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Abstract— Anxiety can significantly impact individuals’ daily
lives, and can manifest at varying levels from mild to severe.
Traditionally, psychologists and psychiatrists assess anxiety pri-
marily through self-report questionnaires. However, advances
in computer-aided technologies and neuroimaging techniques
offer promising tools to enhance diagnostic accuracy. In this
study, we propose a novel deep learning model designed to
extract frequency-based features from electroencephalogram
(EEG) signals which provide insights into the neural patterns
associated with anxiety. Our model consists of a convolutional
neural network (CNN), a multi-head attention transformer,
and an attention module to effectively capture EEG features
distinguishing normal and anxious states. We validated our
approach using a publicly available EEG dataset called DASPS,
collected from 23 participants, where self-reported anxiety
levels were categorized into normal and anxious conditions.
The anxious condition was further subdivided into four levels
of anxiety based on its severity. The proposed model achieved
classification 82.94% accuracy for binary classification (normal
vs. anxious) and 74.05% average accuracy for multi-class clas-
sification (normal, mild, moderate, and severe anxiety). These
results highlight the effectiveness of our approach in leveraging
EEG-based frequency features for anxiety assessment across
different levels of severity.

Index Terms— Electroencephalogram, Anxiety Detection,
Deep Learning, Mental Health, DASPS

I. INTRODUCTION

Anxiety, a widespread mental health condition closely
related to stress, poses significant challenges to individuals’
lives if left untreated. Since anxiety, especially in severe
cases, causes serious issues. Therefore early detection is
crucial to reducing the long-term effects of anxiety [1],
[2]. In 2019, anxiety disorders and other mental illnesses
were not only ranked among the top 25 contributors to
excessive global healthcare expenditures, but also identified
as some of the most debilitating conditions. Anxiety disor-
ders affect approximately 13% of the global population, and
8% experiencing anxiety or depressive disorders, according
to the World Health Organization (WHO) [3]–[5]. This
prevalence increased during the COVID-19 pandemic, with
cases of anxiety and depression increasing by 25.6% and
27.6%, respectively, in 2020 [6]. Anxiety disrupts cognitive
functions, such as memory and attention, and is linked to
immune disorders, further affecting daily life [4]. Traditional
treatments, including exposure therapy, where patients face
fears in controlled settings, remain essential [7]. Recent
advances, such as virtual reality exposure therapy [8]–[11]
and machine learning-based approaches [12]–[15], offer in-
novative methods for early detection and management of
anxiety, underscoring the urgent need to explore effective
interventions to alleviate this growing public health problem.
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Self-report questionnaires, such as the Spielberger State-
Trait Anxiety Inventory and the Hospital Anxiety and De-
pression Scale, have been widely used in the past decade
as reliable tools for diagnosing anxiety [12]. Although these
methods remain essential for assessing anxiety levels, recent
advances have integrated physiological and neural signals,
including electrocardiogram (ECG), photoplethysmography
(PPG), and electroencephalography (EEG), to improve diag-
nostic precision [16]–[19]. In the past decade, EEG signals
have been widely used not only because they are a non-
invasive method but also because they offer high temporal
resolution recording of brain activity. As shown in various
studies, EEG signals are effective in identifying anxiety, as
they can detect changes in power spectral density (PSD) as-
sociated with generalized anxiety disorder (GAD) [20], [21].
Besides this, emerging techniques such as neuroimaging and
machine learning have helped researchers develop reliable
solutions in this field [1].

Numerous studies have explored the usage of EEG to
identify anxiety and its severity. The publicly available
DASPS dataset offers a valuable resource for researchers to
examine the application of machine learning in this domain.
DASPS, short for “A Database for Anxious States based
on Psychological Stimulation” [22], categorizes trials using
two primary labels: “normal” and “anxious.” Additionally,
the dataset further subdivides the anxious category into four
levels—“severe anxiety,” “moderate anxiety,” “light anxiety,”
and “normal anxiety”—based on participants’ self-reports.

Recent studies have used the DASPS dataset to detect
and classify anxiety levels. Chatterjee et al. [23] trained sev-
eral traditional classifiers, such as Support Vector Machine
(SVM), K-Nearest Neighbor (KNN), Random Forest (RF),
Decision Tree (DT), and Gaussian Naive Bayes (GNB), by
extracting time and frequency domain features. They classi-
fied anxiety into two and four categories using DASPS. The
highest accuracy was obtained using the KNN classifier that
achieving 83.8% for both classification scenarios. Similarly,
a Chebyshev chaotic map-based technique was introduced by
Daneshmand et al. [12]. They classified anxiety into two and
four categories using the DASPS dataset with Decision Tree
(DT) and K-Nearest Neighbor (KNN) methods, achieving
accuracies of 93.75% and 100% for the binary and four-
class scenarios, respectively. Many studies have utilized time
and frequency features to classify anxiety levels using EEG
signals [12], [14], [22]–[24]. Another study that focused on
frequency domain features was conducted by Muhammad et
al. [24]. They employed various traditional machine learning
techniques to detect different states of anxiety using the
DASPS dataset. The highest accuracy was achieved using
the Random Forest (RF) classifier, with 94.90% for binary
classification and 92.74% for four-class classification. Al-
though these studies achieved high accuracy, they relied on



manual feature extraction, which can be time-consuming and
dependent on domain expertise.

While the above methods utilized traditional machine
learning for anxiety detection and relied on manual feature
extraction, deep learning has demonstrated promising per-
formance in EEG analysis [14], [25], [26]. Deep learning
not only learns complex patterns in EEG signals but also
automatically extracts relevant features, which makes it a
more efficient approach. Maheshwari et al. [25] used various
EEG datasets to classify different levels of emotions. They
trained a rhythm-specific multi-channel convolutional neural
network (CNN) using five different EEG frequency bands
(i.e., delta, theta, alpha, beta, and gamma). The accuracy
they achieved on the DASPS dataset was 53.45% for two-
class classification. Similarly, Agarwal et al. [26] developed
a new deep learning model using 1D convolutional and
long short-term memory (LSTM) layers. This network was
trained on several EEG datasets to classify emotional states.
In their work, they provided insights into the relationship
between different emotions and various scalp regions. Their
model achieved an accuracy of around 71% for both binary
and multiclass scenarios on the DASPS dataset. In another
study, Shikha [14] employed a stacked sparse autoencoder
to classify anxiety using EEG signals collected from the
DASPS dataset. They extracted features from different do-
mains, including time, frequency, and time-frequency. Their
deep learning model achieved an accuracy of 83.93% for
classifying normal and anxious trials. In 2024, Ghonchi et
al. [27] applied a preprocessing method to EEG signals
to transform their representation. Their approach involved
generating scalp maps at each time point based on the spa-
tial arrangement of EEG channels. Thereby they preserved
spatial information within the data. Using a sliding window
technique, they created data segments of varying lengths,
ranging from 100 milliseconds to 3 seconds. To classify
anxiety levels, they employed a convolutional-recurrent neu-
ral network that they achieved accuracies of 94.24% and
92.58% for binary and multi-class classification, respectively.
Although the approach by Ghonchi et al. [27] demonstrated
high classification accuracy using spatial scalp maps and
a convolutional-recurrent network, their method relied on
explicit spatial transformations of EEG data. In contrast,
our study focuses on the performance of a novel deep
learning-based feature extractor for anxiety classification.
Instead of generating scalp maps, our model is designed
to automatically capture frequency dependencies from raw
EEG signals without requiring manually crafted represen-
tations. The primary objective of this work is to assess
the performance of this novel feature extraction method in
distinguishing different anxiety levels.

This paper presents a novel deep learning model for detect-
ing and classifying anxiety states using frequency features
and an attention module. Utilizing the DASPS dataset and
labels provided by [22], EEG trials are categorized into two
and four classes. The proposed model autonomously extracts
optimal frequency features directly from raw data and as
a result, eliminates the need for manual feature extraction.
Although traditional pre-processing steps are vital for noise
reduction, they often introduce biases and constraints. By
bypassing these steps, the proposed approach preserves the

integrity of raw EEG data. The following sections detail
the methodology, with Section III outlining the results and
Section IV providing the conclusions.

II. MATERIAL AND METHODS

A. Datasets
A DASPS dataset, which stands for “A Database for Anx-

ious States Based on a Psychological Stimulation”, available
on IEEE DataPort1 [22], employs an innovative approach
by recording Electroencephalogram (EEG) signals from 23
participants as they underwent anxiety induction through
face-to-face psychological tasks. The DASPS dataset follows
an experimental design consisting of six 30-seconds trials for
each participant. Each trial comprises two 15-seconds phases.
In the first phase, the participant listens to an emotional
scenario narrated by a psychotherapist. In the second phase,
the participant attempts to recall the scenario described in the
first phase. After completing each trial, the participant rates
their feelings using the Self-Assessment Manikin (SAM),
which evaluates both valence and arousal. Based on these
ratings, the trials were classified as either normal or anxious.
This binary classification resulted in 67 normal trials and 71
anxious trials. In a second labeling approach, the anxious
trials were further divided into four categories: normal, light,
moderate, and severe anxiety. In this classification, 65 trials
were categorized as normal, 43 as light anxiety, 15 as
moderate anxiety, and 15 as severe anxiety. Further details
about this dataset can be found in [22].

B. Data Analysis
The proposed data analysis framework is applied to the

DASPS dataset. The beta band (12−30 Hz) is generally the
most relevant for anxiety classification using EEG. However,
changes in theta (4 − 8 Hz) and alpha (8 − 12 Hz) power
can also signal anxiety, varying by study and individual
differences. Some research suggests a potential link between
increased theta activity and anxiety, though it is less promi-
nent [24], [28]. Therefore, For this dataset, a bandpass filter
with a frequency range of 4–45 Hz is employed, along with
downsampling to 128 Hz, to capture key EEG frequency
bands relevant to cognitive and emotional processes. In
general, This standardized preprocessing approach enhances
the generalizability of models trained on the data. By system-
atically preparing the dataset, the pipeline facilitates effective
feature extraction and deep learning analysis.

C. Multi-View Convolutional Attention
In this section, our Multi-View Convolutional Attention

(MVCA-Net) architecture is described. This model is de-
signed to automatically extract and analyze frequency-based
features that characterize anxiety. Our proposed model in-
tegrates convolutional and transformer layers to extract fre-
quency features. Attention modules were added to the model
to dynamically focus on patterns of salient brain signals, as
shown in Figure 1.

Frequency feature extraction is essential in time-series data
analysis, particularly in EEG signal processing, where differ-
ent frequency bands correspond to distinct neural activities.

1https://ieee-dataport.org/open-access/
dasps-database



Fig. 1. Overall procedure of the Multi-View Convolutional Attention Network. This network consists three parts: Frequency feature extractor (a),
Transformer multi-head attention (b), and SE attention (c).

Traditional methods rely on predefined filters, but modern
deep learning architectures provide a data-driven approach
to automatically extract these features [29]–[31].

The MVCA-Net proposed in this paper consists of three
distinct blocks. The initial block incorporates frequency-
specific features using convolutional kernels of varying sizes.
It enables to extract multi-frequency characteristics from
the input data as shown in Figure 1-a. The kernel sizes
correspond to various temporal resolutions, which allows
the model to focus on different frequency bands. Smaller
kernel sizes extract high-frequency components (rapid signal
changes), while larger kernel sizes capture low-frequency
components (slower trends in the data). The kernels are
shown as Kb in Figure 1-a. we define a kernel list that

dynamically generates various kernel sizes based on the
frequency range of the input signals. The kernel list is
computed as 1.

Kb =

[
f

2b

]
, b = 1, 2, 3, ..., B (1)

Which f is the frequency rate and B is the target num-
ber of frequency domain features. This module uses two
convolutional layers for each kernel size Kb, which works
in parallel. The first convolutional layer filters primarily
across the temporal dimension. The second convolutional
layer takes the output of the first layer and tries to refine
the frequency features. The intention behind this sequential



filtering within each path is to allow the network to first ex-
tract features at one frequency scale k1,K2, ...,KB and then
subsequently process or contextualize these features using
a different scale KB ,KB−1, ...,K1, enabling the learning
of hierarchical frequency characteristics directly within each
parallel branch before aggregation. Then batch normalization
normalizes the output to improve stability and speed during
training. After that, all the features extracted concatenate to
prepare for further layers.

After extracting frequency features, another layer performs
a point-wise convolution with a kernel and a stride of 1.
This layer refines the extracted features without altering the
input’s spatial dimensions. It combines information across
channels, emphasizes critical patterns while suppressing ir-
relevant ones, and adjusts the feature representation to match
the required dimensions for subsequent processing. This
transformation prepares the data for the next block which is
Transformer, by optimizing feature representations, ensuring
dimensional compatibility, and enhancing the input’s ability
to capture attention-based relationships effectively.

After the point-wise convolutional layer, a transformer
multi-head attention is introduced to refine the representation
of the frequency features, which serve as input to this module
as shown in Figure 1-b.

The module begins by restructuring the input EEG data
(originally organized as [Batch, Filter, Channel, TimeSam-
ple]) to merge the Filter and Channel dimensions into a
unified embedding dimension. This reshaping step trans-
forms the data into a format compatible with attention-based
processing (structured as [Batch, Embedding, TimeSample]).
Next, the module initializes three distinct linear layers to
independently project the input into Query (Q), Key (K),
and Value (V) matrices for multi-head self-attention. The
number of attention heads (num heads) determines how the
embedding dimension (embed dim) is partitioned, requiring
embed dim to be divisible by num heads to ensure equal
feature distribution across all heads. Finally, the reshaped
EEG data are passed through the linear layers to generate the
Q, K, and V matrices. These are fed into the self-attention
mechanism, enabling the model to learn dependencies across
time samples and spatial/spectral features in the EEG signals.

The self-attention mechanism is implemented using a
scaled dot-product attention function. This part computes
the similarity between Query and Key using matrix mul-
tiplication, scales the result, and applies a softmax function
to generate attention weights. These weights determine the
importance of different time steps in the EEG sequence. The
final attended representation is obtained by multiplying the
attention weights by the Value (V) matrix. This step allows
the model to focus on the most relevant frequency features
while suppressing the less important ones. After attention
is computed, the output is passed through a feedforward
network, followed by a dropout layer. The processed features
are then added to the reshaped format of the input data.

The module processes the self-attention output through a
feedforward network (FFN) to enhance feature extraction.
The FFN consists of two linear layers with a ReLU activation
function between them. These allow the model to learn
complex representations of EEG signals. A dropout layer
is applied to prevent overfitting before mapping the features

back to their original embedding dimension. Following this,
a residual connection is added, where the FFN output is
summed with the original input and normalized to stabilize
the training. Finally, the tensor is reshaped back to its original
EEG format in order to ensure that the output maintains the
relationships necessary for subsequent processing.

Following the multi-head attention mechanism, a squeeze-
and-excitation (SE) attention block is employed to further
enhance feature representation by focusing on the most
informative channels, as shown in Figure 1-c. SE attention
operates by adaptively recalibrating channel-wise feature
responses, allowing the model to focus on critical frequency
components while suppressing less relevant ones.

The SE attention block begins with a global pooling
operation, where the input features are aggregated across
the spatial and temporal dimensions to generate a compact,
channel-wise descriptor. This global representation captures
the overall importance of each channel in the frequency
feature map. Next, the descriptor is passed through a pair
of fully connected layers with a non-linear activation func-
tion, modeling the complex interdependencies among the
channels. The output of fully connected layers is a set of
channel-wise attention weights, which are rescaled using a
sigmoid activation function to ensure values are between
0 and 1. These weights are then applied to the original
input features via element-wise multiplication, effectively
highlighting critical channels while diminishing the impact of
less significant ones. By integrating the SE attention block,
the model gains the ability to refine its focus on relevant
frequency features, further enhancing its capacity to capture
subtle patterns in the data.

Following the SE attention mechanism, a depthwise con-
volution is applied to the data. The depthwise convolution
ensures that the spatial dependencies between channels are
preserved while maintaining a low computational cost. Fur-
thermore, using the depthwise convolution method helps
the model focus on local attention, specifically emphasizing
the relationship between adjacent frequencies. This local
attention reduces the computational cost compared to a full-
attention mechanism. The depthwise convolution operates
on each channel independently, which is suitable for spa-
tial information processing in EEG data. In the following,
batch normalization and average pooling are applied before
the final dropout layer to enhance the performance of the
depthwise convolutional operations.

The classifier block includes a Dense Layer with 2 or 4
neurons and a softmax activation function. 2 refers to normal
and anxious classes, and 4 refers to normal, light, moderate,
and severe anxiety classes.

III. EXPERIMENTAL RESULTS

In this section, the performance of MVCA-Net is evaluated
to detect and classify different levels of anxiety using the
DASPS dataset. We conducted three experiments on our
model: one using only frequency feature extraction, another
incorporating frequency features with an SE attention mod-
ule, and the third utilizing the complete MVCA-Net model.
We also compare our results with existing methods used for
this dataset. A summary of all the parameters and setups used
in this study is presented in Table I. For the model setup, we



TABLE I
PARAMETERS AND SETUPS USED FOR TRAINING MODEL.

Parameter Name Value

Data
preparation

Band-pass filter 4-45 Hz

Normalization Z-score algorithm

down sample 128 Hz

Proposed
Model

Kernel(k) 1, 9, 17, 25, 33, 41, 49, 57

F1 2

F2 1

B 8

Activations GeLU

Numberofheads 4

Numberoflayers 3

Transformerdropout 0.5

Transformerembed dim 112

D 14

Pooling 4

Classifier Softmax

Loss CrossEntropy

Optimizer Adam

Epochs 150

Batchsize 32

K − fold 5

TABLE II
THE COMPARISON OF THE ACCURACIES ON DIFFERENT CLASSES ON

DASPS DATASET TO CHECK THE EFFECT OF TRANSFORMER AND

ATTENTION MODULE.

Model # Classes Accuracy

Feature extractor 2 classes 75.31%± 1.97%

4 classes 63.91%± 1.39%

Feature extractor + SE Attention 2 classes 76.47%± 1.74%

4 classes 64.73%± 1.52%

MVCA-Net 2 classes 82.94%± 1.22%

4 classes 74.05%± 3.96%

employed cross-entropy as the loss function and the Adam
optimizer. We trained the model over 150 epochs and utilized
k-fold cross-validation with k = 5. This approach ensures
robust evaluation and enhances the reliability of our findings
in classifying anxiety levels.

To evaluate the performance of the MVCA-Net, we also
conducted several experiments using the DASPS dataset.
These experiments involve classifying anxiety states using
a frequency feature extractor, a frequency feature extractor
combined with an SE attention module, and the complete
MVCA-Net model as reported in Table II.

In deep learning models, attention mechanisms and trans-
formers play a critical role in addressing the limitations
of traditional feature extractors. The sequential processing
and dynamic weighting of features inherent in attention
mechanisms ensure that critical frequency components are
emphasized. Meanwhile, transformers excel at capturing

global dependencies. They are able to characterise complex
patterns of the model that span across time and frequency do-
mains. Together, these components significantly improve the
performance of the model, particularly in scenarios involving
multiple classes, where the relationships between features
become more intricate. This improvement demonstrates the
transformative impact of attention and transformers in deep
learning applications for frequency-based data.

Table II presents the impact of incorporating SE attention
mechanisms and transformer-based modules on classification
accuracy in two- and four-class scenarios. The baseline
model, consisting solely of a frequency feature extractor,
achieves 75.31%±1.97% accuracy for the two-class classifi-
cation and 63.91%± 1.39% for the four-class classification.
Although these results are satisfactory for simpler tasks, they
are limited in their ability to capture intricate patterns in
the data. This is because, in EEG signals, the repetitive and
cyclical nature of the data can create significant similarities
between different segments. It makes it difficult for the model
to accurately identify distinguishing features between classes.
These similarities often introduce ambiguity, especially in
multi-class classification scenarios, where the boundaries
between classes become less distinct. As evident in Table II,
the model performs better in extracting meaningful frequency
features in the two-class experiment, as the reduced number
of classes simplifies the decision boundaries and allows
the model to focus on more prominent and distinguishable
patterns within the data.

When a SE attention mechanism is added to the frequency
feature extractor, the accuracy improves to 76.47%± 1.74%
for two classes and 64.73% ± 1.52% for four classes. This
improvement can be attributed to the ability of attention
to dynamically prioritize relevant frequency features while
suppressing less important ones. The most significant boost
in accuracy is observed when a transformer module is
introduced along with the frequency feature extractor and
SE attention mechanism. In this configuration, the model
achieves 82.94% ± 1.22% accuracy for two classes and
74.05%± 3.96% for four classes. This substantial improve-
ment underscores the ability of transformers to model long-
range dependencies and complex relationships within the
frequency features. The multihead attention mechanism of
the transformer enables the model to attend to multiple
aspects of the input features simultaneously and extracts
diverse patterns across the temporal and spectral domains.

The results in Table II highlight the differences be-
tween different states of anxiety, through EEG. The DASPS
dataset focuses on the more nuanced domain of affective
states—particularly anxiety. The drop in accuracy for four-
class classification means that the increased number of
classes introduces a greater challenge. This drop in accuracy
when distinguishing between four classes suggests that subtle
differences between anxiety levels may require richer spatio-
temporal or connectivity features for accurate classification.

We conducted a comparative analysis of our proposed
model against methods previously employed in the DASPS
dataset for anxiety classification. Table III presents a com-
prehensive summary of these methods. A review of the table
reveals that most of the previous studies on this dataset
mainly relied on feature extraction techniques combined with



TABLE III
THE COMPARISON OF DIFFERENT METHODS.

State-of-the-arts # Classes Features Classifier Accuracy

Traditional Machine Learning

Chatterjee et al. [23]
2 classes

Hjorth parameters and 4 EEG band powers KNN
83.8%

4 classes 83.8%

Jin et al. [7]
2 classes

Time-Domain and Frequency-Domain analysis Random Forest
78.34%

4 classes 70.45%

Daneshmand et al. [12]
2 classes

Innovative Chebyshev chaotic map-based features KNN
93.75%

4 classes 100%

Muhammad et al. [24]
2 classes

Asymmetry index, rational index, and mean power Random Forest
94.90%

4 classes 92.74%

Deep Learning

Baghdadi et al. [22]
2 classes

Time, Frequency, and Time-Frequency features Stacked Sparse Autoencoder
83.50%

4 classes 74.60%

Maheshwari et al. [25] 2 Classes No features extraction CNN 53.45%

Agarwal et al. [26]
2 classes: Valence

No features extraction 1D CNN-LSTM
71.93%

2 classes: Arousal 71.63%

Shikha et al. [14] 2 classes Time, Frequency, and Time-Frequency features Stacked Sparse Autoencoder 83.98%

Ghonchi et al. [27]
2 classes

No feature extraction
Convolution-Recurrent 94.24%

4 classes Neural Network 92.58%

Our work
2 classes

frequency features extracted by proposed model MVCA-Net
82.94%

4 classes 74.05%

traditional machine learning algorithms. Among these, the
approaches of Muhammad et al. [24] and Daneshmand et
al. [12] demonstrated the highest accuracy within the scope
of traditional machine learning frameworks. In particular,
two studies ( [25], [26]) adopted a different approach by
directly feeding raw EEG data into deep learning models
for anxiety classification. They incorporated various prepro-
cessing steps beforehand. When utilizing deep learning to
extract features directly from raw EEG data, our findings
align with those of previous studies, particularly those that
employed deep learning models and raw data, such as [25]
and [26]. The consistency of our results with these works
underscores the effectiveness of deep learning in analyzing
raw EEG data, even when compared to methods relying on
pre-extracted features or traditional machine learning algo-
rithms. This compatibility further validates the robustness
of our proposed model and the significance of leveraging
raw data for enhanced performance in EEG-based tasks.
The relatively lower accuracy of MVCA-Net compared to
[27] can be attributed to its exclusive reliance on frequency-
domain features. The proposed model focuses solely on
extracting frequency features from raw EEG signals. While
frequency analysis is essential for understanding EEG signal
characteristics, it does not capture spatial relationships be-
tween electrodes or the temporal dynamics of neural activity.
Unlike other approaches, our method neither involves hand-
crafted feature extraction nor alters the data representation;
instead, it places the burden of extracting frequency features
entirely on the model itself. As demonstrated in [27], in-

TABLE IV
COMPARING THE AVERAGE RUNTIME OF MVCA-NET AND [27]

Model Preprocessing Runtime Epoch Runtime

Ghonchi et al. [27] 65 seconds 79 seconds

MVCA-Net 0.9 second 8 second

tegrating additional modalities, such as spatial information
or time-dependent patterns, can significantly enhance the
performance of anxiety classification models. On the other
hand, this approach significantly reduces runtime and makes
MVCA-Net a more efficient alternative, as shown in Table
IV.

Table IV compares the runtime performance of MVCA-
Net with the method proposed by Ghonchi et al. [27] on
the DASPS dataset. While the accuracy of MVCA-Net is
lower in comparison, this model is still in its early stages and
currently relies only on frequency-domain features. Despite
this limitation, the results demonstrate a significant reduction
in computational cost. MVCA-Net achieves a preprocessing
runtime of just 0.9 seconds compared to 65 seconds in
Ghonchi et al.’s method, and an epoch runtime of 8 seconds
versus 79 seconds. These improvements indicate the potential
of MVCA-Net for real-time applications. Future enhance-
ments, such as incorporating additional spatial and temporal
features, could further improve its classification performance.



IV. CONCLUSION

This study introduced a novel deep learning approach to
effectively extract frequency features from EEG signals for
anxiety detection and severity classification. The proposed
framework follows a structured data processing pipeline, in-
cluding filtering, model training, and classification. Initially,
a bandpass filter was applied to remove unwanted noise from
the raw EEG signals, followed by downsampling to 128 Hz.
This preprocessing step not only standardizes the data but
also reduces the computational cost associated with model
training. The MVCA-Net proposed in this paper consists
of three main components: a frequency feature extractor, a
Transformer module, and an SE attention mechanism. Each
component plays a crucial role in capturing different aspects
of the EEG signals for anxiety classification. The model’s
performance was evaluated using a 5-fold cross-validation
strategy which demonstrates a significant improvement over
previously published deep learning methods. Our approach
successfully extracted meaningful features from EEG data,
achieving reliable classification accuracy. Although this
model achieves lower accuracy compared to the previous
work [27], it is still in progress, and the current stage focuses
solely on frequency features. Notably, while our method
performs competitively with traditional machine learning
techniques, it offers the advantage of reducing reliance on
extensive preprocessing and handcrafted feature extraction,
making it a more automated and efficient alternative.
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