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Abstract—This work presents LUT-MU, an approximated LUT-
based Matrix Multiplication (MM) architecture designed for
FPGA-based Neural Network (NN) inference across. The pro-
posed architecture maximises the utilisation of on-chip memory
bandwidth through dedicated memory distribution and pipeline
design, addressing performance limitations inherent to LUT-
based MM. Experimental evaluation demonstrates that LUT-MU
achieves a four-fold improvement in NN inference throughput
whilst reducing hardware resource consumption by 80% with
only a 5% decline in accuracy. These results validate that
our optimisation approach successfully resolves the performance
constraints caused by the limited arithmetic intensity and memory
bandwidth, enabling the LUT-MU to serve as a foundation for
efficient NN acceleration systems.

Index Terms—Approximate computing, NN acceleration, FPGA

I. INTRODUCTION

Neural Networks (NNs) have witnessed remarkable evolution
in recent years, with architectures becoming increasingly com-
plex and parameter-intensive. While this evolution has driven
significant performance improvements, it has created new chal-
lenges for accelerator designs on resource-constrained devices.
A considerable bottleneck arises from Matrix Multiplication
(MM) operations, which are fundamental building blocks of
NN inference and impose considerable computation overhead
[1]. To address this, researchers have explored alternative algo-
rithms to reduce the complexity of MM. For instance, Blalock
et al. [2] introduced MADDNESS, a LUT-based MM algorithm
that utilises the Product Quantisation (PQ) method [3]. This
approach eliminates the need for online multiplications between
a random input vector and a known weight matrix by approxi-
mating the input vector using prototypes clustered offline from
the training dataset. Subsequently, Tang et al. [4] highlighted
how the non-differentiable nature of PQ functions disrupts the
backpropagation of loss signals, causing a notable drop in
accuracy. To address this limitation, Jannis et al. [5] introduced
a soft encoding method to substitute the non-derivable function
of the PQ during the training phase, enabling NNs employing
MADDNESS to be retrained effectively via backpropagation,
thereby restoring inference accuracy.

The researches [5]–[8] have demonstrated that MADDNESS
achieves comparable accuracy in neural network inference
while significantly reducing computational overhead compared
to General MM (GeMM). However, it requires massive memory
traffic to process equivalent workloads compared to GeMM, re-
sulting in lower Arithmetic Intensity (AI), defined as operations
per byte of memory traffic. Furthermore, data dependencies and

min(Peak Throughput, AI × Bandwidth) GOPS

AI (GOPs : Bytes)

Memory bound Compute bound

Peak Throughput

Ideal Bandwidth 

MADDNESS Arithmetic Intensity (AI)

Memory

Memory

PE

PE

Limited Bandwidth

12

1

2

Time

Time

Space

Allocate

Allocate

Space

Allocate

Encode Encode

Aggregate Aggregate

Aggregate Aggregate

Encode

Encode

Encode

Encode

Allocate Allocate Allocate

Aggregate

Read Read

Read Read Read

Fig. 1. The challenge of MADDNESS-based NN accelerator.

the incoherent memory access pattern (discussed in Section II)
in MADDNESS reduce the effective bandwidth. Lower AI and
reduced effective bandwidth restrict memory-bound throughput
when implementing MADDNESS on general processor archi-
tectures, as illustrated in Fig. 1.

To address the challenge of suboptimal throughput in the
MADDNESS-based NN inference, this paper presents LUT-
MU, a novel LUT-based MM unit. This work’s main contribu-
tions are: 1) Proposing tailored memory allocation and pipeline
optimisations to overcome bandwidth reduction from data de-
pendencies and incoherent memory access in MADDNESS,
boosting LUT-MU throughput. 2) A scalable LUT-MU architec-
ture that mitigates higher resource demands from these pipeline
strategies, providing a flexible trade-off between accuracy and
resource utilisation.

II. BOTTLENECKS & TRADE-OFF DESIGN
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Fig. 2. The bottleneck of achieving ideal bandwidth.

Although MADDNESS brought an innovative way to imple-
ment NN inference with matmul-free computation, its consider-
able memory traffic demands exceed the effective bandwidth,
posing a challenge for designing efficient hardware accelera-
tors. As illustrated in Fig. 2, there are three distinct phases
to compute convolution via MADDNESS: 1) use im2col to



map the input matrix into L unfolded windows, each containing
Cin codebooks; 2) sequentially load contents on split dimen-
sions into decision tree-based encode function to obtain the
prototypes ID; and 3) fetch and aggregate the corresponding
partial results (i.e., grey cells) scattered randomly across the
LUT to obtain the approximate results. Data dependencies in
the encode function and the incoherent memory access pattern
in the aggregate phase result in a stretched Initiation Interval
(II) in LUT-MU, thereby restricting the read frequency and
reducing the effective bandwidth, as shown in Fig. 1.
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Fig. 3. Memory allocation and pipeline optimisation.

However, we observe that the encoding process is indepen-
dent for each codebook, allowing d packages to be assembled
and loaded in one operation, thus letting the allocator and
encoder process successive unfolded windows in a pipelined
manner. For each input, only one prototype is chosen per
codebook (i.e., each LUT column contains a grey cell). Conse-
quently, the LUT can be tiled along C and Cout and distributed
across Cout × C/(2 × S × E) ROMs, as shown in Fig. 3,
alleviating read conflicts from random access to a single mem-
ory unit. Although the pipeline design improves bandwidth, it
increases hardware resource usage. To address this, we group
every M input feature-map channel as a codebook and include
additional prototypes per codebook to mitigate resolution loss
(i.e., the number of split dimensions per unfolded window
Cd/(CinK

2)). This strategy reduces the size of the encoder
and adder tree in LUT-MU while minimising accuracy loss.

III. EVALUATION

To validate the effectiveness of the proposed memory alloca-
tion and pipeline design in improving throughput and mitigating
resource demands, we investigate the throughput and resource
utilisation of the LUT-MU under four LUT configurations
(C × 2d) and three partition factors (E,S). The performance
data illustrated at the bottom of Fig. 4 demonstrates the impact
of distributed ROM configurations on system throughput. As
the number of distributed ROMs increases (i.e., E = 4, 2, 1),
the throughput significantly improves, rising from 1.5 × 104

GOPS to 6 × 104 GOPS. This enhancement validates the
effectiveness of our memory allocation strategy and pipeline
architecture in optimising bandwidth utilisation for improved
throughput performance. From another perspective, the occu-
pancy of FF and LUT decreased by approximately 80% when
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Fig. 4. Top: Classification accuracy of 4-bit quantised LUT-MU-based ResNet-
9 on CIFAR-10 across varying resolutions (Cd/CinK

2); Bottom: LUT-MU
FPGA resource utilisation (LUT & FF occupancy) and throughput for different
LUT shape (C × 2d) and partition (E,S) configuration.

the LUT shape changed from 64 × 16 to 8 × 128, while
the inference accuracy dropped by 5% due to resolution loss.
This demonstrates that configuring the LUT shape efficiently
mitigates increased resource demands, providing a flexible
trade-off between accuracy and resource utilisation.

IV. CONCLUSION

We presented LUT-MU, a versatile Look-Up Table-based
MM framework that advances the state of NN acceleration.
Our targeted optimisation strategies in memory allocation and
pipeline design effectively address bandwidth constraints from
data dependencies and non-sequential memory access, over-
coming throughput limitations of prior LUT-based solutions.
However, the proposed optimisation strategies introduce ad-
ditional resource overhead to achieve the ideal bandwidth.
Although reshaping the LUT can alleviate resource demands, it
inevitably results in the accuracy degradation of MADDNESS-
based NN inference. This motivates further exploration of
effective techniques to improve the throughput and reduce
memory demands without losing additional accuracy.
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