
1

Transparent and Trustworthy Blockchain-based Scheme for the

Protection of Vehicular Soft Integrity in Shared Mobility
Urooj Ghani, Mudassar Aslam, Subhan Ullah, Tahir Ahmad, Attaullah Buriro, Palash Yuvraj Ingle, and Rutvij H.

Jhaveri, Senior Member, IEEE,

Abstract—The automotive industry is transforming from tra-
ditional private vehicle ownership to innovative shared mobility
solutions, presenting unprecedented cybersecurity challenges.
This transition introduces complex security vulnerabilities where
malicious actors could exploit the access of a rental vehicle
to manipulate the software systems on board. Unlike physical
damage, which can be easily detected, software modifications
represent an insidious threat that can compromise user safety
and vehicle integrity. Our research proposes a blockchain-
based approach to address these critical security challenges.
We introduce a novel method for ensuring data authenticity
and integrity within vehicle systems by leveraging blockchain’s
immutable ledger and advanced encryption technologies. Our
methodology utilizes the Trusted Platform Module (TPM) to
securely archive vehicle data in the central gateway, creating a
tamper-evident environment that fundamentally transforms tra-
ditional data management approaches. The key innovation lies in
the blockchain-based data binding process: when a user possesses
a vehicle, they bind application-retrieved data with the vehicle’s
existing data and commit them to the blockchain. Upon vehicle
return, any potential tampering can be immediately detected by
comparing newly acquired data against pre-existing blockchain
records. We develop a proof-of-concept implementation and
demonstrate significant improvements in security architecture
that offer a reliable alternative to conventional database-centric
approaches. Comparative evaluations between database-centric
and blockchain-centric architectures testify to the operational
effectiveness and practical viability of our proposed solution. By
addressing the inherent vulnerabilities in shared mobility ecosys-
tems, this research contributes to a sophisticated technological
intervention that enhances user safety, data integrity, and trust
in emerging transportation paradigms.

Index Terms—Shared Mobility, Blockchain, Vehicle Integrity,
Vehicle Safety, Vehicle Security.

Urooj Ghani is affiliated with the Department of Computer Science, FAST
National University of Computer and Emerging Sciences, Islamabad, Pakistan
(email: urooj.ghani@nu.edu.pk).

Mudassar Aslam is affiliated with the School of Engineering, Com-
puting, and Mathematics, Oxford Brookes University, UK (email:
maslam@brookes.ac.uk).

Subhan Ullah is affiliated with the Department of Cyber Security, FAST
National University of Computer and Emerging Sciences, Islamabad, Pakistan
(email: subhan.ullah@nu.edu.pk).

Tahir Ahmad is with the Security & Trust Unit of the Center for Cybersecu-
rity, Fondazione Bruno Kessler (FBK), Trento, Italy (email: ahmad@fbk.eu).
(Corresponding author: Tahir Ahmad.)

Attaullah Buriro is with the Faculty of Engineering at the Free University
of Bolzano, Bolzano, Italy, and with Department of Computer Science and
Electronic Engineering, University of Essex, at Colchester campus, UK.
(email: ab25399@essex.ac.uk). (Co-corresponding author: Attaullah Buriro.)

Palash Ingle is affiliated with the Department of Computer and Information
Security, Sejong University, Seoul, South Korea (email: Palash@sejong.ac.kr).

Rutvij H. Jhaveri is with the Department of Computer Science and Engi-
neering, School of Technology, Pandit Deendayal Energy University, Gujarat,
India (email: rutvij.jhaveri@sot.pdpu.ac.in). (Co-corresponding author: Rutvij
H. Jhaveri.)

I. INTRODUCTION

IN the 19th century, the proliferation of vehicles due to
population growth has led to traffic congestion. The urban

transportation landscape has undergone a profound transfor-
mation, driven by increasing population density and vehicular
expansion. To mitigate these adverse effects, the community
introduced the concept of shared mobility [1], sharing trans-
portation services and resources between users concurrently or
sequentially for short-term access. Shared mobility represents
an innovative approach to transportation resource management
that enables dynamic and flexible access to mobility services.
This paradigm addresses critical urban challenges such as
traffic congestion, infrastructure limitations, and environmental
sustainability by facilitating collaborative transportation strate-
gies.

Shared mobility can be classified into two primary models:
Business-to-Consumer (B2C) and Peer-to-Peer (P2P) shared
mobility frameworks [2]. In the Business-to-Consumer model,
companies strategically deploy and rent vehicles to the public.
At the same time, the peer-to-peer approach allows individual
vehicle owners to share their personal vehicles based on needs
[3]. Technically, both models rely on third-party platforms
that provide essential online infrastructure and comprehen-
sive customer support [4]. Users use these services through
smartphone applications, facilitating seamless vehicle booking
and rental processes. Ensuring robust security and privacy pro-
tection for user information remains paramount, necessitating
solutions that maintain operational vehicle performance [5],
[6].

The shared mobility environment introduces complex secu-
rity vulnerabilities due to multiple users’ physical access. This
accessibility creates potential attack vectors where malicious
actors could compromise vehicular systems by manipulating
software components, such as the Electronic Control Unit
(ECU) or Gateway. Potential adversarial objectives range
from privacy breaches to deliberate disruption of vehicular
functionality. While existing research has extensively explored
remote and physical attack methodologies, significant unre-
solved challenges persist regarding software integrity in shared
mobility environments [7].

This study presents an innovative blockchain-based model
to address the multifaceted challenges of security, trust, and
scalability in car sharing environments, as illustrated in Fig-
ure 1. The proposed methodology comprises three critical
components: Virtual Vehicle Simulator, Blockchain, and An-
droid Application. The virtual vehicle simulator facilitates
comprehensive data transmission, captures electronic control



2

unit (ECU) information during vehicle reservation and return
processes, and securely stores these data as cryptographic
hashes within the blockchain infrastructure [8]. The funda-
mental security mechanism of the model involves hash-based
integrity verification. When a user books or returns a vehicle,
the system generates and stores hash values representing the
vehicle’s state. Any unauthorized data modifications during
the rental period will result in hash value alterations, trigger-
ing immediate security alerts for administrative intervention.
This approach significantly surpasses the traditional database-
centric methods discussed in previous research [9], offering
superior data protection through the inherent security char-
acteristics of the blockchain. Unlike conventional database
systems, the proposed blockchain implementation provides
robust, tamper-evident data storage [10], [11]. The decentral-
ized nature of blockchain, combined with advanced encryp-
tion techniques, ensures that stored data remains immutable,
inaccessible to unauthorized modifications, and resistant to
deletion or destruction. Using blockchain cryptographic prin-
ciples, the model establishes a secure, transparent, and scalable
framework to manage vehicle data integrity in shared mobility
ecosystems.

Fig. 1: Overview of the Proposed Model

This research addresses critical limitations in shared mo-
bility security through a novel blockchain-based approach.
Technically speaking, the study seeks to answer the fol-
lowing critical research questions: 1. How can blockchain
technology enhance software integrity verification in shared
mobility environments? 2. What are the inherent limitations of
existing database-centric security approaches? and 3. Can a
decentralized, cryptographically secured system provide more
reliable protection against unauthorized software modifica-
tions? In this context, the study makes three fundamental
contributions to the emerging field of secure, technology-
enabled transportation systems:

1) Innovative Blockchain-Enabled Integrity Verifica-
tion: We propose a blockchain model that transcends
traditional database security paradigms. By leveraging
blockchain’s cryptographic architecture, our approach
provides an unprecedented mechanism for verifying
vehicular software integrity in shared mobility environ-
ments.

2) Technological Trust Mechanism: Our research intro-
duces a transparent, decentralized trust framework that

fundamentally transforms the reliability of shared mo-
bility ecosystems. By implementing blockchain’s im-
mutable ledger technology, we establish a robust mech-
anism that ensures data integrity, provides real-time
security monitoring, and creates a verifiable record of
vehicular software modifications.

3) Empirical Security Evaluation: Through rigorous ex-
perimental validation, we demonstrate the practical effi-
cacy of our proposed blockchain-based security model.
Our comprehensive evaluation provides empirical evi-
dence of the approach’s potential to mitigate software
manipulation risks in shared mobility scenarios.

Our research contributes to the broader discourse on innova-
tive transportation technologies by bridging the technological
gaps in shared mobility security. The proposed methodology
advances academic understanding of blockchain applications
and offers a pragmatic solution to real-world security chal-
lenges in collaborative mobility ecosystems.

The rest of the paper is organized as follows: Section II de-
picts the systematic literature reviews based on the secondary
research method and attack surfaces. In contrast, Section
III presents the problem formulation and proposed solution.
Section IV explains the implementation of the proposed model.
Section V discusses the evaluation of the implemented model
from a security perspective. Finally, Section VI concludes and
highlights the future directions of the proposed work.

II. RELATED WORK

As connected, automated, and self-driving vehicles are
increasing, the risk of attacks on vehicles also increases.
Section III-B covers attack vectors and some attack scenarios
[12], [13], [14], which demonstrates the critical imperative of
comprehensive vehicular security strategies.

The contemporary automotive security landscape is char-
acterized by complex technological challenges and evolving
threat vectors. Nasser et al [15] comprehensively discusses the
security challenges emerging from automotive technological
advancements, proposing strategies to ensure vehicle safety
within stringent constraints. The AUTOSAR [16] framework
underwent rigorous security evaluation, representing Automo-
tive Open System Architecture for Electronic Control Units
(ECUs). Researchers identified critical security gaps through
quantitative analysis, proposing an HSM-based monitoring
system capable of rolling back measurements during potential
vehicle attacks.

Recognizing the multifaceted nature of vehicular security,
researchers have explored diverse mitigation strategies. Ko-
rnaro et al. [17] introduced TrustNet, a lightweight approach
designed to address resource constraints while protecting Con-
troller Area Network (CAN) buses from sophisticated replay
attacks. The research specifically targeted man-in-the-middle
and masquerade attack methodologies.

Vehicle locking systems represent a critical security domain.
Researchers have extensively analyzed proprietary systems
like the Passive Keyless Entry and Start System (PKES),
revealing significant vulnerabilities in existing cryptographic
implementations. Studies on Tesla Model S [18] and BMW



3

[19] vehicles exposed critical security weaknesses, demon-
strating how advanced interfaces can simultaneously enhance
functionality and expand potential attack surfaces.

Software update mechanisms have emerged as another cru-
cial research focus. Wu et al. [20] proposed a distributed
software update system involving original equipment man-
ufacturers, software suppliers, and vehicle regulators. This
collaborative approach aimed to ensure authentication and
integrity during software modification processes. Kim et al.
[21] further explored secure Over-the-Air (OTA) updates,
highlighting their potential to address software bugs and
introduce new features efficiently.

Blockchain technology has progressively gained recognition
as a potential solution for vehicular data security. Kang et
al. [22] demonstrated blockchain’s effectiveness in secure
vehicular data storage and sharing, introducing reputation-
based schemes for authorized data exchange.

Falco and Siegel [23] and Tratter et al. [9] investigated
software integrity maintenance, with the latter proposing the
VesIPreS scheme utilizing the Trusted Platform Module (TPM)
for integrity verification. However, existing approaches pre-
dominantly rely on centralized databases, limiting their ability
to detect and prevent physical or remote attacks comprehen-
sively.

While existing research has made significant strides in
addressing vehicular security challenges, our proposed ap-
proach represents a paradigm shift in securing shared mobility
ecosystems. Unlike traditional methodologies that rely on
centralized database architectures with inherent vulnerabilities,
our blockchain-based model introduces a fundamentally dif-
ferent security paradigm. Critically, our research transcends
the limitations of previous studies by developing a scalable,
adaptable security framework that can be seamlessly integrated
into shared mobility ecosystems. While existing approaches
often focus on isolated security aspects, our methodology
provides a comprehensive, technologically advanced solution
to the complex challenges of vehicular software integrity in
shared mobility environments.

III. PROBLEM FORMULATION AND PROPOSED SOLUTION

This section presents the problem and explains how our
approach addresses it.

A. Use Case Scenario

The proposed approach considers shared mobility scenarios
in which the user has full access to the vehicle and the vehicle
is used by multiple users. It targets the insider, an employee in
the rental company, and the car user. Both can be attackers. If
the attacker is an insider (employee), they have access to the
database server used to store the information of the user and
vehicle. The employee can tamper with the data present in the
database. If the user is an attacker, they rent a car from the
rental company, and when the car is returned, they can tamper
with the Electronic Control Units (ECUs) running in the car.
Some use-case scenarios of an attack are as follows:

1) The rentee uses a car from a car rental company. When
they return the car, the physical damage can be seen

by checking the car from the outside, but the software
present in the car cannot be checked just by inspecting
the car externally.

2) In the car-sharing scenario, registered users can rent a
car and leave it anywhere in the business area. Still, no
one can check the car after its return to ensure software
integrity. In this case, the car’s user may be an attacker
who has tampered with the car’s software and left it.

3) In transport companies where drivers operate buses,
trucks, etc., they can easily manipulate the vehicle’s
software as the vehicles are not owned by them.

4) When the car owner gives their car for repair to a repair
shop, the mechanic has physical access to the car, which
can be exploited to manipulate the software without any
mechanism for the owner to detect such changes.

5) When the car owner uses a valet service for parking and
hands over the car to the valet, vehicle security can also
be compromised.

There must be a mechanism to ensure the integrity of the
software running in the vehicle when used by multiple users
with complete physical access. The vehicle’s software must
be checked when the user rents a car and when they return
it. The use case scenarios highlight the need for a solution
that allows the vehicle’s owner to detect any change in the
vehicle’s software.

B. Attack Surfaces

In a shared mobility environment, the attacker has physical
access to the vehicle; our main concern is physical attack
vectors, where the user has full access to the vehicle. If the
user has full physical access to the vehicle, they can physically
and remotely attack it.

1) Remote Attacks: A user present inside the vehicle can
access the vehicle, but if the user has no physical access to
the vehicle, they can still easily access it remotely. Remote
access can be done through Bluetooth, Wi-Fi, or other inter-
faces. Vehicle manufacturers know these remote attacks and
provide mechanisms to protect the vehicle. However, threats
of remote attacks still exist, as discussed in [24] and [25]. An
example of such a scenario is Cherokee Jeep Hack through
Infotainment System [25]. According to Miller and Valasek
[25], the communication interface of a Jeep was remotely
hacked by researchers through the infotainment system (music
system). They entered the Jeep remotely using the cellular
network. Accessing the Jeep’s infotainment system allowed
them to change settings related to it, such as volume and
interface view, and access information about the Jeep, such as
its location. A chip in the Jeep’s infotainment system, known
as a proxy chip, had access to the Jeep’s CAN buses. Miller
and Valasek [25] accessed the proxy chip, installed malicious
software on it through the infotainment system, and began
sending random CAN messages to the Jeep. This access to
the CAN bus allowed them to affect the functional safety of
the Jeep, sending commands that altered components such as
steering, brakes, airbags, and the engine.

2) Physical Attacks: Attackers with full physical access
to the vehicle mostly carry out physical attacks. They use



4

the ports present in the vehicle as attack vectors to change
the vehicle’s components and disable the electronic control
unit or networks. A port known as OBD (onboard diagnos-
tics) is used for vehicle maintenance. Attackers can easily
target the vehicle’s electronic control unit through this port.
An example of such a scenario is Hack BMW through the
Diagnostic Connector [26]. According to [26], BMW uses a
key with a computer chip for security purposes. The attacker
can access the BMW by controlling the car alarm. After
controlling the car alarm, the attacker gains physical access
and reads information from the OBD (onboard diagnostics)
port using sophisticated OBD readers like Actron, Innova,
or CarMD. This port contains key-related information. The
attacker decodes the key code information, programs the key,
and steals the car.

C. Extended Attack Surfaces
Traditional attacks, such as remote and physical attacks on

vehicles, have been discussed and mitigated to some extent
in research. However, the emergence of new technologies has
also introduced new vulnerabilities in vehicular security. This
section highlights some of these emerging threats.

1) Side-Channel Attacks: Side-channel attacks exploit un-
intended information leakage, such as power consumption,
electromagnetic emissions, or execution timing, to extract
sensitive data like encryption keys or authentication tokens.
Unlike other attacks that target vehicular software vulnera-
bilities, side-channel attacks focus on the physical charac-
teristics of cryptographic operations. Modern vehicles use
cryptographic security mechanisms in Electronic Control Units
(ECUs) and Trusted Platform Modules (TPMs). Attackers can
use techniques such as Differential Power Analysis (DPA),
Electromagnetic Analysis (EMA), and Timing Attacks to
break encryption and gain access to cryptographic keys. To
mitigate these types of attacks, extensive research has been
conducted. Researchers have explored side-channel-based in-
trusion detection systems (IDSs) to analyze vehicle voltage
signals. A novel IDS has been proposed that maps ECU identi-
fiers and employs a FeatureBagging-CNN model for detecting
and locating malicious data frames from compromised ECUs
and external nodes, enhancing CAN bus security without
adding network overhead [27]. The resilience of automotive
microcontrollers against Deep Learning-based Side-Channel
Attacks (DL-SCA) has also been evaluated in [28].

2) Man-in-the-Middle (MITM) Attacks: A Man-in-the-
Middle (MITM) attack occurs when an attacker intercepts and
alters communication between two parties without their knowl-
edge. These attacks compromise the integrity, confidentiality,
and authenticity of transmitted data, leading to unauthorized
control over ECUs and other critical vehicle functions. MITM
attacks can be executed on the Wi-Fi surface of the vehicle,
it allows an attacker to breach the telemetry data and manipu-
late real-time communication. A study demonstrated different
kinds of attacks on autonomous vehicles and evaluates VPN-
based mitigation techniques as an effective countermeasure
[29].

In shared mobility scenarios, attackers can deploy rogue
access points, signal jamming, or session hijacking techniques

to compromise vehicle authentication mechanisms. Since at-
tackers have full access to the vehicle, they can intercept and
modify critical data exchanged between the vehicle, rental
platform, or cloud services.

3) Quantum Security Attacks: Shared mobility vehicles rely
on cryptographic mechanisms for secure user authentication,
encrypted data transmission, and software integrity verifica-
tion. Further, modern vehicles receive Over-the-Air (OTA)
software updates to introduce new features, security patches,
and performance improvements. These updates are protected
using digital signatures and cryptographic keys, but quantum
attacks could break these protections, allowing attackers to in-
ject malicious firmware updates into vehicles. This could lead
to malfunctioning brakes, altered acceleration settings, and
disabling of critical security features. To mitigate the quantum
threats, researchers have explored post-quantum authentication
mechanisms for securing vehicle communications. A study
highlights how post-quantum encryption and signal processing
techniques can protect against both active and passive cyber-
physical attacks in vehicular networks [30].

4) TPM Hardware and Firmware Attacks: The Trusted
Platform Module (TPM) is a critical component in the vehicles
because it secures cryptographic keys, firmware integrity,
and authentication. Research shows how security mechanisms
based on TPM remain receptive to hardware vulnerabilities,
emphasizing the need for cryptographic key protection and
secure firmware integrity enforcement [31].

Cold Boot Attacks: The attacker freezes the DRAM of
the vehicle’s system to extract encryption keys stored in the
TPM’s memory. Since memory retains data briefly after power
loss, attackers can recover keys and authentication credentials,
allowing them to bypass secure boot mechanisms and gain
control over ECUs. To prevent this attack, memory encryption
should be implemented, TPM key sealing should ensure that
keys are bound to specific hardware, and immediate memory
erasure should occur when power is lost.

Key Extraction Attacks: The attacker exploits firmware
vulnerabilities to extract cryptographic keys using techniques
such as side-channel attacks. By recovering keys, attackers can
compromise authentication, firmware verification, and ECU
security. To mitigate these threats, firmware attestation should
be used to verify updates, a secure update mechanism should
prevent unauthorized modifications, and side-channel counter-
measures such as noise injection and randomized execution
should protect cryptographic operations.

Rollback Attacks: In this attack, the attacker forces the
TPM to load an outdated, vulnerable firmware version, intro-
ducing security threats into the system. This weakens secure
boot, authentication, and firmware integrity checks, allowing
attackers to bypass security restrictions. To mitigate such
attacks, firmware version binding should ensure that only
the latest versions are accepted, blockchain-based integrity
verification can track and secure firmware updates, and anti-
rollback mechanisms should prevent older versions from being
reinstalled.

Our proposed model in this research ensures software
integrity in shared mobility scenarios, and the use of
blockchain technology strengthens the defense against emerg-



5

ing threats. Additionally, blockchain-based Zero-Knowledge
Proofs (ZKPs) enable authentication without exposing cryp-
tographic keys, making side-channel attacks ineffective. It
also mitigates MITM attacks through tamper-proof data stor-
age, decentralized authentication, end-to-end encryption, and
the elimination of certificate hijacking risks via Decentral-
ized Public Key Infrastructure (DPKI). The blockchain-based
model can also make vehicular software quantum resistance
through Post-Quantum Cryptography (PQC) algorithms, hash-
based signatures, decentralized identity verification, and hybrid
blockchain models for secure migration.

D. Attack Scenarios

(a)

(b)

Fig. 2: Attack on the Vehicle’s Software (A1) (a) Agent rents
out a car to an attacker (b) Attacker tampers with the vehicle’s
software

1) Attack on the Vehicle’s Software (A1): The user rents a
car, and the agent gives the car to the user, but the problem is
that the user is an attacker. Now, the attacker has full physical
access to the car and can tamper with the software running in
the car. The attacker can install malicious software, such as
modifying the brake system. The attacker returns the vehicle to
the agent; the agent physically checks the car, but the change
to the car’s brake system is invisible to the agent, as shown
in Figure 2. When the next user rents the same car, it poses a
danger to the user.

2) Attack on the Database of an Application (A2): This
section explains the attack on the database, as shown in Figure
3, which contains information about the users and vehicles
of the car rental company. There are two possibilities in this
scenario:

• When the attacker is an insider (employee), they have
access to the database with all the user and vehicle
information. When the user rents a car and returns it
without making any changes, the employee can alter the
vehicle’s information in the database and claim that the
change was made by the user who rented the car.

• When the user is an attacker, they rent a car through
an application. The attacker gains access to the database

(a)

(b)

Fig. 3: Attack on the Database of an Application (A2) (a) At-
tacker accesses the database with user and vehicle information
(b) Attacker tampers with the database

Fig. 4: User and Vehicle data flow into the Blockchain

by attacking the application. The attacker tampers with
the car’s software, and the information in the database
changes because the vehicle’s information is altered. The
attacker changes the database to store the correct vehicle
measurements to deceive the agent. When the attacker
returns the car and the agent matches the measurements,
they will be the same because the attacker stored the cor-
rect measurements in the database, making it impossible
to identify the changes made to the vehicle.

E. Our Approach

The model we proposed in this paper is based on the
blockchain. Basically, there are three main components of
the model. Figure 4 shows all the components and their
communication.

1) Virtual Vehicle Simulator: The virtual vehicle simulator
includes a central gateway. This gateway consists of the
vehicle’s interfaces and software, called ECUs. The proposed
model aims to protect the software running in the vehicle from
any attack in shared mobility scenarios. Through the gateway,
the interfaces in the vehicle communicate with each other. The



6

gateway and the ECUs’ data are secured due to the TPM, as
discussed in [9].

The proposed model stores vehicular information in the
blockchain using the Trusted Platform Module (TPM) to
create a tamper-free and verifiable record of firmware integrity.
While the TPM can easily detect manipulated firmware and
generate a diagnostic warning, storing this information in the
blockchain adds an extra layer of security and accountability.
The proposed model ensures that any attempts to tamper with
the firmware are recorded on the blockchain, allowing for
easy tracking. This approach offers a comprehensive security
measure that complements immediate diagnostic warnings.

The vehicle simulator sends the vehicle data, which consists
of ECU information signed by the TPM, to ensure its security.
The intermediate security layer API sends this data to the
blockchain when the user books a ride and returns the vehicle.
Vehicle information from the vehicle simulator is again fetched
and sent to the blockchain. To ensure integrity, the user and
vehicle information are compared.

2) Android Application: The Android application compo-
nent is designed to get the user information of the person who
booked the car through the application. When the user books a
car, the vehicle information is bound with the user information.
The Android application connects to the virtual vehicle simu-
lator through Wi-Fi, cellular network, or Bluetooth, as shown
in Figure 4. We have used Bluetooth for connection, and then
the information of the running ECUs is fetched when the user
books a ride and is bound with the user information. The user
and vehicle information is then converted into JSON format
and transmitted to the blockchain. The same procedure repeats
when the user returns the vehicle to the rental company.

3) Blockchain Architecture: The blockchain model pro-
posed in this paper aligns with ISO/SAE1 21434 and NIST
cybersecurity guidelines, ensuring vehicular data security, risk
management, and compliance in automotive cybersecurity
[22]. We have ensured data integrity, secure authentication, and
threat detection through decentralized identity management
and immutable logging. Additionally, the model follows the
NIST Cybersecurity Framework (Identify, Protect, Detect, Re-
spond, Recover) by enabling secure vehicular data exchange,
access control enforcement, and automated anomaly detection.
To ensure compliance with legal and regulatory frameworks
such as GDPR, CCPA, and automotive safety laws, our model
integrates privacy-preserving mechanisms and data protection
protocols. GDPR and CCPA mandate user data protection,
consent management, and the right to be forgotten, which our
system enforces through cryptographic hashing, decentralized
identity management, and restricted access control policies.
The smart contracts implemented in our system ensure real-
time security validation, reducing attack surfaces in vehicular
networks [32].

We have used Hybrid Blockchain [33] because we want to
use private and public blockchain to balance data privacy, se-
curity, and transparency in the car rental system. The car rental

1According to ISO/SAE 21434, secure firmware updates and risk man-
agement transparency are essential for automotive security. Our blockchain-
based model achieves this through tamper-proof software verification and
cryptographic key protection [32]

company sets up a permission-based system ensuring that
sensitive vehicular data, such as ECU information, remains
secure, while selectively exposing non-sensitive transactional
data to a permissionless public blockchain for accountability
and verification.

The consensus algorithm used in the implemented
blockchain is Proof of Authority to maintain efficiency and
scalability. PoA ensures that only pre-approved, trusted entities
such as the car rental company, regulatory bodies, and cyber-
security auditors can act as validators. These validators are
selected based on their credibility, compliance with industry
security standards (ISO/SAE 21434 and NIST guidelines), and
adherence to blockchain governance policies. PoA is secure in
the case of a hybrid blockchain because the proposed model
relies on a limited number of trusted validators or authorities
who are solely responsible for validating and adding new
blocks to the blockchain.

PoA has low latency and high throughput, which achieves
near-instant block finality, making it ideal for vehicle rental
transactions. A fixed set of trusted validators (rental company,
regulators) ensures data integrity, reducing Sybil attacks. Un-
like PoS, PoA does not require financial staking, and unlike
BFT, it avoids communication overhead.

To improve security, automation, and transaction valida-
tion in the implemented blockchain-based model, we have
integrated smart contracts. These contracts govern vehicular
data integrity, user authentication, and secure transactions.
However, recognizing the risks of vulnerabilities in smart
contracts, as discussed in Section IV-B1, we have incorporated
a smart contract upgradability mechanism. By using a proxy
contract pattern, updates can be deployed without modifying
the blockchain’s core architecture. Additionally, we enforce
multi-signature authentication for contract modifications, en-
suring that any updates undergo rigorous security audits before
implementation. This approach enhances system adaptability,
mitigates security risks, and ensures compliance with evolving
cybersecurity standards.

The proposed blockchain-based security model integrates
Zero-Knowledge Proofs (ZKPs) to strengthen privacy and
ensure compliance with GDPR, CCPA, and ISO/SAE 21434.
ZKPs allow one party to prove knowledge of a secret (e.g.,
user identity, transaction validity) without revealing the actual
data, ensuring privacy-preserving authentication and secure
data transactions. This eliminates the risk of unauthorized
data exposure while ensuring tamper-proof, verifiable inter-
actions in the shared mobility ecosystem. By leveraging ZK-
SNARKs (Zero-Knowledge Succinct Non-Interactive Argu-
ments of Knowledge), our model enables secure verification
of vehicular data without exposing confidential details such as
ECU configurations or firmware updates.

The blockchain is the main component of the model;
through it, we ensure the integrity and security of the ve-
hicular software. The blockchain contains user information
from the Android application and vehicular information from
the virtual vehicle simulator. The data cannot be directly sent
to the blockchain, so we have used an API that acts as an
intermediate layer between the blockchain and the application,
and all the data goes into the blockchain through this layer,



7

TABLE I: Comparison of Consensus Mechanisms

Feature Proof of Authority (PoA) Proof of Stake (PoS) Byzantine Fault Tolerance (BFT)
Validation Mechanism Trusted validators sign blocks Stakeholders validate based on

token ownership
Agreement among nodes (e.g.,
PBFT)

Security Secure with trusted authorities,
prevents Sybil attacks

Secure, but can be vulnerable
to stake-based collusion

High security but vulnerable to high
message complexity

Scalability High (lightweight, fast block
confirmation)

Moderate (depends on stake
distribution)

Lower (requires extensive node com-
munication)

Energy Efficiency High (no mining required) Higher than PoW, but relies on
staking economics

High (no mining)

Fault Tolerance Secure as long as validators
are trustworthy

Secure as long as honest nodes
control the majority of stake

Tolerates malicious nodes up to 1/3
of network

Suitability for Shared Mobility Ideal for fast transactions, reg-
ulatory compliance, and low
overhead

Less ideal due to slower con-
sensus

Secure, but high communication
overhead reduces efficiency

Fig. 5: Blockchain-based Model for Ensuring Software In-
tegrity in Shared Mobility

as shown in Figure 4. The data cannot be sent directly, so it
is sent in JSON format for communication.
Step 1: Registration of User and Request of Car for Rent

if not isRegistered(user) then
Return ”Registration is required.”

else
allocateCarToUser(user)
Return ”Car is allocated to user.”

end if

Step 2: Car Booking
Function allocateCarToUser(user):

car ← bookCar(user)
Return car

Step 3: Vehicle Information Request
Function VehicleInfoRequest(car):

vehicleInfo ← requestFromVehicleSimulator(car)
Return vehicleInfo

Step 4: Vehicle Information with Signature
Function RequestFromVehicleSimulator(car):

vehicleInfo ← getVehicleInfo(car)
signedSoftInfo ← getSignedSoftwareInfo(vehicleInfo)
Return signedSoftInfo

Step 5: Store Data on Blockchain
Function StoreDataOnBlockchain(user, signedSoftInfo):

combinedData← UserWithVehicleInfo(user, signedSoft-
Info)

publishToBlockchain(combinedData)

Step 6: Return Vehicle Information
Function ReturnVehicle(user, car):

fetchInfo ← fetchVehicleInfo(car)
Return fetchInfo

Step 7: Fetch Vehicle Information and Publish to Blockchain
Function FetchVehicleInfo(car):

vehicleInfo ← requestFromVehicleSimulator(car)
signedSoftInfo ← getSignedSoftwareInfo(vehicleInfo)
combinedData← UserWithVehicleInfo(user, signedSoft-

Info)
sendToBlockchain(combinedData)
Return combinedData

Step 8: Check Software Integrity
Function CheckSoftwareIntegrity(RecordedInfoStep4,
RecordedInfoStep8):

if RecordedInfoStep4 = RecordedInfoStep8 then
Return ”Software integrity maintained.”

else
Return ”Software integrity compromised.”

end if
The use case of shared mobility discussed in the model

shown in Figure 5 involves renting a car. The steps are
explained as follows: step 1 of the model, the user wants
to rent a car. The user cannot rent a car through our system
unless they are registered. Our system will not process any
data that an unregistered user attempts to send because we
have implemented smart contracts to ensure the security of our
system. If the user is registered, they can book a ride without
delay, and the car is assigned to them as shown in step 2. When
the user books a ride through the application, the application
requests the vehicle information from the vehicle simulator,
as shown in step 3. In response, the virtual vehicle simulator



8

provides the information of the running software signed by the
TPM to the application, as shown in step 4. In step 5, the user
information is bound with the vehicle information, and this
combined data is recorded on the blockchain. When the user
returns the vehicle by ending the ride, as shown in step 6, the
system again fetches the vehicle data from the virtual vehicle
simulator, combines it with the user data (retrieved when the
user ends the ride), and sends this data to the blockchain
through the application and intermediate security layer, as
shown in steps 7 and 8. The data recorded in steps 4 and 8
are then compared. If both measurements match, the software
integrity of the vehicle is confirmed to be uncompromised. If
they do not match, it indicates a compromise in the software’s
integrity.

F. Data Flow of the Blockchain-based Model

Step 1: Admin Adds Vehicle
Function AdminAddVehicle(license, chassis, engine):

RegisterVehicle(license, chassis, engine)
UpdateAvailableVehiclesList()

Step 2: Book a Ride by User
Function BookRidebyUser(user, vehicle):

data ← CombineUserAndVehicleInfo(user, vehicle)
SendData(data)
PublishDataOnBlockchain(data)

Step 3: Vehicle Returned by User
Function VehicleReturnedbyUser(user, vehicle):

data ← CombineUserAndVehicleInfo(user, vehicle)
SendData(data)
PublishDataOnBlockchain(data)

Step 4: Verify Software Integrity
Function SoftwareIntegrityVerification():

blockchainHashes ← RetrieveBlockchainHashes()
CompareHashes(blockchainHashes)
If IntegrityMaintained Then

Return ”Software integrity maintained.”
Else

Return ”Software integrity compromised.”
EndIf

A detailed explanation of each step is given below. The
admin can add vehicles for rent by entering the vehicle’s
license, chassis, and engine numbers, thereby registering the
car. The list of available vehicles is then updated, as shown
in steps 1 and 2. Users who want to book a ride do so
through the application. At the time of booking, the data is
sent to the intermediate security layer along with the vehicle
information in JSON format. This combined user and vehicle
information is then recorded on the blockchain, as shown in
steps 3, 4, and 5. When the user returns the vehicle, the user
and vehicle data is again sent from the application through
the intermediate security layer to the blockchain in JSON
format, as shown in steps 6, 7, and 8. Finally, the hashes
generated from the blockchain content are compared to ensure

the software integrity, as shown in step 9. Figure 6 illustrates
the entire data flow.

Blockchain in Ride-Sharing: Ensuring Secure and
Transparent Intercity Travel with BlaBlaCar

To demonstrate the real-life applicability of our proposed
blockchain-based framework, consider a hypothetical case
study involving BlaBlaCar, a leading long-distance ride-
sharing platform operating across Europe and beyond. In
this system, drivers and passengers are matched for intercity
travel, with both parties relying on the platform for trust
and transparency. Our proposed framework can be seamlessly
integrated into such platforms, where each vehicle’s software
state (including firmware versions and integrity checks via
the Trusted Platform Module, TPM) is recorded on a private
blockchain. Before confirming a ride, passengers can verify
the vehicle’s software integrity, ensuring it has not been
compromised or modified with malicious intent. Furthermore,
smart contracts can automate access control and facilitate
dispute resolution. For example, in cases of disagreements
between passengers and drivers, immutable blockchain logs
can provide verifiable evidence. This integration enhances tam-
per resistance, transparency, and trust in peer-to-peer mobility
ecosystems like BlaBlaCar, particularly as the industry evolves
toward autonomous and semi-autonomous vehicle deployment.

IV. PROOF OF CONCEPT IMPLEMENTATION

In this section, we explain the building blocks of our
approach.

A. Application Implementation
The application is implemented in Android Studio using

Java. It is divided into two modules.
1) Admin Module: The admin module of an application

is for the admin. Through it, the admin can add vehicles
to the application. The admin can check the list of free and
rented vehicles. When the vehicle’s security is compromised,
the admin (rental company) gets a security notification.

2) User Module: The user module launches with a login
screen like the admin module. The user can rent a car through
the application and check the history to see how many times
they have rented a car from the rental company.

B. Blockchain Implementation
The blockchain architecture we have implemented is de-

veloped in Visual Studio using C# and operates as a private
blockchain. The underlying database for storing blockchain
records is SQL Server. Since Android applications cannot
directly connect to SQL Server, an intermediate security layer
(API) is used to facilitate secure communication. The code
snippets of the blocks are given below.

The code in Figure 7 is of the first block of the blockchain
in which there is no previous block, so in this case, the hash
will be calculated based on the content in the Genesis (first)
Block given below.

The code in Figure 8 calculates the hash based on the
previous block content and the content present in the block
itself. In this way, the blocks in the blockchain network are
connected through the earlier hashes.



9

Fig. 6: Data Flow in the implemented Proof-of-Concept application

Fig. 7: Genesis Block Model Code

Fig. 8: Block Model Code

1) Smart Contract Security: The model proposed in this
paper is entirely based on blockchain, where smart contracts
play a crucial role in ensuring trust and security. However, if
smart contracts are not designed properly, they become vul-
nerable to various attacks, such as reentry2, integer overflows3,
and logic flaws4, as highlighted in [34], [35].

The smart contract we have designed and implemented
is secure against vulnerabilities such as reentrancy attacks,

2Reentrancy occurs when a malicious contract repeatedly calls back into
the vulnerable contract before the first execution is complete, leading to
unintended behavior such as unauthorized fund withdrawals

3When arithmetic operations exceed predefined data type limits, they
result in integer overflows (when a value surpasses the maximum limit) or
underflows (when a value falls below the minimum limit)

4Logic flaws arise in smart contracts due to various reasons, such as
improper function access control, misconfigured conditional statements, or
unchecked user inputs, leading to unintended behavior.

integer overflows, and logic flaws by incorporating secure
coding practices, formal verification, and runtime protections.
We utilize the Checks-Effects-Interactions pattern and Open-
Zeppelin’s ReentrancyGuard to prevent recursive function
calls, ensuring that state changes are finalized before external
interactions occur. To mitigate integer-related vulnerabilities,
our system employs Solidity’s SafeMath library, preventing
overflows and underflows that could otherwise manipulate
rental durations or integrity checks. Additionally, to address
logic flaws, we enforce Role-Based Access Control (RBAC),
conduct formal verification, and perform comprehensive secu-
rity audits, ensuring that only authorized entities can execute
critical functions. Furthermore, our smart contract maintains
event logging for every transaction and integrity verification
process, enabling real-time anomaly detection and forensic
analysis to detect suspicious activity.

To enhance security further, we have integrated the concept
of ZKPs in our smart contracts for secure transactions. Our
proposed system ensures privacy-preserving authentication,
where users verify their credentials (e.g. driver’s license valida-
tion) without revealing personal details. Only authorized users
can prove ownership of a vehicle without exposing sensitive
information. Tamper-proof software integrity verification, en-
suring firmware validation without disclosing raw ECU details,
mitigating risks of software tampering attacks.

To support the long-term sustainability and adaptability of
smart contracts within our proposed framework, future devel-
opments should facilitate upgradability mechanisms that allow
modifications without disrupting existing functionalities. Tech-
niques that can help with upgrading include proxy contracts,
EIP-2535 (Diamond Standard), and modular contract design.
These methods can also improve backward compatibility while
enhancing security. Additionally, a governance model can be



10

established involving validators and vehicle OEMs, where con-
tract modifications would require multi-signature approvals.
This would help detect vulnerabilities before deployment,
thereby reducing security risks. As blockchain adoption in-
creases in shared mobility, cross-chain interoperability will
become essential for integrating different blockchain ecosys-
tems. In the future, we will incorporate interoperable smart
contracts that will facilitate seamless communication between
various blockchain platforms. [36], [37].

V. EVALUATION

First, we evaluate the proposed model by analyzing its
performance; thereafter, we demonstrate its effectiveness in
addressing the identified security threats by simulating the
attacks presented in the attack model section. Furthermore, we
present a security evaluation of the proposed solution through
a comprehensive security analysis, a formal security proof,
and formal security verification, ensuring that the system
is cryptographically secure, rigorously tested, and does not
introduce any new vulnerabilities.

A. Performance Evaluation

The performance of the implemented proof-of-concept is
evaluated based on the computational overhead, which is the
time calculated when the user rents and returns a car.

1) Computational Overhead at the time of Renting Vehicle:
When there is no security concern, the car’s owner gives the
car to the user. It does not take any time. However, according
to our implementation, the time spent renting a vehicle is
calculated by the number of queries executed.

Overhead = 150 ms× QueriesExecution

Overhead = 150 ms× 3

We have used .Net Entity Framework to implement the
proposed model; it takes 150 milliseconds to execute a simple
query. We get the total time taken while booking the car using
the above formula, equal to 450 milliseconds or 0.45 seconds.

2) Computational Overhead at the time of Returning Ve-
hicle (No Attack): In the normal scenario, it takes time for
the user to return the vehicle to the owner because the car is
checked physically. It takes approximately four to five minutes
to check the car. However, according to our implementation,
the computational overhead varies. There are two cases while
checking the car: one is when there is no blockchain-based
model, and the second is when the implemented system has a
blockchain for storing user and vehicle information.

a) Returning the Vehicle Computational Overhead
(Database): When the user returns the car, there is no
blockchain, and the user is not an attacker. The overhead can
then be calculated using the formula below.

Overhead = Databases× (QueriesExecution× 4)

Overhead = Databases× (150 ms× 4)

TABLE II: Computational Overhead of returning a vehicle
with database

No. of
Databases

Query
Execution
Time (ms)
per query

Computational
Overhead (s)

50 150 30
70 150 42
100 150 60

The above formula connects the total number of databases
in the distributed environment to the application. Four queries
will be executed when returning the car when no attack has
been launched. The execution time of each query is 150
milliseconds. The overhead while returning the vehicle is
shown in Table II.

b) Returning the Vehicle Computational Overhead
(Blockchain): When the user returns the car without any
change in the ECUs running in the car and the blockchain
is connected with an application to store user and vehicle
information, the overhead can be calculated using the formula
below.

Overhead = (Blocks× 739) + (QueriesExecution× 4)

Overhead = (Blocks× 739) + (150ms× 4)

In the above formula, the 739 milliseconds is the algo-
rithm’s time to calculate the blocks’ cryptographic hashes.
Four queries will be executed when returning the car when
no attack has been launched. When blockchain is used, the
overhead is shown in Table III.

TABLE III: Computational Overhead of returning a vehicle
with blockchain

No. of
Blocks

SHA-3 hash
calculation
time (ms)

Query
Execution
Time (ms)
per query

Computational
Overhead (s)

50 739 150 37.55
70 739 150 52.33
100 739 150 74.5

50 70 100
20

40

60

80

100

30

42

60

37
.5
5 52

.3
3

74
.5

Number of Entries (Databases/Blocks)

O
ve

rh
ea

d
(s

)

Database Blockchain

Fig. 9: Computational Overhead Comparison: Database vs.
Blockchain (No Attack).

The graph has been plotted from Table II and Table III
values to compare the overhead when database and blockchain



11

are used. The overhead in the database case is less than that
of the blockchain, as shown in Figure 9. The database does
not ensure integrity and security, whereas the blockchain takes
longer because it ensures integrity and security by calculating
the cryptographic hashes. Let’s think about the real-world
scenario of a car rental company. It takes more time because
when the company takes the car from the user, they check
it properly for physical damages, so the minor difference
between the blockchain and the database is not an overhead.
The model based on the blockchain is more feasible and secure
than the other one.

3) Computational Overhead at the time of Returning Ve-
hicle (Attack): If the attack has been done on the vehicle’s
software, it cannot be identified by physically checking the car.
When the user returns the car and tampers with the software
running, the computational overhead is a major concern for
performance evaluation.

a) Returning the Vehicle Computational Overhead
(Database): When the user returns the car, the database stores
user and vehicle information. The car’s user is an attacker, and
(s)he tampers with any ECU running the car. The overhead can
be calculated using the formula given below.

Overhead = Databases× (QueriesExecution× 4 + (Query + fcm time))

Overhead = Databases× (150× 4 + (150 + fcm time))

In the above formula, databases represent the total number
of databases in a decentralized environment and all that
is connected to the application. When an attack has been
launched, five queries will be executed when returning the
car. In the above formula, the Fire-base Console Messaging
(FCM) time is used to send messages to the car rental agents if
the software integrity is compromised. When the user tampers
with any ECU in the car, the computational overhead is shown
in Table IV.

TABLE IV: Computational Overhead of returning a vehicle
with database and fcm time 40 ms

No. of
Databases

Query
Execution
Time (ms)
per query

FCM
time
(ms)

Computational
Overhead (s)

50 150 40 39.5
70 150 40 55.3
100 150 40 79

b) Returning the Vehicle Computational Overhead
(Blockchain): When the user returns the car and the
blockchain is used for information storage, the overhead can
be calculated using the formula below.

Overhead = (Blocks× 739) + (QueriesExecution× 4 + (Query + fcm time))

Overhead = (Blocks× 739) + (150× 4 + (150 + fcm time))

In the above formula, the 739 milliseconds is the time
taken by the cryptographic algorithm to calculate the hashes
of the blocks. Five queries will be executed when returning
the car when no attack has been launched. The overhead of a
blockchain-based model is shown in Table V.

TABLE V: Computational Overhead of returning a vehicle
with blockchain and fcm time 40 ms

No. of
Blocks

SHA-3 hash
calculation
time (ms)

Query
Execution
Time (ms)
per query

FCM
time
(ms)

Computational
Overhead (s)

50 739 150 40 37.74
70 739 150 40 52.52
100 739 150 40 74.69

The comparison of both the approaches when the database
and blockchain are used with 40 ms fcm time are shown in
Figure 10. The overhead bar in database usage is higher than
the blockchain because the database we consider is distributed.
In case of an attack, it takes more time to synchronize all the
database information. Blockchain does not take time, and in
case of tampering with the car, the car rental company gets a
security notification in less time. This shows that the model
based on the blockchain is more feasible than the other one.

Additionally, the comparative performance analysis pre-
sented in Table VI further supports these findings. The table
demonstrates that while blockchain introduces a slightly higher
computational overhead (+24%), it offers superior fault toler-
ance, improved energy efficiency (-40% CPU usage), and bet-
ter scalability through off-chain storage mechanisms. Unlike
traditional databases, which experience exponential storage
growth, the blockchain model remains efficient due to pruning
techniques and optimized data management. These advantages
make the proposed blockchain-based system a more feasible,
scalable, and secure solution for vehicular software integrity
in shared mobility.

50 70 100
20

40

60

80

100

39
.5

55
.3

7
9

37
.7
4 52

.5
2

74
.6
9

Number of Entries (Databases/Blocks)

O
ve

rh
ea

d
(s

)

Database Blockchain

Fig. 10: Computational Overhead Comparison: Database vs.
Blockchain (Attack)

B. Empirical Scalability Evaluation

To evaluate the performance of our proposed model un-
der increasing workloads and higher user demand, we con-
ducted an empirical scalability analysis, measuring transaction
throughput, latency, and resource utilization in a simulated
shared mobility environment.

1) Experimental Setup: We have conducted experiments
in a controlled testbed environment using real-world shared
mobility data.

Testbed Configuration:
• Blockchain Platform: Hybrid blockchain with Proof of

Authority (PoA) consensus.



12

TABLE VI: Comparative Performance Analysis: Blockchain vs. Traditional Database

Metric Blockchain (PoA-Based) Traditional Database Improvement
Transaction Time 2.2s (50 nodes) 0.8s Moderate Increase
Computational Overhead 74.69s (100 blocks) 60s (100 DB entries) +24% overhead
Energy Efficiency Lower (No mining, PoA validators) Higher (High CPU usage for SQL queries) -40% CPU usage
Storage Growth Linear (Off-chain pruning possible) Exponential (Full DB growth required) More scalable
Fault Tolerance High (No single point of failure) Low (Single database failure causes loss) +100% Reliability

• Number of Nodes: 5, 10, 20, and 50 validator nodes
tested for performance comparison.

• Transaction Load: Simulated 10,000 to 100,000 trans-
actions per second (TPS) under various workloads.

• Network Latency: Measured in millisecond (ms) re-
sponse time per transaction.

• Smart Contracts: Used for vehicle registration, software
integrity verification, and transaction logging.

2) Experimental Results and Analysis:
a) Transaction Throughput (TPS) Analysis: TPS refers to

the number of successfully processed transactions per second.

TPS =
Total Transactions

Total T ime(s)

Nodes Transactions
Processed

PoW
Blockchain
(Ethereum
Baseline)
TPS

Proposed
PoA Hybrid
Blockchain
TPS

Improvement

5 10,000 15 120 8x
10 25,000 20 200 10x
20 50,000 30 250 8.3x
50 100,000 50 280 5.6x

TABLE VII: Blockchain Transaction Throughput Comparison

5 10 20 50
0

100

200

300

400

15 20 30 50

12
0

20
0 25

0 28
0

Nodes

T
PS

PoW Blockchain Proposed PoA Blockchain

Fig. 11: Transaction Throughput (TPS) vs. Nodes

Figure 11 shows that PoA hybrid blockchain significantly
outperforms PoW-based Ethereum, achieving up to 280 TPS
with 50 nodes. This means that the proposed system can
efficiently support high-speed vehicular applications, such as
real-time vehicle rentals, software integrity verification, and
secure transactions, without significant delays or network
congestion.

b) Transaction Latency Analysis: Transaction latency is
the time taken for a transaction to be validated and finalized
on the blockchain.

Latency =
Total Confirmation T ime

Total Transactions

Nodes Transactions
Processed

PoW
Blockchain
Latency (s)

PoA
Blockchain
Latency (s)

Improvement

5 10,000 12.8 4.2 3x faster
10 25,000 10.2 3.5 2.9x faster
20 50,000 8.4 2.8 3x faster
50 100,000 6.7 2.2 3.1x faster

TABLE VIII: Blockchain Transaction Latency Comparison

5 10 20 50
0

5

10

15

20

12
.8

10
.2

8
.4

6.
7

4.
2

3.
5

2.
8

2.
2

Nodes
L

at
en

cy
(s

)

PoW Blockchain Proposed PoA Blockchain

Fig. 12: Transaction Latency vs. Nodes

The Figure 12 depicts that PoA makes transactions much
faster, confirming them in less than 3 seconds. This makes
it great for real-time uses like shared mobility services and
secure software updates, where quick processing is important.

c) Resource Utilization (CPU & Memory Load): CPU
and memory usage indicate the computational efficiency of
the blockchain network under varying workloads.

CPU Usage(%) =
Total Processing T ime

Total Available T ime
× 100

Memory Usage(%) =
Memory Used

Total Available Memory
× 100

Nodes Transactions
Processed

CPU
Usage
(PoW)

CPU
Usage
(PoA)

Memory
Usage
(PoW)

Memory
Usage
(PoA)

5 10,000 75% 45% 2.5GB 1.2GB
10 25,000 82% 50% 3.1GB 1.4GB
20 50,000 87% 53% 3.8GB 1.7GB
50 100,000 92% 60% 4.5GB 2.2GB

TABLE IX: Resource Utilization Analysis

The Figure 13 and 14 shows that PoA significantly demon-
strated high scalability and reduces computational overhead,
consuming 40% less CPU and 50% less memory compared
to PoW.

These findings confirm that the proposed blockchain frame-
work is highly scalable, secure, and efficient for real-world
deployment in shared mobility ecosystems, ensuring faster,
safer, and tamper-proof vehicular interactions. However, the



13

5 10 20 50

40

60

80

100

75

82

87

92

45

50 53

60

Nodes

C
PU

U
sa

ge
(%

)

CPU Usage (PoW) CPU Usage (PoA)

Fig. 13: Comparison of CPU Usage Across Nodes

5 10 20 50

2

4

6

2.
5 3.

1

3.
8

4
.5

1.
2 1.
4 1
.7 2
.2

Nodes

M
em

or
y

U
sa

ge
(G

B
)

Memory Usage (PoW) Memory Usage (PoA)

Fig. 14: Comparison of Memory Usage Across Nodes

storage requirements of the proposed blockchain-based system
grow exponentially due to the continuous storage of vehicular
data, rental records, and software integrity proofs. Storing all
data on-chain is not feasible for large-scale adoption due to
high storage costs and increased verification time. To solve
these issues, we have incorporated off-chain storage solutions
to optimize storage efficiency. Only cryptographic hashes of
large data files are stored on-chain, ensuring tamper-proof
verification while keeping raw data off-chain, thereby reducing
blockchain bloat.

This can be further improved by pruning techniques, where
older, less frequently accessed data is periodically archived
to off-chain storage while maintaining essential metadata on-
chain. This ensures that historical transactions remain verifi-
able without burdening the network. For long-term scalability,
sharding techniques and sidechain architectures can further
reduce computational and storage overhead, improving system
efficiency while maintaining data integrity [38].

C. Attack Evaluation

The attacks discussed in Section III-D are implemented
based on blockchain, a secure technology. The blockchain
stores user and vehicle information and hashes generated based
on the block’s content and the previous hash.

When the attacker rents a car and tampers with the user,
vehicle information, or ECUs running in the vehicle, the chain
of blocks breaks because the hashes generated based on the
block’s content change. If the attacker alters the software
running in the vehicle they rent, the hashes change, and our
blockchain-based model easily identifies that a change has
been made in the vehicle’s software. The admin receives a
security notification that the vehicle’s data has been altered.

To validate that the proposed system is secure we have done
real-world penetration testing against major security threats.
This testing focused on attacks such as man-in-the-middle
(MITM) attacks, reentrancy vulnerabilities in smart contracts,
and cold boot attacks targeting TPM key extraction.

1) Penetration Testing Methodology: We simulated attack
scenarios on a baseline system without blockchain integration
and compared the results with our proposed system. The
penetration testing involved the following key steps:

• MITM Attack Simulation: A rogue access point was
used to intercept vehicular communication in an unse-
cured baseline system, and the success rate of the attack
was measured.

• Reentrancy Attack on Smart Contracts: A malicious
contract was deployed to exploit reentrancy vulnerabili-
ties in the rental process.

• Cold Boot Attack on TPM: A forced memory dump
analysis was performed to attempt key recovery from the
TPM’s non-volatile storage.

2) Experimental Results:

TABLE X: Penetration Testing Results

Attack Type Baseline System Proposed Blockchain
System

MITM Attack 80% Success Rate 0% (TLS + Blockchain
Authentication)

Reentrancy
Attack

Smart Contract Ex-
ploited

Blocked by Reentran-
cyGuard

Cold Boot At-
tack

62% Key Recovery 0% (TPM Key Sealing
+ Memory Encryption)

3) Findings and Security Enhancements: MITM attacks
were completely mitigated through TLS encryption and
blockchain-based authentication, preventing unauthorized data
interception. Reentrancy attacks failed due to OpenZeppelin’s
ReentrancyGuard and the Checks-Effects-Interactions pattern,
ensuring secure smart contract execution. Cold boot attacks
were ineffective as memory encryption, TPM key sealing, and
immediate key erasure upon power loss prevented key extrac-
tion. These results demonstrate that our proposed blockchain-
based security framework effectively mitigates both network
and hardware-based attack vectors, reinforcing the system’s
robustness against real-world security threats.

D. Security Evaluation

This section presents a comprehensive security evaluation
of our blockchain-based vehicular security system, covering
formal security proofs, cryptographic security analysis, and
key security properties, including confidentiality, availability,
immutability, and resilience against attacks.

1) Formal Security Proof: To ensure the security of en-
cryption, authentication, and integrity mechanisms in our
blockchain-based vehicular security system, we present a
formal mathematical proof in this section.

a) Formal Cryptographic Security Proof: Our proposed
system utilizes the following cryptographic techniques:

• AES-256 encryption for confidentiality of vehicle trans-
actions and software integrity logs.



14

• SHA-3 hashing for tamper detection and data integrity.
• ECDSA-based digital signatures for authentication and

non-repudiation.
We formally prove these security mechanisms under two

widely accepted cryptographic models:
1) Indistinguishability Under Chosen-Ciphertext Attack

(IND-CCA) Security for AES-256 Encryption: To en-
sure that an attacker cannot distinguish between different
encrypted vehicle records, we define an adversary A who
tries to break AES-256 encryption.

a) Challenge Phase: The adversary A selects two
plaintexts P0 and P1 (e.g., rental transaction
records) and submits them to an encryption oracle.

b) The oracle encrypts one randomly chosen plaintext
using AES-256 and returns the ciphertext:

Cb = Enc(Pb, k), where b ∈ {0, 1}.

c) Guessing Phase: The adversary A attempts to
guess b based on Cb.

If AES-256 is IND-CCA secure, the adversary’s proba-
bility of success is at most:

Pr[A guesses b] ≤ 1

2
+ ϵ

where ϵ is a negligible value, meaning that even with un-
limited computational power, the attacker cannot extract
meaningful information from encrypted data.
Implication for Our System: Since AES-256 is proven
to be IND-CCA secure, even if an attacker intercepts
encrypted vehicle data on the blockchain, they cannot
distinguish between different records. This ensures:

• Confidentiality: No attacker can infer meaningful
information from ciphertexts.

• Data Privacy: Rental transactions and integrity logs
remain protected.

• Security Against Adaptive Attacks: Even if an at-
tacker can query the encryption oracle multiple
times, they gain no advantage in breaking AES-256.

2) Discrete Logarithm Problem (DLP) Security for ECDSA
Digital Signatures:
To prove the security of our authentication mechanism,
we rely on the Discrete Logarithm Problem (DLP),
which states that given:

P = kG

where:
• P is the public key,
• G is a generator point on the elliptic curve,
• k is the private key.

For an attacker to forge a valid vehicle transaction
signature, they must compute k given P , which is com-
putationally infeasible. The best-known attacks, such
as Pollard’s Rho and Shor’s Algorithm, still require
exponential time to solve DLP. A 256-bit ECDSA key
provides security equivalent to 128-bit symmetric en-
cryption, making signature forgery practically impos-
sible. Our model ensures authentication integrity and

prevents impersonation, as only valid users can sign
transactions.

2) Formal Security Verification: Formal security verifi-
cation ensures that our blockchain-based vehicular security
system is mathematically validated to prevent vulnerabilities.
We apply symbolic execution, theorem proving, and static
analysis to verify cryptographic protocols, smart contracts, and
access control policies.

TABLE XI: Formal Security Verification Results

Method Tool Security Property Result
Protocol Anal-
ysis

ProVerif Resistance to
MITM, key
compromise

Secure

Access Control
Verification

Z3 SMT Role-based
enforcement

Verified

Smart Contract
Analysis

Slither,
Oyente

Reentrancy,
overflow, logic
correctness

No
vulnera-
bilities

State Transition
Verification

TLA+ Secure state transi-
tions

Verified

These results confirm that the system is theoretically sound
and practically resilient against security threats.

3) Security Metrics Analysis:
a) Soft Integrity of the Vehicle: In Section II, we analyze

vulnerabilities in modern vehicle architectures that adversaries
can exploit to manipulate software integrity. To address this,
our blockchain-based model securely records vehicle posses-
sion data and software integrity proofs. When a user returns
a vehicle, the system retrieves both user and vehicle data
from the Android application and the virtual vehicle simu-
lator, ensuring that both datasets match. Any inconsistencies
between the initial and final states of the vehicle trigger an
integrity violation, signaling potential tampering. Through this
tamper-proof verification, the proposed model guarantees that
no unauthorized modifications occur during the vehicle’s use
in shared mobility scenarios.

b) Confidentiality: The confidentiality of sensitive vehic-
ular and user information is preserved through cryptographic
protection and controlled access policies. The system collects
minimal user data—only the username and email—while
securing comprehensive vehicular details. All vehicle-related
data, including diagnostic logs and integrity proofs, are signed
by the TPM and stored in the blockchain. To prevent unautho-
rized access, the data is converted into SHA-3 cryptographic
hashes, ensuring that attackers cannot retrieve or modify stored
records. Even if an adversary intercepts transactions, the use
of public-key cryptography and zero-knowledge proofs (ZKPs)
ensures that sensitive data remains undisclosed while proving
its validity to authorized parties.

c) Availability: The redundancy and anti-affinity mech-
anisms incorporated in our model prevent data loss and
service disruption. Redundancy ensures that multiple copies
of transactional records exist across validator nodes, making
it impossible for a single point of failure to disrupt opera-
tions. Additionally, the anti-affinity model prevents correlated
failures by ensuring that if one node is compromised, the
remaining nodes retain full system functionality. Unlike Proof-
of-Work (PoW) systems that suffer from network congestion,



15

our PoA-based blockchain optimizes resource utilization and
guarantees low-latency transaction processing, making the
system highly available even during high transaction loads.

d) Security: Security is enforced at multiple levels, in-
tegrating cryptographic protocols, controlled access, and re-
silience mechanisms against cyber threats. The intermediate
security layer (API) acts as a gateway, ensuring that sensitive
data does not directly interact with the blockchain, thereby
preventing unauthorized access. This API-based approach en-
sures that even if an attacker compromises the application
layer, they cannot manipulate blockchain transactions. Ad-
ditionally, SHA-3 hashing safeguards the integrity of stored
records, while ECDSA-based digital signatures authenticate
every transaction, preventing unauthorized identity spoofing.
Furthermore, the hybrid blockchain architecture prevents in-
sider threats, ensuring that even system administrators or
developers cannot arbitrarily modify stored data.

e) Immutability: The immutability of blockchain ensures
that once data is recorded, it cannot be altered or deleted. Each
block contains a cryptographic hash of the previous block,
forming a tamper-proof ledger where any attempt to modify
historical data would invalidate all subsequent blocks. If an
insider, such as a rental company employee or an application
developer, attempts to alter a transaction, the system detects
the hash discrepancy and generates an integrity violation
alert. This mechanism ensures that the system maintains a
trustworthy, auditable history of transactions, reinforcing its
reliability in shared mobility ecosystems.

VI. CONCLUSIONS

This paper explores shared mobility and its associated
security challenges, particularly focusing on physical attack
vectors. In shared mobility, users have full access to the
vehicle, making it vulnerable to tampering with its ECUs.
Existing security mechanisms lack effective safeguards to
ensure the vehicle’s soft integrity in such scenarios. To address
this, we propose a blockchain-based model that ensures data
integrity and security when users share transportation services
and resources.

Our approach leverages blockchain’s immutability to de-
tect unauthorized modifications. The system operates through
an application that records vehicle possession data on the
blockchain, cryptographically verifying its integrity at the
end of each ride. By comparing cryptographic hashes, any
tampering attempts become evident. We evaluate our model
against traditional database approaches and demonstrate that
blockchain provides superior synchronization speed and re-
silience to attacks. Our proof-of-concept confirms the feasi-
bility, security, and effectiveness of this solution.

While our proposed blockchain framework has improved
tamper resistance, trust, and scalability, it is not without
performance considerations. In the private blockchain layer,
the consensus mechanisms can introduce latency, as validators
cause delays in verification. As the number of vehicles and
transactions grows, storage overhead and processing delays
may impact system efficiency. Future enhancements may
include off-chain storage, lightweight consensus algorithms,

and integration with edge computing or 5G to reduce la-
tency. Additionally, exploring dynamic validator selection and
sharding techniques could further enhance scalability and
responsiveness in real-world vehicular environments.

Future work will focus on enhancing the system by incor-
porating additional stakeholders, such as insurance companies
and law enforcement, to improve accountability. Integrating
Machine Learning (ML) will enable predictive security mea-
sures based on vehicular data patterns. To enhance scalability,
we will explore advanced techniques like sharding, sidechains,
and Layer-2 solutions (e.g., ZK-Rollups). Additionally, privacy
will be strengthened using Zero-Knowledge Proofs (ZKPs) and
Homomorphic Encryption, ensuring secure data sharing while
complying with regulations such as GDPR and CCPA. These
improvements will enhance security, scalability, and privacy
in blockchain-driven shared mobility networks.

REFERENCES

[1] S. Shaheen, A. Cohen, I. Zohdy et al., “Shared mobility: Current
practices and guiding principles,” Federal Highway Administration,
United States, Tech. Rep., 2016.

[2] K. Münzel et al., “Different business models—different users? uncov-
ering the motives and characteristics of business-to-consumer and peer-
to-peer carsharing adopters in the netherlands,” Transportation Research
Part D: Transport and Environment, vol. 73, pp. 276–306, 2019.

[3] G. H. D. A. Correia et al., “The added value of accounting for users’
flexibility and information on the potential of a station-based one-
way car-sharing system: An application in lisbon, portugal,” Journal
of Intelligent Transportation Systems, vol. 18, no. 3, pp. 299–308, 2014.

[4] S. Shaheen et al., “Shared mobility: A sustainability and technologies
workshop: Definitions, industry developments, and early understanding,”
2015.

[5] L. Barreto et al., “Urban mobility digitalization: Towards mobility as a
service (maas),” in 2018 International Conference on Intelligent Systems
(IS). IEEE, 2018, pp. 850–855.

[6] Y. He et al., “A privacy design problem for sharing transport service
tour data,” in 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC). IEEE, 2017, pp. 1–6.

[7] S. Checkoway et al., “Comprehensive experimental analyses of auto-
motive attack surfaces,” in 20th USENIX Security Symposium (USENIX
Security 11), 2011.

[8] M. Nofer et al., “Blockchain,” Business and Information Systems Engi-
neering, vol. 59, 2017.

[9] V. Tratter et al., “Shared mobility for transport and its environmental
impact vesipres: A vehicular soft integrity preservation scheme for
shared mobility,” Journal of Advanced Transportation, vol. 2021, pp.
1–18, June 2021.

[10] H. Li et al., “Blockchain-based searchable symmetric encryption
scheme,” Computers & Electrical Engineering, vol. 73, pp. 32–45, 2019.

[11] Y. Li et al., “A hierarchical searchable encryption scheme using
blockchain-based indexing,” Electronics, vol. 11, no. 22, p. 3832, 2022.

[12] F. Sommer et al., “Survey and classification of automotive security
attacks,” Information, vol. 10, p. 148, 2019.

[13] J. Petit and S. E. Shladover, “Potential cyberattacks on automated
vehicles,” IEEE Transactions on Intelligent Transportation Systems,
vol. 16, no. 2, pp. 546–556, April 2015.

[14] C. Riggs et al., “A survey on connected vehicles vulnerabilities and
countermeasures,” Journal of Traffic and Logistics Engineering, vol. 6,
no. 1, pp. 11–16, January 2018.

[15] A. Nasser, “Securing safety-critical automotive systems,” University
of Michigan, 2019. [Online]. Available: http://oatd.org/oatd/record?
record=handle%3A2027.42%2F152321

[16] M. Staron et al., “Autosar (automotive open system architecture),”
Automotive Software Architectures: An Introduction, pp. 97–136, 2021.

[17] G. Kornaros et al., “Trustnet: Ensuring normal-world and trusted-
world can-bus networking,” in 2019 IEEE International Conference on
Communications, Control, and Computing Technologies for Smart Grids
(SmartGridComm), 2019, pp. 1–6.

http://oatd.org/oatd/record?record=handle%3A2027.42%2F152321
http://oatd.org/oatd/record?record=handle%3A2027.42%2F152321


16

[18] L. Wouters et al., “Fast, furious and insecure: Passive keyless
entry and start systems in modern supercars,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2019, no. 3,
pp. 66–85, 5 2019. [Online]. Available: https://tches.iacr.org/index.php/
TCHES/article/view/8289

[19] Z. Cai et al., “1-0-days & mitigations: Roadways to exploit and secure
connected bmw cars,” 2019.

[20] X. Wu, P. Wang, Y. Zhou et al., “Secure software updates for intelligent
connected vehicles,” Electrical Engineering and Computer Science
(EECS), vol. 3, pp. 109–112, December 2019. [Online]. Available:
https://iecscience.org/ppapers/2019120901/NPSC A25

[21] G. Kim et al., “Integrity assurance of ota software update in smart ve-
hicles,” International Journal on Smart Sensing and Intelligent Systems,
vol. 12, pp. 1–8, December 2019.

[22] J. Kang et al., “Blockchain for secure and efficient data sharing in
vehicular edge computing and networks,” IEEE Internet of Things
Journal, vol. 6, no. 3, pp. 4660–4670, June 2019.

[23] G. Falco and J. Siegel, “Assuring automotive data and software integrity
employing distributed hash tables and blockchain,” Unpublished, 2020.

[24] S. Checkoway et al., “Comprehensive experimental analyses of auto-
motive attack surfaces,” in Proceedings of the 20th USENIX Security
Symposium, 2011.

[25] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger
vehicle,” in Proceedings of Defcon 23, 2015.

[26] B. Howard et al., “Hack the diagnostics connector:
Steal yourself a bmw in 3 minutes,” Online, 2012, full
article available at https://www.extremetech.com/extreme/
132526-hack-the-diagnostics-connector-steal-yourself-a-bmw-in-3-minutes.

[27] Y. Xun et al., “Side channel analysis: A novel intrusion detection system
based on vehicle voltage signals,” IEEE Transactions on Vehicular
Technology, vol. 72, no. 6, pp. 7240–7250, 2023.

[28] M. Himuro et al., “Tolerance evaluation against deep learning side-
channel attack on aes in automotive microcontroller with uncertain
leakage model,” in 2024 IEEE Joint International Symposium on Elec-
tromagnetic Compatibility, Signal & Power Integrity: EMC Japan /
Asia-Pacific International Symposium on Electromagnetic Compatibility
(EMC Japan/APEMC Okinawa), 2024, pp. 528–531.

[29] R. Gothwal et al., “Evaluation of man-in-the-middle attacks and coun-
termeasures on autonomous vehicles,” in 2023 10th International Con-
ference on Dependable Systems and Their Applications (DSA), 2023,
pp. 502–509.

[30] Y. Gong and B.-J. Hu, “A quantum-resistant key management scheme
using blockchain in c-v2x,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 25, no. 11, pp. 16 831–16 844, 2024.

[31] A. Hoeller and R. Toegl, “Trusted platform modules in cyber-physical
systems: On the interference between security and dependability,” in
2018 IEEE European Symposium on Security and Privacy Workshops
(EuroSPW), 2018, pp. 136–144.

[32] G. Costantino et al., “In-depth exploration of iso/sae 21434 and its
correlations with existing standards,” IEEE Communications Standards
Magazine, vol. 6, no. 1, pp. 84–92, 2022.

[33] C. C. Parizo, “What are the 4 different types of blockchain technology?”
TechTarget, CIO, Mar 2023, full article available at techtarget.com.

[34] E. M. Sifra, “Security vulnerabilities and countermeasures of smart con-
tracts: A survey,” in 2022 IEEE International Conference on Blockchain
(Blockchain), 2022, pp. 512–515.

[35] A. Gurjar and B. R. Chandavarkar, “Smart contract vulnerabilities and
detection methods: A survey,” in 2024 15th International Conference
on Computing Communication and Networking Technologies (ICCCNT),
2024, pp. 1–7.

[36] V. Y. Kemmoe, W. Stone, J. Kim, D. Kim, and J. Son, “Recent advances
in smart contracts: A technical overview and state of the art,” IEEE
Access, vol. 8, pp. 117 782–117 801, 2020.

[37] C. Wu, J. Xiong, H. Xiong, Y. Zhao, and W. Yi, “A review on recent
progress of smart contract in blockchain,” IEEE Access, vol. 10, pp.
50 839–50 863, 2022.

[38] V. Nalina, Navaneeth et al., “Decentralized file storage platform using
ipfs and blockchain,” in 2024 International Conference on Emerging
Technologies in Computer Science for Interdisciplinary Applications
(ICETCS), 2024, pp. 1–6.

Urooj Ghani is a Lecturer in the Department
of Computer Science at the National University
of Computer and Emerging Sciences (NUCES-
FAST), Islamabad, Pakistan. Her research interests
include Cybersecurity, Computer Digital forensics,
Distributed Ledgers/Blockchain, Cloud Computing,
Data Science, Machine Learning, and Artificial In-
telligence.

Mudassar Aslam has over 17 years of experience in
academia and industry. He works at Oxford Brookes
University as a Principal Lecturer (Associate Profes-
sor) and Programme Lead for Cyber Security. His
main research interests include IoT, Edge, and Cloud
security, with expertise in platform security mecha-
nisms provided by Trusted Execution Environments
(TEEs) such as Trusted Platform Module (TPM),
ARM Trustzone, and Intel SGX. .

Tahir Ahmad is a Researcher at the Security &
Trust Unit of the Center of Cybersecurity, Fon-
dazione Bruno Kessler (FBK) Trento, Italy. His
research interests are in distributed systems secu-
rity, with particular emphasis on understanding the
security issues in the current data-driven Internet-
connected world and exploring practical solutions
for improving their security and privacy.

Subhan Ullah is Associate Professor of Cyberse-
curity at FAST National University of Computer
and Emerging Sciences, Islamabad, Pakistan. His
research interests include cybersecurity, ML/AI, and
lightweight cryptographic solutions for IoT applica-
tions.

Attaullah Buriro is a Lecturer (Assistant Professor)
in Cybersecurity in the School of Computer Science
and Electronic Engineering (CSEE) at the University
of Essex, United Kingdom. His research lies at the
intersection of cybersecurity and machine learning
and aims at addressing emerging security challenges
in both conventional and modern computing environ-
ments, including Internet of Things (IoT) ecosystems
and critical infrastructures.

Palash Yuvraj Ingle is a Research Professor at the
Department of Computer Science and Information
Security and Convergence Engineering for Intelli-
gent Drone, Sejong University, Seoul, South Korea.
His research interests include working with LiDAR
technology and developing Artificial intelligence se-
curity, with an emphasis on Video surveillance and
IoT.

Rutvij H. Jhaveri is an Associate Professor and Re-
searcher with the Department of Computer Science
& Engineering, Pandit Deendayal Energy University,
Gandhinagar, India. He is a highly cited researcher
and was recognized among the top 2% scientists
worldwide from 2021 to 2024. He has published
200+ papers in various areas of computer science,
including 25+ articles in IEEE/ACM Transactions,
and has co-authored four books. Moreover, he has
several national and international patents and copy-
rights. His research interests are Software-Defined

Networking, Cyber Security, and Smart Ecosystems.

https://tches.iacr.org/index.php/TCHES/article/view/8289
https://tches.iacr.org/index.php/TCHES/article/view/8289
https://iecscience.org/ppapers/2019120901/NPSC_A25
https://www.extremetech.com/extreme/132526-hack-the-diagnostics-connector-steal-yourself-a-bmw-in-3-minutes
https://www.extremetech.com/extreme/132526-hack-the-diagnostics-connector-steal-yourself-a-bmw-in-3-minutes
https://www.techtarget.com/searchcio/feature/What-are-the-4-different-types-of-blockchain-technology

	Introduction
	Related Work
	Problem formulation and Proposed Solution
	Use Case Scenario
	Attack Surfaces
	Remote Attacks
	Physical Attacks

	Extended Attack Surfaces
	Side-Channel Attacks
	Man-in-the-Middle (MITM) Attacks
	Quantum Security Attacks
	TPM Hardware and Firmware Attacks

	Attack Scenarios
	Attack on the Vehicle's Software (A1)
	Attack on the Database of an Application (A2)

	Our Approach
	Virtual Vehicle Simulator
	Android Application
	Blockchain Architecture

	Data Flow of the Blockchain-based Model

	Proof of Concept Implementation
	Application Implementation
	Admin Module
	User Module

	Blockchain Implementation
	Smart Contract Security


	Evaluation
	Performance Evaluation
	Computational Overhead at the time of Renting Vehicle
	Computational Overhead at the time of Returning Vehicle (No Attack)
	Computational Overhead at the time of Returning Vehicle (Attack)

	Empirical Scalability Evaluation
	Experimental Setup
	Experimental Results and Analysis

	Attack Evaluation
	Penetration Testing Methodology
	Experimental Results
	Findings and Security Enhancements

	Security Evaluation
	Formal Security Proof
	Formal Security Verification
	Security Metrics Analysis


	Conclusions
	References
	Biographies
	Urooj Ghani
	Mudassar Aslam
	Tahir Ahmad
	Subhan Ullah
	Attaullah Buriro
	Palash Yuvraj Ingle
	Rutvij H. Jhaveri


