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On Motion Blur and Deblurring in Visual Place Recognition
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Fig. 1: We introduce a benchmark featuring motion blur and scene variation and evaluate VPR performance under motion blur,
deblurring, and adaptive deblurring. Examples highlight incorrect (red) to correct (green) matches after deblurring.

Abstract—Visual Place Recognition (VPR) in mobile robotics
enables robots to localize themselves by recognizing previously
visited locations using visual data. While the reliability of VPR
methods has been extensively studied under conditions such as
changes in illumination, season, weather and viewpoint, the im-
pact of motion blur is relatively unexplored despite its relevance
not only in rapid motion scenarios but also in low-light conditions
where longer exposure times are necessary. Similarly, the role
of image deblurring in enhancing VPR performance under
motion blur has received limited attention so far. This paper
bridges these gaps by introducing a new benchmark designed to
evaluate VPR performance under the influence of motion blur
and image deblurring. The benchmark includes three datasets
that encompass a wide range of motion blur intensities, providing
a comprehensive platform for analysis. Experimental results with
several well-established VPR and image deblurring methods
provide new insights into the effects of motion blur and the
potential improvements achieved through deblurring. Building on
these findings, the paper proposes adaptive deblurring strategies
for VPR, designed to effectively manage motion blur in dynamic,
real-world scenarios.
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I. INTRODUCTION

IN mobile robotics, Visual Place Recognition (VPR) allows
robots to identify their position by matching visual data to

previously encountered locations. It is a challenging task due
to potential variations in illumination, weather, season, and
viewpoint between the query image and the reference map in
real-world scenarios. The impact of these changes on VPR
performance has been extensively investigated [1], [2], [3],
through numerous datasets available in the literature [4].

Motion blur is one of the major challenges remaining for
VPR methods. It occurs not only in situations where there
is rapid camera motion (such as for fast-flying drones [5])
but also in the case of relatively slow motion under low-
illumination conditions where longer exposure times are nec-
essary, potentially affecting a wide range of VPR applications.
Despite this, the impact of motion blur on VPR methods is rel-
atively unexplored. Although there are some datasets available
[6], [7], [8], they do come with certain shortcomings (such
as limited range of blur intensities, indoor conditions only,
low-light conditions only etc.) which make them unsuitable
for performing an in-depth investigation. Similarly, to our
best knowledge, there has been no work on systematically
analyzing the effects of deblurring when used as a mitigation
strategy for VPR under a wide variety of blur intensities and
in the presence of VPR-specific challenges, such as changes in
illumination, weather, and viewpoint. This paper bridges these
research gaps and makes three main contributions (as shown
in Fig. 1):

• We introduce a motion blur-specific benchmark with
datasets featuring varying blur levels and VPR-specific
appearance changes, enabling comprehensive analysis
without field image acquisition. Unlike existing VPR
datasets that feature only limited intrinsic blur, our bench-
mark offers controllable motion blur intensity in outdoor
scenes. Fig. 2 shows sample images of the same location
in sharp and blurred versions across different traverses.
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• A comprehensive evaluation of motion blur and deblur-
ring in VPR settings is conducted using the methods
depicted in Fig. 1. There has been little study on VPR
under motion blur, therefore, this analysis leverages the
proposed benchmark to empirically examine its impact
on the performance of various state-of-the-art VPR tech-
niques.

• Building on the outcomes of the first two contributions,
various adaptive deblurring scenarios are evaluated, along
with their associated computational costs. These assess-
ments provide valuable insights to guide future exper-
iments involving selective deblurring tailored to VPR-
specific challenges, paving the way for advancements in
blur-aware VPR techniques.

The paper is organized as follows: Section II reviews related
work on VPR under motion blur and deblurring; Section III
introduces the Blurry Places benchmark; Section IV details the
experimental setup; Section V presents the results; and Section
VI draws conclusions.

II. RELATED WORK

This section reviews related work on VPR under motion
blur and image deblurring. The impact of motion blur on
VPR remains underexplored, with limited and often inadequate
datasets available. For example, ETH3D [6] offers only three
sequences of a single scene, while [7] matches blurred and
sharp images for aerial applications with restricted blur inten-
sity. Similarly, [8] provides a motion blur-specific dataset but
is confined to low-light, indoor, and meter-scale trajectories,
making it unsuitable for broader VPR applications like self-
driving cars. Most VPR datasets seldom emphasize motion
blur (see Table I) - typically featuring only fixed or incidental
blur effects [9], limiting the analysis. Section III clarifies that
realistic blur via frame averaging requires high frame rate data
to capture smooth temporal details for motion interpolation
and fine control of blur intensity; however, datasets like
Pittsburgh250k [10] are collected at low frame rates, hindering
this approach.

TABLE I: Dataset comparison: motion blur (MB) and varia-
tions in illumination (I), viewpoint (VP), and weather (W).

Dataset VPR Scene fps MB Emphasis I VP W
St Lucia [11] ✓ Urban 30Hz ✗ (Incidental) ✓ slight ✗
Oxford RobotCar [12] ✓ Urban <20Hz ✗ (Incidental) ✓ ✗ ✓
Pittsburgh250k [10] ✓ Urban Low (GSV) ✗ (Incidental) ✓ ✓ ✗
KITTI raw [13] ✓ Urban 10Hz ✗ (Incidental) slight ✗ ✗
NYU-VPR [9] ✓ Urban - ✓ (Incidental) ✓ ✓ ✓
DE-PR [14] ✓ (Limited) Indoor - ✓ (Fixed) ✗ ✓ ✗
ETH3D [6] ✓ (Limited) Indoor ∼27.1Hz ✓ (Fixed) ✓ ✓ ✗
MBA-VO [8] ✓ (Limited) Indoor 27Hz ✓ (Fixed) slight ✓ ✗
GoPro [15] ✗ Variety 240Hz ✓ ✗ ✓ ✗
HIDE [16] ✗ Variety 240Hz ✓ ✗ ✓ ✗

Blurry Places (Ours) ✓ Urban, Rural 240Hz ✓ (Controlled) ✓ ✓ ✓

Research on deblurring for VPR is also sparse, with existing
datasets offering limited blur intensity and diversity. For ex-
ample, ‘GoPro’ [15] uses urban 240fps videos averaging every
7–13 frames, and ‘HIDE’ [16] focuses on outdoor human
movement averaging every 11 frames from 240 fps videos,
yet neither are structured for VPR. [17] proposes a SLAM
framework that integrates blur detection with DeblurGANv2
deblurring, achieving improved feature matching with direct

deblurring, however, they address the method’s limited gen-
eralization to diverse scenes. Conversely, [14] introduces a
selective deblurring approach for indoor scene classification,
showing that detecting and excluding blurred frames improves
performance while applying any deblurring does not. Overall,
while urban and indoor scene deblurring research exists [18],
[19], [20], there is little analysis of how deblurring affects VPR
performance under complex challenges, such as illumination,
weather, and viewpoint variations. These gaps highlight the
need for more comprehensive studies in this area.

III. BLURRY PLACES BENCHMARK

Blurred frame generation is typically achieved either
through blur-kernel-based algorithms or by averaging con-
secutive, short-exposure frames captured at high frame rates
[15], [21], [22], [23], [24]. The latter method is considered
more realistic [23], as it generates spatially varying (non-
uniform) blur patterns that closely model the effects caused
by perspective shifts and depth variation. In contrast, kernel-
based methods often struggle with occlusion, depth variation
and deformations, and kernel estimation is computationally
expensive and sensitive to noise saturation. Moreover, stud-
ies on deblurring models trained on images produced by
frame averaging have demonstrated better performance than
those trained on synthetically blurred images generated by
kernel-based algorithms [21]. Consequently, recent and well-
established motion blur datasets [15], [16], [23] also employ
the frame-averaging approach.

The blurred images are obtained by averaging the frames
of a slow-motion video at 240 fps captured with a GoPro 11
Black. Unlike filter-based methods (e.g., Gaussian filtering),
this approach embeds the motion of a video in a blurred
image though mimicking the physical image formation in
digital cameras [25]. In detail, this approach models the image
formation as the integral over time of the image illuminating
the camera’s sensors during exposure time (τ ):

I(x) =
1

τ

∫ τ

0

I(t, x(t)) dt . (1)

I(t, x(t)) is the image to which the sensor is exposed at the
time t during the exposure time (τ ). I(x) is a frame captured
by the camera. This model describes how I(t, x(t)) variations
over time induce motion blur. Faster movements generate
wider variations and, therefore, more intense motion blur in
the part of the sensor where they occur.

We build our datasets from a discrete sequence of video
frames, thus Eq. 1 is approximated with the following series:

I(x) ≈ 1

n

n−1∑
i=0

Ii(x) . (2)

The integral is replaced by a sum of n sharp frames
indicated with Ii(x). Eq. 2 is then parameterized as follows
to build multiple blurring intensities:

BL
j (x) =

1

L

j+L∑
i=j

Ii(x) . (3)
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Fig. 2: A place in Luzzara in 3 traverses and blur intensities.

BL
j is the blurred image from averaging L sharp frames

starting at frame j of the source video, with increasing blur
intensity as L increases. We use L in the remainder of the
paper to indicate the amount of motion blur of an image,
with L = 1 corresponding to a sharp image. Fig. 1 illustrates
the synthetic blur generation process from Eq. 3 with sample
images at several blur levels; the colour code used serves only
to highlight the contributing sharp frames.

Sample images with motion embedding are shown in Fig.
2, where some areas remain relatively sharp depending on
movement direction. Note that L relates to the exposure time
in Eq. 1 via the source video frame rate (Vfps).

τ ≈ τ̂ =
L

Vfps
. (4)

Here, τ̂ approximates the shutter time τ of the blur model
described by Eq. 1. The higher the video frame rate, Vfps, the
finer the control on the blur level, as L can vary in a wider
range within the same exposure time. For example, consider
two videos: one collected at 240 fps and the other at 30 fps
at the same speed. With L = 2, the 240 fps video results in a
120 fps blurred dataset, while the 30 fps video only achieves
a 15 fps blurred dataset with significantly higher exposure
time. Alternatively, using the exposure time τ̂ as a reference,
the same blur can be applied to videos at different Vfps. For
example, the blurring corresponding to τ̂ = 0.5s requires L =
120 and L = 15 for the 240 and 30 fps videos, respectively.
Furthermore, a higher frame rate enhances motion continuity at
the same speed, producing a more realistic motion blur through
averaging. Driven by this consideration, the raw data to build
the proposed dataset are videos captured with a GoPro 11
black at the highest possible frame rate of 240 fps.

The benchmark is organized in datasets. A dataset includes
several sets of images captured along the same route at
different times, so it is always possible to use one as a
reference (previously visited locations) and the other as a
query (a second traverse through the route). The traverses are
generally different due to driving trajectories causing lateral
shifts, weather, illumination, seasons, and dynamic elements
like pedestrians, appearing only in one of the traverses. These
appearance changes are used jointly with motion blur to set up
different testing scenarios. Specifically, the proposed bench-
marks include 9 traverses captured along the three outdoor
routes in urban and country-side environments. These are
named as the small towns where they are recorded: Luzzara

TABLE II: Traverse recorded in Luzzara (LZR), Guastalla
(GST), Casoni (CSN) routes.

Track Traverse Time Condition length duration Frames

Luzzara 01 Morning Cloudy
3.2 Km

06:52 98810
(LZR) 02 Dusk Sunny 06:33 94442

03 Morning Sunny 05:57 85679

Guastalla 01 Afternoon Sunny
3.6 Km

05:59 86129
(GST) 02 Afternoon Sunny 05:38 81164

03 Morning Sunny 05:47 83272

Casoni 01 Noon Cloudy
4.3 Km

06:08 77889
(CSN) 02 Dusk Sunny 05:24 88476

03 Morning Sunny 05:28 78131

(LZR), Guastalla (GST) and Casoni (CSN), in Italy. The
recording list is shown in Table II, indicating the environmen-
tal conditions during the recording, the duration of the video,
and the number of sharp frames it contains.

Every video in Table II was processed with the method
described by Eq. 3 using the following nine values of L:

L ∈ {1, 10, 20, 30, 40, 60, 80, 120, 240} , (5)

where L = 1 (no blur) establishes a baseline for evaluating
the impact of blurring. We found empirically that this set of
blur levels ensures a comprehensive characterization of VPR
performance. Nevertheless, any blur level can be generated
using the provided scripts and data1, including extending
datasets captured in the same manner to domains beyond
those tested (e.g., extreme weather, indoors). Traversals can be
combined into query-reference pairs to conduct experiments on
motion blur at any intensity in L, with or without the environ-
mental conditions available (e.g. night). Moreover, selecting
the datasets with L = 1 (no blur), the resulting benchmark
can be used to assess VPR under the viewing conditions as
with any other well-established VPR datasets such as St. Lucia
[11] and Oxford Car [12].

IV. EXPERIMENTAL SETUP

To demonstrate the utilization of the proposed benchmark,
we use the datasets formed by the pairs enlisted in Table
III. The first three rows use the same traverse as both query
and reference. All the experiments use sharp images as a
reference, while those in the query traverse are blurred at 9
increasing intensities as in Eq. 5. This setup excludes any other
change but motion blur from the VPR performance analysis.
The last three rows present more challenging (and realistic)
scenarios where the query and reference images are captured
in different traverses. These scenarios include L = 1 to
establish a performance baseline under weather, illumination,
and viewpoint, along with additional motion blur at increasing
levels of L. The same traverses are used for analysis of direct
deblurring, and a subset of them for adaptive deblurring, where
the blur intensities are shuffled into one sequence as described
in their respective results. Several well-established VPR meth-
ods were systematically evaluated in our benchmark to cover
several approaches, including MixVPR [27], AnyLoc [28],
CosPlace [29], EigenPlaces [30], HDC-DELF [31], FloppyNet
[32], Patch-NetVLAD [33], ORB [34], and SAD [2], with

1https://github.com/bferrarini/MotionBlurGenerator
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TABLE III: The traverse pairs used for the experiments. Each
comes with one or more appearance changes: Motion Blur
(MB), Weather (W), Illumination (I), and ViewPoint (VP).

Pair ID Query Reference MB W I VP

LZR-MBlur
01-Evening-Sunny

X(411 images)

GST-MBlur
01-Afternoon-Sunny

X(358 images)

CSN-MBlur
01-Noon-Cloudy

X(324 images)

LZR-Mixed
02-Morning-Sunny 03-Morning-Cloudy

X X X(393 images) (356 images)

GST-Mixed
02-Afternoon-Sunny 01-Afternoon-Sunny

X X(338 images) (358 images)

CSN-Mixed
02-Dusk-Sunny 03-Morning-Sunny

X X X(325 images) (325 images)

blur intensities ranging from L=1 to L=240. Patch-NetVLAD
adopts a two-stage retrieval process with its own matching
step, while the others use a single-stage approach with cosine
similarity for descriptor comparison. Offline deblurring is
applied to each level of blur intensity in all datasets, using
three state-of-the-art deblurring methods: DeblurGANv2 [35],
FFTFormer [36] and GShift-Net [37]. We then perform the
same VPR analysis to get a clear comparison of the impacts
of deblurring across blur and scene variation. We evaluate
VPR performance using the Area Under Curve (AUC) of
Precision-Recall curves. A higher AUC indicates stronger
performance, reflecting consistent retrieval of relevant images
with minimal false positives, whereas a lower AUC implies
difficulty maintaining high precision and recall simultaneously.
For VPR methods, we follow the setup shared by the authors,
while deblurring is applied to the raw benchmark images to
ensure an unbiased evaluation of VPR performance. Adaptive
deblurring employs Laplacian variance for blur detection due
to its simplicity and efficiency [5]. Empirical tests revealed a
wide variance gap between sharp and severely blurred images

(L>40), and results confirm deblurring is only significant with
frequent, high blur intensities. Consequently, fixed thresholds
of 50 for the shuffled CSN-Mixed dataset and 200 for the
shuffled GST-Mixed and LZR-Mixed datasets achieved near-
perfect classification of such blurred frames.

V. RESULTS AND DISCUSSION

A. Motion Blur

The effect of motion blur is examined using the traverse
pairs LZR-MBlur, GST-MBlur, and CSN-MBlur. These three
datasets use the same traverse as both reference and query,
so the images differ only by the amount of motion blur. The
results are shown in Fig. 3 for increasing blurring intensities
in query images. All the plots start from AUC = 1 as at
L = 1, query and reference images are identical. As expected,
every VPR method is negatively impacted. FloppyNet achieves
the most robust performance regardless of it being a Binary
Neural Network (BNN) - a highly compact variant of neural
network where the weights and activations are constrained
to 1-bit values to reduce memory and computational cost.
FloppyNet’s shallow architecture of just three layers makes
it tolerant to viewpoint-free appearance changes [32] and
exceeds severe motion blur performance in GST-MBlur and
CSN-MBlur. SAD is considered to tolerate viewpoint-free
changes [38], however, it exhibits steeper performance decay,
dropping quickly to an AUC between 0.2 and 0.3. This decay
is greater with LZR-MBlur, which may arise from the dataset’s
reduced lighting and contrast. Patch-NetVLAD starts strongly
but degrades quickly, achieving a lower performance among
the learning-based methods for larger blur, and comparable
or even worse performance than ORB-VLAD in LZR-MBlur
and GST-MBlur. ORB-VLAD, being non-learning-based, per-
forms competitively with the learning-based methods on LZR-
MBlur and CSN-MBlur, however quickly suffers on GST-
MBlur. The remaining models exhibit similar performance and

LZR-MBLUR GST-MBLUR CSN-MBLUR

LZR-MIXED GST-MIXED CSN-MIXED

Fig. 3: AUC at various motion blur levels. Blur-only traverse results are shown at the top, while the bottom row shows the
results for mixed conditions. The bars indicate the 95% confidence interval obtained using block bootstrapping [26].
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degrading behaviour, being the more robust choices out of all
the methods capable of handling large motion blur reasonably
well. This is reflected in the measured confidence ranges, with
top-performing models having little variance in performance,
but becoming less certain as blur intensity increases. We expect
AnyLoc to outperform in diverse scenes as it utilizes general-
purpose features from large-scale pretrained models. Overall,
CSN-MBlur proves to be the variation-free dataset that VPR
models struggled the most on with severe blur intensity.

B. Mixed Conditions

The mixed-condition datasets used for these experiments are
shown in the last three rows of Table III, combining motion
blur with other appearance variations that are typical of VPR
applications, such as viewpoint, weather, and illumination.
Fig. 3 shows the AUC trend for increasing motion blur, with
L = 1 representing the baseline of VPR performance, which
degrades with the addition of motion blur. Regardless of the
model, GST-Mixed proves to be a particularly challenging
dataset for VPR, indicating that this query traverse introduces
non-trivial examples that shift AUC down. The difficulty
of these traverses is highlighted by the wider width of the
95% confidence intervals compared to the intervals in the
blur-only traverses. AnyLoc extracts per-pixel features using
large-scale pretrained models, making it better suited for
general, broad-spectrum applications. With increasing motion

blur, AnyLoc performs with little degradation on the LZR-
Mixed and GST-Mixed datasets, highlighting its robustness
to blur in weather and viewpoint variation, yet struggles to
achieve competitive performance in the presence of illumi-
nation variation. MixVPR shows top-end performance across
all dataset variations, with itself, Cosplace and EigenPlaces
achieving the best performance on CSN-Mixed by a wide
margin. At L = 1, these 3 models achieve close to AUC = 1
on CSN-Mixed and LZR-Mixed, revealing their tolerance to
illumination and weather differences. However, Cosplace and
EigenPlaces degrade at a larger rate on LZR-Mixed and GST-
Mixed, so MixVPR may be better equipped to handle motion
blur. FloppyNet achieves competitive performance on GST-
Mixed, yet in the presence of weather or illumination variance,
it struggles to compete with the other methods. P-NetVLAD,
ORB-VLAD and SAD stand out for their intolerance to
these mixed conditions. P-NetVLAD appears to equally suffer
across each dataset, starting close to 0.8 AUC and dropping to
0.2. Although ORB-VLAD and SAD showed some tolerance
in the blur-only traverses at sharp and small blur intensity,
they suffer in mixed conditions in any case and are incapable
of VPR.

C. Deblurring Query Images

We examine the impact of deblurring across various blur
intensities to assess its effect on VPR accuracy. For CSN-

TABLE IV: AUC of VPR methods with different deblurring methods on CSN-Mixed. Bold indicates the best performing
combinations within each query blur level. Improvements after deblurring highlighted in green; deterioration in red.

Query Blur Level
VPR Model Deblur Method 001 010 020 030 040 060 080 120 240 Avg. Std. Avg. Deblur + Extract

time / query (ms)
MixVPR No Deblur 0.98 0.97 0.96 0.94 0.92 0.85 0.79 0.70 0.56 0.85 0.13 3.72

DeblurGANv2 0.98 0.97 0.97 0.97 0.95 0.91 0.88 0.81 0.59 0.89 0.11 38.41
GShift-Net 0.98 0.98 0.97 0.95 0.93 0.88 0.82 0.74 0.65 0.88 0.11 394.65
FFTFormer 0.98 0.97 0.96 0.95 0.93 0.88 0.84 0.75 0.52 0.86 0.14 590.33

AnyLoc No Deblur 0.93 0.91 0.89 0.86 0.80 0.74 0.69 0.60 0.48 0.76 0.14 624.84
DeblurGANv2 0.93 0.92 0.91 0.88 0.83 0.75 0.75 0.63 0.43 0.78 0.15 659.53

GShift-Net 0.94 0.93 0.90 0.85 0.83 0.72 0.72 0.64 0.49 0.78 0.14 1015.77
FFTFormer 0.94 0.92 0.90 0.89 0.82 0.76 0.72 0.63 0.44 0.78 0.15 1211.45

CosPlace No Deblur 0.95 0.96 0.94 0.93 0.92 0.87 0.82 0.70 0.59 0.85 0.12 3.78
DeblurGANv2 0.96 0.97 0.97 0.96 0.96 0.95 0.91 0.87 0.66 0.91 0.09 38.47

GShift-Net 0.98 0.97 0.97 0.94 0.92 0.89 0.84 0.71 0.74 0.89 0.09 394.71
FFTFormer 0.95 0.95 0.94 0.93 0.91 0.88 0.84 0.79 0.62 0.87 0.10 590.39

EigenPlaces No Deblur 0.97 0.95 0.94 0.93 0.91 0.89 0.84 0.76 0.56 0.86 0.12 3.76
DeblurGANv2 0.97 0.97 0.96 0.96 0.95 0.93 0.88 0.84 0.72 0.91 0.08 38.45

GShift-Net 0.98 0.98 0.96 0.95 0.92 0.89 0.84 0.77 0.75 0.89 0.08 394.69
FFTFormer 0.96 0.95 0.94 0.93 0.92 0.90 0.86 0.79 0.62 0.87 0.10 590.37

HDCDELF No Deblur 0.93 0.91 0.88 0.84 0.82 0.76 0.73 0.63 0.44 0.77 0.14 610.38
DeblurGANv2 0.94 0.93 0.92 0.90 0.86 0.83 0.78 0.74 0.53 0.82 0.12 645.07

GShift-Net 0.95 0.92 0.88 0.83 0.78 0.74 0.70 0.62 0.57 0.78 0.12 1001.31
FFTFormer 0.94 0.93 0.90 0.87 0.84 0.79 0.75 0.68 0.49 0.80 0.13 1196.99

P-NetVLAD No Deblur 0.88 0.81 0.76 0.71 0.67 0.61 0.46 0.31 0.15 0.59 0.22 10.49
DeblurGANv2 0.86 0.78 0.81 0.77 0.75 0.69 0.61 0.51 0.24 0.66 0.18 45.18

GShift-Net 0.78 0.79 0.74 0.68 0.65 0.50 0.49 0.33 0.30 0.58 0.17 401.42
FFTFormer 0.82 0.80 0.79 0.77 0.68 0.63 0.52 0.39 0.15 0.61 0.21 597.10

FloppyNet No Deblur 0.86 0.81 0.74 0.68 0.64 0.55 0.50 0.37 0.28 0.60 0.18 41.63
DeblurGANv2 0.86 0.84 0.80 0.78 0.75 0.70 0.59 0.48 0.34 0.68 0.16 76.32

GShift-Net 0.86 0.82 0.75 0.69 0.64 0.57 0.52 0.41 0.34 0.62 0.16 432.56
FFTFormer 0.86 0.82 0.75 0.70 0.66 0.57 0.51 0.40 0.29 0.62 0.18 628.24

ORB-VLAD No Deblur 0.23 0.16 0.10 0.05 0.05 0.04 0.04 0.21 0.02 0.10 0.07 17.26
DeblurGANv2 0.18 0.19 0.14 0.09 0.08 0.07 0.03 0.04 0.01 0.09 0.06 51.95

GShift-Net 0.22 0.16 0.16 0.12 0.08 0.03 0.05 0.03 0.04 0.10 0.06 408.19
FFTFormer 0.21 0.13 0.10 0.07 0.08 0.06 0.04 0.01 0.01 0.08 0.06 603.87

SAD No Deblur 0.04 0.04 0.02 0.03 0.03 0.01 0.02 0.03 0.03 0.03 0.01 3.99
DeblurGANv2 0.04 0.03 0.04 0.03 0.04 0.02 0.02 0.02 0.03 0.03 0.01 38.68

GShift-Net 0.04 0.03 0.02 0.02 0.03 0.02 0.02 0.04 0.04 0.03 0.01 394.92
FFTFormer 0.03 0.05 0.02 0.04 0.02 0.02 0.03 0.01 0.02 0.03 0.01 590.60
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Fig. 4: Heatmaps showing the difference in AUC performance after deblurring the other datasets (columns) with each deblurring
method (rows), with different VPR method and blur intensity combinations.

Mixed, Table IV presents full results, including the combined
average deblurring and query extraction times, while Fig. 4
shows performance differences for the other datasets. Deblur-
ring effectiveness depends on the method, VPR model, and
blur intensity, with greater improvements at severe blur levels.
Overall, VPR models resilient to appearance variations achieve
greater average AUC and lower AUC standard deviation across
blur intensities due to enhanced image restoration.

Generally, CosPlace and EigenPlaces respond positively
and consistently with deblurring. They use global image
descriptors, making them highly scalable and benefiting from
deblurring methods that restore spatial context across the
image. MixVPR adopts a relatively simple approach too,
using a holistic feature aggregation technique, and benefits
in most cases with deblurring. Unexpectedly, the effectiveness
of all three deblurring methods on AnyLoc performance was
limited, with small improvements in CSN-Mixed, LZR-Mixed
and LZR-MBlur, reinforcing the fact that it may already be
inherently more tolerant to motion blur. Likewise, FloppyNet’s
strong performance in motion blur-only datasets means it
benefits little from deblurring in those cases, however, in
mixed conditions, it shows small improvements, particularly
with DeblurGANv2. Deblurring provides some improvement
for HDC-DELF under severe motion blur, but it is often minor
and less impactful than for methods that rely exclusively
on sharp, global image features. Both ORB-VLAD and P-
NetVLAD show tangible improvement when combined with
DeblurGANv2 across all datasets, highlighting their intoler-
ance for motion blur, especially with the GST-Mixed dataset,

which degraded all model performance significantly. Regard-
less of deblurring, SAD is incapable of effective VPR unless
the images are sharp and do not contain complex variations.

DeblurGANv2 proves to be the most effective and robust
choice of the three when applied to VPR, providing larger
and more consistent improvements in VPR performance. Its
strong performance can be attributed to its emphasis on
multi-scale deblurring. Its use of a feature pyramid network
enables deblurring across broad spatial resolutions, which may
support larger and more complex blur patterns. Unlike the
other methods, GShift-Net is developed for video deblurring
and implicitly aggregates temporal and spatial information in
its shift blocks. By shifting feature groups across frames, it
increases the receptive field. This method performs relatively
poorer than the other three, however, interestingly, we can see
that GShift-Net accounts for some of the best scores with
blur level 240 by a large margin, such as when combined
with Eigenplaces on CSN-Mixed, we see a gain of 0.152.
This may indicate that adjacent frames could provide valuable
information when context is lost under extreme blur condi-
tions. Future work could explore the importance of temporal
information under varying degrees of image degradation. The
impacts of FFTFormer resemble DeblurGANv2, however, it
does not provide significant gains. More often than not, it
still shows measurable improvement over no deblurring, and
even when performance drops, it is minimal. These results
are unexpected as FFTFormer achieves greater performance
than DeblurGANv2 on ’GoPro’, ’RealBlur’ [39] and ’HIDE’
evaluation. Their differences in training data may align more
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TABLE V: Comparison of inference efficiency and AUC for different deblurring strategies on shuffled mixed-condition datasets,
measured with the PyJoules library on an AMD EPYC 7452 CPU and Nvidia A100 GPU.

Setup Method Timing (s) Energy (kJ) AUC

Extract Detect Deblur Avg/Query (ms) Extract Detect Deblur Avg/Query (J)

DeblurGANv2-CosPlace-CSN-Mixed
No Deblur 1.39 – – 3.76 0.41 – – 1.12 0.93
All Deblur 1.40 – 12.80 38.48 0.42 – 2.80 8.75 0.97
Detect+Deblur 1.39 0.71 7.76 26.72 0.42 0.10 1.73 6.10 0.97

DeblurGANv2-EigenPlaces-GST-Mixed
No Deblur 1.28 – – 3.78 0.40 – – 1.18 0.69
All Deblur 1.28 – 11.69 38.26 0.38 – 2.57 8.70 0.75
Detect+Deblur 1.29 0.65 9.41 33.48 0.40 0.094 2.00 7.36 0.75

DeblurGANv2-EigenPlaces-LZR-Mixed
No Deblur 1.34 – – 3.76 0.41 – – 1.15 0.93
All Deblur 1.34 – 12.42 38.65 0.41 – 2.74 8.85 0.95
Detect+Deblur 1.35 0.72 6.42 23.85 0.41 0.10 1.39 5.34 0.95

or less with the variations present in our benchmark. Notably,
DeblurGANv2 and GShift-Net were further trained on the
DVD [40] dataset, providing additional videos captured at
240 fps, and DeblurGANv2 on the NFS video dataset [41].
FFTFormer, however, focuses on RealBlur and HIDE datasets,
highlighting the need for careful consideration of the domain
when building deblurring VPR or SLAM systems.

D. Adaptive Deblurring

Results have shown that certain models such as Cosplace
and Eigenplaces exhibit top VPR performance on the bench-
mark, being more robust to scene variations and responding
well to deblurring. Regardless, the performance gains are
often small or even degraded with small motion blur intensity,
motivating an adaptive deblurring approach which may achieve
improvement in computational cost with minimal change in
performance.

Table V compares several significant adaptive deblurring
scenarios using the best method, DeblurGANv2, which yielded
larger gains across blur levels (see Fig. 4). We measured
inference time and energy consumption using PyJoules on
a single AMD EPYC 7452 CPU and Nvidia A100 GPU.
To avoid null values in short per-image measurements - a
limitation of the profiling software, we measured the total cost
of inference in each stage separately and aggregated them,
reflecting the cumulative inference overhead while ensuring
consistent and reliable values across all scenarios. Based on
prior results, adaptive strategies are justified only in scenarios
with frequent severe blur. To represent these scenarios, the
shuffled datasets CSN-Mixed and LZR-Mixed include roughly
half sharp (L = 1) images, with the remainder spanning
blur levels L = 60 to L = 240. The GST-Mixed shuffled
dataset, which exhibited relatively less improvement, contains
≈ 20% sharp, the rest at blur level L = 120 and L = 240.
The same adaptive method can be applied to specific cases
with other VPR or deblur methods, such as FFTFormer and
Anyloc in LZR-Mixed, which had degradation with small
motion blur. In these shuffled mixed-condition scenarios, an
all-deblur strategy yields an AUC gain between 0.02 and 0.06.
Given that FFTFormer and GShift-Net did not perform as
well in previous analyses, they would struggle more in mixed
datasets, making them unsuitable for real adaptive deblurring
regardless of their computational overhead. Having used the
largest backbone, Inception-ResNet-v2, for DeblurGANv2,

both the energy consumption and total time significantly
increase (processing ∼25 fps). In comparison, using a prior
detection stage achieves the same performance gain with less
additional overhead, as seen in the shuffled CSN-Mixed and
LZR-Mixed scenarios. The proportion of sharp images affects
the trade-off between computational cost and performance,
with sharp images avoiding redundant and costly deblurring
operations, while blurred images, though requiring additional
time and energy expenditure, enable potential gains in recog-
nition accuracy. Adaptive deblurring is shown to be beneficial
over direct deblurring when the VPR model tolerates complex
scene variations and when severe, frequent blur allows for
significant restoration improvements. In these cases, since
most of the overhead comes from deblurring, an adaptive
strategy offers substantial benefits.

E. Practical Implications
While these systems run sufficiently fast on GPUs, deploy-

ing them on resource-constrained, motion-blur-prone devices
like UAVs is challenging. [5] used a Raspberry Pi v2.1
camera for non-learning-based VSLAM, which was limited
to 20 fps for successful tracking, even with offline detection
and deblurring. Traditional deblurring methods (e.g., Wiener,
Lucy-Richardson) are also iterative and slow for large images,
limiting real-time use. Consequently, one could explore tech-
niques like quantization in deblurring pipelines [42], develop-
ing blur-robust VPR methods that bypass explicit deblurring,
or employing spiking neural networks [43] with event-based
cameras or neuromorphic hardware - a promising avenue for
improving efficiency.

VI. CONCLUSIONS

Our benchmark enables comprehensive VPR analysis un-
der motion blur. In certain configurations, combining VPR
methods with deblurring improves matching performance and
robustness, though real-time adaptive deblurring on resource-
limited devices remains challenging despite improvements
in efficiency when blur is significant. Future work could
extend the blur model to other domains, or explore end-to-end
sequence-based pipelines that make use of temporal informa-
tion [37], [44]. In extreme conditions (e.g., adverse weather),
generic deblurring may struggle. Exploring domain-adaptive
deblurring or multi-modal sensing using event-based cameras,
LiDAR or IMU data could improve accuracy, particularly in
high-speed or low-light scenarios.
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