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Abstract—Large Language Models (LLMs), with their strong
generalization and inference capabilities, have been increasingly
leveraged to address the challenges of handling corner cases in
autonomous driving (AD). However, a critical unresolved issue
remains: the lack of a comprehensive understanding and formal
assessment of LLMs’ driving theory knowledge and practical
skills. To address this issue, we propose the first dedicated driving
theory test framework and benchmark for LLMs. That is a cru-
cial yet unexplored area in the literature, particularly for safety-
critical applications in autonomous driving and driver assistance.
Our framework systematically evaluates LLMs’ competence
in driving theory and hazard perception, akin to the official
UK driving theory test, ensuring their qualification for critical
driving-related tasks. To facilitate rigorous benchmarking, we
construct a comprehensive dataset comprising over 700 multiple-
choice questions (MCQs) and 54 hazard perception video tests
sourced from the official UK driving theory examination. Ad-
ditionally, we incorporate two standardized MCQ sets from the
UK’s Driver and Vehicle Standards Agency (DVSA). For these
two types of theoretical test items, we design tailored assessment
methodologies and evaluation metrics, including accuracy, recall,
precision, F1-score, real-time performance, and computational
efficiency. The experimental results reveal that among all LLMs
tested, only GPT-4o achieved an accuracy of 88. 21% in the
MCQs test, successfully passing this component. However, in
hazard perception testing, none of the evaluated models met
the passing criteria under the given settings, highlighting the
substantial improvements required before these models can be
practically deployed for real-world driving applications. Our key
insight is that the specific test questions LLMs fail to answer
correctly directly reflect their deficiencies in understanding and
flexibly applying traffic regulations, as well as in analyzing and
responding to complex driving scenarios. This provides clear
directions for future improvements.

Index Terms—Autonomous driving, large language model,
driving theory test, hazard perception test, remote driving, mobile
computing.

I. INTRODUCTION

THe most recent data released by the World Health
Organization indicates that approximately 1.3 million
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individuals die each year due to road traffic accidents, with
an additional 50 million sustaining injuries [1]. Autonmous
driving is widely viewed as a strong candidate to reduce
road accidents and improve road safety. Research from the
University of Michigan demonstrates that the implementation
of Advanced Driver Assistance Systems (ADAS) can pre-
vent 20% to 46% of such accidents. Additional predictions
estimate that the widespread adoption of ADAS in Europe
could decrease road traffic accidents by approximately 15%
by 2030 [2]. Significant advancements in autonomous driving
have been achieved in recent years, but existing solutions
face major challenges of handling long-tail corner cases and
generalization, which prevent autonomous driving from large
scale deployment on the roads [3], [4]. The ”long-tail problem”
refers to numerous low-frequency, extreme, rare, or unfore-
seen situations that may arise in actual driving environments.
Although these situations occur infrequently, they must be
effectively handled, as autonomous driving systems need to
ensure safe operation under all potential circumstances [5],
[6]. Furthermore, current AD algorithms primarily rely on AI-
guided decision-making processes, which suffer from limited
transparency and interpretability. This insufficiency does not
meet the stringent requirements of traffic safety regulations.

With their extensive world knowledge and powerful reason-
ing abilities LLMs can help AD systems handle long-tail issues
and enhance decision interpretability by generating complex
scenario descriptions and natural language explanations. For
example, Fu et al. address the long-tail problem in AD by
utilizing GPT-3.5 that mimics human-like reasoning, interpre-
tation, and memorization to navigate complex scenarios and
accumulate driving experience [7]. And J. Mao et al. proposed
an approach that transforms the OpenAI GPT-3.5 model into
a reliable motion planner for autonomous vehicles [8]. While
there are increasing interests in applying LLMs for AD, they
still face several major technical challenges, such as limited
on-boad computing resources to run the LLMs, and a lack
of comprehensive understanding and formal test of LLM’s
driving theoretic knowledge and skills. Generally, LLMs uses
a huge number of parameters to effectively capture complex
patterns and knowledge in the training data, e.g., DeepSeek-
V3 has 671B parameters [9], [10]. These models require
substantial computation and memory resources due to their
large parameter sizes, which are difficult to accommodate by
the onboard devices of autonomous vehicles. Furthermore, AD
systems are expected to produce higher safety standards than
human driving. Although human drivers must pass theoretical
and practical road tests to qualify for driving on public roads,
no rigorous evaluations have been reported on the LLMs used
for AD. According to a recent report, the safety performance
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of LLM-empowered autonomous driving is significantly lower
than that of human drivers [11]. Therefore, critical questions
remain unanswered: 1) Are LLMs fundamentally qualified to
be used in autonomous driving and driving assistance? 2)
To what extent can we trust their decision making based on
standardized driving knowledge assessments?

Considering the research potential and challenges of LLM in
autonomous driving and driving methodology and benchmark
of driving theory inspired by the official tests required for
human drivers to obtain a license. Our framework, modeled
after the UK Driver & Vehicle Standards Agency (DVSA)
theory test, assesses both the driving knowledge and the
hazard perception skills of LLMs. This evaluation serves as
a foundational step in determining whether LLMs are funda-
mentally qualified for autonomous driving or assistance tasks.
While strong performance on driving theory tests does not
guarantee effective real-world decision-making, standardized
assessments offer a structured framework for evaluating the
reliability and limitations of LLMs. We cannot simply assume
that future LLMs will achieve human-level generalization.
However, analyzing their failures on specific test questions
provides valuable insights into deficiencies in understanding
traffic rules and responding to complex scenarios. These fail-
ure patterns highlight critical areas for improvement, guiding
future advancements in LLM-based driving systems. An LLM
capable of passing driving theory tests can be deployed on
remote cloud servers, allowing CAVs to interact with it via
vehicle-to-everything (V2X) communication technologies. As
shown in Fig. 1, CAVs can engage with LLM hosted in
roadside units (RSU) through direct vehicle-to-vehicle (V2V)
communication or through vehicle-to-infrastructure (V2I) links
connecting to cellations and RSUs. Alternatively, CAVs can
establish communication with LLMs deployed in remote cloud
environments through V2I connections to cellular base stations
and the Internet, facilitating seamless access to advanced
decision-making and reasoning capabilities.

In this paper, we design and run driving theory tests
for 11 proprietary LLM models (OpenAI GPT, Google
Gemini, Anthropic Claude, Baidu Ernie, Zhipu glm, and
Ali QWen) and 5 open source LLM models (DeepSeek-
V3, Deepseek-R1, Tsinghua MiniCPM3-4B, MiniCPM-V-
2.6, and MiniCPMLlama3-V2.5). We have not identified any
open-source LLM specifically adapted for driving tasks. Al-
though [12] developed the EMMA based on Gemini 1.0
Nano, it remains a closed source. To ensure a comprehen-
sive evaluation, we included Google’s Gemini series models
(Gemini-1.5-Pro and Gemini-2.0-Flash) in our evaluation. The
accuracy, precision, recall of the model, the F1 score, the
confusion matrix, the computational efficiency and the real-
time performance are measured from the experiments. Our
benchmark dataset includes over 700 MCQs and 54 video
hazard perception tests derived from the UK official driving
theory test. Additionally, we incorporate two standardized 50
MCQ sets from the UK DVSA. This testing framework allows
us to systematically evaluate the ability and effectiveness of
LLMs in handling driving-related tasks, which is crucial to
improve the safety of CAVs and driving assistance systems.
With continuous technological advancements, further research

into LLM performance in real driving environments and their
potential improvements will provide valuable insights for the
development of autonomous driving technology. The experi-
mental results demonstrate that GPT-4o achieved an average
accuracy of 88.21%, and Claude-3.5-sonnet attained 85.21%,
both passing the multiple-choice test, whereas the other models
did not. In the hazard perception test, GPT-4o and GPT-4o-
mini were evaluated. The results indicated that the precision
rate for detecting hazard events was below 20%, and the final
score rate was below 60%, with a relatively high false positive
rate, thus neither passed the test.

This study reveals the actual capabilities of current LLMs
when confronted with human driving theory tests, indicating
that mainstream LLMs may not yet be fully capable of
handling all AD tasks. The findings of this research contribute
to decision making about how to integrate LLMs into CAV
applications while balancing model performance and cost.
The theoretical test methodology and framework are also
applicable to AV driving assistance systems utilizing locally
deployed LLMs. They are complementary to the existing
research works on the design and applications of LLMs for
automous driving algorithms. 1.

II. RELATED WORK

Recent research in AD has explored the application of
LLMs through modular AD pipelines and end-to-end AD
systems. LLMs in modular pipelines improve various stages,
such as perception of the environment, localization, path plan-
ning, and decision making. Conversely, end-to-end systems
leverage LLMs to directly generate control commands from
sensor inputs, simplifying intermediate steps and enhancing
adaptability.

A. LLM Applications in Modular autonomous driving
Pipelines

In modular AD pipelines, various independent functional
modules make up the entire AD system. LLMs have been
innovatively applied in these modules. Sha et al. developed a
modular autonomous driving pipeline using LLMs for high-
level decision-making in complex driving scenarios, convert-
ing these decisions into mathematical instructions for Model
Predictive Control (MPC) [14]. Their chain-of-thought frame-
work enables precise vehicle control based on textual input,
significantly improving performance in both single-vehicle
tasks and complex multi-vehicle coordination, with quanti-
tative experiments showing a reduction in overall cost com-
pared to existing methods. Azarafza et al. developed a hybrid
reasoning framework for AD, integrating LLMs into modular
pipelines for decision-making within the CARLA simulator
[15]. By combining object detection data with arithmetic and
commonsense reasoning, the system calculates precise control

1This paper is an extended version of a conference paper submitted
to MobiArch 2024 [13], with more than 50% additional research content.
The expanded sections include in-depth evaluations of LLMs in driving
theory tests, extended discussions on model performance and cost consid-
erations, and new insights into the application of LLMs for connected and
CAV systems. The data and code of this study are publicly available at
https://github.com/PeiDashuai/DVSA-test-for-LLMs
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signals for vehicle actions under varying meteorological con-
ditions, demonstrating effective decision-making in complex
scenarios. Liu et al. proposed a multi-task decision-making
GPT model for AD, addressing multi-task decision-making
at unsignalized intersections as a sequence modeling problem
using GPT-2 [16]. They designed a training pipeline where ex-
pert models trained via reinforcement learning guide the MTD-
GPT model, which shows superior or comparable performance
to state-of-the-art single-task reinforcement learning models
across various decision-making tasks. Wang et al. developed
an LLM-based ”Co-Pilot” system for human-machine co-
driving, where the Co-Pilot adjusts vehicle operations based
on human intentions conveyed through prompts [17]. They
proposed a universal framework with a memory module for
organizing task-relevant information and demonstrated the
system’s effectiveness in path tracking and trajectory planning
tasks, showing that the Co-Pilot can align vehicle control with
driver intentions without extensive numeric calculations.

B. LLM Applications in End-to-End AD Systems

End-to-end AD systems directly generated control com-
mands from sensor inputs, simplifying the intermediate steps
of traditional AD systems. Shao et al. proposed LMDrive,
an end-to-end, instruction-following MLLM model for AD,
which processed camera-LiDAR sensor data and natural lan-
guage instructions to generate vehicle control signals [18].
They introduced a novel dataset and evaluation benchmark to
train and test the model in realistic driving scenarios, incor-
porating complex and diverse language instructions, including
misleading or safety-violating commands. Xu et al. presented
DriveGPT4, an interpretable end-to-end AD system that used
MLLMs to predict vehicle control signals from video input and
generate natural language explanations of its decisions [19].
The system was fine-tuned on a new visual instruction dataset
created with ChatGPT, outperforming baselines on the BDD-
X dataset for various driving tasks. Sreeram et al. examined
MLLMs for AD, revealing their limitations in reasoning across
dynamic driving scenarios despite success with individual im-
ages [20]. They introduced DriveSim, a specialized simulator,
and the Eval-LLM-Drive dataset to rigorously test MLLMs’
capabilities in vehicle control, scene reasoning, and interac-
tions with other road actors, highlighting the need for im-
proved models in real-world driving environments. Wang et al.
developed an end-to-end AD system by leveraging multimodal
foundation models to improve generalization and reliability,
focusing on latent feature extraction rather than explicit scene
representations [21]. Their method enhanced decision-making
by extracting per-patch features from transformer architectures
and integrating language-based simulation, allowing dynamic
feature manipulation and common-sense reasoning to augment
training and debugging processes. You et al. proposed an
end-to-end vehicle-infrastructure cooperative AD framework,
V2X-VLM, which leveraged large vision-language models to
enhance situational awareness and decision-making by fusing
multi-source visual and textual data from vehicles and infras-
tructure [22]. Using contrastive learning for robust represen-
tation, their method improved trajectory planning in complex
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Fig. 1: Remote or Local Deployment of LLMs for V2X-
Assisted Decision-Making in Autonomous Driving. LLMs
must pass driving theory tests before being utilized for
real-time decision support. In the depicted scenario, an au-
tonomous vehicle encounters an out-of-operational-design-
domain (OOD) situation due to a fire hazard and comes
to a stop. Nearby CAV1 request driving assistance from an
LLM deployed either at a RSU or in the cloud via V2X
communication. The LLM provides an immediate response
instructing CAV1 to turn and leave quickly, ensuring safe and
efficient navigation while mitigating further risks.

traffic scenarios, demonstrating superior performance on the
DAIR-V2X dataset compared to state-of-the-art approaches.

C. Evaluating LLMs with Multiple-Choice Question

The rapid advancement of LLMs has necessitated robust
evaluation methodologies to assess their capabilities and lim-
itations. MCQs have become a popular and effective method
for evaluating LLMs across various domains and tasks. Several
researchers have developed comprehensive MCQ datasets for
this purpose. Hendrycks et al. introduced the ”Measuring
Massive Multitask Language Understanding” (MMLU) bench-
mark, comprising 57 tasks across diverse subjects [23]. This
benchmark has been widely adopted to assess the general
knowledge and reasoning capabilities of LLMs. Similarly,
Srivastava et al. proposed the BIG-bench benchmark, con-
sisting of 204 tasks across diverse topics, to evaluate the
capabilities of LLMs [24]. They found that while model
performance improves with scale, it remains poor on complex
tasks, and social bias tends to increase with larger models.
Beyond general-purpose benchmarks, researchers have devel-
oped domain-specific MCQ evaluations to assess LLM perfor-
mance in specialized areas. Cobbe et al. proposed GSM8K, a
dataset of 8.5K grade school math word problems to evaluate
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language models’ ability to perform multi-step mathematical
reasoning [25]. They introduced training verifiers to select cor-
rect solutions, showing significant performance improvements
compared to traditional fine-tuning approaches. In the medical
domain, Pal et al. proposed MedMCQA, a large-scale dataset
containing over 194k MCQs from medical entrance exams,
covering 21 medical subjects and 2.4k healthcare topics [26].
The dataset is designed to test models’ reasoning abilities
and language understanding across diverse medical subjects
and topics. Hendrycks et al. proposed the ETHICS dataset,
a benchmark designed to assess LLMs’ understanding of
moral concepts such as justice, well-being, and commonsense
morality [27]. Their findings indicate that while current models
show promising abilities in predicting ethical judgments, they
still fall short, providing a foundation for further aligning AI
with shared human values.

Researchers have also used MCQs to probe specific cog-
nitive capabilities of LLMs. Wei et al. proposed Chain-of-
Thought prompting, a method that enhances reasoning in
LLMs by generating intermediate reasoning steps [28]. Their
experiments show significant performance improvements on
arithmetic, commonsense, and symbolic reasoning tasks, with
particularly strong results on the GSM8K math word problem
benchmark.

III. RESEARCH METHODOLOGY

A. UK Driving Theory Test

In the UK driving theory test, candidates must complete two
parts: a multiple-choice test and a hazard perception test. The
multiple-choice section consists of 50 questions, each with
4 choices and one or more correct answers. These questions
cover a wide range of topics, including road safety, traffic
signs, vehicle handling, and environmental factors. Candidates
are given 57 minutes to finish the test, and to pass, learner
drivers must answer at least 43 out of 50 questions correctly,
achieving an accuracy of 86%. This passing criterion is also
applied to LLMs used for driving assistance evaluations.

In the hazard perception test, candidates watch 14 one-
minute clips (19 clips for lorry and bus candidates) filmed
from the perspective of a driver or motorcyclist. The task is
to identify developing hazards, which are potential dangers
that require the driver to take action, such as changing speed
or direction. Candidates indicate when they see a developing
hazard by clicking a mouse or touching the screen. The sooner
they respond after the hazard starts to develop, the higher their
score. Each hazard is scored on a 5-point scale, with points
decreasing the longer it takes to react. There is a maximum
score of 75 for car drivers and motorcyclists and 100 for lorry
and bus candidates, with a pass mark of 44 and 67 points,
respectively.

B. Test Datasets

DVSA published many mock questions for MCQ test and
sets of mock tests each including 50 questions [29]. These
questions are close to the ones for or may appear in the of-
ficial tests. Additionally, we utilized alternative test questions
publicly available on the DriverInstructor website [30], which

closely resemble the official DVSA theory questions. After
removing duplicates, the DriverInstructor website contained
726 unique questions, of which about 109 included images
of traffic scenarios and signs. For the hazard perception test,
we used test materials from DVSA-published driving exam
resources. We collected 54 video clips containing hazards, with
official answers providing the exact start and end frames of
each hazard. To optimize the clips for testing, we edited them
for length while preserving the sections containing the hazards.

Given that some LLMs cannot process image input, we
divided the multiple-choice questions into two datasets: one
without images and one with images. The dataset without
images (DS-Text) contains 617 test questions, while the dataset
with images (DS-Image) includes 109 questions. Fig. 2 shows
examples of two multiple-choice questions representing the
DS-Text and DS-Image categories, respectively. For the haz-
ard perception test, we converted all video clips into image
sequences, segmented at 0.2-second intervals. As shown in
Fig. 3, we present key frames from two hazard perception test
video clips.

The ground truth data for the hazard perception test datasets
are presented in two distinct formats to facilitate comprehen-
sive evaluation: Hazard Classification Table: This binary
classification schema assigns each frame a label of either
”hazard” (denoted as 1) or ”no hazard” (denoted as 0).
This dichotomous approach allows for a clear delineation of
hazardous and non-hazardous situations within the temporal
sequence of frames. Scoring Table: A more nuanced eval-
uation mechanism is implemented through a scoring system
that quantifies the timing of hazard detection. This method
employs a descending numerical scale, where higher values
correspond to earlier detection of hazards. For instance, a
typical scoring sequence might appear as ”0 0 5 5 4 4 3
3 3 2 2 1 1 0 0”. This scoring paradigm serves a dual
purpose: a) It provides a metric for assessing the model’s
efficacy in early hazard detection, which is crucial in real-
world applications where prompt identification of dangers is
paramount. b) It incorporates a penalty system for both missed
detections (false negatives) and false alarms (false positives),
thereby encouraging the development of models with high
sensitivity and specificity.

This dual-format approach to ground truth data allows for a
more comprehensive and rigorous evaluation of hazard detec-
tion models, encompassing both binary classification accuracy
and the temporal precision of hazard identification.

C. LLMs Used in Theory Test

There are several powerful LLMs from leading companies
such as Anthropic, OpenAI, Ali, ZhiPu, and Baidu. For the
driving theory test in this paper, we selected proprietary
LLMs from OpenAI, Ali, and Baidu due to their superior
performance.

1) OpenAI and Anthropic LLM Models: The four selected
OpenAI models—GPT-3.5-turbo, GPT-4, GPT-4o and GPT-
4o-mini have different capabilities and price points. GPT-3.5-
turbo is a fast and inexpensive model suitable for simpler
tasks. It supports a 16K context window and is optimized
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2. You are approaching this roundabout and see the cyclist signal right. Why is the
cyclist keeping to the left?

A. It is quicker route for cyclist.
B. The cyclist is going to turn left instead.
C. The cyclist is slower and more vulnerable.
D. The cyclist thinks the highway Code does not apply to bicycles.

1. You're waiting to turn right at the end of a road. What should you do if your view is obstructed by parked vehicles?
A. Stop and then move forward slowly and carefully for a clear view.
B. Move quickly to where you can see so you only block traffic from one direction.
C. Wait for a pedestrian to let you know when it's safe for you to emerge.
D. Turn your vehicle around immediately and find another junction to use.

Fig. 2: Example of two multiple-choice questions from the driving theory test. The first question is from the DS-Text dataset,
while the second is from the DS-Image dataset. Correct answers are highlighted in green, while incorrect choices are marked
in red.

Fig. 3: Key frames from two hazard perception test video clips. (Top row) The first set of frames shows the vehicle approaching
a junction from a side road, preparing to merge into a main road. The vehicle halts to allow a white van traveling on the
main road to pass before merging. (Bottom row) The second set of frames depicts the vehicle stopped in front of a pedestrian
crossing, waiting for pedestrians to safely cross the road on the zebra crossing.

for dialogue. GPT-4 was built with broad general knowledge
and domain expertise, showing much stronger performance in
the driving theory test. However, the GPT-4 model is much
more expensive, with an input cost 60 times that of GPT-3.5-
turbo. GPT-4o is OpenAI’s most advanced multimodal model,
which is faster and cheaper than GPT-4 and has stronger vision
capabilities, supporting a 128K context window. GPT-4o mini
outperforms GPT-3.5-turbo on academic benchmarks in both
textual intelligence and multimodal reasoning. The model
features a context window of 128,000 tokens and supports up
to 16,000 output tokens per request. Thanks to the improved
tokenizer shared with GPT-4o, processing non-English text is
now more cost-effective.

The OpenAI API was used to call the LLMs with input test
questions and to obtain the model prediction outputs. GPT-3.5
is the most cost-effective, priced at $0.50 per 1M input tokens
and $1.50 per 1M output tokens, with no image support. GPT-4
has significantly higher costs at $30.00 for input and $120.00
for output, also lacking image processing capabilities. GPT-
4o offers a more balanced pricing model, with $5.00 per 1M
input tokens, $15.00 per 1M output tokens, and a per-image
processing cost of $0.001275.

2) Alibaba, Baidu, and ZhiPu AI LLM Models: The Tongyi
Qianwen (Qwen) LLM model is provided by Alibaba to
the open-source community. Qwen-turbo is developed for
multilingual support, including both Chinese and English.
It accommodates a context length of up to 8,000 tokens,
facilitating the efficient handling of long input sequences. To
ensure optimal performance, the input tokens are capped at a
maximum of 6,000, which guarantees smooth operation and
accurate outputs.

The Ernie-4.0-turbo-8k model, developed by Baidu, is en-
hanced with diverse training data, particularly in the areas of
the Chinese language, service applications, and knowledge.
This paper utilizes Ernie-4.0-turbo-8k for inference, which
supports a context length of 128,000 tokens.

GLM-4-Plus is the latest flagship pre-trained language
model developed by Zhizhi AI. In the September 2024 edi-
tion of the ”SuperBench Comprehensive Model Capability
Evaluation Report,” 24 representative large models from both
domestic and international sources were evaluated. The results
indicate significant progress by domestic models in areas
such as alignment, agent performance, and mathematical logic.
GLM-4-Plus ranks third, surpassing the Claude series models.
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In terms of Chinese language proficiency, GLM-4-Plus leads
with a score of 8.58, surpassing o1-preview. Additionally, in
the semantic understanding capability evaluation, GLM-4-Plus
exceeds o1-mini by 1 point.

3) MiniCPM LLM Model: MiniCPM3-4B is an edge-side
LLM developed by ModelBest Inc. and TsinghuaNLP, con-
sisting of 4 billion parameters excluding embeddings. Its
performance surpasses and GPT-3.5-Turbo-0125, and it is
comparable to several models with 7B-9B parameters, such
as Llama3.1-8B-Instruct, Qwen2-7B-Instruct, and GLM-4-9B-
Chat. The model natively supports a 32k context length and
achieves superior average scores compared to benchmark
models such as GPT-4 and KimiChat on the comprehensive
long-text evaluation benchmark InfiniteBench.

MiniCPMLlama3-V2.5, developed based on Meta’s open-
source LLM Llama3 with vision capabilities, achieves state-
of-the-art performance on multiple benchmarks among models
with fewer than 7 billion parameters. The MiniCPM-V-2.6 is
constructed using SigLip-400M and Qwen2-7B, comprising
a total of 8 billion parameters. It demonstrates a significant
performance improvement over MiniCPM-Llama3-V2.5 and
introduces new capabilities for multi-image and video under-
standing.

4) DeepSeek LLM Models: DeepSeek-V3 and DeepSeek-
R1 are cutting-edge models from the DeepSeek series, de-
signed to advance general artificial intelligence capabilities.
DeepSeek-V3 is a Mixture-of-Experts language model with
671B total parameters, activating 37B per token. Trained on
14.8 trillion tokens, it incorporates Multi-head Latent Atten-
tion and an auxiliary-loss-free load balancing strategy, achiev-
ing performance comparable to the top closed-source mod-
els. DeepSeek-R1 is a reasoning-optimized model built upon
DeepSeek-V3’s architecture [31]. It employs a multi-stage
training process, including supervised fine-tuning on ”cold-
start” data and reinforcement learning with rule-based rewards,
to enhance reasoning capabilities. DeepSeek-R1 matches or
surpasses OpenAI’s o1 model in tasks involving mathematics,
coding, and logical reasoning.

D. Prompts Engineering

1) Multiple-choice tests: In this part, we adopt a two-tiered
prompt design strategy to guide the LLMs in efficiently solving
UK driving theory multiple-choice test questions. The system
prompt serves as the foundational role-setting instruction,
framing the LLM as an ”experienced driver” to align its
behavior and knowledge with that of a human expert familiar
with driving scenarios and theory. By specifying the task as
answering UK driving theory multiple-choice test questions
with multiple choices and a single correct answer, the system
prompt establishes clear expectations about the nature of
the task, ensuring the model’s focus on accuracy and task
relevance.

The user prompt is more specific, providing clear output
formatting requirements. It instructs the LLMs to return only
the first letter (e.g., ”A” or ”B”) of the correct answer without
additional explanation. This directive minimizes extraneous
output, reducing cognitive load and optimizing the response

for quick, direct evaluation. The combination of both prompts
ensures that the LLMs operates with role-appropriate knowl-
edge while delivering concise and actionable responses in line
with the expectations of a multiple-choice test environment.

2) Hazard perception tests: We detail the design of both the
system prompt and the user prompt used to guide the LLM
in the hazard perception test. The system prompt is crafted
to define the AI’s role and key capabilities, emphasizing its
specialization in real-time visual data analysis, dynamic object
detection, and hazard assessment. It introduces the concept of a
”developing hazard” and lists specific examples, such as vehi-
cles merging or pedestrians crossing, to contextualize the AI’s
decision-making process. By outlining these competencies, the
system prompt ensures that the model is primed to interpret
time-stamped image sequences from a vehicle’s perspective
and provide actionable risk evaluations.

The user prompt complements the system prompt by speci-
fying the tasks the AI must execute in response to input data.
The prompt is structured to require binary hazard detection
(”1” for hazard detected, ”0” for no hazard), followed by
a detailed report when a hazard is identified. This report is
segmented into four components: hazard type, visual char-
acteristics, threat assessment, and recommended action. The
clear formatting and concise instructions promote rapid and
accurate responses, enabling immediate decision-making in
driving scenarios. Together, the system and user prompts create
a well-defined framework that guides the LLM in performing
hazard perception efficiently and reliably, balancing clarity,
speed, and accuracy.

IV. EXPERIMENT RESULTS AND DISCUSSIONS

A. Experiment Settings

All experiments in this study were conducted using Python
3.11. The open-source LLM from the MiniCPM series was
deployed on a GPU server with an RTX 4090 24GB graphics
card. The server environment was configured following the
deployment requirements of the MiniCPM-3-4B model. Ad-
ditional LLMs were accessed via APIs provided by their re-
spective service vendors. These API calls were performed on a
laptop with an i9-13900H CPU, RTX 4060 8GB graphics card,
and 32 GB of RAM. Due to the use of a personal computer
and network for these experiments, the response times of API-
accessed LLMs were affected by random network latency. In
the initial experimental setup, we set the large language model
parameters to Temperature = 0 and Top p = 1. Temperature
controls output randomness. A lower value makes responses
more deterministic, while a higher value increases diversity.
Top p (nucleus sampling) limits token selection to the most
probable subset, ensuring a balance between diversity and
coherence.

In the multiple-choice test, we sequentially input all 617
DS-Text and 109 DS-Image items into the LLM for testing,
evaluating one item at a time. Finally, the test results were
obtained through the average accuracy of the two datasets.
To obtain sufficient historical information, we implemented a
buffer that can hold up to 30 frames. Additionally, considering
that the test videos provided by the officials were too long,
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we appropriately edited the videos without affecting the test
results.

B. Evaluation Method

The evaluation of LLM-based hazard perception test results
was conducted using a multi-faceted approach, encompassing
three distinct perspectives to ensure a comprehensive assess-
ment of model performance:

1) Frame-level Evaluation: This granular analysis focuses
on the binary classification accuracy of individual frames,
assessing the model’s capability to correctly identify the
presence or absence of hazards at each time point. Performance
metrics employed in this evaluation include accuracy, preci-
sion, recall, confusion matrix, and F1-score. These metrics
provide a detailed quantitative assessment of the model’s
frame-by-frame hazard detection capabilities.

2) Event-level Evaluation: In contrast to the frame-level
approach, this method adopts a more holistic perspective,
concentrating on the detection of continuous hazard events.
This evaluation is particularly pertinent for higher-level hazard
event detection scenarios, where the accurate identification of
an entire hazardous episode is of greater importance than the
precise classification of individual frames.

In the event-level evaluation, we define an event as a
continuous time period during which a hazard is present. A
detected event must overlap with the ground truth event in time
to be considered a match. Intersection over Union (IoU): IoU
is a metric that calculates the ratio of the overlapping duration
of the detected event and the ground truth event to the duration
of their union.

IoU =
Overlap

Detected Event + Ground Truth Event − Overlap
(1)

Matching Criterion: An event is considered correctly de-
tected if the IoU between the detected event and the ground
truth event exceeds a specified threshold, commonly set at 0.5
or 0.7.

3) Scoring Mechanism: This approach mimics the UK
official hazard perception test, emphasizing the principle that
earlier detection of a hazard yields higher scores, while
also incorporating mechanisms to penalize false positives and
misses. This design provides a comprehensive evaluation of
the model’s performance in hazard recognition tasks, par-
ticularly in early detection and in scenarios involving false
alarms and misses. Each hazard event is scored based on its
actual starting time. The scoring rules are as follows: if the
hazard level (1-5) at the start of the event is correctly detected,
the corresponding hazard level is added to the score. The
maximum score for each sample is 5, and the maximum score
for the entire dataset is the number of samples multiplied by 5.

This tripartite evaluation framework provides a compre-
hensive and multidimensional assessment of LLM-based haz-
ard perception test performance. By integrating frame-level
precision, event-based detection, and a time-sensitive scoring
mechanism, this approach offers a holistic view of model
efficacy, encompassing both micro-level accuracy and macro-
level hazard recognition capabilities. Such a diverse evaluation

strategy is crucial for developing robust and reliable hazard
perception systems applicable to real-world safety-critical sce-
narios.

C. Evaluation Metrics

In this study, several evaluation metrics are employed to
assess the performance of LLMs in answering driving theory
test questions. These metrics include Accuracy, Precision,
Recall, and the F1-Score. Each metric is defined below:

1) Accuracy: Accuracy measures the proportion of correct
answers (both correct hazard detections and correct non-hazard
identifications) out of the total number of test questions. It is
defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Where TP (True Positives) represents correct hazard de-
tections, TN (True Negatives) represents correct non-hazard
identifications, FP (False Positives) represents incorrect hazard
detections, and FN (False Negatives) represents missed hazard
detections.

2) Precision: Precision quantifies the accuracy of the model
in identifying hazards by measuring the proportion of correctly
identified hazards out of all hazard identifications. The formula
is:

Precision =
TP

TP + FP
(3)

High precision indicates that the model has a low false-
positive rate, meaning it rarely identifies non-hazard situations
as hazards.

3) Recall: Recall measures the model’s ability to correctly
identify all actual hazards. It is defined as:

Recall =
TP

TP + FN
(4)

High recall indicates that the model is good at identifying most
hazards, minimizing missed detections.

4) F1-Score: The F1-Score is the harmonic mean of Pre-
cision and Recall. It provides a balanced metric to evaluate
the model’s performance by taking into account both false
positives and false negatives. The F1-Score is calculated as:

F1-Score = 2× Precision × Recall
Precision + Recall

(5)

These metrics allow for a comprehensive evaluation of how
well the LLMs perform in the driving theory test, balancing the
trade-offs between making too many false-positive detections
(low precision) and missing actual hazards (low recall). By
focusing on these metrics, we aim to measure the LLMs’ effec-
tiveness in simulating human-level driving theory knowledge.

5) Real-time performance metrics: To evaluate the real-
time efficiency of API-based LLMs in driving theory tests,
we adopt Throughput as the primary metric. Throughput
represents the number of MCQs processed by the LLM per
second, defined as:

Throughput =
N

Ttotal
(6)

Where N denotes the total number of MCQs in the test, and
Ttotal is the total time taken to process all questions. This
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metric reflects the model’s overall inference speed, taking into
account potential network and system delays.

6) Computational Efficiency metrics: To evaluate the com-
putational efficiency of LLMs in driving theory test, we
designed two key metrics: Time per Token (TPT) and Cost
per Token (CPT). TPT measures the average computational
time required to process each token, calculated as the response
time divided by the total number of tokens (input + out-
put), reflecting the inference speed and responsiveness of the
model in real-time applications. CPT quantifies the financial
cost associated with processing each token, computed as the
total API cost divided by the number of tokens processed,
enabling a comparative analysis of different models in terms
of cost-efficiency. By analyzing these metrics across various
LLMs, we aim to assess trade-offs between processing speed,
computational expense, and overall feasibility for real-world
autonomous driving applications.

It is noted that since we evaluate LLMs via API calls,
both real-time performance and computational efficiency are
significantly influenced by network conditions. To ensure
consistency, we conduct all evaluations in the same network
environment as much as possible. In addition, we mitigated
the impact of short-term network fluctuations by performing
multiple measurements and averaging the results.

D. Multiple-choice Test Results

The evaluation of various LLMs on the DS-Text dataset
highlights their distinct capabilities in handling textual infor-
mation. As shown in Tabel I, the GPT-4o model excels with a
high accuracy of 96.60%, efficiently processing 617 questions
in 279.65 seconds, demonstrating a strong balance between
accuracy and speed. Conversely, Claude-3.5-sonnet achieves a
similar accuracy of 93.35% but requires a substantially longer
processing time of 689.68 seconds, suggesting a trade-off
between computational demands and precision. The glm-4-
plus model performs adequately with an accuracy of 89.47%.
However, it has an extended processing duration of 897.87
seconds, which may be due to the complexity of generating
or handling comprehensive outputs. At the lower end of the
performance spectrum, MiniCPM-3-4B has the lowest accu-
racy of 70.83% and moderate processing time, highlighting
a need for architectural enhancements in purely textual sce-
narios. The DeepSeek series models also demonstrated strong
performance, with DeepSeek-V3 and DeepSeek-R1 achieving
accuracies of 93.68% and 95.69%, respectively, on the DS-
Text dataset. However, as the DeepSeek series models have
not yet made image processing capabilities available to users,
they could not be evaluated on the DS-Image dataset.

In the DS-Image dataset, all models exhibit decreased ac-
curacy, reflecting the increased complexity of integrating text
and image data. As shown in Table II, GPT-4o maintains the
lead with an accuracy of 79.82% and a swift processing time
of 50.51 seconds, demonstrating robustness in multimodal
contexts. Although Claude-3.5-sonnet performs similarly with
77.06% accuracy, its processing time extends to 78.5 seconds,
indicating challenges in handling image data. The glm-4v-
plus model’s accuracy further drops to 69.72%, requiring
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Fig. 4: Comparison of openai model accuracy across different
parameter settings on the DS-Text. (a) Accuracy as a function
of the temperature parameter with Top-p set to 1.0. (b) Ac-
curacy as a function of the Top-p parameter with temperature
set to 0.0. Models compared include GPT-4, GPT-4o, GPT-
4o-mini, and GPT-3.5-turbo.

199.7 seconds, indicative of inefficiencies with multimodal
input. Notably, the MiniCPM variants, V-2.6 and Llama3-V-
2.5, achieve the lowest accuracies at 57.80% and 55.96%,
respectively, with significantly increased processing times,
highlighting substantial gaps in effectively managing complex
data types.

Overall, GPT-4o consistently demonstrates high perfor-
mance across both datasets, effectively balancing accuracy
and efficiency in text and image-inclusive tasks. This anal-
ysis highlights the need for ongoing optimization in model
architecture, particularly for handling multimodal data where
current models experience performance degradation. Trade-
offs among speed, accuracy, and computational cost are
evident, indicating that future work should enhance model
efficiency and precision, especially in complex and diverse
data environments.

Furthermore, we examined model performance across the
DS-Text and DS-Image datasets, highlighting the impact of
the parameters temperature and top-p on accuracy. In the
DS-Text dataset, models generally exhibit minimal accuracy
variations with changes in the temperature parameter when
top-p is set to 1. As shown in Fig. 4, GPT-4 and GPT-
4o consistently maintain high accuracy, indicating robustness
to temperature adjustments. Their performance remains near
95%, illustrating reliability in text-based tasks under stable
conditions. Similarly, when examining the top-p parameter
with the temperature set to 0, models display stable accuracy
levels. Both GPT-4o-mini and GPT-3.5-turbo show negligible
fluctuations, suggesting that top-p variations do not signifi-
cantly impact their performance in these scenarios.

In contrast, the DS-Image dataset shows a more pronounced
impact of the temperature parameter on accuracy. As shown in
Fig. 5, models like Claude and glm-4v-plus exhibit declines in
performance as temperature increases, reflecting vulnerability
to sampling randomness in image-inclusive tasks. However,
GPT-4o-mini maintains relatively consistent accuracy, under-
scoring its robustness across different sampling temperatures.
When examining the top-p parameter with temperature set to
0, model responses vary. Across both datasets, model perfor-
mance generally remains stable with varying top-p values, as
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TABLE I: Performance comparison of different LLMs on the DS-Text.

Model Temperature Top p Output tokens Input tokens Num questions Num correct Time Accuracy
GPT-4 0 1 654 69911 617 575 375.57 93.19%

GPT-4o 0 1 618 69707 617 596 279.65 96.60%
Claude-3-5-sonnet 0 1 2468 72803 617 576 689.68 93.35%

glm-4-plus 0 1 1851 66601 617 552 897.87 89.47%
GPT-4o-mini 0 1 617 69707 617 543 278.14 88.01%

Ernie-4.0-turbo-8k 0.1 1 617 66261 617 533 2063.78 86.39%
GPT-3.5-turbo 0 1 629 69911 617 480 260.48 77.80%

Qwen-turbo 0 1 617 71404 617 459 604.69 74.39%
DeepSeek-V3 0 1 / / 617 578 / 93.68%
DeepSeek-R1 0 1 / / 441 422 / 95.69%

Meta-Llama-3-70B 0 1 / / 617 544 / 88.17%
MiniCPM-3-4B 0.1 1 / / 617 437 407.82 70.83%

TABLE II: Performance comparison of different LLMs on the DS-Image.

Model Temperature Top p Output tokens Input tokens Num questions Num correct Time Accuracy
GPT-4o 0 1 109 19357 109 87 50.51 79.82%

Claude-3-5-sonnet 0 1 436 21316 109 84 78.5 77.06%
glm-4v-plus 0 1 218 19200 109 76 199.7 69.72%

GPT-4o-mini 0 1 161 19357 109 73 62.57 66.97%
MiniCPM-V-2.6 0.1 1 / / 109 63 23.05 57.80%

MiniCPM-Llama3-V-2.5 0.1 1 / / 109 61 142.11 55.96%

0 0.2 0.4 0.6 0.8 1
50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

(a) Model Accuracy vs. Tempera-
ture (Top p=1.0)

0 0.2 0.4 0.6 0.8 1
Top_p

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

(b) Model Accuracy vs. Top p
(Temperature=0.0)

Fig. 5: Comparison of openai model accuracy across dif-
ferent parameter settings on the DS-Image. (a) Accuracy as
a function of the temperature parameter with Top-p set to
1.0. (b) Accuracy as a function of the Top-p parameter with
temperature set to 0.

shown in Fig. 4b and Fig. 5b. However, temperature variations
induce more noticeable fluctuations in accuracy, particularly
for lower-performing models, as shown in Fig 4a and Fig 5a.
This suggests that temperature may be a more critical param-
eter for optimizing model performance, especially for tasks
involving multimodal inputs. The observed performance dis-
crepancies between DS-Text and DS-Image tasks underscore
the challenges associated with multimodal reasoning. The
consistent superiority of GPT-4o across both tasks indicates its
robust generalization capabilities. Conversely, the performance
gap between GPT-4o and other models widens in the DS-
Image task, highlighting the varying degrees of multimodal
integration among different LLMs. Since only some models
were tested on both the DS-Text and DS-Image datasets, we
used the average accuracy of the two datasets as the final
score for the models in the multiple-choice test. Therefore, the
final test accuracy for GPT-4o is 88.21%, for GPT-4o-mini is
77.49%, and for Claude-3.5-sonnet is 85.21%.

To evaluate the combined impact of Temperature and Top p
on model performance, we conducted experiments on the
standardized MCQ dataset across 4 large-language models:
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Fig. 6: The effect of Temperature and Top p on model
accuracy in MCQ tasks.

GPT-4o, GPT-4o-mini, Gemini-1.5-pro, and Gemini-2.0-flash.
Our results indicate that within the limited test dataset, vari-
ations in Temperature and Top p did not lead to significant
differences in accuracy between models when answering the
MCQs. The experimental results are shown in Fig 6. We
hypothesize that this is primarily due to the structured nature
of our output constraints: models were required to generate
only the final answer in a structured format. This strict output
requirement significantly limited the diversity of possible
responses, thereby reducing the potential influence of sampling
parameters such as Temperature and Top p.

Additionally, MCQs are inherently deterministic tasks, as
they typically have a single correct answer and do not require
the model to generate complex, long-form reasoning. This
contrasts with open-ended generation tasks (e.g., open-domain
question answering or writing), which rely more heavily on
Temperature and Top p to regulate output diversity. In MCQ
tasks, the model primarily selects from a limited set of
predefined options, which inherently constrains the impact of
sampling strategies. These findings suggest that while Tem-
perature and Top p are crucial for open-ended text generation,
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Fig. 7: Evaluation of real-time performance and computational
efficiency of LLMs in the driving theory test. (a) Throughput
comparison of different LLMs on the driving theory test task
(higher is better). (b) Trade-off between inference cost and
computational speed. Models evaluated include GPT-4, GPT-
4o, GPT-4o-mini, and Claude-3.5-Sonnet.

their impact may be diminished in structured response settings,
where the output space is inherently restricted. Furthermore,
the deterministic nature of MCQs further limits the extent to
which these parameters can influence model performance.

Next, we evaluate the real-time efficiency of mainstream
LLMs on the driving theory test task, as shown in Fig. 7a.
The results show that GPT-4o and GPT-4o-mini achieve the
highest throughput (2.21 and 2.22 questions/sec, respectively),
indicating superior inference speed. In contrast, Claude-3.5-
Sonnet records the lowest throughput (0.89 questions/sec),
suggesting a slower response possibly due to resource limi-
tations or API access mechanisms. Overall, GPT-4o and GPT-
4o-mini demonstrate significantly better real-time performance
compared to other models.

In terms of computational efficiency, the scatter plot analysis
reveals notable differences among the models. GPT-4 exhibits
the highest TPT at 0.00537s and the highest CPT at $2.18,
indicating substantial computational resource consumption,
making it less suitable for high-efficiency inference tasks. In
contrast, GPT-4o and GPT-4o-mini achieve the lowest TPT
(0.00401s and 0.00399s, respectively) and the lowest CPT
($0.36 and $0.043, respectively), demonstrating superior cost-
effectiveness. Claude-3.5-Sonnet falls within an intermediate
range in terms of TPT (0.00947s) and CPT ($0.25), yet its
lower throughput suggests a slower inference process despite
its relatively moderate cost. Overall, GPT-4o-mini emerges as
the most computationally efficient model, offering the fastest
inference speed at the lowest cost, whereas GPT-4 incurs the
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Fig. 8: Accuracy of different LLMs on two sets of UK
standardized driving theory MCQs.
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Fig. 9: Frame-level confusion matrix for GPT-4o and GPT-
4o-mini models. Subfigure (a) presents the confusion matrix
for GPT-4o, while subfigure (b) shows the matrix for GPT-
4o-mini. These matrices illustrate the models’ performance in
classifying frames as hazards or non-hazards.

highest computational cost, and Claude-3.5-Sonnet presents a
trade-off between cost and efficiency.

E. UK Standardized Driving Theory Test Performance

The standardized MCQs tests officially provided in the UK
DSVA are generally designed to be more representative, en-
suring a well-balanced distribution of question types, difficulty
levels, and key knowledge points. This structured approach im-
proves the comprehensiveness and fairness of the assessment.
The official UK driving theory test consists of 50 multiple-
choice questions. For our evaluation, we collected two sets
of previousious exam papers. Additionally, we observed that
Google’s Gemini series models have already been utilized
in previous studies to develop large language model-based
autonomous driving systems [32]. Therefore, we included the
latest Gemini models, Gemini-1.5-Pro and Gemini-2.0-Flash,
in our evaluation. The experimental results are presented in
Fig. 8. GPT-4o achieves the highest accuracy on both test sets,
scoring 0.98 and 0.96, respectively. This suggests that GPT-
4o demonstrates the most reliable performance in answering
driving theory questions. In general, GPT-4o shows superior
performance and stability, while Gemini models show greater
variability between different test sets, suggesting potential dif-
ferences in how these models process domain-specific driving
knowledge.

F. Hazard Perception Test Results

1) frame-level evaluation: The frame-level evaluation pro-
vides a detailed examination of each model’s proficiency using
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Fig. 10: Frame-level performance metrics for GPT-4o and
GPT-4o-mini models. The bar graph compares the accuracy,
precision, recall, and F1-score between the two models, high-
lighting their frame-level evaluation results.

several key performance metrics: accuracy, precision, recall,
and F1-score. These metrics offer a quantitative assessment
of the model’s ability to detect hazards frame-by-frame. In
the confusion matrix, GPT-4o achieves 270 true positives and
84 true negatives, with only 2 false negatives and 1139 false
positives. In contrast, GPT-4o-mini records 265 true positives
and 261 true negatives, demonstrating improved specificity
with 7 false negatives and 962 false positives, as shown in
Fig. 9.

In Fig. 10, frame-level performance metrics for the GPT-4o
and GPT-4o-mini models are shown. a)Accuracy: Accuracy
measures the proportion of total frames that were correctly
identified by the model. GPT-4o achieves an accuracy of
0.3518, indicating it correctly classifies approximately 35%
of the frames. GPT-4o-mini has a lower accuracy of 23.68%,
reflecting its relatively reduced capability in overall frame clas-
sification. b)Precision: Precision focuses on the model’s ability
to reduce false positive rates by measuring the proportion of
true positive identifications among all positive identifications.
With a precision of 21.6%, GPT-4o-mini excels over GPT-4o,
which has a precision of 19.16%. This suggests that GPT-
4o-mini is slightly better at minimizing false alarms. c)Recall:
Also known as sensitivity, recall assesses the model’s ability to
capture actual positive instances. GPT-4o boasts a high recall
rate of 0.9926, surpassing GPT-4o-mini’s recall of 97.43%,
underscoring its superior effectiveness in identifying hazardous
frames. d)F1-Score: The F1-score balances precision and
recall, providing a harmonic mean that encapsulates both
metrics. GPT-4o achieves an F1-score of 32.12%, whereas
GPT-4o-mini reaches 35.36%, indicating that GPT-4o-mini
maintains a slightly better balance between detecting hazards
and minimizing false positives.

The evaluation highlights the strengths and weaknesses
of each model across various performance criteria. GPT-
4o’s remarkable recall demonstrates a strong capacity for
detecting hazards, making it ideal for scenarios requiring high
sensitivity. However, its lower precision indicates a need for
refinement to enhance specificity and reduce false alarms. Con-
versely, GPT-4o-mini exhibits a more balanced performance,
with higher precision suggesting better management of false
positives, although it sacrifices some recall. This trade-off
may make it advantageous in applications where minimizing

false positives and conserving computational resources are
priorities.

In summary, these metrics provide valuable insights into
the operational characteristics of both models, guiding their
application in realistic driving environments. Further optimiza-
tion could enhance their ability to achieve an ideal balance
between sensitivity and specificity, ultimately improving safety
and reliability in hazard perception tasks.

2) Event-level evaluation: In the event-level evaluation, we
focus on identifying continuous hazard events, a crucial aspect
for scenarios where accurately detecting entire hazardous
episodes is more important than classifying individual frames.
This holistic approach provides insights into the models’
capability to recognize ongoing hazards effectively.

Using Intersection over Union (IoU) as a metric, we eval-
uated the models’ performance based on the overlap between
detected events and ground truth events, as shown in Fig. 11.
The confusion matrices provide detailed insights into their
performance: GPT-4o achieves 270 true positives and 84 true
negatives, with only 2 false negatives and 1139 false positives.
This indicates a high sensitivity to hazard detection, reflected
in impressive IoU scores, particularly at thresholds of 0.5 and
0.7. GPT-4o-mini records 265 true positives and 261 true neg-
atives, with 7 false negatives and 962 false positives. Although
slightly less sensitive than GPT-4o, it demonstrates improved
specificity, handling false predictions more effectively.

Fig. 12 illustrates the comparison of metrics between GPT-
4o and GPT-4o-mini across various detection thresholds, fo-
cusing on accuracy, precision, recall, and F1-score. The GPT-
4o model demonstrates impressive performance at a threshold
of 0.2, achieving 52.43% accuracy, 52.43% precision, 100%
recall, and an F1-score of 68.79%, indicating high sensitivity
and balanced precision. However, when the threshold increases
to 0.85, performance declines significantly: accuracy drops to
0.64%, precision to 0.97%, recall to 1.85%, and F1-score to
1.27%, reflecting diminished detection capability under stricter
classification criteria. In comparison, the GPT-4o-mini model
shows lower overall accuracy at the 0.2 threshold, with 38.93%
accuracy, 39.84% precision, 94.44% recall, and an F1-score of
56.04%, yet maintains good sensitivity. At a threshold of 0.85,
its performance also deteriorates substantially, with accuracy
at 1.11%, precision at 1.56%, recall at 3.70%, and an F1-score
of 2.20%, highlighting challenges in event detection under
stringent conditions.

The evaluation reveals that GPT-4o excels in overall event
detection accuracy and recall, making it highly effective in
environments where identifying all potential hazards is critical.
However, its relatively lower precision suggests that there is
room for improvement in minimizing false positives. However,
GPT-4o-mini, while slightly lagging in recall and accuracy,
demonstrates stronger precision at higher thresholds. This
characteristic makes it a viable option in applications where
the reduction of false alarms is prioritized over the capture of
every event.

The experimental results comparing GPT-4o and GPT-4o-
mini models across various event detection thresholds reveal
a clear performance trend, as shown in Fig. 13. At the lowest
threshold of 0.2, GPT-4o achieves near-perfect performance
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Fig. 11: Event-level evaluation results for GPT-4o and GPT-4o-mini models at different thresholds. Subfigure (a) shows the
confusion matrices at a threshold of 0.5, while subfigure (b) presents them at a threshold of 0.7. These matrices illustrate the
models’ performance in classifying actual and predicted values, highlighting the effectiveness in event detection tasks.
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Fig. 12: Comparison of metrics between GPT-4o and GPT-4o-mini models across various event detection thresholds. Subfigures
(a) through (d) display the models’ performance in terms of Accuracy, Precision, Recall, and F1-Score, respectively, highlighting
differences in effectiveness at detecting events as the threshold is varied.
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Fig. 13: Comparison of hazard perception scores and score
percentages between GPT-4o and GPT-4o-mini models across
various event detection thresholds. The bar graph represents
the total scores for each model, while the line graph indicates
the score percentages relative to the maximum possible score,
illustrating model performance variations as the threshold
changes.

with a score of 270 of 270 (100%), while GPT-4o-mini
follows closely at 255 (94.4%). As the threshold increases,
both models show a consistent decline in performance, with
scores converging around 130-135 (48-50%) at a threshold of
0.5. Interestingly, at higher thresholds, the performance gap
narrows, with GPT-4o-mini slightly outperforming GPT-4o at
0.7 (40 vs. 35 points) and 0.85 (10 vs. 5 points). This pattern
suggests that both models excel at early hazard detection,

but struggle under stricter criteria, with GPT-4o-mini showing
slightly better resilience at very high thresholds. The findings
indicate optimal model operation at lower thresholds (0.2 to
0.35) to balance accuracy and early detection, highlighting
the trade-off between sensitivity and specificity in hazard
perception tasks.

3) Results Discussion: The experimental results highlight
a critical issue in the event and frame detection performance
of both LLMs: low precision and high recall across different
thresholds. From the confusion matrices, it is evident that
both models tend to classify many instances as positive (risk
events). While this behavior leads to high recall (i.e., most
actual risk events are correctly identified), it also results in a
significant number of false positives, leading to low precision.
The high recall nature of the models suggests that they are
sensitive to detecting risk events, which is beneficial in safety-
critical applications. However, the low precision implies that
the models produce many false alarms, which could reduce
trust in their predictions and lead to unnecessary interventions.
For example, as shown in the Fig. 14, when a pedestrian is
present in the adjacent non-motorized lane, whether moving
or stationary, the LLM perceives a potential risk of sudden
intrusion into the vehicle’s path. Consequently, it classifies
this scenario as a hazard and responds by adopting a cautious
driving strategy, maintaining vigilance, and reducing speed.
The overly conservative risk assessment by LLMs can be
attributed to three key factors: (1) Lack of driving-specific
training, as the models have not been fine-tuned with expert-
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a) Hazard Type: Pedestrian

b) Visual Characteristics: Group of individuals; one 

wearing a green jacket, on the right side on the 

sidewalk.

c) Threat Assessment: The pedestrian wearing the 

green jacket is potentially about to cross the street, 

posing a possible hazard due to proximity and their 

position near the curb.

d) Recommended Action: Slow down and be 

prepared to stop in case the pedestrian steps onto the 

road. Maintain a safe distance and monitor their 

movements closely.

Fig. 14: Example of LLM-based hazard perception in a driving
scenario. The GPT-4o identifies a pedestrian on the sidewalk
as a potential hazard due to their proximity to the curb and the
possibility of crossing the street. While this cautious approach
enhances safety, it also exemplifies the LLM’s overly con-
servative hazard perception, which may lead to unnecessary
slowdowns and reduced driving efficiency.

labeled traffic datasets; (2) Bias toward safety in RLHF op-
timization, where over-penalization for underestimating risks
leads to excessive risk aversion; and (3) Prompt design and
task framing, where the structure and wording of prompts may
unintentionally encourage excessive caution, highlighting the
need for refinement in hazard perception task formulation.

Furthermore, certain experimental settings may inherently
influence the performance of hazard perception. For example,
in our current setup, the initial and final segments of all
hazard-containing videos are devoid of risk events. This design
choice is consistent with the official UK driving theory test,
as the hazard-containing video data is sourced from officially
released datasets. However, such a configuration can limit the
evaluation of an LLM’s ability to detect and respond quickly
to imminent hazards, particularly in high-risk, time-critical
scenarios. Another key factor affecting performance is the
hazardous length of the window, which is constrained by the
input capacity of the LLM. For example, when accessed via
API, GPT-4o has a maximum input length of 128k tokens,
imposing limitations on the temporal context available for
hazard assessment. Extending the hazardous time window is
expected to enhance the contextual understanding of the LLM,
thus improving its hazard perception capability. Recognizing
these limitations, we have integrated these insights into our
future research agenda, where our aim is to develop strate-
gies to optimize LLM-based hazard perception, ultimately
contributing to safer and more reliable autonomous driving
systems.

V. CONCLUSION AND FUTURE WORK

In conclusion, this paper investigated the applicability of
driving theory tests to LLMs, using a benchmark composed of
both MCQs and hazard perception tasks. A systematic testing
methodology was designed, and various general-purpose open-
and closed-source LLMs were evaluated. The experimental
results revealed both the capabilities and limitations of current
LLMs in the context of structured driving knowledge. While
mainstream LLMs demonstrate promising generalization and
reasoning abilities, they are not yet fully capable of handling
all aspects of autonomous driving assistance. For example,
only GPT-4o achieved a passing score (88.21%) in the full
MCQ test, while other models particularly underperformed
in image-based hazard perception. By contrast, many models
performed well in textual MCQs, exceeding the 86% threshold,
indicating that perception remains a major bottleneck. Even
GPT-4o exhibited low precision and a high false positive rate
in the hazard perception task, reflecting the challenges of scene
understanding and dynamic risk identification.

These findings offer valuable insights for the design, eval-
uation, and deployment of LLMs in autonomous driving
systems, especially in balancing reasoning performance with
computational feasibility. The proposed driving theory test
framework provides a reproducible benchmark for evaluating
LLMs before integrating them into critical real-world systems.
Additionally, this framework can be extended to support on-
device LLM deployment and assist in assessing decision-
making modules in broader autonomous driving pipelines.

As research on driving theory test evaluation for LLMs
is still at an early stage, several directions can be pursued
in future work. First, it is important to note that the current
benchmark is based on the UK driving test, which limits the
global generalizability of the results. One direction forward is
to consider cross-regional adaptation and evaluation, inspired
by recent work [33]. Moreover, although this work focuses on
general-purpose LLMs, several domain-specific open-source
models for driving have emerged, such as GPT-Driver [8],
DriveGPT4 [19], and DriveLM [34]. These models provide
valuable references and will be considered for inclusion in
future evaluations.

Finally, we can explore techniques such as fine-tuning and
retrieval-augmented generation to improve domain understand-
ing. These methods have shown effectiveness in other domain-
specific tasks [35], [36], and may support better performance
on structured, high-stakes assessments. Once LLMs reach
satisfactory performance in theory-based evaluations, it will be
meaningful to extend the benchmark toward real-world driving
decision-making scenarios, including long-tail and dynamic
contexts. A comprehensive evaluation framework combining
knowledge assessment and situational decision-making could
then serve as a foundation for standardized testing of LLM-
powered autonomous driving agents.
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