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Abstract—The emerging field of federated learning (FL) holds
significant promise for advancing edge intelligence while pre-
serving data privacy. However, as FL systems scale or become
more heterogeneous, challenges such as spectrum scarcity and
the straggler problem arise. To address these issues, this paper
proposes SA-AirFed, a semi-asynchronous FL architecture com-
patible with Over-the-Air Computation (AirComp). We develop
an efficient scheduling scheme that meets AirComp’s require-
ments and analyze the factors affecting convergence under the
Lipschitz-Smooth condition. Building on insights from the conver-
gence analysis, we design an adaptive algorithm that mitigates
staleness from semi-asynchronous aggregation and noise from
AirComp by dynamically adjusting aggregation weights, formu-
lated as a convex quadratic programming problem. Experimental
results on MNIST and CIFAR-10 demonstrate that SA-AirFed
significantly reduces wall-clock training time while achieving
greater robustness compared to baseline models.

Index Terms—Semi-asynchronous federated learning, over-the-
air computation, aggregation optimization.

I. INTRODUCTION

Unlike traditional communication systems, the new gen-
eration of wireless networks, including 5G and 6G, incor-
porates edge intelligence as a fundamental component, en-
abling support for diverse applications such as virtual reality,
augmented reality, connected vehicles, and smart Internet of
Things (IoTs). Meanwhile, federated learning (FL) [2] offers a
practical framework for implementing edge intelligence while
safeguarding user privacy.

FL can be classified into synchronous (sync), asynchronous
(async), and semi-asynchronous (semi-async) modes based on
the parallelism exhibited by clients during training tasks [3].
As illustrated in Fig. 1, the sync mode was initially explored by
early research [4] and has since been widely studied in areas
such as communication architecture [5], resource allocation
[6], and convergence speed [7]. In sync FL, all selected clients
receive the latest model parameters simultaneously and begin
training. However, due to variations in computation time,
faster clients must remain idle, waiting for slower ones to
finish, a phenomenon known as the straggler problem1. This
issue decreases time utilization efficiency and slows down
convergence.

An earlier version of this paper was presented in part at the 2023 IEEE
Global Communications Conference [1].

1In computer science literature, the word “straggler” always refers to a
device with low computation capacity, while in communication literature, it is
usually used to describe device with poor channel condition. In this paper, we
consider more about the parallelism. So we define the “straggler” the device
which cannot update their local model in-time because of both communication
and computation latency.

(a) Sync Mode

(b) Async Mode

Fig. 1: Workflow of both the sync and async FL.

To address the straggler problem, the async mode has been
proposed, introducing a scheduling mechanism that eliminates
the need for waiting. This concept can be traced back to the
Hogwild! algorithm [8], which was designed to accelerate
stochastic gradient descent in distributed machine learning.
Compared to the common distributed machine learning, FL
always relies on wireless communication systems rather than
data bus between servers to transmit training data, leading
to more severe communication bottlenecks. In async mode
[9], clients upload their parameters immediately after com-
pleting computations, allowing the next training round to begin
without delay. However, in async mode, the parameter server
(PS) often deals with outdated model parameters, a challenge
known as the staleness problem. These stale updates contain
outdated gradients, which will reduce the effectiveness of
the model optimization. Figure 1 illustrates the differences
between sync and async modes. In the sync mode example,
clients 2 − 4 are stragglers, causing delays for others. In
contrast, in the async mode, updates from clients 2−4 always
suffer from staleness because they rely on gradients derived
from models trained several iterations earlier.

In the realm of async FL, several methods have been
developed to address the issue of staleness. In FedAsync
[9], a memorization-based aggregation technique is used to
blend the current model with the newly updated model.
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This approach has been shown to be effective and is widely
adopted in other async FL schemes. FedBuff [10] extends
the memorization aggregation by utilizing a buffer array to
store multiple updated models over time, averaging them for
aggregation. ASO-Fed [11] modifies the objective function
on the client side, making the updates more robust against
staleness. It is important to note that these techniques cannot
entirely eliminate the occurrence of staleness; instead, they
aim to mitigate its impact through well-designed aggregation
strategies.

Choosing between sync and async modes involves a trade-
off between aggregation accuracy and time utilization effi-
ciency. The sync mode provides more accurate gradients but
results in time wasted waiting for stragglers, leading to longer
iteration times. In contrast, the async mode improves time
utilization but suffers from stale gradients, requiring more
iterations to reach convergence. To balance the strengths and
weaknesses of both approaches, a hybrid approach between
sync and async, known as the semi-asynchronous (semi-async)
mode, has been explored.

The concept of semi-async learning is analogous to the
Stale Synchronous Parallel (SSP) algorithm used in distributed
machine learning, which imposes a maximum staleness limit
in model aggregation [12]. When the staleness of all clients
remains below this limit, they operate in async mode. How-
ever, when a client’s staleness reaches the set threshold, faster
clients must wait for the slowest client until the staleness
condition is resolved. Several semi-async FL frameworks have
been developed based on this design principle. In SAFA [13],
clients are categorized into up-to-date clients and tolerable
clients. Up-to-date clients provide accurate updates to en-
hance computational efficiency, while tolerable clients operate
asynchronously to improve time efficiency. In PORT [14], a
staleness bound similar to SSP is used as a hyper-parameter to
balance the level of asynchrony. And a push-pull mechanism
is implemented to temporarily halt the computation of slower
clients, prompting them to upload their data sooner and
maintain system parallelism. FedAT [15] employs a clustered
aggregation technique in which clients are grouped into tiers:
clients within the same tier operate synchronously, while
clients across different tiers work asynchronously. In this case,
the staleness bound is naturally defined by the tier number.
Building on this, TTFed [16] shifts the trigger mechanism for
intra-tier aggregation from an event-based approach to time-
slot polling. This change alleviates communication system
strain and simplifies resource allocation.

It is important to note that all the FL frameworks mentioned
above are built on digital communication, which demands
spectrum resources depending on the scale of the system.
However, communication has been identified as a critical
bottleneck in scalable FL systems [17]. When considering
the communication time required for clients to upload their
models as part of the overall training cost, it becomes clear
that, although async and semi-async FL improve compu-
tational efficiency, some of these gains may be offset by
their communication disadvantages. Compared to the sync
mode, async and semi-async modes allow clients to perform
more model computation iterations, which also significantly

increases the frequency of data upload. Additionally, the ran-
domness in when clients transmit data introduces challenges
for resource allocation in designing communication protocols.
The resulting increase in communication overhead not only
diminishes the low-latency advantage of async and semi-async
modes but also limits their scalability, hindering their practical
applicability.

To address the communication bottleneck in FL and improve
spectrum utilization efficiency, over-the-air computation (Air-
Comp) has been proposed as an alternative to digital communi-
cation for FL model transmission [5], [18]. In AirComp com-
munication, clients use analog amplitude modulation. When all
clients transmit on the same frequency band simultaneously,
their modulated symbols collide in the wireless channel. Al-
though this collision prevents the recovery of individual client
symbols, their aggregated signal can be naturally obtained by
the receiver. As a result, no matter how many clients a FL
system has, the required bandwidth keeps the same. In recent
years, numerous studies have focused on the application of
AirComp in FL scenarios, aiming to optimize the impact of
heterogeneity on training and mitigate the bottleneck effect.
For instance, [19] proposes a method for training multiple
AirComp FL tasks in parallel within a cellular communication
system and employed a greedy algorithm to optimize device
selection, thereby reducing the adverse impact of slow devices
and poor-channel devices on the system. Meanwhile, [20]
relaxes the power alignment requirement in AirComp and
introduced the concept of Soft Straggler Alignment, which
alleviates the bottleneck effect caused by the device with
the worst channel conditions. Besides, both [19] and [20]
investigate the utilization of MIMO beamforming to enhance
transmission. While [21] leverages the statistical correlations
of heterogeneous data to design a precoding scheme, achieving
lower transmission errors and reduced computational complex-
ity.

The aforementioned studies have addressed many
heterogeneity-induced issues in AirComp, while there
are still severe heterogeneity challenges from the FL
task aspect when applying AirComp to FL scenarios. A
straightforward approach would be to incorporate async or
semi-async techniques into AirComp FL. However, their
compatibility presents some difficulties. Since AirComp
relies on the superposition of signal, clients must transmit
data under a strict synchronization mechanism to ensure
correct aggregation, which is incompatible with most async
or semi-async workflows. Additionally, AirComp introduces
noise into the model, posing a greater risk of divergence for
async and semi-async FL together with the staleness issue.
Many existing studies have investigated the async problem in
AirComp-based FL. For instance, [22] explores two methods
for estimating transmitted signals under imperfect clock
synchronization, while [23] proposes a Bayesian approach to
estimate misaligned AirComp transmissions. [24] proposes
a digital AirComp scheme which has better compatibility
with existing wireless communication systems compared
with analog AirComp based on the Unsourced Massive
Access protocol. In these studies, the transmission time
differences among different clients are typically within a
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few symbol durations, approximately on the order of tens
of microseconds. These differences are caused by imperfect
clock synchronization. The system still operates in a sync FL
manner. However, to make AirComp compatible with async
or semi-async FL, the transmission time differences among
clients often span several training iterations, ranging from
several minutes to tens of minutes, which makes our study
on AirComp FL with semi-async aggregation fundamentally
different from these works in both focus and research
methodology.

To address the aforementioned problems, we propose a
novel semi-async FL framework which supports AirComp.
Our key contributions are as follows:

• We design a working schedule for the proposed frame-
work, which meets the requirements of AirComp.

• We analyze the factors which may influence the con-
vergence speed of the loss function under the Lipschitz-
Smooth (L-Smooth) assumption.

• Based on the conclusions of the convergence analysis,
we find the power control and model aggregation scheme
for the framework. To get the optimal solution, we build
an optimization problem and simplify it into a convex
quadratic programming (QP) which can be solved within
a complexity slightly higher than cubic time.

• Experiments show that our framework can significantly
shorten the wall-clock time of training and effectively
counteract staleness and noise.

The rest of this paper is organized as follows. Section II
introduces the system model. The convergence analysis of SA-
AirFed is given in Section III. The strategy optimization is
demonstrated in Section IV. For clarity, we summarize the
details to implement SA-AirFed in Algorithm 1. Section V
presents the numerical results, and Section VI concludes this
paper. The main notations used in this paper are summarized
in Table I.

II. SYSTEM MODEL

We consider a FL system, where clients from set Stot =
{u1, u2, · · · } train a global model collaboratively with the help
of a PS. Each client uj keeps its own training data denoted by
(xi, yi) ∈ Du with Du samples. The whole available dataset
for the FL system is the combination of all clients’ datasets
with Dtot samples, denoted by Dtot = D1∪· · ·∪DStot

, where
the numbers in the subscript represent the index of tiers or
clients while “tot” represents the collective of all clients.

The goal of an FL system is to optimize the global model
on its trainable parameters to achieve the minimum empirical
risk:

min
w

F (w) =
∑

u∈Stot

∑
(xi,yi)∈Du

1

Dtot
f(w;xi, yi), (1)

where f(·) is the sample-wise risk function, evaluating the
model quality characterized by parameter w when tested with
input xi and the correct answer yi. The expression in (1)
indicates that the global loss function in FL is the average
of the sample-wise loss functions across all samples in the

TABLE I: Notation Summary

Notation Definition
Stot, Stot Set of all clients, size of Stot

Sm, Sm Set of clients in tier m, size of Sm

Du, Du Local dataset of client u, size of Du

Dm, Dm Combined dataset of all clients in tier m, size of Dm

w
(k)
G ,w

(k)
u Global and local parameters of client u at time slot k

g
(k)
G ,g

(k)
u Global and local gradient of client u derived from the

parameters of time slot k
F (w), f(w) Global and sample-wise empirical risk of model charac-

terized by parameter w
d Number of trainable parameters of the model

x
(k)
u Message to send by client u at time slot k, equals the

delayed gradient after client-side aggregation weighting
y(k) Message received by server at time slot k from AirComp,

equals the result of client-side aggregation including
noise and channel mismatch error

u(k) Update vector which is used as the estimated gradient in
k-th time slot to update the global model

α
(k)
m , β

(k)
u Inter-tier aggregation weight of tier m and intra-tier

aggregation weight of client u, at time slot k
M,N Total number of ties, max order of historical gradient

used in server aggregation referring to the highest num-
ber of past gradient iterations

s
(k)
τ Server-side aggregation weight of τ -th order historical

gradient at time slot k
A(k),B

(k)
u Rx decoder matrix and Tx encoder matrix on client u

for AirComp, at time slot k
ε(k), εmax The squared Euclidean distance between the ideal trans-

mission with perfect channel alignment and truncation
and the real transmission, at time slot k and the maxi-
mum value across all time slots

n(k) Noise received by server at time slot k
η Learning rate

∆T Duration of each time slot

datasets owned by all clients. It can also be expressed in the
following form in some FL researches:

F (w) =
∑

u∈Stot

Du

Dtot
Fu(w), (2)

where Fu(w) is the local empirical risk of client u and is
defined as

Fu(w) =
∑

(xi,yi)∈Du

1

Du
f(w;xi, yi). (3)

A. Semi-Async Over-the-Air Federated Learning

Our research builds upon and extends the work of TTFed
[16], a time-triggered semi-async FL approach. Before ex-
plaining the time-triggered scheme in detail, we present several
definitions for clarification.

Definition 1 (Time Slot) We use “time slot” to indicate the
iterations during model training, indexed by the superscript
.(k) in our notation. We choose the name “time slot” instead
of “iteration” or “round” to emphasize its correspondence with
wall-clock time. The change of index k is driven solely by time
rather than the model update events in conventional event-
triggered settings, given by:

k =

⌈
t

∆T

⌉
, (4)
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Fig. 2: Workflow of SA-AirFed.

where ∆T is a hyper-parameter called time slot duration.

Definition 2 (Available Client) Due to variations in computing
capacity and dataset sizes among clients, their computation
latency can differ significantly, leading to both busy and
idle clients, with the latter having already completed their
tasks. Clients that are able to update their computation results
within a given time slot are referred to as available clients.
These clients must have their computations completed and
have sufficient time remaining to transmit data. The indicator
1
(k)
u ∈ {1, 0} is used to represent this state, where client u is

considered available in time slot k if the indicator is 1.

Definition 3 (Tier) We define a tier as a subset of clients with
similar computation and communication latency. Formally,
Sm represents the set of clients that require m time slots to
complete a model update, i.e.:

Sm =
{
u
∣∣∣ 1(τ)

L,u = 1; τ = m, 2m, · · ·
}
, m = 1, 2, · · · ,M. (5)

When the time slot index k is divisible by the tier number m,
all clients within that tier are considered to be in an available
state. We refer to the m-th tier as the available tier, which is
denoted by:

1
(k)
m = 1. (6)

The working principle of TTFed is described as follows. A
time-based trigger mechanism for aggregation is established
by dividing the entire training process into multiple time slots.
For client u, the decision to participate in the k-th aggregation
depends on whether it can complete its computation and com-
munication before the end of time slot k. Clients are naturally
classified into tiers based on their participation patterns, which
are determined by the ratio of their latency to the system’s
time slot duration. Clients within the same tier use sync
aggregation, allowing AirComp to enhance communication
efficiency, while aggregation across different tiers remains
async, reducing the idle time caused by waiting for stragglers.

Our SA-AirFed retains most of the characteristics of TTFed,
with the main modification being the alignment of the com-
munication sessions. In TTFed, clients transmit their updated
data immediately after completing computation. However, in
our design, to make AirComp practical, the communication
session must be aligned with the end of each time slot. This
ensures that all available clients transmit data simultaneously.
The working flow of SA-AirFed is illustrated in Fig. 2. Each
time slot has three sessions:

1) Global Broadcast: At the beginning of each time slot,
the PS uses the gradient descent (GD) algorithm to update
the global model parameters, w

(k)
G , with the update vector

obtained by aggregating the previously local gradients, de-
noted as u(k). The learning rate η is a hyperparameter that
determines the step size for adjusting the model parameters.
The update expression for w(k)

G is as follows:

w
(k)
G = w

(k−1)
G − η · u(k). (7)

After the update, the PS broadcasts the updated global
model to the entire system. The newly received global model is
used for gradient computation in the subsequent work sessions
by clients marked as available in the previous time slot. For
other clients still occupied with computation, this broadcast is
ignored to enable parallelism.

2) Local Computation: In a typical FL training scenario,
gradients are estimated by applying the global model to local
data. However, in SA-AirFed, gradients from different tiers
correspond to global model versions from different time slots.
Based on the definition of tier numbers, the timeliness of each
client’s uploaded gradient can be tracked. Specifically, for an
available client u in time slot k, its computed gradient is based
on the global model from time slot k−m, where m is the tier
number of client u, i.e.:

g(k−m)
u =

∑
(xi,yi)∈Du

1

Du
∇f

(
w

(k−m)
G ;xi, yi

)
. (8)

3) Communication: Clients that have completed gradient
computation transmit their gradients simultaneously over the
same frequency band via AirComp, which ensures that the
required spectrum resources remain constant regardless of the
number of clients. In contrast, in digital orthogonal commu-
nication, achieving sufficiently real-time transmission requires
allocating more spectrum to accommodate a larger number of
clients. As a result, AirComp enhances the scalability of the
system. A power control algorithm is employed to equalize
the received signal strength from each client and normalize the
channel coefficient. The power control in AirComp generally
consists of two components, which are applied on both the
transmitter side (client) and the receiver side (PS). To maintain
generality, we represent these components as linear mappings,
denoted by the matrices B

(k)
u and A(k). The matrix B

(k)
u is

client-specific and used to compensate for channel heterogene-
ity, ensuring that the amplitudes of the transmitted signals are
aligned at the receiver. The matrix A(k), which remains the
same for all clients, is used on the receiver side to amplify the
received signal while ensuring that the transmit power on the
client side satisfies the power constraint.

The received signal y(k) is the aggregated update collected
from available clients, denoted as

y(k) = A(k)

(
M∑

m=1

1
(k)
m

∑
u∈Sm

H(k)
u B(k)

u x(k)
u + n(k)

)
, (9)

where H
(k)
u represents the channel matrix between the u-th

client and the receiver at the k-th time slot, n(k) denotes the
channel noise, and x

(k)
u is the normalized data transmitted by

client u during the k-th time slot.



5

In our model, we consider OFDM-based SISO transmission.
Due to the orthogonality between subcarriers, the channel
matrix H

(k)
u is a d × d diagonal matrix, where d represents

the size of the transmitted model gradients. The diagonal
elements of H

(k)
u correspond to the channel coefficients of

each symbol, which include both path loss and Rayleigh
fading. The matrices A(k) and B

(k)
u have the same shape as the

channel matrix H
(k)
u . Since H

(k)
u is a diagonal matrix, the pre-

equalization algorithm ensures that the resulting matrices A(k)

and B
(k)
u are also diagonal. The diagonal elements of A(k)

and B
(k)
u represent the gain coefficients applied at the receiver

and transmitter, respectively, to achieve power alignment. The
additive noise n(k) which is a vector with d elements is
assumed to be Gaussian white noise with a power of σA.

B. Client Side Aggregation

At the end of a time slot, the available clients will weigh the
gradients and upload them to the PS through AirComp. We
use x

(k)
u to denote the weighted normalized gradients of u-th

client at the end of k-th time slot, which is further expressed
by

x(k)
u = α(k)

m β(k)
u

g
(k−m)
u∥∥∥g(k−m)
u

∥∥∥ , (10)

where α
(k)
m represents the inter-tier aggregation weight, and

β
(k)
u denotes the intra-tier aggregation weight. For clients

within the same tier, their inter-tier aggregation weights are
identical, while intra-tier aggregation weights may vary across
clients. In the studies of FL, the weight β is always set as
the ratio Together, these two weights determine the overall
gradient aggregation. The inter-tier aggregation weights help
balance heterogeneity between different tiers and mitigate the
staleness problem, while the intra-tier aggregation weights
address heterogeneity among clients within the same tier.

In machine learning and FL scenarios, β(k)
u is often set as

the ratio of the data volume on a device to the total dataset
size, which aligns with the weight values in the empirical risk
function. In SA-AirFed, since clients are divided into tiers, we
define it as β

(k)
u = Du/Dm, which is the data volume ratio

on the tier containing the specific client.
Inter-tier aggregation weights are computed at the server and

then transmitted to available clients via digital communication.
This ensures that clients can apply these weights before
performing AirComp. The adaptive aggregation algorithm for
calculating these weights will be introduced in the subsequent
section.

C. Server Side Aggregation

Compared to classic sync FL, the async and semi-async
FL often require an additional aggregation step due to the
modified pattern of client participation. The PS updates the
global model using both the gradients currently uploaded by
clients and the gradients received previously. This need arises
from two key issues common in async and semi-async FL.
First, each aggregation may involve only a small subset of
users, leading to high variance in gradient estimation. Second,

the gradients uploaded by users are often based on an outdated
model, which also known as staleness.

Most async and semi-async FL methods use a recursive
aggregation approach, which can be expressed as

u(k) = s(k)y(k) +
(
1− s(k)

)
u(k−1), (11)

where u(k) is the overall aggregated gradient used to update
the global modal, y(k) is the received data from clients by
the PS involving local gradients, and s(k) is the aggregation
weight.

This recursive aggregation method requires a buffer with
only one vector element to store historical gradient and
involves only a single parameter, s(k). It may simplify the
algorithm’s implementation and the tuning of hyperparameters.
However, we find that this method faces problems when the
staleness issue and noise become severe.

When expanding the recursive expression, it becomes clear
that its value at any given moment is influenced by the values
from all previous moments, i.e.,

u(k) =

k∏
τ=0

(
1− s(k−τ)

)
u(0) +

k∑
τ=1

s(τ)
τ−1∏
l=0

(
1− s(k−l)

)
y(τ).

(12)
If y(k) does not contain any components detrimental to

model convergence, this may not pose a problem. However,
in the context of SA-AirFed, y(k) is influenced not only
by transmission errors and noise from AirComp but also
by outdated local gradients. Therefore, although recursive
aggregation only requires a single parameter, s(k), the actual
impact of s(k) at each time step is very complex, which
may not facilitate the algorithm when considering performance
analysis and optimization. As shown in equation (12), s(k) and
its historical values interact multiplicatively, leading to a series
of complex expressions that complicate the problem.

In our SA-AirFed framework, we implement a memorized
aggregation method with a finite memory length. We use N
vector buffers to store historical information and apply N +1
coefficients to aggregate the data in these buffers with the
newly received gradients, which is represented as

u(k) =

N∑
τ=0

s(k)τ y(k−τ), (13)

where s
(k)
τ is the aggregation weight.

In our approach, we always set the value of N equal to the
number of tiers M , since in SA-AirFed, the interval between
two uploads from any tiers never exceeds M time slots.
A buffer of length N is sufficient to store the most recent
gradients from all clients. Additionally, the coefficients s

(k)
τ

are adjustable for each tier and free from the constraints in
(12), making the aggregation more flexible. In the following
section, we will perform a joint optimization of the inter-tier
aggregation coefficient α

(k)
m and the server-side aggregation

coefficient s(k)τ by analyzing the model’s convergence process.
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D. Latency and Energy Model

In this section, we formulate the time and power cost
model, including the computation, communication latency, and
transmission power constraint.

1) Computation Latency: We adopt floating point operations
(FLOPs) to measure computational task requirements.
Denote the operational speed of the computation device
as fc. Let C denote the FLOPs the federated learning
model requires, and Du denote the dataset size on the
client u. Thus, the computational latency of the client u
is given by

τ cp
u =

CDu

fc
. (14)

2) Communication Latency: In order to ensure compatibility
between AirComp and existing communication systems,
we adopt the orthogonal frequency division multiplexing
(OFDM) with total bandwidth B and NM orthogonal
sub-carriers. To simplify our expression, we ignore the
time cost of the cyclic prefix. It should be noted that
AirComp utilizes analog amplitude modulation rather
than digital modulation like QAM or QPSK. We use
each subcarrier to transmit one dimension of the gradient,
thus the duration of each OFDM symbol is given by the
reciprocal of sub-channel bandwidth, which is denoted
as NM/B. To transmit model parameters or gradients
with a total length of q, ⌈q/NM⌉ OFDM symbols are
required. Consequently, the communication latency for
each AirComp transmission is given by

τ cm =

⌈
q

NM

⌉
· NM

B
. (15)

It is important to note that, apart from clients using
AirComp for uploading gradients, all other data is trans-
mitted via conventional digital communication. The data
transmitted through digital communication includes: the
updated global model parameters w

(k)
G , which is a one-

dimensional vector of length d which equal to the number
of trainable model parameters, and the inter-tier aggrega-
tion coefficients α

(k)
1 , α

(k)
2 , · · · , α(k)

m , · · · , α(k)
M required

for client-side aggregation, which consist of M scalar
values used in the computation of (10). Since both of
these parameters are transmitted from the server to the
clients and all clients receive the same information, the
server can utilize broadcasting to complete the trans-
mission. This can be achieved by leveraging the idle
AirComp bandwidth, ensuring that the communication
process does not become a bottleneck as the number of
clients increases. Besides, the channel estimation for pre-
equalization can be finished parallel when the clients are
computing. As a result, in our communication model, we
neglect the time required for this part of the transmission,
which is common in AirComp-related research [25].

3) Communication Power: We use the square of the L2-norm
to represent the transmission power of AirComp, given
by

P (k)
u =

∥∥∥B(k)
u

∥∥∥2
2

τ cm
. (16)

In the model training, we aim to ensure that the total
communication energy of all users within the system is
bounded. To simplify the energy control algorithm and
reduce unnecessary communication overhead, we use the
average energy to constrain the total energy, which is a
sufficient condition for the total communication energy
to be bounded: ∑

u∈Stot

1

Stot
P (k)
u ≤ P0. (17)

E. Problem Formulation
To accelerate the convergence rate of SA-AirFed, we for-

mulate an optimization problem to jointly minimize the global
empirical risk, we write the objective function as

(P1) min
w

F (w) =
∑

u∈Stot

∑
(xi,yi)∈Du

1

Dtot
f(w;xi, yi) (18a)

s.t.,
∑

u∈Stot

1

Stot
P (k)
u ≤ P0 (18b)

M∑
m=1

1
k
mα(k)

m = 1 (18c)

α(k)
m ≥ 0 (18d)
n∑

τ=1

s(k)τ = 1 (18e)

s(k)τ ≥ 0, (18f)

where the optimization variable w represents the global
model parameters. Equation (18b) specifies the average power
constraints for wireless transmission, while equations (18c)
and (18d) describe the affine constraints on inter-tier aggrega-
tion weights on the client side. Similarly, equations (18e) and
(18f) define the affine constraints for server-side aggregation
weights. These affine constraints are introduced to maintain the
stability of the model parameter scale during training, while
also simplifying the convergence analysis.

III. CONVERGENCE ANALYSIS

To solve (P1), we conduct a convergence analysis on the
SA-AirFed to better understand the impact of staleness, noise,
and transmission error on the training process.

Before the convergence analysis, we make the following
assumptions:

Assumption 1 (L-Smooth) We assume the global risk function
is differentiable and its gradient is Lipschitz continuing with
a non-negative constant L, i.e., ∀w1,w2 ∈ Rn where n is the
size of the model parameter, ∃L ≥ 0, it satisfies

∥∇FG (w1)−∇FG (w2)∥ ≤ L ∥w1 −w2∥ . (19)

Assumption 2 (Bounded Gradient Dissimilarity) We adopted
a non-negative constant ζ to indicate the Euclidean distance
at the k-th time slot between the global gradient and the local
gradient on the client u, i.e.,∥∥∥g(k)

u − g
(k)
G

∥∥∥ ≤ ζ,
∥∥∥g(k)

u

∥∥∥ ≤ ξ
∥∥∥g(k)

G

∥∥∥ , (20)
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where g
(k)
G is the gradient of global model at k-th time slot.

Similar assumptions are commonly found in machine learning
and FL research, as seen in studies like [26], [27].

Assumption 3 (Bounded Gradient Change) Within a limited
period l ≤ 4M , the norm of gradient change can be bounded
by a linear mapping, i.e.,∥∥∥g(k−l)

G

∥∥∥ ≤ γ
∥∥∥g(k−1)

G

∥∥∥ , ∀l ∈ Z ∩ [1, 4M ]. (21)

Similar assumptions are applied in other works on async
and semi-async, like [15], [16].

Theorem 1 (Convergence Rate Bound of SA-AirFed) In the
SA-AirFed algorithm, the upper bound for the update of the
global empirical risk function between two adjacent time slots
is as follows:

E
[
F
(
w

(k)
G

)
− F

(
w

(k−1)
G

)]
≤

η
[
6L2(2M − 1)2ξ2γ2η2 + Lη − 2

]
2

∥∥∥g(k−1)
G

∥∥∥2 + 3η

2
ζ2

+
3η

2

N∑
τ=0

s(k)τ ε(k−τ)

+ 3η3L2A(k)
τ,m

[
(τ +m− 1)

τ+m−1∑
l=1

N∑
p=0

sk−l
τ ε(k−l−p)

]
,

(22)
where ε(k) is the squared Euclidean distance between the
ideal aggregation result and the real AirComp result y(k−τ)

including channel misalignment error and noise in time slot
k.

Proof : See Appendix B.
From Theorem 1, we note that when the following condition

is satisfied, the factor of
∥∥∥g(k−1)

G

∥∥∥2 is negative, guaranteed by
the property of quadratic function:

0 < η <

√
1 + 48(2M − 1)2ξ2γ2 − 1

12L(2M − 1)2ξ2γ2
. (23)

Thus, we have

E
[
F
(
w

(K)
G

)
− F

(
w

(0)
G

)]
=

K∑
k=1

E
[
F
(
w

(k)
G

)
− F

(
w

(k−1)
G

)]
≤

η
[
6L2(2M − 1)2ξ2γ2η2 + Lη − 2

]
2

K∑
k=1

∥∥∥g(k−1)
G

∥∥∥2 + 3ηK

2
ζ2

+
3η

2

N∑
τ=0

s(k)τ ε(k−τ)

+ 3η3L2A(k)
τ,m

[
(τ +m− 1)

τ+m−1∑
l=1

N∑
p=0

sk−l
τ ε(k−l−p)

]
.

(24)
To simplify the analysis, we use the maximum value of εmax

to replace the complex affine transformation of it, i.e.,

εmax = max
k

(
ε(k)

)
. (25)

According to the property of the affine mapping, we have:

3η

2

N∑
τ=0

s(k)τ ε(k−τ)

+ 3η3L2A(k)
τ,m

[
(τ +m− 1)

τ+m−1∑
l=1

N∑
p=0

sk−l
τ ε(k−l−p)

]

≤
3ηNK

[
2L2 (2M − 1)2 η2 + 1

]
2

εmax.

(26)

By moving the negative term about
∥∥∥g(k−1)

G

∥∥∥2 to the left
side and removing the factor, we end up with

min
k

∥∥∥g(k)
G

∥∥∥2 ≤
K∑

k=1

1

K

∥∥∥g(k)
G

∥∥∥2

≤
2
[
F
(
w(0)

)
− F ∗

]
−ηK [6L2(2M − 1)2ξ2γ2η2 + Lη − 2]︸ ︷︷ ︸

a(K)

+
3N
[
2L2(2M − 1)2η2 + 1

]
εmax + 3ζ2

−6L2(2M − 1)2ξ2γ2η2 − Lη + 2︸ ︷︷ ︸
b

,

(27)

where F ∗ is the optimal value of the global risk function.
The results in (27) suggest that when the number of training

rounds K is sufficiently large, the first term in (27), a(K),
is mathematically guaranteed to tend to zero due to the
sufficiently large denominator, and the model’s gradient will
converge to the constant second term b, which is related to
factors of channel misalignment error, noise, and the degree of
gradient dissimilarity. In conclusion, the SA-AirFed converges
at a O(1/K) convergence rate with a small constant learning
rate condition shown in (23).

We consider b as a function of η to analyze its numerical
variation b(η). By computing its derivative, we obtain:

b′(η) =
ADη2 + (2AE − 2BC)η −BD

(Cη2 +Dη + E)2
, (28)

where A and B represent the quadratic coefficient and constant
term of the numerator with respect to the variable η, while
C, D and E correspond to the quadratic coefficient, linear
coefficient, and constant term of the denominator, respectively.
This can be expressed as:

A = 6NL2(2M − 1)2εmax

B = 3Nεmax + 3ζ2

C = −6L2(2M − 1)2ξ2γ2

D = −L

E = 2.

(29)

According to the properties of quadratic functions, b′(η)has
a single root in the real number domain. When positive
real number η is smaller than this root, the derivative is
positive; when η is larger than this root, the derivative is
negative. Therefore, we find that function b(η) first increases
and then decreases in the real number domain. Considering
the valid range of η defined in (23), the right endpoint of this
range coincides with a singularity of the function b(η), and
its left-hand limit approaches positive infinity. Hence, b(η)
is monotonically increasing over its defined domain. As a
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result, SA-AirFed inevitably encounters an error floor, with
its minimum value achieved when η is close to zero, given
by:

bmin =
εmax + 3ζ2

2
, (30)

where εmax is related to the channel condition and ζ is related
to the data heterogeneous of the non-IID datasets among
clients.

It is important to note that our analysis derives an upper
bound on the model gradient. To simplify the results, we
apply certain scaling which will amplify the final outcome.
For instance, we replace a complex affine transformation with
the maximum value of the transmission error, which leads to
the appearance of εmax in the final result. However ideally, the
model gradient is influenced by the accumulated transmission
errors ε(k) over multiple iterations, which undergo complex
summation and averaging rather than simply reflecting the
worst-case error εmax. Therefore, our analysis does not imply
the existence of a bottleneck effect in this process.

Our conclusion can be seen as a generalization of the
convergence analysis for sync FL, aligning well with the
well-known convergence analysis results of sync FL, such
as [7]. With the number of tiers M = 1, SA-AirFed can
degenerate into sync FL with AirComp. And with the worst-
case transmission error εmax = 0, SA-AirFed will transform
into FL with digital communication.

Important insights can be gained from (27) about how noise,
misalignment error, and staled data affect the convergence rate
and accuracy of SA-AirFed.

Remark 1 (Noise and Transmission Error) To simplify the re-
sults, our upper bound analysis does not explicitly examine the
relationship between model convergence and noise. Instead,
it focuses on how noise affects the model’s accuracy after
convergence. Specifically, a larger εmax results in an increased
term b, indicating a greater deviation from the optimal solution.
Here, ε(k) and εmax represent the squared Euclidean distance
between the ideal AirComp transmission outcome and the
actual result, which is influenced by imperfections in power
control and noise. As these terms are directly proportional
to the transmission mean square error (MSE), optimizing the
transmission MSE can help mitigate the negative impact of
noise and transmission errors on model convergence, ulti-
mately reducing the value of b.

Remark 2 (Staleness) Staleness does not explicitly appear in
equation (27) but is indirectly represented through a combi-
nation of factors such as the tier number M , factors related
to gradient dissimilarity such ζ and ξ, and the factor γ which
is related to gradient update. This suggests that staleness is
a multifaceted issue influenced by several factors. A higher
tier number, greater gradient dissimilarity, and more pro-
nounced gradient changes all contribute to increased staleness.
In addition to reducing the denominator of a(K), thereby
slowing the model’s convergence rate, staleness increases the
numerator and decreases the denominator of term b, negatively
impacting model accuracy. Furthermore, staleness affects the
convergence condition outlined in (23), increasing the risk of
non-convergence.

Remark 3 (Tier Number Trade-off) The conclusions in Re-
mark 2 indicate that a larger number of tiers M exacerbates
the staleness issue, requiring more training rounds for model
convergence and resulting in lower accuracy after convergence.
However, a larger M also implies scheduling with smaller
time slots, reducing the waiting time for fast clients after
completing their computations and decreasing the wall-clock
time per iteration. Therefore, the design of M involves a trade-
off: if M is either too large or too small, the total wall-clock
time required for training will increase.

IV. OPTIMAL POWER CONTROL AND AGGREGATION
ALGORITHM

Inspired by Remark 1 2 and 3, we decompose the original
problem (P1) in (18) into two sub-problems: (P2) minimizing
the MSE of AirComp and (P3) minimizing staleness. In
sub-problem (P2), the optimization variables are the encoder
and decoder matrices A(k) and B

(k)
u , while in the second

sub-problem, the variables are the aggregation coefficients
s
(k)
τ , α

(k)
m , and β

(k)
u . These two problems are naturally decou-

pled, as they do not share any common optimization variables.
The first sub-problem can be addressed using the algo-

rithm proposed in [28], which studied optimal encoder and
decoder design for minimizing transmission MSE under a
time-averaged transmission power constraint. The sub-problem
can be expressed by:

(P2) min
A(k),B

(k)
u

ε(k) =

∥∥∥∥∥y(k) −

(
M∑

m=1

1
(k)
m

∑
u∈Sm

x(k)
u

)∥∥∥∥∥
2

s.t., (18b).

(31)

Given the power constraint in (18b), the optimal decoder
matrix A(k) defined in (9) can be given as

A(k) = diagi

√ 1

P0

M∑
m=1

1
(k)
m

∑
u∈Sm

(
P0h

(k)
u,i

σ2
A + P0(h

(k)
u,i)

2

)2
 ,

(32)
where σ2

A is the power of the AWGN and h
(k)
u,i is the channel

coefficient of the client u for the i-th symbol.
Similarly, the optimal decoder matrix B

(k)
u can be given as

B(k)
u = diagi


√√√√√√√√

P0

(
P0h

(k)
u,i

σ2
A
+P0(h

(k)
u,i)

2

)2

∑M
m=1 1

(k)
m

∑
u∈Sm

(
P0h

(k)
u,i

σ2
A
+P0(h

(k)
u,i)

2

)2

 .

(33)
And the transmission error can be expressed as

ε∗(k) =

∥∥∥∥∥diagi
[

M∑
m=1

1
(k)
m

∑
u∈Sm

σ2
A

σ2
A + P0(h

(k)
u,i)

2

]∥∥∥∥∥
2

, (34)

where ε∗(k) is defined as the optimal squared Euclidean
distance between the ideal transmission and AirComp result,
which is used in (22) and appears as an constant in the result
of convergence analysis in (27).

However, the second sub-problem presents more challenges.
Although we derive a convergence upper bound for SA-AirFed
in (27) and emphasized the impact of staleness on convergence
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speed and accuracy, this result is not directly applicable to the
design of optimization algorithms. The primary reasons for
this include:

1) The convergence analysis is based on asymptotic analysis,
where the focus is on the order of various variables rather
than their exact coefficients. Moreover, we introduce
certain unmeasurable constants, such as L from the L-
smooth assumption and ζ from the bounded gradient
dissimilarity assumption. Ignoring these factors may com-
promise the accuracy of optimization algorithms, poten-
tially hindering improvements in model performance.

2) The convergence analysis relies on an unrolled expression
to capture the effects over the entire training process,
whereas real-time optimization requires a recursive ex-
pression to leverage historical information and conserve
memory. For complex models, it is impractical to record
the model’s state at every step.

3) Although the staleness issue is well known in async and
semi-async FL, there is no widely adopted metric to
quantify the degree of staleness. Therefore, it is necessary
to first identify an appropriate optimization objective for
sub-problem (P3).

To address these three issues, we utilize the L-Smooth
property and have:

E
[
F
(
w

(k)
G

)
− F

(
w

(k−1)
G

)]
(a)

≤ E
(
w

(k)
G −w

(k−1)
G

)T
g
(k−1)
G +

L

2
E
∥∥∥w(k)

G −w
(k−1)
G

∥∥∥2
(b)
= −η · E

(
u(k)

)T
g
(k−1)
G +

Lη2

2
E
∥∥∥u(k)

∥∥∥2
(c)
= −η

2

∥∥∥g(k−1)
G

∥∥∥2︸ ︷︷ ︸
T1

+

(
−η − Lη2

2
E
∥∥∥u(k)

∥∥∥2)︸ ︷︷ ︸
T2

+
η

2
E
∥∥∥u(k) − g

(k−1)
G

∥∥∥2︸ ︷︷ ︸
T3

.

(35)
where the explanation of step (a), (b) and (c) is shown in
(51), we find when η is sufficiently small, both T1 and T2
are negative, indicating that the loss function is decreasing.
However, T3 always remains positive, which hinders the
decrease of the loss function. The further transformation in
(52), (54) and (53) also shows that T3 is not only a metric
of staleness which appears in its component T32, but also a
combined metric of heterogeneous which can be found in T31
and metric of accumulated transmission error in T33. Thus, we
choose T3 as the objective function of sub-problem (P3), and
end up with:

(P3) min
s,α⃗

E
∥∥∥u(k) − g

(k−1)
G

∥∥∥2 (36a)

s.t., (18b)− (18f).

Based on the definition in equation (13), we can express the

term inside the norm of the objective function as

u(k) − g
(k−1)
G

=

n∑
τ=0

s(k)τ

M∑
m=1

α(k−τ)
m 1

(k−τ)
m

(
g
(k−l−m)
G − g

(k−1)
G

)
+

n∑
τ=0

s(k)τ

M∑
m=1

α(k−τ)
m 1

(k−τ)
m

·

( ∑
u∈Sm

β(k−l)
u g(k−l−m)

u − g
(k−l−m)
G

)
.

(37)

This optimization objective is still intractable to be
used since it requires the ideal global gradient g

(k)
G

and also necessitates the results of the current upload∑n
τ=0 s

(k)
τ

∑M
m=1 α

(k−τ)
m 1

(k−τ)
m g

(k−l−m)
u before the client

completes it. To address this issue, we employ two approx-
imations.

We first approximate the ideal global gradient to the gradient
obtained through SA-AirFed, denoted as

g
(k−τ)
G ≈ u(k−τ), τ < k. (38)

Furthermore, we substitute the current result with the gradient
obtained from the previous SA-AirFed iteration, represented
as

u(k) ≈ u(k−1). (39)

We experimentally validated the reliability of these two
approximations. Moreover, the use of aggregated gradients
in place of ideal gradients has been adopted in several other
studies as well, such as [29], [30].

It should be noted that, to ensure the approximation’s
accuracy, (39) cannot be approximated multiple times using
recursion. When the time slot index is k, the estimation of
u(k) can only be obtained through the true value of u(k−1),
not through the approximated value, i.e., the true value of
u(k−2). Furthermore, (38) and (39) cannot be used consecu-
tively on the same variable, meaning (37) cannot be directly
approximated to zero by continuously applying (38) and (39),
as this would result in the loss of necessary information.

With the proper use of the two approximations, we can
rewrite the first term of the result in (37) as

N∑
l=0

s
(k)
l

M∑
m=1

α(k−l)
m 1

(k−l)
m

(
g
(k−l−m)
G − g

(k−1)
G

)
(a)
≈

N∑
l=0

s
(k)
l

M∑
m=1

α(k−l)
m 1

(k−l)
m

(
u(k−l−m+1) − u(k)

)

(b)
=

M+N∑
p=1


min(N,p−1)∑

l=max(0,p−M)

s
(k)
l α

(k−l)
p−l 1

(k−l)
p−l

∑
u∈Sp−l

β(k−l)
u︸ ︷︷ ︸

a
(k)
p


·
(
u(k−p+1) − u(k)

)
(c)
=
(
a(k)

)T
U

(k)
− ,

(40)

where (a) results from the approximation demonstrated in
equation (38), (b) is derived by interchanging the order of
the two summations, and (c) is the result after vectorization,
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where a(k) is a column vector with M + N rows, and the
element in the p-th row is a

(k)
p . The matrix U

(k)
− has M +N

rows and the number of columns is equal to the size of the
model gradients, denoted as d. The p-th row of matrix U

(k)
−

is
(
u(k−p+1) − u(k)

)
.

Similarly, the second term in equation (37) can also be
expressed as

N∑
l=0

s
(k)
l

M∑
m=1

α(k−l)
m 1

(k−l)
m

∑
u∈Sm

β(k−l)
u g(k−l−m)

u − g
(k−l−m)
G

≈
N∑
l=0

s
(k)
l

M∑
m=1

α(k−l)
m 1

(k−l)
m

∑
u∈Sm

β(k−l)
u u(k−l−m+1)

−
N∑
l=0

s
(k)
l

M∑
m=1

Dm

Dtot

∑
u∈Sm

Du

Dm
u(k−l−m+1)

=

M+N∑
p=1

a
(k)
p −

min(N,p−1)∑
l=max(0,p−M)

Dp−l

Dtot︸ ︷︷ ︸
b
(k)
p

u(k−p+1)

=
(
a(k) − b(k)

)T
U(k),

(41)
where b(k) is a vector similar to a(k), with each row element
denoted as b

(k)
p . The matrix U(k) and the matrix U

(k)
− have

the same shape, whose p-th row is u(k−p+1).
Thus, the objective function can be simplified as∥∥∥u(k) − g

(k−1)
G

∥∥∥2 =
∥∥∥a(k)

(
U

(k)
− +U

)
− b(k)U(k)

∥∥∥2 , (42)

where both U(k) and U
(k)
− can be obtained by replacing all

rows whose content is u(k) into u(k−1) according to the second
approximation, and b(k) can be derived by collecting the sizes
of each client’s dataset.

Based on the definition of the vector a(k) in equation (40),
we can also express the vector a(k) as the product of a vector
and a matrix. We define the matrix R(k), with M +N rows
and N columns, as

R(k) =



0 0 · · · 0

α
(k−1)
1 1

(k−1)
1 0 · · ·

...

α
(k−1)
2 1

(k−1)
2 α

(k−2)
1 1

(k−2)
1 · · ·

...
... α

(k−2)
2 1

(k−2)
2 · · · 0

α
(k−1)
M 1

(k−1)
M

... · · · α
(k−N)
1 1

(k−N)
1

0 α
(k−2)
M 1

(k−2)
M · · · α

(k−N)
2 1

(k−N)
2

...
...

. . .
...

0 0 · · · α
(k−N)
M 1

(k−N)
M


.

(43)
Thus, a(k) can be given by

a(k) = s
(k)
0 r(k) +R(k)s

(k)
0− , (44)

where s
(k)
0 is the coefficient corresponding to u(k) in the

server-side aggregation process, and s
(k)
0− is a vector of length

n, consisting of other weights for server-side aggregation,
excluding s

(k)
0 , and r(k) is a vector similar to a column in

matrix R(k), containing inter-tier aggregation coefficients and
an indicator, given by

r(k) =
(
α
(k)
1 1

(k)
1 α

(k)
2 1

(k)
2 · · ·α(k)

M 1
(k)
M 0 · · · 0

)T
.

(45)
With the aforementioned simplifications and vectorization,

the objection can be simplified as:

f(s
(k)
0 , r(k), s

(k)
0−)

=

∥∥∥∥(s(k)0 r(k) +R(k)s
(k)
0−

)T (
U

(k)
− +U(k)

)
− b(k)U(k)

∥∥∥∥2
=

1

2

(
s
(k)
0 r(k)

s
(k)
0−

)T

︸ ︷︷ ︸
x′T

(
ATA ATB
BTA BTB

)
︸ ︷︷ ︸

Q

(
s
(k)
0 r(k)

s
(k)
0−

)
︸ ︷︷ ︸

x′

+

[
2CTA
2CTB

]T
︸ ︷︷ ︸

cT

(
s
(k)
0 r(k)

s
(k)
0−

)
︸ ︷︷ ︸

x′

,

(46)
where A = U

(k)
− +U(k), B =

(
R(k)

)T (
U

(k)
− +U(k)

)
and

C = −b(k)U(k). Thus, the problem can be converted into an
convex QP issue:

(P4) min
x′

x′TQx′ + cTx′ (47a)

s.t., (18b)− (18f).

Problem (P4) can be conveniently solved using numerical
optimization algorithms such as interior point methods, with
optimization toolkits like Matlab’s CVX toolbox [31], CVXPY
python packag [32] or Gurobi software [33].

The time complexity of solving this problem depends on
the convex optimization algorithm chosen. Taking the interior
point method as an example, the time complexity can be
expressed as O

(
nτ+3 log µ0

ε

)
[34], where the value of τ

depends on the problem type and algorithm. A common value
for parameter τ in QP is 0.5. Parameter µ0 indicates the
distance between the initial point and the optimal solution,
ε is the tolerance of the numerical solution and n = M +N
shows the scale of the problem.

Complexity analysis indicates that the algorithm is slightly
more complex than cubic time algorithms. However, the matrix
Q has a block structure, and due to the use of methods
such as L1 regularization to avoid overfitting, which leads to
sparsity in gradients or model parameters, the algorithm does
not require cubic time to solve the optimization problem in
real cases. Moreover, the aggregation algorithm runs on the
PS and can be performed synchronously while clients com-
pute gradients. In our experiments, the algorithm successfully
operated on a VGG11 [35] with more than 130M parameters,
and it still converges faster considering the runtime of the
optimization algorithm.

Through problem (P4), the inter-tier weights α
(k)
m , located

on the client side, and the weights s
(k)
τ , located on the server

side, can both be solved. They are included in the optimization
variable x′. For more detailed procedures, such as how each
parameter is initialized, can be found in the pseudocode as
Algorithm 1.
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Algorithm 1: Implementation of SA-AirFed

Data: client to server: x(k)
u d×1

Data: server to client: w(k)
G d×1, α

(k)
m 1×1,H

(k)
d×Stot

1 Server initialization:
2 Set the historical data R(0),U(0),U

(0)
− = O;

3 for u ∈ Stot do
4 Collect dataset size Du;
5 Collect latency τ cm and τ cmu ;
6 Allocate client u into tier Sm, where

m =
⌈
τcm+τcm

u

∆T

⌉
;

7 Set initial client-side weighting α
(0)
m = 1

M ,
βu = Du

Dm
;

8 end
9 Server side:

10 for k = 0, 1, . . . ,K do
11 Collect y(k) from all available clients modeled as

(9);
12 Derive the optimal weight s(k)τ and α

(k)
m according

to (47);
13 Implement the server-side aggregation to get uk

according to (13);
14 Update global model according to (7);
15 Update the coefficients in (47) including Q and c

based on R(k),U(k) and U
(k)
− ;

16 Broadcast the latest model w(k)
G and optimal

client-side inter-tier aggregation weight α(k)
m ;

17 end
18 Client side:
19 if at the end of a time slot then
20 Update the latest inter-tier aggregation weight α(k)

m ;
21 if client u completes computation then
22 Implement client-side weighting according to

(10);
23 Implement AirComp transmission modeled as

(9);
24 Update the local model w(k)

u ← w
(k)
G ;

25 end
26 end

V. NUMERICAL RESULTS

In our simulation, we consider a cellular network with a
radius of R = 500m, comprising a total of 100 users uniformly
distributed around the base station. We consider additive white
Gaussian noise (AWGN), path loss, and Rayleigh fading. The
noise power spectral density is N0 = −174dBm/Hz, the path
loss factor is α = 3.76 [36], and the Rayleigh fading following
the Rayleigh distribution has a scale parameter of σ = 1. The
averaged transmit power constraint is Pmax = 20dBm.

For performance comparison, we consider four FL frame-
works including both sync, async, semi-async and AirComp
settings, namely AirFed [5], FedAsync [9], FedAvg [4], and
TTFed [16]. All models are optimized using SGD with a
mini-batch size of 12 and a learning rate of 0.01. To prevent

overfitting, we set the weight decay coefficient to 0.0001.
After evaluation, we chose not to use momentum. To ensure
stable training on the CIFAR-10 dataset, we applied L2 norm
gradient clipping with a threshold of 1.

We consider two different FL scenarios to provide a more
comprehensive demonstration of SA-AirFed’s performance.
One scenario involves the use of IoT devices, which utilize
weaker computational power and limited communication re-
sources to accomplish simpler tasks. The other scenario em-
ploys smartphones, utilizing stronger computational capabili-
ties and more abundant communication resources to complete
more complex tasks:

1) IoT Scenario: We assume that each IoT device runs a
multi-layer perceptron with a single hidden layer con-
taining 512 neurons, and the computational resources
required to run the model for a single sample is 812534
FLOPS [37]. We presume that these IoT devices use
embedded processors or microcontrollers to execute the
computation task, with an average computational capacity
of 100 MFLOPs/s [38]. The computational capacity of the
PS is 100 GFLOPs/s. All clients share a total wireless
bandwidth of B = 1.4MHz, which is the same as
the bandwidth used by the LTE Cat M1 standard. We
use MNIST dataset [39], which contains 10 classes of
0 − 9 hand-written digit images to train and evaluate
the model. For tier-based semi-async FL, including our
proposed SA-AirFed and the benchmark TTFed, we set
the total number of tiers M to 8. This choice is a trade-off
that prevents excessive staleness from hindering model
convergence while also avoiding prolonged waiting times
for stragglers, which would reduce efficiency. Alternative
choices for the number of tiers will be explored in
the subsequent experiments to analyse their impact on
training speed and model accuracy.

2) Smartphone Scenario: We assume that each smartphone
client runs a convolutional neural network. In our exper-
iments, we employ VGG11 [35], which is a widely used
model for image classification tasks. The computational
resources required to run the model is 7.6 GFLOPs [37].
We presume that the clients execute the model using
GPUs or DSPs that are specifically optimized for AI, with
an average computational capacity of 100 GFLOPs/s [38].
The computational capacity of the PS is the same as that
of the clients. All clients share a total wireless bandwidth
of B = 20MHz, which corresponds to the maximum
system bandwidth of a single LTE cell without carrier
aggregation. We employ the CIFAR-10 [40] dataset for
training and validation, which contains 60000 colour
images of 32 × 32 resolution, divided into 10 different
categories. Similar to the IoT scenarios, we set the total
number of tiers M for SA-AirFed and the benchmark
TTFed to 5 as a balanced choice.

To study the impact of non-IID data on model convergence,
we used a Dirichlet distribution to describe the number of
samples of each class contained in the dataset of each model.
The parameter θ can describe the degree of non-IID. When
θ = 0, each user will only have samples from one class. As
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Fig. 3: The accuracy curve measured by wall-clock time during
training with θ = 100.

θ → ∞, the number of samples from different classes in a
user’s dataset follows a uniform distribution. We use a long-
tail distribution, precisely the Zipf distribution, to simulate the
total number of samples obtained by different users. We use ϕ
to describe the degree of tailing in the data distribution. When
ϕ = 0, all users have an equal total number of samples; as
ϕ→∞, the first client will process all the samples.

A. Predictive Performance Comparison

Fig. 3 and 4 illustrates a performance comparison between
our SA-AirFed algorithm and the benchmarks under different
data distribution tailing conditions. Although our algorithm
does not achieve the fastest convergence rate when measured
by iterations, it is the fastest when assessed using wall-clock
time. This outcome aligns with the design principles of async
and semi-async FL. Compared to sync FL, async and semi-
async modes face the staleness problem, where each model
update may not yield as accurate a gradient estimation as sync
settings. However, async and semi-async modes can converge
over shorter iteration intervals, making them more efficient in
wall-clock measurement, which may be more concerned in
practical applications.

The comparison between Fig. 3 and 4 illustrates the model
performance under different levels of data distribution het-
erogeneity. Specifically, Fig. 3 presents the training perfor-
mance under mild non-IID conditions, while Fig. 4 shows
the performance under more severe non-IID conditions. All
schemes experience performance degradation in the presence
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Fig. 4: The accuracy curve measured by wall-clock time during
training with θ = 10.
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Fig. 5: The time occupancy situation of all users during
training.

of more severe non-IID data, with async FL exhibiting the
most significant decline.

B. Evaluation of Time Efficiency

Fig. 5 plots the time occupancy situation of our SA-
AirFed and benchmarks, which explains why our algorithm
can achieve higher efficiency. In the figure, “comp” represents
computation time, “comm” represents communication time,
and “wait” represents the time fast clients remain idle while
waiting for slow clients. The tier numbers for both SA-
AirFed and TTFed are unified to ensure fairness. Compared
to sync AirComp, the proportion of time our SA-AirFed algo-
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Fig. 6: The accuracy curve measured by the number of gradient
computation. The “loss” metric is the average cross-entropy
loss of the model on the test dataset.

rithm spends on gradient computation significantly increases,
benefiting from the semi-async design. In comparison with
TTFed, the communication time of our algorithm is reduced
considerably, benefiting from the higher spectral efficiency of
AirComp. It is not difficult to observe that as the tailing of
the data distribution worsens, i.e., as ϕ increases, the time
utilization rate of both SA-AirFed and TTFed is decreasing.
This is because the data distribution not only affects the
diversity of local models but also impacts the computation
latency of clients. When the tailing becomes more severe,
meaning the gap between users with the most data and those
with the least data increases, more tiers need to be divided to
ensure that the data from fast clients is collected in a timely
manner. However, more tiers also mean a more severe staleness
problem, which can also prevent model convergence.

C. Evaluation of Adaptive Aggregation

In Fig. 6, we test the performance of our SA-AirFed under
different aggregation weighting algorithms. In the figure, the
curve “FedAT” uses the aggregation method adopted in the
benchmark [15], [16], and curve “Uniform” is obtained by
uniform weighting. We use the number of gradient computa-
tions of all clients as the measure to compare the computation
efficiency, similar to the approach used in FedAsync [9].
In our tests, the performance of adaptive weighting consis-
tently surpassed that of the benchmark algorithm and uniform
weighting.

D. Impact of Time Slot Duration

Fig. 7 shows the convergence characteristics of SA-AirFed
under different tier numbers M . We find that there is an
optimal value for the choice of tier number, which is aligned
with our analysis in Remark 3. As shown in Fig. 7, when
the user data Zipf distribution parameters are 0.50 and 0.75,
the tier numbers that achieve the fastest convergence are 7
and 12, respectively. When the tier number is sufficiently
small, SA-AirFed is closer to sync FL, and in this case,
the stragglers problem becomes the main factor affecting
efficiency. Conversely, when the tier number is sufficiently
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Fig. 7: Training time of SA-AirFed under different time slot
duration.
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Fig. 8: Performance degradation of SA-AirFed under different
noise condition. We conduct 20 tests with the same test
condition and use their average performance as the results.
The error bar demonstrates the standard deviation.

large, SA-AirFed is closer to totally async FL, and the main
factor affecting efficiency is the staleness problem. We also
found that the longer the tail of the user data distribution,
the longer the training time of the model, and the larger the
optimal tier number.

E. Impact of Noise Condition

Similar to other FL frameworks employing AirComp, SA-
AirFed is more sensitive to noise due to the absence of error
correction mechanisms in communication. We evaluate model
convergence under various signal-to-noise ratio (SNR) condi-
tions in the IoT scenario, with the results presented in Fig.
8. Compared with the baseline using error-free transmission,
AirComp introduces negligible degradation in model accuracy
under high SNR conditions. However, when the SNR drops
below 10 dB, the impact of noise becomes significant, hinder-
ing model convergence. Notably, our experiments show that at
an SNR of 15 dB, noise slightly improves model performance,
increasing the top-1 accuracy by approximately 8%. This
effect may be attributed to the noise during communication
acting similarly to gradient noise injection, thereby enhancing
the model’s generalization capability.

In addition, we measure the training time required for model
convergence under different SNR conditions. Specifically, we
record the time needed for the model loss to reach 110% of
its minimum value. Compared with error-free transmission,
the presence of noise in the gradient requires more iterations
for convergence, resulting in longer training time as SNR de-
creases. When the SNR falls below 10 dB, no stable decrease
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# of clients Dataset AirFed FedAsync FedAvg TTFed Proposed

100

MNIST 80.06 76.24 83.68 85.68 86.10
CIFAR-10 81.53 77.76 81.98 82.49 84.13
CIFAR-100 41.98 21.33 64.82 61.28 61.54
ImageNet 26.64 10.10 57.38 46.97 52.81

200

MNIST 77.95 65.01 82.52 85.41 85.34
CIFAR-10 78.84 71.08 81.10 80.18 81.52
CIFAR-100 50.24 43.38 61.37 55.31 60.04
ImageNet 21.92 00.98 52.65 41.71 51.87

TABLE II: Comparison of test accuracy percentage of different methods across different datasets and number of clients.

in the loss function can be observed, and thus convergence
time is not reported for these cases.

F. Scalability Test

To evaluate the scalability of SA-AirFed, we conduct ex-
periments on more complex tasks and with a larger number
of clients. Specifically, we use the CIFAR-100 dataset, which
consists of 60000 32 × 32 color images divided into 100
classes, and the ImageNet dataset, which contains approxi-
mately 1.2 million color images across 1000 categories. The
experiments are conducted under the same conditions as those
used in the Smartphone Scenario. To reduce the runtime,
we downsample the ImageNet images from their original
resolutions (typically above 200 × 200) to 128 × 128 and
randomly selected 600000 images as the training set. The
experimental results are summarized in Tab. II.

In all tested scenarios, SA-AirFed successfully achieves
convergence and yielded optimal or near-optimal performance
compared to the benchmark methods. Notably, as task com-
plexity increased—for example, when training an ImageNet
classifier with 200 clients—SA-AirFed achieves accuracy
comparable to that of FedAvg, demonstrating its capability
in mitigating staleness and handling data heterogeneity.

VI. CONCLUSION

In this work, we designed a novel FL architecture, namely
SA-AirFed, which supports semi-async aggregation and Air-
Comp simultaneously. It introduces a time-triggered mecha-
nism that ensures clients with similar latency can undergo
sync aggregation, thus accommodating AirComp, while clients
with significant latency differences perform async aggregation,
thereby improving time utilization. To enhance the efficiency
of SA-AirFed, we studied its convergence boundaries and
transformed an optimization problem based on these findings
into a tractable convex QP. Experiments under both IoT
devices and smartphones scenarios show that our architecture
significantly improves the time utilization of client devices and
possesses the fastest convergence rate.

APPENDIX A
PROOF OF LEMMAS

Lemma 1 The squared norm of the sum of vectors is bounded
by the sum of the squared norms∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥
2

≤ n

n∑
i=1

∥xi∥2 . (48)

Proof: We expand the left side of (48) by inner product and
use Cauchy-Schwarz inequality.∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥
2

=

n∑
i=1

n∑
j=1

(xi)
T xj

≤
n∑

i=1

n∑
j=1

∥xi∥ · ∥xj∥ .
(49)

Based on the inequality of arithmetic and geometric means
(AM-GM), we have

n∑
i=1

n∑
j=1

∥xi∥ · ∥xj∥ =

n∑
i=1

n∑
j=1

√
∥xi∥2 · ∥xj∥2

≤
n∑

i=1

n∑
j=1

∥xi∥2 + ∥xj∥2

2

= n

n∑
i=1

∥xi∥2 .

(50)

Substituting (50) back into (49) completes the proof. ■

APPENDIX B
PROOF OF THEOREM 1

We start the convergence analysis by considering the change
of global risk between two adjacent time slots,

E
[
F
(
w

(k)
G

)
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(k−1)
G

)]
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(51)
Here E represents the expectation on channel randomness
and g

(k)
G is the ideal model gradient derived from all data

samples with all clients participated at k-th time slot. The
inequality (a) holds due to the commonly used corollary of
L-smooth. Equality (b) is from the definition of model update
in (7), and (c) comes from the expansion of the squared L2-
norm of the difference of vectors. We end up with three
terms, namely T1, T2 and T3. When the learning rate η is
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(52)

sufficiently small, i.e. η < 1/L, both T1 and T2 are negative,
indicating that the global risk function would decrease as the
training progresses. The third term T3, however, is always
non-negative, representing the hindrance to model convergence
caused by staleness, non-iid data and channel randomness.

We further derive the term T3 in (51) by expending the
truncated update vector u(k) in (52), where (a) stems from the
definition of the estimated update vector u(k), encompassing
two key processes: client-side aggregation and server-side
aggregation. These processes are denoted by (10) and (13)
respectively. Inequality (b), we delineate the influence of
imperfect power control by both adding and subtracting the
identity matrix I to and from the product of matrices A(k−τ)

and B
(k−τ)
u . The error attributed to imperfect channel align-

ment and truncation is defined as e(k−τ−m), and the intricate
interplay involving client-side and server-side aggregation is
encapsulated by the function A(k)

τ,m,u(·), with τ,m, and u
serving as the indices of summation. We exploit the affine
nature of the function A(k)

τ,m,u(·), leading to (c). In (d), we
dissect the discrepancy between g

(k−τ−m)
u and g

(k−1)
G into

two components: one illustrating the disparity between the
local and global gradients at the identical time frame, and
the other capturing the variations of the global gradient across
different time slots. The derivation of inequality (e) is based
on the lemma 1, as illustrated in (48). And (f ) is derived
according to the the affine property of A(k)

τ,m,u(·) and Jensen’s

inequality of the convex function ∥·∥2.
For T32, we have
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[
(τ +m− 1)

τ+m−1∑
l=1

E
∥∥∥u(k−l)

∥∥∥2] .

(53)

The equality (a) follows Assumption 1 (L-Smooth) as in (19),
(b) is derived by adding and subtracting w

(l)
G when l is between

k− τ −m− 1 and k− 2, (c) is due to the definition of update
vector of server-side aggregation, denoted in (13), (d) comes
from (48) in Lemma 1.

According to the Assumption 2 demonstrated in (20), we
have

T31 ≤ 3η

2
A(k)

τ,m,u

(
ζ2
)
=

3ηζ2

2
. (54)

In T33, we expand the overall aggregation note A(k)
τ,m,u into

server-side aggregation
∑N

τ=1 s
(k)
τ and client-side aggregation
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A(k)
m,u and utilizing Jensen’s inequality, ultimately obtaining

T33 =
3η

2
E

∥∥∥∥∥
N∑

τ=0

s(k)τ

[
A(k−τ)

m,u

(
e(k−τ−m)
u

)
+A(k−τ)n(k−τ)

]∥∥∥∥∥
2

≤ 3η

2

N∑
τ=0

s(k)τ E
∥∥∥A(k−τ)

m,u

(
e(k−τ−m)
u

)
+A(k−τ)n(k−τ)

∥∥∥2︸ ︷︷ ︸
ε(k−τ)

,

(55)
where ε(k−τ) equals the squared Euclidean distance between
the result of AirComp under perfect channel alignment and
truncation conditions and the actual AirComp result y(k−τ)

including channel misalignment error and noise.
We further simplified the relationship between the update

vector u(k−l) and the gradient g(k−1)
G by introducing Assump-

tion 3, resulting in

E
∥∥∥u(k−l)

∥∥∥2
(a)

≤ 2
∥∥∥A(k−l)

τ,m,ug
(k−l−τ−m)
u

∥∥∥2 + 2

N∑
τ=0

s(k−l)
τ ε(k−l−τ)

(b)

≤ 2A(k−l)
τ,m,u

∥∥∥g(k−l−τ−m)
u

∥∥∥2 + 2

N∑
τ=0

s(k−l)
τ ε(k−l−τ)

(c)

≤ 2ξ2A(k−l)
τ,m

∥∥∥g(k−l−τ−m)
G

∥∥∥2 + 2

N∑
τ=0

s(k−l)
τ ε(k−l−τ)

(d)

≤ 2ξ2γ2
∥∥∥g(k−1)

G

∥∥∥2 + 2

N∑
τ=0

s(k−l)
τ ε(k−l−τ),

(56)

where (a) comes from Lemma 1, (b) is based on the Jensen’s
inequality, (c) and (d) is derived from the Assumption 2 and
3.

Substituting (54), (53) and (55) into (52) and (51), and
utilizing (56) we have

E
[
F
(
w

(k)
G

)
− F

(
w

(k−1)
G

)]
≤

η
[
6L2(2M − 1)2ξ2γ2η2 + Lη − 2

]
2

∥∥∥g(k−1)
G

∥∥∥2 + 3η

2
ζ2

+
3η

2

N∑
τ=0

s(k)τ ε(k−τ)

+ 3η3L2A(k)
τ,m

[
(τ +m− 1)

τ+m−1∑
l=1

N∑
p=0

sk−l
τ ε(k−l−p)

]
.

(57)
■
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