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Abstract. Speech Imagery (SI) refers to the mental experience of hearing speech

and may be the core of verbal thinking for people who undergo internal monologues.

It belongs to the set of possible mental imagery states that produce kinesthetic

experiences whose sensations are similar to their non-imagery counterparts. SI

underpins language processes and may have similar building blocks to overt speech

without the final articulatory outcome. The kinesthetic experience of SI has been

proposed to be a projection of the expected articulatory outcome in a top-down

processing manner. As SI seems to be a core human cognitive task it has been proposed

as a paradigm for Brain Computer Interfaces (BCI). One important aspect of BCI

designs is usability, and SI may present an intuitive paradigm, which has brought the

attention of researchers to attempt to decode SI from brain signals. In this paper we

review the important aspects of SI-BCI decoding pipelines. Approach. We conducted

this review according to the Preferred Reporting Items for Systematic reviews and

Meta-Analysis (PRISMA) guidelines. Specifically, we filtered peer-reviewed reports

via a search of Google Scholar and PubMed. We selected a total of 104 reports that

attempted to decode Speech Imagery from neural activity. Main results. Our review

reveals a growing interest in SI decoding in the last 20 years, and shows how different

neuroimaging modalities have been employed to record SI in distinct ways to instruct

participants to perform this task. We discuss the signal processing methods used along

with feature extraction techniques and found a high preference for Deep Learning

models. We have summarized and compared the decoding attempts by quantifying

the efficacy of decoding by measuring Information Transfer Rates. Notably, fewer

than 6% of studies reported real-time decoding, with the vast majority focused on

offline analyses. This suggests existing challenges of this paradigm, as the variety of

approaches and outcomes prevents a clear identification of the field’s current state-

of-the-art. We offer a discussion of future research directions. Significance Speech

Imagery is an attractive BCI paradigm. This review outlines the increasing interest

in SI, the methodological trends, the efficacy of different approaches, and the current

progress toward real-time decoding systems.
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1. Introduction

What does your mind sound like at this precise moment? You are probably hearing

your voice reading this paper with the same vocal characteristics you use when you

speak but without any articulatory movement or external sound. Speech Imagery

(SI) is a higher-order brain function related to thought, to think in verbal form is a

natural expression from the human brain [1]. Some of the most reported content of

inner speech is self-talk regarding self-valuations, emotions, physical appearance, and

relationships [2]. Inner speech, along with inner seeing or feeling, is estimated to occur

around 20% of the time in college students [3]. These inner experiences are referred to

as mental imagery. Neuroimaging techniques have shown clear patterns of brain activity

elicited by these cognitive tasks [4–8]. These patterns of activity have been explained

as perceptual internal representations reconstructed without perceptual processing of

external stimulation [9]. Mental imagery has been proposed as a predictive process

where the perceptual consequences can let us gain an advantage in different aspects of

our human experience (such as motor control, decision-making, and language) [9, 10].

Brain-Computer Interface (BCI) systems provide an interaction channel to

computers directly from brain activity and can help people who have lost

control over their voluntary muscles by providing a new communication pathway

[11]. Such systems work by decoding brain signals recorded via neuroimaging

methods such as electroencephalography (EEG), stereotactic electroencephalography

(SEEG), electrocorticogram (ECoG), or magnetoencephalography (MEG) for brain

electromagnetic fields, and functional near-infrared spectroscopy (fNIRS) for blood-

oxygen-level-dependent (BOLD) signals. Each technology has different characteristics

and limitations. EEG is one of the most used neuroimaging modalities for SI research

because of its relatively lower cost and portability [12,13].

BCI paradigms can be categorized based on whether the origin of brain activity

is exogenous, wherein the recorded activity is generated by an external stimulus, or

endogenous, wherein the recorded signals come from spontaneous activations related to

the user’s intention. Because additional devices are required for exogenous paradigms,

endogenous paradigms may present a more comfortable and intuitive user experience.

However, they can bring further challenges as they require user training and their

performance can vary considerably over users [14,15].

Motor Imagery (MI) is a category of mental imagery tasks that shares some

properties with speech imagery when used as a BCI paradigm. MI has been broadly

studied for BCI designs. The kinesthetic experience has been described with the use of

internal forward models producing a simulation activity that has been denominated as

an efference copy [16]. Presence of efference copies of the motor cortex and other motor-

related regions has been demonstrated in a variety of brain imaging studies [17–19].

MI-related activity can be measured by EEG and has been utilised to help design

applications to control robotic limbs [20], communication interfaces, such as spellers [21],

and videogames [22]. Like MI, SI is an attractive mental imagery-based BCI paradigm.
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Tian and Poepple [23] showed comparable brain activation processes for both paradigms

and work by Wang et. al [24] demonstrated classifiable EEG signals in both SI and MI

paradigms.

The idea of a perceptual representation of inner speech was presented by Tian and

Poeppel [23] where activation in the auditory cortex was observed during speech imagery.

Tian and Poeppel’s experiments did not include auditory stimuli, so they explained this

auditory cortex activation as being due to the presence of a perceptual efference copy.

Work by Grandchamp et.al [25] supports the idea that this efference copy comes from

motor commands that were inhibited due to the absence of articulatory onset during

SI.

SI is an attractive paradigm for use in speech synthesis applications for people

who have lost the ability to speak. It may have an advantage over MI in some control

applications because it may be more intuitive for users to imagine command words rather

than limb movements. Consequently, SI as a BCI paradigm has gained attention among

researchers, therefore, so we aim to identify key aspects of SI decoding attempts with

the following questions. What feature extraction techniques have been frequently used,

do researchers agree with a most informative feature, is there an ideal SI experiment

design, and what decoding results can be achieved with different modalities?

This paper reviews the existing literature on the decoding of imagined speech, with

the goal of examining critical aspects of SI-BCI design. Specifically, we aim to identify

methodological trends associated with successful decoding, as well as speech units that

exhibit greater discriminability. Furthermore, we assess the proportion of offline versus

online decoding implementations, in order to evaluate the extent to which reported

methodologies have been validated in closed-loop settings. By analyzing the literature,

we aim to provide a comprehensive overview of the current state of the art in SI-BCI

research. This analysis also serves to highlight ongoing challenges and propose potential

directions for future research in this emerging field.

2. Literature Review Methods

To examine this topic, we followed the Preferred Reporting Items for Systematic review

and Meta-Analysis (PRISMA) guidelines [26]. In this section we describe how the

study selection process and introduce Information Transfer Rate (ITR) as the metric

for evaluation. Due to the substantial differences in the data across studies, a direct

and fair comparison of the decoding approaches is not feasible. Nevertheless, a partial

comparison is proposed by grouping the studies according to the primary type of

extracted features and ranking them according to their their reported or estimated

ITR.
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Table 1. Screening criteria used for query results

Include Exclude

(i) Studies describing an attempt to develop

and evaluate a model for imagined speech

decoding in human participants

(ii) Studies clearly describe the methods

used and the results in terms of accu-

racy/efficacy.

(i) Studies researching neural representations

of Speech Imagery without classification

attempts

(ii) Studies describing decoding of perceived

speech, auditory attention, overt speech or

listening/motor imagery

(iii) Papers that skip stimulus detail on experi-

ment design

(iv) Papers on pre-print version without peer

review.

(v) Report is a review, position, or discussion

articles

2.1. Study Selection

We searched within Google Scholar and PubMed databases to identify papers reporting

imagined speech decoding attempts, the search was run from August 2023 to October

2024 with the following search queries:

(i) “Speech Imagery”

(ii) “Speech Imagery” AND (Classification OR Decoding OR Recognition)

(iii) (“Speech Imagery” OR “Inner Speech”) AND (decoding OR EEG OR ECoG OR

MEG OR fNIRS OR fMRI OR BCI)

(iv) “Linguistics BCI”

We first screened each result from the databases including any paper describing

work related to covert and overt speech decoding. We then filtered our results using the

criteria set out in Table 1.

To further identify related articles that were not found via our initial search queries,

we analyzed cited references that described speech imagery decoding attempts or results,

we ended up with a list of 104 articles which describe decoding pipelines for covert

speech. Figure 1 shows a flowchart of the selection of records along with the number of

studies identified during the screening process.

2.1.1. Information Transfer Rate ITR is a widely accepted metric in BCI research, it

quantifies the effective amount of information that a system can reliably transmit per

unit of time. It is considered an optimal metric to report performance as it accounts for

accuracy and a decoding time frame [27]. ITR uses the number of SI classes the decoder
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Figure 1. The flowchart describing the selection steps of the studies analyzed in this

review

is attempting to label, the time window selected from the signals, and the reported

decoding accuracy, as defined in [28] by:

B = log2C + p log2p+ log2

(
1− p

C − 1

)
(1)

ITR = B × 60

T
(2)

Where C denotes the number of classes, p denotes the classification accuracy and

T the time window in seconds used for decoding. It is expressed in bits per minute in

BCI evaluation.

ITR is based on the assumption of discrete choices and is well suited for

applications involving a fixed set of predefined options. However, in the context of

BCI communication systems, an ideal objective is the generation of continuous speech.
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Figure 2. a Histogram of distributions of retrieved papers of reports attempting SI

decoding over time. The first paper was found in 2004 and a significant increase in

results is seen from 2019. Our retrieval was conducted in the middle of 2024, therefore

there might be further papers published after our search. b Histogram of the selection

frequency of each neuroimaging method, 82.26% of SI decoding reports used EEG.

2.1.2. Word Error Rate WER has been proposed as BCI Speech Synthesizers

performance measure and utilized to evaluate real-time decoders of attempted speech

[29–31]. WER is a widely recognized metric to assess the performance of machine

translation, quantifying the proportion of incorrect words relative to a reference sentence

[32]. Nevertheless, we consider ITR better suited for our analysis, as the majority of

decoding approaches examined in this study are offline and are designed to decode brain

signals corresponding to discrete units of SI.

3. Results

We first review the distribution of reports found across time to check for any changes

in interest in SI. We then analyze the neuroimaging methods that have been employed

to record SI-related signals. We enumerate available datasets that have been published

and re-used. We analyze the experiment designs used to prompt participants and lastly,

we report the signal processing and feature extraction techniques used in the attempts

with a section dedicated to the prominent use of Deep Learning techniques.

Figure 2.a shows the time distribution of reports found, an important jump in the

number of reports happened since 2018, several years after the first reported attempt at

SI decoding back in 2004, this is because in 2015 and 2017 three open SI datasets were

made available, since 2021 we have found a consistently larger number of publications.

Our retrieval was conducted in the middle of 2024, therefore there might be further

papers published after our search.
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3.1. Neuroimaging methods

Five neuroimaging techniques (EEG, fNIRS, ECoG, and SEEG) and multiple different

decoding approaches have been explored in the reports we retrieved that attempt to

classify inner speech from brain activity.

Most reports on SI decoding (82.6%) have used EEG data, due to EEG’s good

temporal resolution and portability, it is relatively cheaper and easier to use than other

techniques, it is the most feasible neuroimaging device for labs to acquire even despite

its drawbacks such as low spatial resolution and noise sensitivity [13,33,34]. EEG data

is used in 84 studies we identified in our review, another reason for its popularity is due

to open-access SI datasets recorded with EEG that we discuss in Section 3.2. Figure

2.b shows the distribution of the number of studies involving different neuroimaging

techniques used in SI decoding approaches.

Of the other studies (7.3%) used invasive neuroimaging methods such as ECoG and

SEEG. Because these techniques are based upon the implantation of recording electrodes

within the brain, the signal-to-noise ratio of these techniques is considerably better than

non-invasive neuroimaging techniques such as EEG.

ECoG has been employed in five studies (4.7%). For example, Wandelt et.

al [35] utilized signals recorded during SI of six words and two pseudowords from

participants implanted with microelectrode arrays in the supramarginal gyrus and

somatosensory cortex. Invasive approaches, in general, have yielded promising results

due to their superior spatial and temporal resolution. These methods often rely on

relatively simple features that are sufficiently informative to produce significant decoding

outcome. Unlike non-invasive approaches, which typically require more elaborate feature

extraction techniques. For example, the study by Martin et al. [36], where the envelope

of the high-gamma band derived from stereotactic EEG (SEEG) recordings showed

clear and distinguishable modulations, enabling the decoding of two SI words with an

accuracy of up to 88%. Similarly, Angrick et al. [37] applied a logarithmic transform

to the high-gamma power of SEEG signals to develop a closed-loop BCI capable of

synthesizing speech, achieving a statistically significant correlation between the intended

and generated output.

The relatively limited number of published invasive neuroimaging studies focused

on SI can be attributed to the practical and ethical constraints associated with these

modalities. Such studies typically involve participants who have undergone electrode

implantation for clinical purposes. For instance, Ment et al. [37] conducted research with

a participant diagnosed with intractable epilepsy who had SEEG electrodes implanted

for clinical monitoring. Likewise, the participants in Martin et al. [36] had subdural

electrodes implanted as part of presurgical evaluation for epilepsy treatment.

fNIRS has also been demonstrated to allow decoding of SI-related activity [36,38–

41]. fNIRS uses beams of light in the near-infrared spectrum to measure oxygenated and

deoxygenated haemoglobin levels in the cortex via changes in the refracted and reflected

light. For example, Hwang et. al [38] showed the capability of fNIRS for real-time SI
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decoding of “yes” and “no” words with an average accuracy of 73%± 9.4.

Multimodal approaches have also been attempted to decode SI. For example,

Rezazadeh et. al [42] combined fNIRS and EEG to classify SI of “yes” and “no”,

achieving an accuracy of 80.4% ± 19.1 that proved significantly better than either of

the modalities alone. Cooney et. al [43] classified 4 different words showing significant

improvement when combining fNIRS and EEG.

3.2. Open datasets

Some researchers who acquired EEG data in covert speech studies have granted open

access to their data allowing other research groups to attempt decoding and to evaluate

different decoding methods. We found that 38 out of 84 EEG-SI decoding reports

acquired their own data, 2 used internally shared data from their research group/lab

and the remaining 44 reports made use of open-access datasets.

We have listed open datasets found in our review, and the corresponding data

descriptors below:

(i) Wang et. al [44], published in 2013, recorded data from 8 participants performing

SI of 2 monosyllabic Chinese characters. The data set is publicly available upon

request to the authors.

(ii) KaraOne dataset [45], published in 2015, includes data from 8 participants

performing SI of 7 phonemes and 4 words. This dataset is publicly available at

https://www.cs.toronto.edu/~complingweb/data/karaOne/karaOne.html

(iii) Coretto et. al [46], published in 2017, contains records from 15 participants

imagining the pronunciation in Spanish of 5 vowels and multi-syllabic words. After

further investigation, the data is publicly available at https://sinc.unl.edu.ar/

downloads/imagined_speech/

(iv) Nguyen et. al [47], published in 2017 contains EEG recorded from 15 participants

performing SI of 3 short words (monosyllabic), 2 long words (trisyllable)

and 3 vowels. The dataset is available at https://www.dropbox.com/s/

01k9c75j0x3jfb9/dataset.zip?dl=0

(v) The International BCI Competition in 2020, made available an SI dataset

containing data from 15 participants who imagined five common English words.

The dataset is available at https://osf.io/pq7vb/

(vi) Nieto et. al [48], published in 2022, includes EEG recorded via 136 channels from 10

participants performing SI of 4 Spanish words and a rest condition. To the best of

our knowledge, no studies attempting decoding on this dataset have been published

to date. The dataset is publicly available at https://openneuro.org/datasets/

ds003626/versions/2.1.2/download

(vii) Liwicki et. al [49], published in 2023, reports the first open dataset considering a

bimodal approach, that records SI of 8 words from 4 participants using fMRI and

EEG. No studies have been published with decoding results using this dataset. The
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Table 2. Frequency of speech units used in SI experiment designs.

Count Class Prompts

38 words hello, help me, thank you, yes, no, one

16 vowels a, e, i, o, u

9 phonemes m, n, ba, fo, le, ry, gi

7 commands go, up, down, right, left, select, stop

7 words + phonemes iy, uw, piy, tuy, diy, pat, pot, knew, gnaw

6 words + vowels in, out, up, cooperate, independent

4 phrases that is perfect, how are you, goodbye, I need help

dataset is available at https://openneuro.org/datasets/ds004196/versions/

2.0.2

3.3. Experiment design

Experimental design is a critical step in BCI research. The classes to decode are decided

in this step along with other aspects of the data collection process that can result in

different participant behavior and impact the data quality. This section discusses two

important aspects of an SI experiment design: speech units and stimulus presentation.

3.3.1. Speech Units SI decoding models aim to identify units of speech a person is

imagining at a specific moment in time. Therefore, SI-BCI studies begin with an

experiment designed to instruct participants to focus their attention on specific units

of speech (e.g., syllables, words or phrases) during a specific, time-bound period while

their neural activity is recorded. The recorded signal is then processed to isolate the

signal of interest, extract and select discriminative features, and subsequently train a

classification model and evaluate its performance based on how accurately the recorded

samples can be labelled to the speech unit.

Different speech units have been used as prompts to design SI decoding experiments.

These typically range from small units, such as phonemes, to long words and phrases.

The experiment designs aim for speech units that have different phonemic characteristics

that can be projected and decoded from brain signals. For example, ECoG studies

have shown clear differences between phonemes in the ventral Sensory-Motor Cortex

(vSMC) region of the brain [50, 51] suggesting these speech units may work well in

experiments using this neuroimaging modality. Table 2 shows the frequency of use

among the different categories of units of speech in the literature.

The five vowels (/a/,/e/,/i/,/o/,/u/) have been used in 16 SI studies. In the open

dataset by Coretto et. al [46], Spanish vowels were selected because of their acoustic

stationarity and lack of individual semantic meaning. DaSalla et. al [52] reported one

of the first approaches to single-trial classification of SI, in which they chose to decode

the /a/ and /u/ vowels due to their similarity of the muscle activations involved in
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Figure 3. Histogram of selection frequencies of stimulus types, the written caption

is the most preferred stimulus type in SI experiment designs, while visual stimuli that

involve picture naming is the least preferred.

articulating these vowels. Gosh et. al (2022) [53] used the Bengali version of these

vowels, justifying the selection of these vowels due to their ease of utterance.

Syllables have been chosen for use in SI studies by considering differences in

their phonetic characteristics and consequent combinations of language muscles. The

KaraOne dataset [45] used the phonemes (/iy/, /uw/, /piy/, /tuy/, /diy/, /m/, /n/).

Jahangiri and Sepulveda [54] used the phonemes (/ba/, /fo/, /le/, /ry/) that were

abbreviations of commands (back, forward, left, right). Zhang et. al (2020) [55] used

the phoneme /ba/ and asked their participants to utter it using 4 different tones (/bā/,

/bá/,/bă/, /bà/), similarly, fNIRS work by Guo and Chen [39] tried 4 different tones

applied to the Chinese equivalents of the vowel phonemes (/a/,/e/,/i/,/o/,/u/).

Different words have also been explored as prompts for SI tasks, reports in [56–58]

have used commands and directions (e.g., up, down, select, forward, etc.) for SI

decoding. Participants were presented with closed questions, which they imagined

answering with the words /yes/ or /no/ in [38, 40, 42]. Simple common English words

such as /hello/ or /thank you/ have also been employed [59–61].

Lastly, some ECoG approaches have asked participants to perform SI of full

sentences to isolate all available English phonemes [29,31].

3.3.2. Stimulus delivery The presentation of a stimulus to a participant causes

differences in neural activity, and these differences can leak into the decoding window,

which can mislead or confound the decoding of the activity of interest when the cue

is included in the period of decoding. Such influences of the stimulus have not been

widely investigated, and it is considered important that stimulus-evoked potentials,

such as Event Related Potentials (ERPs), are handled to ensure they do not influence

the decoding performance [43, 62]. Three modalities to cue imagery tasks have been

explored: text stimuli as written captions, visual stimuli such as object pictures, and

auditory stimuli such as a natural voice uttering the intended unit of speech. Figure 3

shows the frequency of uses of the different types of stimuli modalities.
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Images have been used as indirect representations of words when users have to

perform picture-naming tasks [57, 63, 64]. Picture-naming-induced imagery tasks may

be more effective as stimuli as they encompass a picture identification stage that could

induce more prominent activation of learning and retrieval processes [65].

Audio stimuli are commonly used for SI experiments, as they have the practical

advantage of demonstrating the intended pronunciation to the participants, as when

not sufficiently practised participants may mispronounce the units of speech. However,

this type of stimuli may also entail some downsides. Specifically, the brain’s response to

the auditory stimulus, which happens in the auditory cortex in a temporal region close

to speech-related areas, may be included in the recorded signal of interest and mislead

the analysis. Another consideration related to audio stimuli is that hearing someone

else’s voice may cause less natural speech imagery attempts [66].

Text stimuli have been the most frequently used within the reviewed articles. Text

is perhaps the most practical way of presenting a stimulus as this may be done via

a written caption displayed statically on a monitor. It is also more consistent than

pictures, which could be subject to variable interpretation. As with any visual stimulus,

text induces changes in activity in the occipital lobe. However, as this part of the brain

has not been linked to speech production or comprehension this activity may not have

a big impact on our signals of interest [67]. In the case of text stimuli, experiments

have also been designed such that the task involves participants performing a silent

reading or performing the imagery task a few seconds after the stimulus. With auditory

or picture-naming, the task is specific to covert speech generation based on memory

retrieval.

Some experiments have combined two stimuli modalities. For example, Zhao and

Rudzicz [45] used a text prompt and its corresponding audio utterance to ensure correct

pronunciation. Nguyen et. al [47] cued the imagery task with a written caption alongside

a periodic beep to mark an activation rhythm.

A common approach for combined stimuli is the use of masking in which the

intended imagery task is first prompted, then masked, before cuing the SI onset with

another stimulus. For example, Jahangiri and Sepulveda (2017) [54] showed images of

arrows as stimuli and after a few seconds the imagery was cued by an auditory stimuli.

Park and Lee [68] prompted the participant to imagine the intended vowel via an audio

cue, and after 1 second, cued the participant’s imagery period with an auditory beep.

The use of combined stimuli for masking may bring the advantage of higher

cognitive workload as a step of memory retrieval is involved, which may help isolate

the imagery-induced activity from the prompt identification process, while a possible

downside may be the risk of imagery task mismatch by the participant.

Cooney et. al [43] investigated different types of stimuli presentation. They found

that presenting an image for participants to name led to the highest classification

compared to auditory or text prompts.
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3.4. Signal Preprocessing

Depending on the recording modality/ies used, different preprocessing methods have

been employed to improve the signal-to-noise ratio by removing bad recording sections,

referencing the data to neutral channels or applying average referencing, filtering

frequencies of interest, and reducing the signal dimensionality.

For electromagnetic-based records (such as EEG), it is common to filter the signals

in frequency ranges that are thought to capture cognitive-related activity. For example

in the case of ECoG, filtering has focused on allowing high-frequency ranges above the

gamma band (>70 Hz) [34,69]. It is common not to see further preprocessing of ECoG

signals other than windowing to isolate the SI-related potentials and due to the high

signal-to-noise ratio of this signal it is common to feed the raw signal directly into

classification models [31,35].

Filtering is a broadly used preprocessing technique. Power spectrum density (PSD)

analysis shows the power distribution of the signal over a range of frequencies. It is

common for EEG signals to find MI-related activity in the same frequency range as

the mu (8–13 Hz) rhythm and a portion of frequencies in the beta rhythm (13–30 Hz)

and harmonics of the mu rhythm [70, 71]. It is also common to find power peaks at 50

or 60 Hz that come from power noise, this noise is usually filtered out by a notch or

band-pass filtering.

Our review revealed a wide selection of frequency ranges from which SI may be

decoded ranging from 0.1 to 150 Hz for EEG signals. Some studies have experimented

with the performance of their decoders focusing on different frequency bands. For

example, Jahangiri and Sepulveda [54] studied the contribution of different frequencies

in SI, and showed that the high gamma band activity leads to lower classification power

but encompasses the highest number of features among the evaluated frequency bands.

However, the gamma band led to the best classification accuracies in work by Min et.

al [72]. Kaongeon et. al [58] concluded that the gamma and delta bands had the highest

F-score when classifying an imagery task against a resting state. Lee et. al [73] tested

three different classifiers with different groups of frequency bands, the wide gamma group

(30–125 Hz) led to the best classification accuracy results. Kambale et. al [74] tried with

6 different frequency ranges to feed a deep learning model, their result suggested that

the gamma range (30–100 Hz) gave the most informative features.

Figure 4 shows the frequency distributions among frequencies from 0 to 150 Hz

reported in studies using EEG. Some of the studies (25 reports) used the whole frequency

range or did not specify the most informative frequency band.

In intracranial studies, signal resolution due to direct cortex contact allows

researchers to focus on higher frequency bands. For example, work by Meng et al. [75]

divided the gamma frequency band range into 4 sub-bands covering from 30–195 Hz

or Willet et. al [31] focuses on markedly high frequency bands, specifically filtered the

signal from 200 to 5000 Hz.

Electromagnetic-based signals are very easily corrupted by electrical potentials
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Figure 4. Distribution of focused frequencies in EEG. Most approaches focus on the

alpha (8–12 Hz) and beta bands (12–30 Hz), but wider ranges have been investigated.

generated by muscular movement. Electromyography (EMG) generated by muscles

presents potentials in the order of several mV , which is easy to detect in EEG recordings

(which are typically in the order of several µV ). However, EMG may often lie in the

same frequency range as the EEG signals of interest and this presents a challenge when

trying to remove EMG. Independent Component Analysis (ICA) is one of the most

common source separation techniques used to identify and remove artifacts, especially

eye blinks or head movements, we found that ICA was used as the main artifact reduction

technique in 6 studies [43,55,76–79].

Another common preprocessing technique is down-sampling, this helps to reduce

the data dimensionality thereby reducing the computational cost of processing the data.

Liwicki et. al. [78] have highlighted the importance of down-sampling when applying

deep learning methods, an EEG signal originally recorded at 1024 Hz was down-sampled

to 128 Hz, leading to better classification performance via a convolutional neural network

(CNN).

For fNIRS signals the use of light as the medium of measurement has the advantage

of not being as sensitive to physiological, or motion artifacts in the way many other

neuroimaging modalities are. The hemodynamic response has frequency content

predominantly below 0.5 Hz, after converting raw optical intensity to a measure of

haemoglobin, an increase in activity of around 1.6 Hz can be seen due to the person’s

heartbeat and at 1 Hz due to spontaneous oscillations in arterial blood pressure called

Mayer waves [80]. Bandpass filtering may also be used to focus on frequencies from

0.05 to 0.7 Hz. Another common artifact is found in a range from 0.2 to 0.3 Hz due

to respiration [39, 42, 43]. Hwang et. al [46] used common average reference (CAR) on

(Oxygenated Haemoglobin) HbO, to help reduce this noise component.
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Table 3. Summary of reports with Common Spatial Patterns as the main feature

extraction technique along with their estimated ITR in bits per minute.

Report Number

of

classes

Record Subject

Depen-

dent

Features and methods Classification ITR

(bits/min)

[44] 2 EEG SD CSP SVM 1.43

[64] 3 EEG SD graph features SVM 1.70

[52] 2 EEG SD CSP SVM 3.49

[39] 2 fNIRS SD common spatial, activa-

tion and connection

SVM 5.76

[82] 12 EEG SD bank filters,CSP SVM 15.30

[55] 4 EEG SD CSP SVM 44.96

3.5. Feature Extraction and Classification

Multivariate analysis methods are predominantly used, as modern neuroimaging systems

allow multiple-channel recording. All the SI studies we identified are based on

multichannel signals. These multivariate signals may be used to help find relations

between different cortical regions.

The analysis of SI-related signals involves forming an array of features that uncover

the representation of neural activity related to speech processes such as information

retrieval, syllabification or articulation, among other cognitive tasks [81]. These

features can be grouped based on what they represent, including temporal patterns

like event-related potentials (ERPs) and oscillations, spatial details through cortical

localization, spectral characteristics such as oscillatory frequencies, and connectivity

measures revealing brain network interactions.

After feature vectors are formed, the decoding pipelines usually involve machine

learning models that aim to find patterns in these features to decode the speech imagery

condition. In this section, we discuss the different types of features and the methods

used to extract them from raw signals, along with the machine learning models employed

for classification.

3.5.1. Spatial Features Spatial features represent information about specific brain

regions and their involvement during SI. These features can be extracted in different

ways.

One way is to choose specific brain regions potentially active in SI. This could be

done before the data collection takes place, as is the case when choosing the locations

in which to implant of implant EcoG or SEEG electrodes, or by selecting a subset of

channels that project from those regions, therefore restricting the dimensionality after

data recording.

Another way is by applying a spatial filter that generates new channels that
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highlight the activity from regions of interest. Common Spatial Patterns (CSP) is a

commonly used technique that produces a new filtered space based on the variance

of activity between different conditions, it does so by solving the generalised eigenvalue

problem where the covariance matrices are computed from the mean of trials of different

imagery tasks [83].

Following its popularity in MI, CSP was first used in the context of SI by DaSalla et.

al [52]. Due to its high performance it was used then in several further early attempts

at SI decoding. Table 3 describes the reports that have used a CSP-based decoding

pipeline. All these reports also use Support Vector Machines (SVM) as classifiers and

make use of either the average power of the obtained CSP filters as features or compute

additional statistical values from the CSP-derived feature set, such as reported in the

fNIRS work by Guo et. al [39].

Spatial features have been chosen with the feature selection process by assigning

weights to features from all channels and retaining the ones that are most relevant for

classification or, alternatively, by iteratively testing different sets of vectors in order to

optimise the classification accuracy.

Only 33 reports from those included in our review (33%), have mentioned which

brain regions were most relevant for SI decoding, either during recording, channel

selection, filtering, or feature selection. Figure 5 shows a spatial histogram of brain

regions used for SI decoding. Based on the specific channels and brain locations

mentioned in the studies we have grouped the brain into 9 different regions (left and

right frontal, temporal, sensorimotor, parietal, and occipital regions). Consistent with

the literature, the map shows a predominance of the left hemisphere and Broca’s area

in SI decoding.

3.5.2. Spectral Features These features describe the spectral properties of the

brainwaves associated with the process of speech imagery. Some frequency bands (theta,

alpha, beta, and gamma) have been linked with distinct conscious states of the brain.

One direct method of extracting spectral features has been bandpass filtering, which is

usually performed in the preprocessing step. As we can see in Figure 4 the majority of

EEG-related reports have focused on the alpha (8–12 Hz) and beta bands (12–30 Hz).

However, multiple studies have also focused on the gamma band. The invasive studies

emphasize rapid frequencies, as they have shown clear dynamical differences in the high

gamma bands as in work by Angrick et.al [37] that used signals in the range 70–170Ḣz

or Leuthardt et.al [94] that focused on singles from 40 to 160Ḣz. Table 4 groups the

reports that have used a frequency decomposition technique as an important feature

extraction step in their decoding pipelines.

For fNIRS approaches, the hemodynamics occur in a low-frequency range and,

features are extracted from a narrow portion of the spectrum mainly below 0.5 Hz.

Therefore, no other frequency decomposition techniques have been employed.

The Fast Fourier Transform (FFT) is a widely used technique for frequency

decomposition, converting the time-domain signals into coefficients of frequency
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Figure 5. Spatial colour map of general brain regions showing the frequency of

selection of features from each of these areas. Features from the left-frontal area of the

brain were described in more than 20 reports as informative for SI decoding his area

of the brain corresponds to Broca’s area.

representation. Such coefficients have been directly used as features as in the ECoG

based SI decoding approach reported by Mugler et. al [35] and Bejestani et. al [87].

The Mel Frequency Cepstral Coefficients (MFCC) were introduced for speech

in audio processing, because of the 1/f property of sound, MFCC proposes scaling

to balance high-low frequency amplitude contributions by applying a filterbank and

logarithmic operations based on the human audio scale. MFCC has been proposed to

extract EEG features and was applied by Mini et. al [95] to extract SI features. Rusnac

et. al [96] used a slightly different version of the MFCC equation considering a lower

dynamics scale.

The Discrete Gabor Transform (DGT) is a case of a short-time Fourier transform

that uses a Gaussian function to obtain the frequency domain representation of a signal.

It was used in work by Jahangiri et. al to decompose the signal into 2 Hz components

to rank their classification power [54]

Wavelet Decomposition is another method widely used to decompose EEG signals,

it addresses the limitations of FFT as decompositions include temporal information.
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Table 4. Reports with Frequency Decomposition Methods as the Main Feature

Extraction Step along with their estimated ITRs in bits per minute.

Report Number

of

classes

Record Subject

Depen-

dent

Features and methods Classification ITR

(bits/min)

[84] 5 EEG SD DWT LDA 0.98

[85] 6 EEG SD DWT SVM 1.73

[40] 3 fNIRS-

EEG

SD DWT, HbO RLDA 2.90

[86] 2 EEG SD DWT, energy sum, wave-

form lenght

LDA 3.77

[87] 2 EEG SD FFT, amplitude of each

frecuency

SVM 4.16

[76] 5 EEG SD DWT, MaxLCor SVM 4.80

[56] 3 EEG SD WPD LightGBM 5.41

[88] 2 EEG SD CSP kNN 5.66

[57] 2 EEG SD DWT DNN 7.80

[79] 5 EEG SD DWT Random forest 9.33

[89] 11 EEG SD MFCC SVM 9.60

[90] 10 EEG SI FFT RF 15.22

[91] 4 EEG SD DWT, CSP ELM 21.92

[92] 8 EEG SD DWT, CSP SVM 50.08

[93] 26 EEG SI DWT, CSP SVM 91.49

[35] 300 ECOG SD FFT LDA 139.15

Wavelet Decomposition uses a family of function wavelets that scale down the original

signal by applying a convolution series. There have been different types of Wavelet

Decomposition used to decode SI such as the Discrete Wavelet Transform (DWT).

Continuous Wavelet Transform (CWT) and Wavelet Packet Decomposition (WPD) are

two types of wavelet decomposition that differ in the scaling and type of wavelet usage.

Some SI decoding reports have preferred the family of Dabeuchi 4 (db4) wavelets as

it led to optimal performance [53, 56, 92, 97, 98]. However, Biorthogonal and Symlet

wavelet families have also been explored for SI decoding.

3.5.3. Connectivity Features These features refer to statistical dependencies between

activity recorded from different parts of the brain, which are interpreted as a form of

functional connectivity. They can be used to provide insights into how different parts

of the brain coordinate to produce imagined speech patterns.

Connectivity features can be derived from a covariance matrix analysis, covariance

matrices encode the inter-channel variability during the length of a trial. Such matrices

are Symmetric Positive Definite (SPD). If SPD matrices are placed as multidimensional

points they lie in a Riemannian space or manifold. Therefore, Riemannian classifiers

could have an accurate distance measure, and consequently, have been used in SI
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Table 5. Summary of studies that used Riemannian geometry either for projecting

SPD matrices or in the classifiers and estimated ITRs in bits per minute

Report Number

of

classes

Record Subject

Depen-

dent

Features and methods Classification ITR

(bits/minute)

[47] 3 EEG SD tangent projection of

SPDs

SVM 1.70

[58] 4 ear-

EEG

SD tangent space projection

SPD

MLELM 1.78

[99] 4 EEG SD CSP, tangent projection of

SPD

SVM 3.69

[100] 2 EEG SD Correntropy SPD MDM 6.37

[101] 5 ear-

EEG

SD CSP, tangent projection of

TSMBC

MLELM 36.00

decoding attempts [102]. SPD matrices can also be projected into their corresponding

tangent space to construct feature vectors whose distance can be approximately

Euclidean for regular classifiers [47, 58]. The SPD property is also true for other

estimators for matrices such as coherence matrices or cross-spectral density matrices

[100, 103]. Table 5 groups the reports that have used Riemannian geometry in their

approaches, either with tangent projections or Riemannian distance classifiers.

Phase connectivity features have been considered for the analysis of EEG signals.

For example, Panachakel et. al [104] computed the Mean Phase Coherence (MPC)

and Magnitude-Squared Coherence. The resulting statistical measures of phase

synchronization between channels resulted in two connectivity matrices that were used

as inputs for a DL model, achieving an average result of 91% for binary classification.

Phase and amplitude connectivity were used as a primary feature in an ECoG study

by Proix et.al [105]. In their approach, phase-amplitude cross-frequency coupling was

computed between the phase of one frequency range and the amplitude of a higher-

frequency range and achieved a higher than chance classification accuracy with coupling

of the Beta band and high gamma frequency band.

Guo et. al [106] used Pearson Correlation coefficients between pairs of HbO channels

to measure synchronization between channels over the motor and frontal cortices.

They found that connections were stronger in Broca’s area than in other regions, and

consequently selected those channels for classification.

Chengaiyan et. al [4] employed phase synchronization measures (EEG coherence,

and Partial Direct Coherence) as well as Granger Causality measures (Direct Transfer

Function) and entropy as feature vectors from 5 frequency bands to feed a DL model,

which reached 79% average accuracy for binary classification.

Ilipoulos and Papasotiriou [107] developed an SI decoder by using operational

architectonics, a neuroscience concept of brain function, to compute from EEG windows,
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Figure 6. a Histogram of counts of the 7 most used feature extraction techniques

among SI decoding attempts. b Timeline showing the cumulative sum of the most used

feature extraction techniques over recent years, CSP has exhibited constant growth

since its application in early approaches. The ‘raw’ feature describes approaches that

use the unprocessed EEG signal to train DL models. DL approaches have become

predominant in recent times.

the abrupt jumps in EEG amplitude named Rapid Transition processes (RTPs) to

compare the relations between distinct areas and obtained measures (degree, strength,

weighted global efficiency, density, weighted transitivity, eigenvector centrality) that

formed the final feature vector. This vector was used to train a Naive Bayes Classifier,

which achieved an average accuracy of 65% for 3 classes.

Figure 6.a summarizes the most frequently selected feature extraction methods by

the reports considered in this review. The DWT has been the most frequently selected

through the years of SI research. We are also interested to see how preferences for feature

selection change over time. In Figure 6.b we explore the cumulative sum of mentions

for each method. We can see a recent increase of approaches using the raw signal due

to the recent popularity of DL models. We cover the reports that used DL models to

extract features from SI signals in Section 3.5.5.

3.5.4. Feature Selection The high dimensionality of neural data compared with the

limited amount of available samples presents a considerable challenge when training

classification models. In the case of EEG, a large number of channels, frequency

decompositions, and further characteristics extracted from those decompositions can
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Figure 7. Histogram of counts of used feature selection techniques.

result in very large feature vectors and may lead to under-fitting issues for classification

algorithms.

In Figure 7 we have counted the feature selection algorithms used in papers selected

for our review. Only 24 (22%) of the approaches we reviewed applied feature selection

algorithms.

Some researchers have applied feature selection algorithms such as Principal

Component Analysis (PCA) to help combine features based on their amount of variance,

as used by Mini et. al [95] to derive uncorrelated components coming from MFCC

coefficients to train a DL classifier. Analysis of Variance ANOVA has also been used to

reduce dimensionality. For example, Macias-Macias [108] selected the most descriptive

statistical features from the filtered EEG, allowing them to reduce the vector size from

264 to 30. Fisher Score has also been chosen to select features. For example, an

fNIRS approach by Guo et. al [39] ranked HbO mean values using F-score to select

the most important values and train an LDA. Other approaches, such as in work by

Bajestani et. al [87], decided to select their features by choosing a subset of EEG channels

by removing non-SI related channels based on literature, usually selecting temporal

or central channels and removing frontal or occipital channels or work by Sree and

Kavitha [77] that selected only channels from the left frontal and temporal hemisphere.

However, these approaches do not compare against the effects of using the full set of

EEG channels.

3.5.5. Deep Learning Approaches Deep Learning has successfully solved numerous

non-linear problems. Multilayer neural networks have also been employed for the

classification of Speech imagery-related data.

Some studies have not used features fixed a-priori and instead have used the

raw signals to train a neural network to extract either temporal, spectral or spatial

features. For example, Cooney et. al [57] used raw EEG to train three Convolutional

Neural Networks (CNNs), a shallow CNN whose temporal (2D convolution) and spatial

(deepwise) convolutions are hypothesized to be analogous to bandpass and spatial
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filtering stages or a deeper version of the same CNN inspired by computer vision

networks, is designed to extract broader features from EEG [109]. Without constraining

the feature types, CNN has shown sensitivity to phase and amplitude features in the

signal. Different CNN architectures have been proposed such as EEGNet [110]. This

compact architecture has depth-wise and spatial convolution layers that act as a filter

bank approach, this architecture have been used to decode different EEG paradigms.

Min et. al [72] mentioned the overfitting phenomenon of EEG as the number of

samples tends to be much smaller than the dimensionality of features, so they augmented

their available data by dividing each imagery trial of 3 s into 30 time segments of 0.2 s

length with a 0.1 s overlap, and then computed further statistical features from those

segments. Additionally, they used a sparse regression model to select an ideal number

of features that were then classified by a single hidden layer Neural Network.

Saha and Fels [103] state that deep learning techniques such as CNN, Recurrent

Neural Network (RNN) or autoencoders fail to individually learn a complex

representation of single-trial EEG data. Their investigation demonstrated that it is

crucial to use multichannel features, so they used cross-covariance matrices as feature

vectors to feed a parallel DL architecture with an RNN on one side and a CNN on

the other. These parallel architectures reached an average accuracy of 83% for 3-class

classification.

Multiple other architectures have been explored, and most of them prove to be

able to learn from SI features. Rousis et. al [111] introduced the Symetric Positive

Definite Network (SPDNet) model for SI decoding, they proposed combining EEGNet

to extract frequency features into SPDNet after transforming EEGNet output to SPD

matrices. SPDNet accounts for the Riemannian geometry in the network’s forward and

backward operations and it is hypothesized to work better with covariance matrices as

we discussed in Section 3.5.3

Table 6 groups the reports that have used DNN models as classifiers.

3.5.6. Other Approaches A few attempts at decoding SI have used other techniques,

based on temporal properties of the signal or mapping representations. For example,

Watanabe et. al [128] used first Dynamic Time Warping (DTW) to realign the signals

from each trial to the envelope of each stimulus. This was then, used to compute the

Euclidean distance between the standardised test data and a template waveform of each

class constructed by averaging the training data belonging to the specific class. This

approach reached an average accuracy of 38.5% for 3 classes.

This process was inspired by the work of Martin et. al [69] who used ECOG signals

which were time-aligned to their corresponding stimulus using DTW to compute the

envelope from a high gamma band using the Hilbert transform. A further pair-wise

classification of these features was then performed using SVM based on Euclidean

similarity measures.

Another approach is reported by Garcia-Salinas [129] who concatenated EEG trials

into a single vector to then generate a codebook based on K-NN clustering. With 250
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Table 6. Summary of reports using Deep Learning models as feature extraction

techniques or classifiers and estimated ITRs in bits per minute

Report Number

of

classes

Record Subject

Depen-

dent

Features and methods Classification ITR

(bits/minute)

[112] 5 EEG SI raw CNN 0.50

[96] 7 EEG SD CNN CNN 0.57

[78] 6 EEG SI ICA CNN 1.02

[40] 2 EEG SD DWT SNN 1.23

[57] 5 EEG SI spatiotemporal convolu-

tion

CNN 1.32

[113] 2 EEG SD CSP Caps 2.63

[114] 2 EEG SD MPC SNN 2.83

[111] 11 EEG SD raw SPDNET 3.03

[74] 2 EEG SI SPWVD CNN 3.58

[76] 5 EEG SD DWT ELM 3.79

[115] 2 EEG SI statistical features DNN 4.68

[116] 6 EEG SI instantaneous frequency

and spectral entropy

CNN 4.73

[67] 2 EEG SD CSP DNN 4.76

[95] 2 EEG SD MFCC SNN 6.66

[117] 2 EEG SI raw CNN 7.31

[57] 2 EEG SD DWT DNN 7.80

[118] 6 EEG SD covariance ELM 8.83

[119] 2 EEG SI raw CNN 8.96

[120] 2 EEG SD spectogram CNN 10.97

[77] 5 EEG SI DWT Deep belief net-

work

11.70

[121] 5 EEG SD raw CNN 15.76

[68] 5 EEG SD MEMD CNN 18.81

[122] 4 EEG SI spectrO-spatio-temporal

convolution

CNN 19.30

[103] 6 EEG SI CCV CNN 20.43

[97] 11 EEG SD daubecheis-4 (db4)

wavelet

DNN 20.90

[91] 4 EEG SD CSP ELM 21.92

[123] 3 EEG SD raw LSTM 22.72

[30] 50 ECOG SD amplitude envelope CNN 25.06

[72] 5 EEG SD sparse regression model ELM 28.24

[124] 5 EEG SI DTCWT CNN 28.54

[103] 8 EEG SD covariance matrixes RNN 34.33

[108] 11 EEG SD statistical features Caps 39.10

[63] 4 EEG SD spatio-temporal convolu-

tion

Fully connected

layer

49.47

[125] 11 EEG SI Grammian transforma-

tion

DCNN 53.16

[126] 11 EEG SI raw CNN 99.83

[127] 5 EEG SI raw CNN 100.88
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clusters they could represent the signal via code-words where each epoch was represented

as a histogram with the code-words count. The set of histograms was then fed into a

Naive Bayes classifier, reaching an accuracy of 59% for 5 classes.

Einizade et. al [64] made use of graph-based features, these features are based

on the structural connectivity of the signal where graphs are formed with the spatial

information of the channels. A Laplacian matrix is obtained giving a 3D representation

of the signal. The feature space is then reduced with the matrix eigenvalues to help

identify important weights in the representation. The feature vector was then classified

with an SVM, in a hierarchical model via a multiclass one-vs-all scheme, reaching an

average accuracy of 50% for 3 classes.

Alizandeh and Omaranpour [130] proposed a CSP-based approach by combining

One-vs-One and One-vs-All approaches. The filtered features were used to train an

Ensemble Learning Classifier (ELC) compound composed of four different models.

Logistic Regression, KNN, DT, and SVM. Their results proved better for the ELC

than the individual classifiers.

Carvalho et. al [131] introduced Delay Differential Analysis (DDA) for SI data, this

method has been proposed as a fast and robust feature extraction techniques capable of

finding patterns in the raw EEG signals [132]. In their work, they performed subject-

dependent binary classification of DDA features with an SVM classifier, achieving an

average accuracy of 85%.

3.6. Summary

We analyzed 104 SI decoding pipelines, observing considerable variability in

experimental setups, feature extraction methods, and classification algorithms. A

comparison of ITR across different recording modalities and classifiers is presented

in Figure 8. Invasive techniques exhibited a higher median ITR compared to EEG;

however, the highest ITR values in our analysis were achieved using EEG data. The

results also suggest that commonly used and relatively simple classifiers, such as SVMs

and LDA, can achieve ITRs comparable to those obtained with more complex DL

approaches. Nonetheless, DL methods achieved the highest ITRs among all classifiers

evaluated.

Our analysis further revealed that 23% of the studies adopted an inter-participant

approach, aiming to develop decoding pipelines that generalize across participants.

In contrast, 77% of the pipelines were evaluated on a participant-specific basis.

Additionally, we examined dataset usage and found that only 63 studies (60%)

conducted original experiments to collect SI data, while the remainder relied on

previously available datasets

Furthermore, only six studies (0.57%) reported real-time SI decoding attempts

with user feedback, involving different modalities (2 ECoG, 1 SEEG, 1 fNIRS, 2 EEG)

[37,40,101,120,133,134].
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Figure 8. a Information Transfer Rate estimation for different recording modalities

used to acquire SI. b ITR estimation for the different classifiers employed. The middle

line of the box corresponds to the median ITR.

4. Conclusion

Speech Imagery decoding holds significant promise for advancing our understanding of

the brain’s speech preparation processes and the relationship between speech imagery

and cognitive thoughts. SI decoding enables the identification of covertly spoken

speech units, shedding light on the neural mechanisms underlying this higher-order

mental activity. Successful decoding systems open up a range of possible applications,

positioning SI decoding as a valuable tool in both neuroscience and linguistics research.

From a neuroscience perspective, SI decoding allows researchers to explore brain

areas responsible for language tasks. Besides core functions such as syllabification and

articulation, it also involves stages of memory retrieval and semantic conceptualization,

promoting complex interaction of the brain’s networks as discussed in different speech

models [23, 135], different SI models back up the responsibility in SI of overt speech-

related areas. Additionally, SI may include an error correction step, akin to that which

occurs in overt speech production [136, 137], all of which produce the kinesthetic inner

experience of speech.

Furthermore, SI decoding holds considerable potential for practical applications,

particularly as a foundation for BCIs designed for communication. In this review,

decoding performance was primarily evaluated using ITR, as most of the analyzed

approaches attempted discrete offline classification. However, we also considered WER

as a more appropriate metric for assessing speech-based BCIs, especially in the context

of closed-loop systems designed to synthesize continuous speech.

We identified six real-time decoders reporting statistically significant results across

different imaging modalities. These closed-loop systems demonstrated the ability to

decode up to five SI classes using non-invasive techniques, and up to 100 words using

invasive methods. Our findings indicate that invasive approaches not only achieve

a higher median ITR but also benefit from the use of relatively simple and highly
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discriminative features. In contrast, non-invasive techniques typically require more

complex decoding pipelines to extract informative features, as discussed in subsection

3.1.

Moreover, in the context of neurorehabilitation, SI-based BCIs offer promising

potential to provide users with feedback on their performance in speech imagery tasks

relative to predefined targets. This has been demonstrated in online approaches where

participants either read the decoding output [40, 134], hear the intended speech unit

rendered as synthetic speech [37], or control an external device [101, 120]. Such closed-

loop feedback mechanisms may support speech recovery and rehabilitation, opening

new possibilities for assisting individuals with speech-related neurological impairment.

However, the mentioned closed-loop approaches in our review did not study how the

feedback improved the participants’ SI performance.

Our results reflect a developing BCI paradigm that holds fundamental challenges,

as evidenced by the diversity of decoding strategies and the variability in reported

outcomes. One clear challenge evidenced in our results is reproducibility; we consider

that the ratio of real-time decoding attempts is limited (6 studies) in contrast with the

number of offline approaches, that carried data collection experiments (57 studies),

suggest a gap between the experimental development and practical implementation

possibly due to reproducibility challenges.

This literature review provides a comprehensive overview of the current state of

SI decoding within the broader context of BCI research. While several studies report

promising results, the field remains in a formative stage. The substantial variability

in the studies, followed by the limited replication of findings, complicates efforts to

determine the maturity of this field.

5. Discusion

Speech imagery decoding has been investigated for over a decade, with several studies

reporting promising results. However, as highlighted in this review, further research is

necessary to consolidate these findings and to more clearly establish the maturity of

SI as a viable BCI paradigm. Based on our analysis, we identify two key aspects of

current SI research that may be critical for advancing the development and reliability

of SI-based BCIs: Reproducibility and experiment design. Finally, we also comment on

the decoding of attempted speech, a paradigm which may evoke activity in similar areas

to SI.

5.1. Reproducibility

As identified in this review, the majority of SI decoding studies rely on offline pipelines

that, in theory, hold promise for translation into online BCI applications. However, we

found only six instances in which an online SI-BCI was implemented. Given that 57

studies reported conducting their own experiments, often achieving high offline decoding
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performance, the limited number of online implementations may point to challenges in

reproducibility. Although certain feature extraction methods, such as DWT and CSP,

have been applied across multiple studies, the resulting performance varies substantially,

underscoring inconsistencies in implementation and outcome. Reproducibility remains

a broader concern in the field of machine learning, yet we found no systematic

efforts to address this issue within SI research specifically. Further development and

evaluation of online SI-BCIs are needed to establish the paradigm’s viability for real-

world applications, particularly in the context of non-invasive approaches. Moreover,

incorporating benchmarking frameworks and comparing SI with more established

paradigms, such as MI, could be beneficial for its development.

5.2. Experiment designs

The inherently subjective nature of speech imagery may present challenges for its

adoption as a robust and widely usable BCI paradigm. Estimates suggest that

only 30–50% of individuals regularly experience inner speech [138], which could limit

the consistency and generalizability of SI-based decoding approaches. Identifying

participants who experience frequent inner dialogue may enhance the quality of data

collection, particularly in early-stage studies. Psychological factors are known to

influence BCI performance and should therefore be carefully considered in experimental

design [139].

Effectively instructing participants to perform SI and assessing their comprehension

of the task can be complex. Compounding this issue is the variability in how SI can be

conceptualized and executed, ranging from visual imagery of words, auditory imagery,

and motor imagery of articulatory movements to silent naming. While several studies

have explored these different strategies, no consensus has been reached regarding the

most effective approach. Nonetheless, comparable neural activations and promising

decoding performances have been reported across these methods [37,75,134].

As discussed in Section 3.3 there have been different approaches to SI designs,

and each of them may generate a different outcome. However, based on the reported

results, all different stimuli (auditory or visual) and types of SI tasks (naming, reading

or generating) have been decoded with higher than chance accuracy. We found reports

analyzing different types of speech units but no significant evidence to suggest that

prompting specific speech units leads to higher classification accuracy. [46, 57, 78, 105].

Further investigation to compare the performance of speech units may help in finding

optimal prompts for SI paradigm.

It is known that machine learning algorithms may generalize better when data is

abundant. We have identified that some of the most used databases in the field of SI

decoding contain only a small number of trials per class, in some cases containing as

little as 15 trials. Considering this small dataset size and the fact that a large number

of channels are present in most datasets used in SI decoding studies, it is evident that

decoding pipelines may under- or over-fit. However, another issue is that, to acquire
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more trials or SI classes, participants need to spend a long time in experiments, which

can bring mental fatigue or stress and lead to lower data quality. One potential solution

is the use of multi-session recordings, meaning that participants would need to repeat

the experiment for more than one day, which in turn could also help to test model

generalization and increase the amount of data collected. Another design suggestion

may be the gamification of the experiment, building something entertaining and adding

a sense of purpose have been shown to be useful in BCI experiment designs [139,140].

Neurofeedback and BCI training remain largely unexplored within the context of

SI. We suggest that future research should prioritize the development of closed-loop

paradigms, enabling participants to receive real-time feedback on their SI performance

as a means to validate offline findings. Neurofeedback has been shown to enhance

BCI performance by facilitating users’ ability to modulate their neural activity through

learned self-regulation strategies [141,142].

5.3. Attempted Speech

Notably, recent advances in speech neuroprosthesis have demonstrated the potential

of BCIs for restoring communication in individuals with severe speech impairments.

Unlike SI decoding paradigms developed with healthy participants, these approaches

have primarily been applied to individuals with degenerative conditions resulting in the

loss of speech. For instance, Moses et.al [30] demonstrated the feasibility of a BCI-based

speech synthesizer, achieving a decoding rate of 15 words per minute with a 25% word

error rate. This performance was made possible through the integration of SI decoding

and language modeling to enhance accuracy. Similarly, Card et al. [29] reported a

system capable of decoding a 125,000-word vocabulary with 90% accuracy, enabling a

participant to engage in self-paced conversation at approximately 32 words per minute.

A subsequent publication by the same group highlighted further system adaptations that

positively impacted the participant’s communicative experience [31]. To the best of our

knowledge, these represent some of the earliest and most compelling demonstrations

of speech neuroprosthesis, offering evidence that brain signals can be decoded into

intelligible speech in real time. When compared to SI decoding, the superior performance

observed in these attempted speech paradigms may reflect the unique motivation and

engagement of participants for whom BCI systems offer a critical avenue for restoring

communication.
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