenvalues with different signs (𝑜𝑛𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑜𝑛𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) indicate a behaviour akin to a focus. This suggests that trajectories near 
the equilibrium point exhibit spiralling behaviour.

System behaviour near the full dynamical equilibrium 𝐸5 is given in Eq. (4) 

The Jacobian matrix 𝐽4 = (𝑎𝑖𝑗 )4×4 is given in section 4 Let 𝜆𝑖, 𝑖 = 1,2,3,4 be the roots of the characteristic polynomially of 𝐽4
which is given by:

4 ∑
𝑖=0 

𝐴𝑖𝜆
4−𝑖 = 0, (13)

where 𝐴𝑖 are cascading parameters and 𝐴0 = 1;

𝐴1 = −𝑎1,1 − 𝑎2,2 − 𝑎3,3 − 𝑎4,4. (14)

𝐴2 =𝑎1,1𝑎2,2 + 𝑎1,1𝑎3,3 + 𝑎1,1𝑎4,4 − 𝑎1,2𝑎2,1 + 𝑎2,2𝑎3,3+

𝑎2,2𝑎4,4 − 𝑎2,3𝑎3,2 − 𝑎2,4𝑎4,2 + 𝑎3,3𝑎4,4. (15)

𝐴3 = − 𝑎1,1𝑎2,2𝑎3,3 − 𝑎1,1𝑎2,2𝑎4,4 + 𝑎1,1𝑎2,3𝑎3,2 + 𝑎1,1𝑎2,4𝑎4,2

− 𝑎1,1𝑎3,3𝑎4,4 + 𝑎1,2𝑎2,1𝑎3,3 + 𝑎1,2𝑎2,1𝑎4,4 − 𝑎1,2𝑎2,4𝑎4,1

− 𝑎2,2𝑎3,3𝑎4,4 + 𝑎2,3𝑎3,2𝑎4,4 − 𝑎2,3𝑎3,4𝑎4,2 + 𝑎2,4𝑎3,3𝑎4,2. (16)

𝐴4 =𝑎1,1𝑎2,2𝑎3,3𝑎4,4 − 𝑎1,1𝑎2,3𝑎3,2𝑎4,4 + 𝑎1,1𝑎2,3𝑎3,4𝑎4,2

− 𝑎1,1𝑎2,4𝑎3,3𝑎4,2 − 𝑎1,2𝑎2,1𝑎3,3𝑎4,4

− 𝑎1,2𝑎2,3𝑎3,4𝑎4,1 + 𝑎1,2𝑎2,4𝑎3,3𝑎4,1. (17)

According to the Routh-Hurwitz criterion, the condition for all eigenvalues of the Jacobian matrix to have negative real parts is 
equivalent to the determinant of all the Hurwitz matrices being positive. This implies that any equilibrium 𝐸 is locally asymptotically 
stable if and only if 𝐴1 > 0, 𝐴3 > 0, 𝐴1𝐴2 >𝐴3, and 𝐴3 >

√
𝐴1(𝐴1𝐴4 −𝐴2𝐴3), or 𝐴1𝐴2𝐴3 >𝐴2

3 +𝐴2
1𝐴4. Clearly, we have 𝐴1 < 0 and 

𝐴3 < 0, and based on the Jacobian matrix elements, when 𝑎1,2 < 0, 𝑎2,1 > 0, 𝑎2,3 < 0, 𝑎3,2 > 0, 𝑎3,3 < 0, and 𝑎4,4 < 0, it follows that 
𝐴1𝐴2𝐴3 >𝐴2

3 +𝐴2
1𝐴4. Therefore, using the Routh-Hurwitz criteria, we derive the necessary and sufficient conditions for the positive 

equilibrium to be locally asymptotically stable. To facilitate this, we introduce the following notation.

𝑎1,1 > 0 i.e. if 𝛼 > 𝑎𝐺𝑒

(1+𝑏1𝐸𝑒)
+ 𝑎𝐸𝑒𝐼𝑒𝑏1

(1+𝑏1𝐸𝑒)2
( 𝑘 
(1−2𝐸𝑒)

) and 𝑎1,2 < 0 i.e. if −𝑎𝐸𝑒

(1+𝑏1𝐸𝑒)
< 0 and

𝑎2,1 > 0 i.e. 𝑏1 <
𝐸𝑒

(1+𝑏1𝐸𝑒)
and 𝑎2,3 < 0 if 𝜁 < 𝐶𝑒−1

𝐶𝑒
and 𝑎4,4 < 0. Hence 𝐸4 is unstable Equilibria. This suggests that trajectories near 

the equilibrium point exhibit spiralling behaviour. The stability of this spiralling behaviour depends on the sign of the real part of 
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the complex eigenvalues, which indicates one positive real part in the complex eigenvalues roots. If one complex eigenvalue has a 
positive real part and the other has a negative real part, the equilibrium is considered a “saddle-point focus.”

The system analysis produced five equilibriums. The full dynamical equilibrium is the most relevant as all populations are there 
and with positive signs and the solution exists at 𝐸4 , which means, the ‘nowcasting’ and how variations in bed usage in the different 
departments will affect the other parts of the system, both upstream and downstream (‘forecasting’). The upstream is when the bed 
of the discharge or mortuary while downstream means, beds in active departments, they are also called level 3 beds, more details are 
provided in Appendix B.

We investigated the equilibria of the system, denoted as (𝐸1,𝐸2,𝐸3,𝐸4,𝐸5), and examined their feasibility under biologically 
relevant conditions. To ensure the model produces biologically meaningful (non-negative) solutions, we define all initial conditions:

𝐸(0),𝐶(0),𝐺(0), 𝐼(0)

and parameters:

𝑟,𝐾, 𝑎, 𝛽, 𝜁 ,𝑚1,𝑚2,𝑚3,𝜔

as non-negative, reflecting their real-world interpretations. The terms in the equations, such as:

𝑎𝐸𝐶

1 + 𝑏1𝐸
,

are constructed to remain non-negative under these conditions. Furthermore, the death rates:

𝑚1𝐶, 𝑚2𝐺, 𝑚3𝐼,

are proportional to the populations and cannot drive the variables below zero. The eigenvalues from the stability analysis confirm the 
biologically meaningful equilibrium (𝐸5) is locally stable, and our numerical simulations consistently show all state variables remain 
non-negative throughout the system’s evolution. This guarantees the model adheres to the requirement for biologically meaningful 
solutions under the given parameter conditions.

5. Parameter values investigation

A major reason for modelling the dynamics of a population is to understand its principle controlling features and so be able to 
predict the likely pattern of development consequent upon a change of environmental parameters [13]. In the hospital’s bed model 
of Eq. (1) we assumed that the parameters within the elementary analysis are the real number of population in the daily entry basis 
to hospital. Due to the high bed occupancy in UK hospitals, the limiting factor for the number of admissions in any 24 hour period is 
determined by the beds becoming available that day (i.e. the number of deaths and discharges). Generally, seriously ill patients are 
assessed in the emergency department and then a decision is made to admit to a medical ward or to send home. If admitted, they 
will either be sent to a general medical ward 𝐺 or a 𝐶𝑜𝑣𝑖𝑑 ward 𝐶 , through out the median number of ward transfers from the ED 
to medical wards, which are Γ1 and Γ2. There is a target that any admissions from the ED should occur within 4 hours; this ‘time to 
admit’ is 𝑎. Patients who deteriorate in medical wards and need more intensive treatment are transferred to ICU. The median number 
of such transfers each day over the preceding week 𝜁 reflects this component of activity. The median number of medical patients 
who die in unit time—in this case one day—in any given ward reflects the case mix on that ward, can be known from hospital data 
and is represented here by 𝑚1, 𝑚2 and 𝑚3 for the general ward, 𝐶𝑜𝑣𝑖𝑑 ward and ICU, respectively. As can be seen, the total number 
of beds thus is the sum of the number of discharges and deaths in a given period 𝜔. Because of the physical limit of beds and staff on 
any given day, the threshold for admission can change to prevent more patients being admitted than the available resources. As the 
model in Eq. (1) describes the flow of patients into the hospital via ED (i.e. admission numbers). This number is normally determined 
by: flow of patients out of hospital (discharges and deaths) in a steady state system in the absence of 𝐶𝑜𝑣𝑖𝑑. The following is a list of 
Exogenous (independent) parameter values definition 

6. Numerical simulation results

6.1. Time series and phase portraits

This section aims to validate the analytical findings by incorporating experimental parameter values provided by a clinician 
consultant with hospital experience. For this analysis, we utilized the parameter values listed in Table 2, which outlines the 14 
parameters used to examine the model described in Eq. (1). These values also assisted in setting the initial conditions for conducting 
the numerical analysis. Another key objective of this section is to confirm the analytical results (summarized in Table 1) through 
numerical methods. The simulations highlight several significant features of the system from a practical perspective.

Fig. 2 exhibits the local stability of the model around the second equilibrium 𝐸2 , while there is no population in the 𝐶𝑜𝑣𝑖𝑑 ward 
and in the general medical ward, the system exhibits a stable equilibrium and all trajectories are moving toward the equilibrium point. 
The oscillator behaviour is influenced by the second positive root of the quartic polynomial, shaping the stability of the clinically 
relevant equilibrium 𝐸4. In the 24-hour case, oscillations reflect short-term periodic dynamics, while in the 500-hour case, they persist 
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Table 2
Definitions of parameters and their associated units utilised in the presented model in Eq. (1).

Parameters Definition Value Units 
𝑟 The number of admissions in the past 24 hours 5 no unit 
𝐾 Hospital resources 100 − 200 no unit 
𝑎 The movement process rate, i.e the average of time spent on processing the 

patients from ED to hospital ward, when there is little 𝐶𝑜𝑣𝑖𝑑
4 hours 

𝜁 The linear rate of hospitality (flow) number of patients in the ICU 0.2 no unit 
𝜖 A key parameter that we are going to use to reduce the general four 

compartment model to a special case model

0 or 1 no unit 

Γ1,2 The patients flow number between ED and other departments 4 − 5 hours 
𝛽 The number of available hospital beds (is the discharge fixed parameter) 5 no unit 
𝑏1,2 (bed time handling) 1.5 − 2 days 
𝑚1,2,3 Death rate 1.5 no unit 
𝜔 Patients discharge rate from the hospital 3.5 no unit 

Fig. 2. Time series and phase portraits near the equilibrium point (hospital resources and the ICU equilibrium 𝐸2), which is given by (𝐻𝑒,𝑊𝑒,𝐺𝑒,𝐶𝑒) =
(100,0,0,233.3333333) with 𝜁 = 0.2 and all other parameters fixed as in Table 2. It is readily seen that the trajectories are attracted onto a stable limit cycle.

Fig. 3. Time series and phase portraits near the equilibrium point (General ward free equilibrium 𝐸3), which is given by (𝐻𝑒,𝑊𝑒,𝐺𝑒,𝐶𝑒) =
(0.02597402597,1.298363974,0,0.4934840052) with 𝜁 = 0.2 and all other parameters fixed as in Table 2. It is readily seen that the trajectories are attracted onto 
unstable limit cycle, along with oscillatory behaviour.



Heliyon 11 (2025) e42260

9

T. Al-Karkhi and K. Byatt 

Fig. 4. Time series and phase-space trajectories around the proposed initial condition for the general medical ward free equilibrium in Fig. 4(a) and 4(b). Fig. 4(c) 
and Fig. 4(d) the first positive root of the quartic polynomial, the clinically relevant equilibrium 𝐸4 in duration of 24 hours and 500 hours cases, which is represented 
in Eq (13) and all of the other parameters are fixed as in Table 2.

over extended durations, indicating long-term regulatory effects. Similarly, Fig. 6 highlights oscillatory trajectories, emphasizing their 
dependence on system parameters and initial conditions.

Figs. 4 and 6 illustrate the system’s behaviour over continuous time for the special case model, along with its trajectory in 𝐻𝑊 𝐶

space based on three distinct initial conditions: (𝐻𝑒,𝑊𝑒,𝐺𝑒,𝐶𝑒) = (0.2597,1.2983,0,0.49379), (0.15810,1.5440,7.6186,3.0031), and 
(99.9214,0.14818,4.5320,1565.697), with 𝜁 = 0.2 and bed numbers (along with all other parameters) fixed at their default values. 
In Fig. 4(b), the trajectory is shown to converge onto a limit cycle with an approximate period of 500 hours. This trajectory reveals 
significant large amplitude oscillations in 𝐻 . These findings demonstrate the system’s inherent instability.

These results have tended to focus on bed usage within departments (micro-activity), but not activity across healthcare systems 
(macroactivity). We are looking at the use of beds between departments within a hospital trust (what we call ‘meso-activity’). The 
results in Figs. 4, 5 and 6 show the hospital activities in 24 hours, where almost all departments are under control and the patients’ 
movement is stable. As soon as we increase the time’s loop to 500 hours, which is approximately 20 days we can notice the periodic 
behaviour of the system and the flow of the trajectories to create a limit cycle around the three feasible clinically relevant equilibrium. 
Normally in the UK, emergency cases, including 𝐶𝑜𝑣𝑖𝑑 patients, arrive in hospital either after having called for help and been assessed 
at home by a clinician (usually a paramedic; occasionally a GP), or after having presented at the emergency department (ED) of their 
local hospital. They are assessed as to how serious and urgent their condition is a process called triage, based on the military practice 
of rapidly dividing casualties into three groups: those who will survive without intervention; those who will die anyway; and those 
who will die without intervention but are likely to survive with it.
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Fig. 5. Time series and phase-space trajectories around the proposed initial condition for the second positive root of the quartic polynomial, the clinically relevant 
equilibrium 𝐸4 in duration of 24 hours and 500 hours cases, which is represented in Eq (13) and all of the other parameters are fixed as in Table 2.

6.2. One parameter bifurcation behaviour

We have used numerical simulations to analyse the proposed model in Eq. (1). Fig. 7 represents the local stability diagram around 
𝐸4 with the parameter values given in Table 2. It is readily seen that in Fig. 7(a) indicates that if in the clinically relevant equilibrium 
𝐸4 <𝐾 then the hospital population will increase and if 𝐸4 >𝐾 this means there will be a deficiency in hospital resources. Especially, 
if 𝐸4 is a function of 𝜁 i.e. it depends tremendously on the number of beds in hospital. Also, if 𝐸4 =𝐾 then the population will remain 
constant.

These graphs illustrate 𝐸 − 𝐶 − 𝐺 − 𝐼 clinical model: For a specific choice of parameters, in each cycle, the prey population 
is increased to extremely high numbers, yet recovers (while the emergency population remains sizeable at the highest number of 
admitted population density). In real-life situations, however, chance fluctuations of the discrete numbers of individual structure and 
life-cycle of admitted people might cause the population in 𝐸 to actually increase more than usual due to the cases admitted because 
of 𝐶𝑜𝑣𝑖𝑑 as well as other health conditions. For a specific choice of parameters, the patients population is increases to extremely 
high numbers, yet recovers (while the 𝐺 and 𝐶 populations remain size able at the highest patients density). In real-life situations, 
however, chance fluctuations of the discrete numbers of individual structure and life-cycle of virus might cause the patients to actually 
decease.
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Fig. 6. Time series and phase-space trajectories around the proposed initial condition for the third positive root of the quartic polynomial, the clinically relevant 
equilibrium 𝐸4 in duration of 24 hours and 500 hours cases, which is represented in Eq (13) and all of the other parameters are fixed as in Table 2.

7. Heat map for the hospital dynamics

To study the effect of altering the medical resources 𝑘 of the hospital on the population dynamics by varying the value of 𝑘 and 
𝜁 number of beds in the hospital in 24 hours. We presented a heat-map of a hospital in Fig. 7 typically occurs when the system 
dynamics of Eq. (1) are cyclic, which means when the density of a patients population increases in response to a greater number of 
infected patients i.e. when there is a surge in the virus and limited resources the death ratio will increase consequently as a response 
to this mechanism. The patients population density in the general medical ward will remain constant over short timescales but it 
does support our assumption that the surge in the virus may respond to the limited resources available in the hospital. The heat map 
of Fig. 8 effect also implies unreasonable responses to changes in patient population in each ward and other parameters affecting 
population stability such as the hospital resources 𝑘 and 𝜁 . It is also defined as response to altered mortality. The different levels of 
virus effect determine the stabilization of patients population densities in each ward. From the heat map images, an equilibrium is 
highlighted that indicates an unstable state to the left of the curve of Fig. 8(a) which represent the population densities of 𝐸 ward and 
the 𝐶 ward in Fig. 8(b) are high and this is reflected in the red colour represents the maximum densities of the equilibria. From this, 
the results are an increase of both ward’s populations. The heat-map in each of Fig. 8(a), Fig. 8(b), Fig. 8(c) and Fig. 8(d) indicates 
that after crossing the saddle-node curve there is then an unstable equilibrium density. This is even though when there is an increase 
in the patient flow it will generate pressure on the hospital’s medical resources and consequently affect the patient population density 
in each ward. 
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Fig. 7. The clinically relevant equilibrium point w.r.t. 𝜁 as a bed number parameter in a hospital. 

8. Results and discussion

Several researchers have explored various models of the Holling type II functional response since the groundbreaking contributions 
of Freedman [16], [10]. These studies aimed to enhance understanding of the dynamics and behaviours of such systems. More recent 
work, such as Freedman [11], investigates the existence of periodic oscillations and examines the impact of the functional response 
on these behaviours [1]. In this study, we focus on analyzing the trajectory directions by solving the model represented by Eq. (1). 
To summarise the analytical findings, we used Table 1 to obtain some numerical results generated using 𝑂𝐷𝐸45 in MATLAB. The 
model in Eq. (1) exhibits four hyperbolic, clinically feasible equilibria and one non-feasible equilibrium 𝐸3 . The first one is 𝐸1 where 
all hospital populations are extinct, and this is always stable. The second equilibrium is 𝐸2 , where the ED department is at its highest 
population density, while both 𝐶𝑜𝑣𝑖𝑑 and the general medical ward are empty or with an extinct population and the population in 
the ICU is limited; this is also stable. The third equilibrium is 𝐸3 is clinically irrelevant as one of the hospital departments has a 
negative population. The fourth equilibrium is the clinically relevant, 𝐸4 , which is a quartic polynomial with four real roots two of 
which are negative roots and three positive where all populations continue to survive. The three positive roots exhibit three different 
behaviours. The equilibrium 𝐸4 is a saddle-focus point, exhibiting a combination of stability and instability along with oscillatory 
behaviour. The real eigenvalues govern the stability aspects, while the complex conjugate eigenvalues contribute to the oscillatory 
dynamics. Fig. 4 shows the behaviour for the general medical ward free equilibrium in Fig. 4(a) and Fig. 4(b). Fig. 4(c) and Fig. 4(d)

of the first positive root of the quartic polynomial, the clinically relevant equilibrium 𝐸4 in duration of 24 hours and 500 hours cases, 
which is represented in Eq. (13) and all of the other parameters are fixed as in Table 2.

The parameter set in Table 2 enables a diverse range of system behaviour to emerge within a relatively narrow 𝜁 parameter space. 
The system’s stability can be classified into four distinct categories based on hospital population dynamics or limit-cycle patterns [12]. 
An ‘unstable spiral’ is observed to diverge from the initial conditions, resulting in unbounded population oscillations. We identify a 
region of such oscillatory behaviour in the four-species model and demonstrate its persistence across the parameter values listed in 
Table 2. These findings align with those reported in [10].

The oscillatory nature of the hospital model primarily arises due to the complexities involved in modelling the ICU bed functional 
response (𝐶), which plays a critical role in the system’s dynamics and is clinically significant [10]. According to [21], using a simple 
reaction-diffusion model can effectively capture the intricate dynamics, including oscillatory behaviours, by emphasizing trophic 
interactions.

Interestingly, the limit-cycle behaviour observed for the linear mortality function of the COVID ward (𝑊 ), the general medical 
ward (𝐺), and the ICU (𝐶) may not manifest if a quadratic mortality function is applied to 𝐺 and 𝐶 . The results presented—calculated 
numerically using 𝑂𝐷𝐸45 for various equilibria and illustrated in Fig. 2 for the time series in Fig. 2(a) and phase portraits 2(b), near 
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Fig. 8. A heat map to represent the hospital dynamics and stability during 24 hours, which indicate the system maximum equilibrium (𝐸𝑒,𝐶𝑒,𝐺𝑒, 𝐼𝑒) for the parameters 
for different values of 𝐾 and 𝜁 . Fig. 8(a) shows the emergency department 𝐸 heat map which reflects the persistence of a high level of population in this department 
represented by the red colour. Fig. 8(d) represents the low population in the 𝐼𝐶𝑈 unit due to the limited beds number.

the equilibrium point (hospital resources and the ICU equilibrium 𝐸2), with 𝜁 = 0.2 and all other parameters fixed as in 2, show 
all trajectories are attracted onto a stable limit cycle. Fig. 3, is the system behaviour near the equilibrium point (General ward free 
equilibrium 𝐸3), with 𝜁 = 0.2 and all other parameters fixed as in 2. It shows the trajectories are attracted onto unstable limit cycle 
via the time series Fig. 3(a) and phase portrait in Fig. 3(b), along with oscillatory behaviour.

In Figs. 4(a), 4(b), 4(c) and 4(d), highlight these dynamics, we observed that the clinically relevant equilibrium is unstable when 
𝜁 = 2.3. While Figs. 5(a), 5(b), 5(c), 5(d), which refer to the second positive root of the quartic polynomial, the clinically relevant 
equilibrium 𝐸4 in duration of 24 hours and 500 hours cases, and similarly in Fig. 6.

The model in Eq. (1) displays a region of instability near the Hopf bifurcations when 𝐾 = 20, 𝑟 = 4.455, 𝜁 = 2.3 and 𝜔 = 1.5. 
However, this model does not exhibit behaviour in accordance with the enrichment paradox. While increasing the hospital’s main 
resources 𝐾 does take the system through a region of unstable states, the presence of a higher population in both 𝑊 and 𝐶 causes 
the system to be unstable for larger values of 𝐾 . This captures detailed information on interactions among the three departments.

9. Conclusion

The primary goal of this analysis is to gain deeper insights into the hospital dynamics described by the model in Eq. (1). This study 
confirms the existence of periodic oscillations in solutions and evaluates how the virus response influences hospital operations. It 
highlights the importance of understanding the impact of COVID-19 spread within the structure of hospital wards. In this investigation, 
the trajectory directions were analyzed by solving the model in Eq. (1). To summarize the analytical results, Table 1 was used to 
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present numerical findings obtained through MATLAB’s 𝑂𝐷𝐸45 solver. The model in Eq. (1) reveals four hyperbolic, clinically feasible 
equilibria and one non-viable equilibrium, 𝐸3. The first equilibrium, 𝐸1, where all populations are extinct (i.e. the hospital is empty), 
is always unstable. This study aims to enhance understanding of hospital dynamics during the COVID-19 pandemic, particularly under 
the constraints of limited bed availability. It also examines the stabilization of hospital operations by focusing on the bed usage in 
each ward, particularly the ICU. The second equilibrium is 𝐸2 where the patients in 𝐸 are at the highest population while the patients 
in 𝐶 and the 𝐺 are no longer present, and the spread of 𝐶𝑜𝑣𝑖𝑑 is constrained, making it unstable, as described in Section 4. The 
third one is 𝐸3 where the patients and 𝐶𝑜𝑣𝑖𝑑 spread persist while the hospital resources are extinct. The fourth equilibrium is the 
coexistence 𝐸4 where all wards populations exist as explained in sec. 3. The parameter values in Table 2 facilitate observing diverse 
behaviour within a relatively narrow 𝜁 parameter space. The system’s stability can be classified into four distinct categories, based on 
the 𝐸−𝐶 −𝐺−𝐼 population dynamics or the limit-cycle graph behaviour [12]. An unstable spiral emerges from the initial condition, 
leading to unbounded population oscillations. We demonstrate the presence of this oscillatory region in the four-species model and 
show how it persists with the parameter values specified in Table 2. The oscillatory behaviour in the 𝐸 − 𝐶 − 𝐺 − 𝐼 model is the 
challenge of modelling using Holling type II functional response, as it is clinically intricate and possibly impactful on the system. We 
chose the Holling Type II functional response to represent patient transfers between departments because it effectively captures the 
saturation effect observed in hospital systems, where the rate of patient transfer slows as departmental capacity approaches its limit. 
The observed limit-cycle behaviour with respect to linear mortality for patients may not appear if a quadratic mortality function 
is applied to each ward [1]. The numerical results shown in Fig. 7, computed using ODE45 for different equilibria, reveal that the 
coexistence equilibrium becomes unstable when 𝜁 = 0.001. In this case, a neutral centre corresponds to a closed loop, where population 
oscillations persist without damping. A stable spiral gradually moves toward a stable state, with oscillations in the population being 
dampened until all populations stabilize. We intend to validate these findings using real-world hospital patient flow data.
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Appendix A

• The coefficient of the full dynamic equilibrium polynomial given in Eq. (4):

𝐴1 =
(
𝛼2𝑏2𝑑3 + Γ21 + 𝛼2𝑏2𝑑𝐶Γ21

)
(18)

𝐴2 =
(
−2𝐾𝛼2𝑏2𝑑3 + Γ21 − 2𝐾𝛼2𝑏2𝑑𝐶Γ21 + 𝛼2𝑏𝑑3 + Γ21 + 𝛼2𝑏𝑑𝐶Γ21

)
(19)

𝐴3 =𝐾2𝑟2𝑏2𝑑3 + Γ21 +𝐾2𝑟2𝑏2𝑑3Γ21 − 2𝐾𝑟2𝑏𝑑3 + Γ21

− 2𝐾𝑟2𝑏𝑑3𝐶Γ21 +𝐾𝑟𝑏2𝑑1 + 𝑑3Γ1 +𝐾𝑟+ 𝑏2𝑑1 − 𝑑3𝐶Γ1 +𝐾𝑟𝑏2𝑑3 + 𝑑3𝐶Γ1

+𝐾𝑟𝑏2𝑑3𝑑2𝐶𝐶Γ1 +𝐾𝑎𝑟𝑏𝑑2 +𝐾𝑎𝑟𝑏𝑑2 −𝐾𝑎𝑟𝑑3Γ21 −𝐾𝑎𝑟𝑑3𝐶Γ21 (20)

𝐴4 =𝐾2𝑟2𝑏𝑑3Γ21 +𝐾2𝑟2𝑏𝑑3𝐶Γ21 −𝐾2𝑟𝑏2𝑑1𝑑3 + Γ1 −𝐾2𝑟

𝑏2𝑑1𝑑3𝐶Γ1 −𝐾2𝑟 𝑏2𝑑3𝑑2𝐶Γ1 −𝐾2𝑟+ 𝑏2𝑑3𝐶𝑑2𝐶Γ1 − 𝑑2𝑏𝑟𝑎𝐾
2

−𝐾2𝑎𝑟𝑏𝑑2𝐺 +𝐾2𝑎𝑟𝑑3Γ21 +𝐾2𝑎𝑟𝑑3𝐶Γ21 +𝐾𝑟𝑏𝑑1𝑑3Γ1

+𝐾𝑟𝑏𝑑1𝑑2𝐶Γ1 +𝐾𝑟𝑏𝑑3𝑑2𝐶Γ1 +𝐾𝑟𝑏𝑑3𝐶𝑑2𝐶Γ1 +𝐾𝑎𝑟𝑑2 +𝐾𝑎𝑟𝑑2𝐺 (21)

𝐴5 = −Γ1𝑑3𝑑1𝑏𝑟𝐾2 − Γ1𝑑1𝑏𝑟𝐾2𝑑𝐶 − 𝑑𝐶Γ1𝑑3𝑏𝑟𝐾2 − 𝑑𝐶Γ1𝑏𝑟

𝐾2𝑑𝐶 − 𝑑2𝑟𝑎𝐾
2 − 𝑑𝐺𝑟𝑎𝐾

2 − Γ1𝑑3𝑑1𝑎𝐾2 − Γ1𝑑1𝑎𝐾2𝑑2𝐶 − 𝑑2𝐶Γ1𝑑3𝑎𝐾2

− 𝑑2𝐶Γ1𝑎𝐾2𝑑2𝐶 (22)
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Appendix B

The coefficients of the eigenvalues in Eq. (10) are given as follows:

𝛼 = Γ22𝑑1𝜁 − Γ2𝑏2𝑑21Γ2𝑏2𝑑1𝑑2 − (Γ2𝑑2(𝑑1(𝑏2 + 1)𝜁) + (𝑑2𝑑1𝑏2 + 1)𝜁)𝑏2𝑑1 (23)

𝛽 = ±
√

(𝑑22𝑏1 + 1)𝜁𝑑1𝑏2 + 𝜏𝑏22𝑑
2
1𝑑2𝜁Γ2𝜂𝑏

2
2𝑑

2
2 ) − 2(𝑑2𝑑1𝑏2𝜁𝑏2𝑑22 − 2Γ2𝑑2𝑑1𝜁𝑏22𝑑1𝑑

2
2 + 2Γ2𝑑2𝜁)2 (24)

Appendix C

The Jacobian matrix 𝐽4 = (𝑎𝑖𝑗 )4×4 is associated with the system of equations, and the roots of its characteristic polynomial deter-

mine the stability of the system. The characteristic polynomial is given by:

4 ∑
𝑖=0 

𝐴𝑖𝜆
4−𝑖 = 0

where 𝐴0 = 1, and the coefficients 𝐴𝑖 (i.e., 𝐴1,𝐴2,𝐴3,𝐴4) are derived from the elements of the Jacobian matrix. The coefficients 
𝐴1,𝐴2,𝐴3,𝐴4 of the characteristic polynomial are functions of the Jacobian elements:

𝐴1 = −(𝑎1,1 + 𝑎2,2 + 𝑎3,3 + 𝑎4,4)

The expressions for 𝐴2,𝐴3,𝐴4 involve more complex sums and products of the Jacobian elements, which are explicitly defined in 
terms of the matrix components. According to the Routh-Hurwitz criterion, a system is locally asymptotically stable if all the roots of 
the characteristic equation have negative real parts. This can be ensured if all the Hurwitz determinants are positive, leading to the 
following conditions:

𝐴1 > 0, 𝐴3 > 0, 𝐴1𝐴2 >𝐴3

Additionally, the inequality:

𝐴3 >
√
𝐴1(𝐴1𝐴4 −𝐴2𝐴3)

or

𝐴1𝐴2𝐴3 >𝐴2
3 +𝐴2

1𝐴4

must be satisfied to ensure the system’s stability. Given that 𝐴1 < 0 and 𝐴3 < 0, specific conditions based on the signs of the matrix 
elements emerge: For instance, 𝑎1,2 < 0, 𝑎2,1 > 0, 𝑎2,3 < 0, and so forth, indicating interactions between the system’s variables, which 
can influence stability. The condition 𝐴1𝐴2𝐴3 > 𝐴2

3 + 𝐴2
1𝐴4 is satisfied, indicating that the system is locally asymptotically stable. 

However, since 𝐴1 and 𝐴3 are negative, the system exhibits complex dynamics. The mention of spiralling behaviour indicates the 
presence of complex eigenvalues (corresponding to oscillatory behaviour). If one complex eigenvalue has a positive real part and the 
other has a negative real part, the equilibrium is a saddle-point focus.

The full dynamical equilibrium 𝐸4 is unstable, with complex eigenvalues leading to spiralling trajectories. This corresponds to 
the system’s behaviour, where upstream and downstream dynamics (e.g., bed usage in departments) impact the system. Upstream 
refers to the discharge or mortuary, while downstream refers to active departments, such as level-3 beds. By applying the Routh-

Hurwitz criterion and analyzing the Jacobian elements, we have identified the necessary conditions for local asymptotic stability. 
The inequalities involving 𝐴1,𝐴2,𝐴3,𝐴4 confirm stability, but the presence of spiralling behaviour suggests that 𝐸4 is unstable. The 
system exhibits complex oscillatory dynamics near this equilibrium point, possibly leading to saddle-point behaviour.
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