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A B S T R A C T

Radiographic imaging is typically used to diagnose osteoarthritis (OA). However, patients would typically be sent 
for imaging after they present to a physician because of joint pain. By this time, the condition is likely irre
versible. This study aims to determine if human ethomics (i.e. behavior) defined by whole-body kinematics 
during walking, can be used as a diagnostic biomarker of hip OA. Three-dimensional motion capture was per
formed on 106 participants with unilateral hip OA and 80 asymptomatic participants (N = 80) during walking. 
Sixteen sagittal plane joint angle variables were extracted and used as inputs into the prediction model. The 
categorical outcome was the radiographic severity of hip OA using the Kallgren-Lawrence (KL) scale (0 [no OA], 
2, 3, 4[worse]). Functional data boosting was used for statistical modelling with bootstrap resampling. Our 
ethomics approach to hip OA diagnosis had positive likelihood ratio (LR+) values ranging from 4.79 (95 %CI 
3.20, 7.42) to detect the presence of KL3, to 43.95 (95 % CI 14.9, 76.08) to detect the presence of any OA. The 
present approach had negative likelihood ratio (LR− ) values ranging from 0.56 (95 %CI 0.33, 0.79) of 0.07 (95 % 
CI 0.04, 0.11) to detect the absence of KL4, to 0.07 (95 %CI 0.04, 0.11) to detect the absence of any OA. Human 
ethomics represents an ideal candidate for OA biomarkers that could overcome many of the logistical challenges 
of traditional imaging and biochemical biomarkers.

1. Introduction

Osteoarthritis (OA) is one of the leading global causes of pain and 
disability (Vos et al., 2020). One in nine adults in England over 45 years 
of age has hip OA, characterised by slow structural and symptomatic 
progression, with up to 30 % eventually requiring a joint replacement 
(Burn et al., 2019). A diagnosis of OA is usually triggered by the onset of 
symptoms, but by the time OA is ascertained via radiological imaging, it 
is likely irreversible (Glyn-Jones et al., 2015). Although still not avail
able in the pharmaceutical market, significant research is ongoing to 
develop drugs that actively modify the disease process (Cho et al., 2021). 
For such disease-modifying drugs to be effectively administered, a 
diagnosis of OA must occur earlier, before the onset of symptoms (Glyn- 
Jones et al., 2015; Mahmoudian et al., 2021).

The diagnosis and monitoring of OA are challenging given that many 
clinical tools rely solely on subjective patient history and outcome 
measures (Metcalfe et al., 2019; Quintana et al., 2007), clinical “by eye” 
or “by hand” assessments (Holla et al., 2012), and clinical classification 
criteria (e.g. the American College of Rheumatology [ACR] criteria) 
(Altman et al., 1991). For example, a reduced hip adduction range of 
motion (ROM) has a positive likelihood ratio (LR+) of 4.2 and a negative 
likelihood ratio (LR− ) of 0.25 (Metcalfe et al., 2019), a self-report of the 
worst pain in the medial thigh region a LR+ of 7.8 and LR− of 0.89 
(Metcalfe et al., 2019). When combining self-report and physical 
assessment findings, the presence of four or more clinical signs can 
achieve a LR+ for hip OA of 4.9 (Metcalfe et al., 2019). Hip ROM 
assessed manually using a goniometer achieved a diagnostic perfor
mance, relative to radiographic imaging, of 4.2 (LR+) and 0.88 (LR− ) 
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(Holla et al., 2012). A disadvantage of subjective questions for diagnosis 
is that they are reliant on accurate subjective recall, and may be 
confounded by factors beyond the intrinsic pathology of OA, such as 
psychological distress (Lentz et al., 2020) and pain (Guérard et al., 
2020). Manual physical assessments, like goniometry, may become 
time-consuming to conduct if performed beyond a single joint.

To circumvent the limitations of traditional clinical tools, re
searchers have begun searching for biomarkers that allow early diag
nosis of OA (Hunter et al., 2023; Lotz et al., 2013). Currently, the two 
most investigated potential biomarkers of OA can be classified either as 
imaging or biochemical markers (Lotz et al., 2013). Neither of these 
biomarker types is easily translated in the clinical setting as they are 
either very expensive or invasive. An untapped biomarker type that can 
overcome these limitations is human ethomics (i.e., the study of 
behaviour). Human ethomics represents a potentially ideal biomarker 
candidate as it can be quantified objectively with both laboratory-grade 
motion capture systems, and lower-cost digital devices, such as smart 
portable devices. Ethomic biomarkers are currently limited in their 
utility as diagnostic OA biomarkers, primarily because they are often 
reflect traditional clinical measures – for example, step counting (Lo 
et al., 2015). To fully realise the potential of discovering ethomic OA 
biomarkers, artificial intelligence (AI) must be exploited.

People with hip OA adopt different movement and motor strategies 
compared to asymptomatic cohorts, and these altered strategies worsen 
with greater OA severity (D’Souza et al., 2022; Diamond et al., 2024; 
Franco et al., 2021; Steingrebe et al., 2023). Trunk and lower-limb ki
nematics during walking were able to differentiate between people with 
and without hip OA with an accuracy of >90 % when using a Support 
Vector Machine (SVM) classifier – a machine learning (ML) technique 
(Laroche et al., 2014). Meyer et al., (Meyer et al., 2015) have used a 
combined Principal Component Analysis (PCA) and Linear Discriminant 
Analysis (LDA) approach, reporting that biomechanical features could 
achieve a discriminatory value of >0.86 (Area under the Receiver 
Operating Curve), with reduced hip/knee extension angles the features 
with the greatest discriminatory power (Meyer et al., 2015). Joint ki
nematics alone have been able to achieve a LR+ and LR− of 6.9 and 
0.95, respectively, when differentiating end-stage hip OA against an 
asymptomatic control (Emmerzaal et al., 2022). Others have used 
multivariate functional PCA (MFPCA) of biomechanical waveforms to 
predict biochemical indices of hip joint cartilage in people with and 
without OA (Roach et al., 2021). Biomechanical features that are com
mon to both established OA and those at risk of OA could present 
candidate biomarkers used for the early diagnosis of OA (Bjornsen et al., 
2024).

Although many studies have reported gait alterations in people with 
OA, many fewer have used such alterations for discriminating OA across 
the severity spectrum, and no studies, to the authors’ knowledge have 
done so using predictive models that are fully transparent and inter
pretable. The present study aimed to determine the feasibility of human 
ethomics for the diagnosis and monitoring of the radiographic severity 
of hip OA, using Functional data Boosting – a fully transparent and 
interpretable machine learning method (Brockhaus et al., 2020). We 
focused on laboratory-collected whole-body kinematic features as pre
dictors of a diagnosis of hip OA, to demonstrate the feasibility of ethomic 
biomarkers that could classify hip OA radiographic severity. We 
hypothesised that the diagnostic performance of biomechanical features 
for the diagnosis of radiographic hip OA would exceed the LR+ value of 
4.9, achieved by using clinical diagnosis.

2. Methods

2.1. Design

This is a secondary analysis of an open-access dataset (Bertaux et al., 
2022) containing 80 asymptomatic participants and 106 participants 
with unilateral hip OA, identified using the American College of 

Radiology Criteria (Altman et al., 1991). Full details of the study pro
tocol are reported in the original manuscript (Bertaux et al., 2022) and 
are summarised below. No ethics approval was required due to the 
secondary analysis design of the present study.

2.2. Data collection

Three-dimensional (3D) biomechanical analysis of comfortable 
speed barefooted walking was performed with eight optoelectronic 
cameras (Vicon MXT40, Vicon, UK; 100 Hz) and two ground-embedded 
force plates (OR6-5, AMTI, USA; 1000 Hz). Walking trials occurred over 
a six-metre walkway, using the verbal instruction of “walk as naturally 
as possible, looking forward”. A minimum of ten successful gait trials per 
participant were recorded.

Reflective markers were placed to create a whole-body Plug-In-Gait 
(PiG) model (Davis et al., 1991). Marker trajectories were filtered using 
a lowpass 4th-order Butterworth (10 Hz), whilst ground reaction forces 
(GRFs) were filtered using a lowpass 2nd-order Butterworth (50 Hz). 
Gait events of initial contact and toe-off were determined using a 
kinematic-based algorithm based on the velocities of the foot markers 
(Zeni et al., 2008). Joint kinematics were computed using the PiG model 
in Vicon Nexus software (Davis et al., 1991), and we retained only the 
sagittal plane kinematics for subsequent analysis. This is because non- 
sagittal plane kinematics are inaccurate using the PiG model (Bertaux 
et al., 2022).

For the asymptomatic cohort, the right-sided kinematics were time- 
normalised from the right initial contact to the next consecutive right 
initial contact. The left-sided kinematics were time-normalised from the 
left toe-off to the next consecutive toe-off. For the OA cohort, the ki
nematics of the affected lower-limb were time-normalised between two 
consecutive initial contacts of the affected lower-limb (right for right OA 
and left for left OA); whilst the non-affected limb kinematics were time- 
normalised between two consecutive toe-offs of the non-affected lower- 
limb (left for right OA, and right for left OA). To temporally align the 
kinematic waveforms for all participants, we labelled the right limb 
kinematics for the asymptomatic cohort, and the affected limb kine
matics of the OA cohort as the “ipsilateral” side kinematics. We also 
labelled the left limb kinematics for the asymptomatic cohort and the 
non-affected limb kinematics of the OA cohort as the “contralateral” side 
kinematics.

2.3. Statistical approach

A scalar-on-function (SoFR) logistic regression model was used for 
the multinomial classification of the outcome of hip OA severity 
(asymptomatic, Kellgren and Lawrence [KL] scale of 2, 3, 4). A SoFR 
model is one where the outcome contains scalar values (i.e. one 
participant one value, and the predictors can take on both functional (i. 
e. the time-series of a single variable for a participant) and scalar values. 
Functional regression models are extensions of standard regression 
models, such as generalized additive models (Wood, 2017).

Sixteen sagittal plane angle functional variables from both sides were 
used as predictors to fit the SoFR model. Variables ranged from neck 
flexion angle during the ipsilateral stride, to ankle plantarflexion angle 
of the contralateral limb. All functional variables were scaled to have a 
mean of zero so that different predictors had equal potential to be 
included in the model. We used component-wise gradient boosting for 
model fitting (Brockhaus et al., 2017). The algorithm is an iterative 
procedure that successively adds one covariate to the model, like a 
sequential forward stepwise regression, with the ability to handle 
functional predictors, perform variable selection, and allow for penal
ized estimation. To estimate the optimal number of iterations to opti
mize the negative log-likelihood of the multinomial Bernoulli 
distribution, cross-validation was performed using a 10-fold split cross- 
validation.

For the multinomial classification of OA severity, we reported the 
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“one versus all” (e.g., KL3 versus the other three classes) performance 
metrics, to calculate traditional performance metrics used in the litera
ture for binary diagnostic tests. The following diagnostic performance 
metrics were calculated: sensitivity ( Truepositive

Truepositive+Falsenegative), specificity 

(
Truenegative

Truenegative+Falsepositive), positive predictive value (PPV) 

(
Truepositive

Truepositive+Falsepositive), negative predictive value (NPV) 

(
Truenegative

Truenegative+Falsenegative), LR+ (
Sensitivity

1− Specificity), LR− (
1− Sensitivity

Specificity ), accuracy 
(

Truenegative+Truepositive
Total

)

, and odds ratio (OR) (Truepositive/Falsenegative
Falsepositive/Truenegative).

For LR+, a value ≥2 represents a “slight”, ≥5 represents a “moder
ate”, and ≥10 represents a “large” increase in posttest probability of the 
presence of a condition (Jaeschke et al., 1994). For LR− , a value ≤0.5 
represents a “slight”, ≤ 0.2 represents a “moderate”, and ≤0.1 repre
sents a “large” decrease in the posttest probability of the presence of a 
condition (Jaeschke et al., 1994). For all performance metrics, a 95 % 
confidence interval (CI) was calculated using a bootstrap resampling 
approach (with B = 1000 samples).

To visualise the effects, for every functional predictor, the SoFR 
model estimates the effect of each stride cycle time point on the prob
ability of belonging to one of the four classes. For prediction, this effect 
is then multiplied by the value of the predictor of this time point, e.g., 
ipsilateral hip angle, to predict the increase or decrease in probability for 
each of the four classes. Since the model uses the whole stride infor
mation (from 0 to 100 %) to predict the four classes, the model then 
integrates all time points weighted by their respective effect to obtain 
the total influence of the functional variable on the outcome.

All analyses were performed using R version 4.3.0, using the 
“FDboost” package (version 1.1-2) (Brockhaus et al., 2020), and the 
codes with results are found in the Supplementary material.

3. Results

The descriptive characteristics of the included participants can be 
found in Table 1. The present study included OA participants with 17.6 
% KL2, 46.1 % KL3, and 36.3 % KL4 severity. Healthy participants were 
significantly younger by 8.1 years (t = − 4.21, P < 0.001), and had a 
greater BMI 3.7 kg/m2 (t = − 5.69, P < 0.001), compared to OA par
ticipants (Table 1). The mean waveform for each of the predictors, for 
each of the four classes of OA severity, can be found in the Supple
mentary material. The optimal number of iterations was 626. Twelve out 
of the 16 predictors were selected in the final model (Fig. 1). The ipsi
lateral hip was the most influential predictor, as it contributed to 50.3 % 
of the reduction of the model’s average loss (Fig. 1). The next two most 
influential predictors were the neck flexion angle during the ipsilateral 
stride and the ipsilateral ankle plantarflexion angles.

Our ethomics approach to hip OA diagnosis had LR+ values of 43.95 
(95 % CI 14.9, 76.08) for the presence of any OA, 10.81 (95 %CI 5.47, 
22.78) for the presence of KL2, 4.79 (95 %CI 3.20, 7.42) for the presence 
of KL3, and 10.20 (95 %CI 4.82, 27.43) for the presence of KL4, 
respectively (Table 2). This reflects a “large” benefit in increasing the 

post-test probability of making the correct diagnosis, apart from the 
classification of KL3, which had a “slight” diagnostic benefit. The pre
sent diagnostic approach had LR− values of 0.07 (95 %CI 0.04, 0.11) for 
classifying KL0 versus all, 0.49 (95 %CI 0.24, 0.74) for classifying KL2 
versus all, 0.38 (95 %CI 0.22, 0.55) for classifying KL3 versus all, and 
0.56 (95 %CI 0.33, 0.79) for classifying KL4 versus all, respectively 
(Table 2). This reflects a “large” benefit in decreasing the post-test 
probability of the presence of any OA, and a “slight” benefit in 
decreasing the probability that an individual has a KL2/3hip OA 
(Table 2). An example of how our ethomics approach can be applied 
clinically is provided using Fagan’s nomogram (Fig. 2). Assuming a pre- 
test probability of hip OA at 35 % (Metcalfe et al., 2019), a positive 
ethomics finding increases the post-test probability of having hip OA 
with KL 2 severity to 84 %, whereas a negative finding reduces the post- 
test probability to 21 % (Fig. 2).

Fig. 3 describes the model’s change in estimated probabilities for all 
four classes during one stride for an “average” person if only a single 
functional predictor was available. An interpretable plot of all selected 
predictors can be found in the Supplementary material. Herein, we 
describe how alterations in the ipsilateral hip kinematic map onto al
terations in the predicted class probability. For a healthy person and a 
person with KL3 OA, the largest increase in probability towards their 
respective classes occurred at approximately 50 % of the stride cycle 
(Fig. 3a,c). The ipsilateral hip angle had a greater influence in correctly 
identifying a healthy person than a person with KL3 OA (Fig. 3a,c). For 
an OA person with KL2 severity, the largest increase in probability to
wards a class of KL2 occurred before 25 % of the stride cycle (Fig. 3b). 
For an OA person with KL4 severity, ipsilateral hip angle shifted the 
probability of being in this class by a maximum of 6 % over the stride 
cycle (Fig. 3d).

4. Discussion

The diagnosis of hip OA has historically relied on subjective clinical 
history, radiographic imaging, and/or physical examination, which are 
limited in terms of their reliance on patient self-report, time-consuming 
nature, and cannot be easily undertaken repeatedly due to radiation 
exposure. Our primary hypothesis was partially supported in that our 
diagnostic accuracies achieved a LR+ of more than 4.9, apart from the 
classification of KL3 hip OA. Human ethomics have a strong potential to 
revolutionise not only the diagnosis of OA but also in determining the 
severity of structural progression, paving the way for a novel, low-cost 
method of clinical diagnosis.

The diagnostic accuracy of the present human ethomics approach 
was greater than that using patient histories to diagnose the presence of 
any hip OA (LR+ range 2.06–7.80) (Metcalfe et al., 2019; Wright et al., 
2021), using clinician-measured hip ROM (LR+ range 1.35–1.49) (Holla 
et al., 2012), and using a clinician-measured presence of a Trendelen
burg sign (LR+1.83) (Youdas et al., 2010). Many of the current hip OA 
diagnostic studies have not considered the diagnostic performance of the 
test for determining structural severity, apart from Holla et al., (Holla 
et al., 2012), who reported that the LR+ values for hip ROM were be
tween 1.35 (presence of osteophytes or joint space narrowing) to 1.49 
(presence of osteophytes and joint space narrowing) when diagnosing 
different grades of hip OA. Although the human ethomics approach can 
increase the certainty of the presence of hip OA and its severity, it falls 
short in decreasing the post-test probability of a KL severity when the 
test yields a negative result. For example, if the pre-test probability of 
having a hip OA severity of KL4 was 50 %, a negative ethomics result 
(LR− of 0.56) would decrease the post-test probability of this severity to 
36 %. However, this approach provides an excellent means of confirm
ing a diagnosis, given the high specificity, as well as confidently 
excluding any OA, given the high sensitivity.

We anticipate that the ipsilateral hip flexion angle was the most 
influential diagnostic predictor and by a significant margin compared to 
the second most influential predictor, the ipsilateral neck flexion angle 

Table 1 
Descriptive characteristics of participants. ª represent count (proportion) values.

Characteristics Healthy (n =
80)

KL2 (n =
18)

KL3 (n =
47)

KL4 (n =
37)

Side affected by 
osteoarthritisª

​ ​ ​ ​

Left − 9 (50 %) 16 (34 %) 17 (46 %)
Right − 9 (50 %) 31 (66 %) 20 (54 %)

Sexª ​ ​ ​ ​
Female 45 (56 %) 12 (67 %) 25 (53 %) 16 (43 %)
Male 35 (44 %) 6 (33 %) 22 (47 %) 21 (57 %)

Age (years) 59 (15) 69 (9) 66 (10) 67 (9)
Body mass index (kg/ 

m2)
25.0 (3.6) 27.5 (5.3) 28.0 (4.3) 30.0 (5.8)
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(Fig. 1). It is unlikely that our selected predictors were discriminating 
between the groups based on age differences. This is because there is 
uncertainty about whether walking kinematics changes significantly 
between 50 and 70 years old, which is the age range of participants in 

this study. While a previous meta-analysis has reported a reduction in 
hip sagittal plane ROM and peak extension angle in old compared to 
young adults, the studies compared older adults (average age: 70 years 
old) to younger adults (average age: 27 years old) (Boyer et al., 2017). 
More recent studies reported no differences in hip kinematics in adults 
between 50 and 70 years old (Moissenet et al., 2019; Rowe et al., 2021). 
Also, a previous study reported no significant difference in neck kine
matics during walking between adults (average age: 27 years old) and 
older adults (average age: 70 years old) (Schmid et al., 2017).

The importance of neck kinematics during walking as a diagnostic 
predictor of hip OA was unexpected but suggests the importance of 
adopting a whole-body kinematic diagnostic approach. Previous studies 
have reported that biomechanical features of remote “normal” body 
regions could be just as important as local deficits when classifying neck 
pain disorders (Jiménez-Grande et al., 2021; Liew et al., 2020). Kine
matic alterations in remote regions may compensate for local kinematic 
changes to preserve whole-body walking objectives, such stabilising the 
centre of mass trajectory (Tawy et al., 2017). Alternatively, the altered 
neck flexion angle could present a more cautious gait pattern, associated 
with increasing hip OA severity, that reflects a greater fall risk (Lin et al., 
2015).

The ipsilateral knee flexion angle was the least influential predictor, 
which contradicts previous research (Meyer et al., 2015). Meyer et al., 
(Meyer et al., 2015) reported that the principal components relating to 
sagittal knee angle had a better classification accuracy for hip OA (area 
under the receiver operator curve [AUC] 0.91), than components 
relating to sagittal plane hip angle (AUC 0.765). Differences in the 
feature importance values of different variables could be attributed to 
the inclusion of participants with different levels of OA severity. Meyer 

Fig. 1. Feature importance ranking of variables used in predicting hip OA severity. Percentage values indicate the proportion of times the feature was selected.

Table 2 
Point estimate (95% bootstrapped confidence intervals) of the diagnostic per
formance metrics when predicting OA severity.

Statistic KL0(ref) vs all KL2 vs all 
(ref)

KL3 vs all 
(ref)

KL4 vs all 
(ref)

Accuracy 0.95 (0.92, 
0.97)

0.9 (0.87, 
0.93)

0.81 (0.76, 
0.85)

0.85 (0.81, 
0.88)

Odds ratio 633.97 
(174.8, 
1532.6)

23.98 (8.61, 
58.54)

13.27 (7.13, 
24.05)

19.03 (7.25, 
46.51)

Negative 
likelihood 
ratio

0.07 (0.04, 
0.11)

0.49 (0.24, 
0.74)

0.38 (0.22, 
0.55)

0.56 (0.33, 
0.79)

Positive 
likelihood 
ratio

43.95 (14.9, 
76.08)

10.81 (5.47, 
22.78)

4.79 (3.2, 
7.42)

10.2 (4.82, 
27.43)

Negative 
predictive 
value

0.91 (0.88, 
0.95)

0.95 (0.92, 
0.97)

0.88 (0.84, 
0.93)

0.88 (0.83, 
0.92)

Positive 
predictive 
value

0.98 (0.95, 1) 0.52 (0.38, 
0.71)

0.62 (0.53, 
0.72)

0.69 (0.55, 
0.88)

Sensitivity 0.93 (0.89, 
0.96)

0.53 (0.28, 
0.78)

0.68 (0.53, 
0.81)

0.47 (0.22, 
0.7)

Specificity 0.98 (0.94, 1) 0.94 (0.9, 
0.98)

0.85 (0.78, 
0.92)

0.94 (0.89, 
0.99)

Fig. 2. Example of an application of the ethomics approach in adjusting the post-test probability of having OA of KL2 severity using a Fagan’s nomogram.
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et al., (Meyer et al., 2015) included 15/18 people with hip OA with a 
Tönnis grading scale of 3 (graded between 0 [no OA] and 3 most severe), 
whilst the present study included OA participants with 17.6 % KL2, 46.1 
% KL3, and 36.3 % KL4 severity. Given that a more severe structural hip 
OA resulted in greater knee flexion deficits (Eitzen et al., 2012), this may 
explain the greater prominence of knee kinematics in the previous study 
(Meyer et al., 2015).

A significant advantage of the present study is the use of a machine 
learning algorithm that not only achieves state-of-the-art prediction 
performance in multiple scientific domains (Brockhaus et al., 2020; Liew 
et al., 2020) but ensures transparency and model interpretability. 
Interpretability is ensured because the results can be interpreted simi
larly to logistic regression, and the change in the values of the predictors 
can be interpreted in terms of the original units (i.e., a 1◦ change in 
predictors). This is in contrast to other studies that transformed the 
biomechanical predictors into principal components (Meyer et al., 2015) 
and used more “black-box” algorithms (Laroche et al., 2014). In addi
tion, using a functional data regression framework combined with 
model-based boosting ensured that feature engineering to extract 
discrete parameters from biomechanical waveforms was not required as 
a pre-processing step. Rather, the entire waveform can be used as indi
vidual predictors of a diagnostic model.

The present study is not without limitations. First, kinematic alter
ations between OA severities are present in many other activities of daily 
living, like sit-to-stand (Boswell et al., 2023). It may be that including 
kinematic alterations from a wider spectrum of motor tasks may further 
improve the diagnostic performance of OA severity. However, the range 
of tasks to be assessed will depend on the intended use case of the 
technology (e.g. in a busy clinic, self-assessment at home, or in a 
research lab). Second, only sagittal plane kinematics were used to 
develop a diagnostic model, due to the inaccuracies of the non-sagittal 
plane kinematics extracted using the PiG model. Improvement to the 
diagnostic performance may be possible with the use of 3D kinematics, 
given that prior studies have reported the diagnostic utility of non- 
sagittal plane hip ROM goniometric measurements (Metcalfe et al., 
2019). However, the reliance on only sagittal plane kinematics may be 
clinically advantageous since 2D kinematics can be extracted from a 
single video camera (Boswell et al., 2023). This has the potential for 
diagnosis and monitoring of OA severity to occur remotely. Lastly, we 
built a diagnostic model using traditional motion capture technology. 

Presently, our model has the potential to be used for screening partici
pants in hip OA research for study eligibility. Future work should 
investigate if kinematics gathered from markerless motion capture 
(Boswell et al., 2023) provide the same level of diagnostic accuracy as 
the present study.

5. Conclusions

Whole-body kinematics during gait was able to discriminate not only 
between people with and without hip OA, but also between OA severity. 
Human ethomics represents an ideal candidate for biomarkers of OA 
that could overcome many of the logistical challenges of traditional 
imaging and biochemical biomarkers. With the advent of smart tech
nologies that can digitally quantify human ethomics in free-living en
vironments, the door is open toward the development of novel 
diagnostic approaches that enable more rapid and early disease detec
tion in OA.
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Boswell, M.A., Kidziński, Ł., Hicks, J.L., Uhlrich, S.D., Falisse, A., Delp, S.L., 2023. 
Smartphone videos of the sit-to-stand test predict osteoarthritis and health outcomes 
in a nationwide study. Npj Digit. Med. 6, 32.

Boyer, K.A., Johnson, R.T., Banks, J.J., Jewell, C., Hafer, J.F., 2017. Systematic review 
and meta-analysis of gait mechanics in young and older adults. Exp. Gerontol. 95, 
63–70.

Brockhaus, S., Rügamer, D., Greven, S., 2017. Boosting Functional Regression Models 
with FDboost.

Brockhaus, S., Rügamer, D., Greven, S., 2020. Boosting Functional Regression Models 
with FDboost. J. Stat. Softw. 94.

Burn, E., Murray, D.W., Hawker, G.A., Pinedo-Villanueva, R., Prieto-Alhambra, D., 2019. 
Lifetime risk of knee and hip replacement following a GP diagnosis of osteoarthritis: 
a real-world cohort study. Osteoarthr. Cartil. 27, 1627–1635.

Cho, Y., Jeong, S., Kim, H., Kang, D., Lee, J., Kang, S.-B., Kim, J.-H., 2021. Disease- 
modifying therapeutic strategies in osteoarthritis: current status and future 
directions. Exp. Mol. Med. 53, 1689–1696.

D’Souza, N., Charlton, J., Grayson, J., Kobayashi, S., Hutchison, L., Hunt, M., Simic, M., 
2022. Are biomechanics during gait associated with the structural disease onset and 
progression of lower limb osteoarthritis? A systematic review and meta-analysis. 
Osteoarthritis Cartilage 30, 381–394.
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