
 
 

Abstract— Inherent broadcast characteristics can raise privacy 
risks of wireless networks.  The specifics of antenna ports, antenna 
types, orientation, and beamforming configurations of a 
transmitter can be susceptible to manipulation by any device 
within range when the signal is transmitted wirelessly. Personal 
and location information of users connected to the transmitter can 
be intercepted and exploited by malicious actors to track user 
movements and profile behaviors or launch targeted attacks, thus 
compromising user privacy and security. In this paper, we propose 
a novel precoding perturbation approach for privacy preservation 
in wireless communications. Our approach perturbs the precoding 
matrix of the transmitter using a Riemannian manifold (RM) 
structure that adaptively adjusts the magnitude and direction of 
perturbation based on the geometric properties of the manifold. 
The approach ensures robust privacy protection while minimizing 
the distortion of the transmitted signals, thus balancing privacy 
preservation and data utility. Privacy can be preserved without 
relying on additional cryptographic mechanisms, resulting in the 
computational and communication overhead reduction. Our 
approach operates directly on the transmission of signals, making 
them inherently secure against eavesdropping and interception. 
Simulation results underscore the superiority of the approach, 
showing a 17.21% improvement in privacy preservation while 
effectively maintaining data utility. 

Index Terms— Privacy preservation, precoding perturbation, 
Riemannian manifold, wireless communication. 
 

I. INTRODUCTION 
   As the modern world embraces digitization and connectivity, 
the importance of privacy preservation [1],[2] has ever been 
more pronounced. The fifth-generation (5G) systems often use 
massive multiple input multiple output (MIMO) configurations 
with a large number of antennas (e.g., 64x64) to improve 

spectral efficiency and coverage. These configurations, while 
beneficial for performance, increase the surface area for 
potential eavesdroppers to exploit. 5G systems often use 
channel state information (CSI) feedback and precoding 
techniques to optimize signal transmission and enhance 
communication reliability.  

The information contained in the precoding matrix derived 
from CSI can be exploited by adversaries to infer sensitive 
information, such as user locations or network topology.  By 
analyzing the precoding matrix, an adversary can potentially 
infer the number of users and their directions relative to the base 
station, which can be used to triangulate the users. On the other 
hand, CSI contains detailed information about the channel gains 
between the transmitter and receiver. In a time-varying radio 
propagation environment, CSI needs to be shared between the 
transmitter and receiver for effective transmission. The phase 
of the CSI can expose information about the relative distances 
and angles between the transmitter and receiver, which can be 
used for localization. The changes in CSI can reveal movement 
patterns of users, enabling adversaries to track their locations. 
Adversaries can also use these vectors to infer the spatial 
location of users, see Fig.1.  
 

 
Fig.1. Potential risks of privacy distortion - This figure illustrates how 
sensitive information transmitted over networks can be intercepted by 
eavesdroppers or unauthorized entities, leading to the inference of 
private details about users. 
 

This raises privacy concerns about sensitive information 
within the networks. In response to privacy concerns, existing 
literature employs different methods in wireless 
communications. Secure multi-party computation (SMPC) [3]-
[5] enables multiple parties to jointly compute a function over 
their inputs without revealing individual inputs, thereby 
preserving privacy. Homomorphic encryption [6],[7] allows 
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computations to be performed on encrypted data without 
decrypting it, enabling privacy-preserving data analysis. 
Advanced authentication techniques such as eye tracking [8] 
and Swift-eye [9] leverage biometric data to enhance security 
while incorporating advanced encryption and anonymization 
methods to prevent re-identification of individuals. 
Furthermore, methods such as obfuscation [10] and 
peUWXUbaWion [11] ZeUe pUopoVed Wo pUoWecW XVeUV¶ locaWion 
privacy in location-based services and applications. Techniques 
to counter traffic analysis attacks, such as mix networks [12], 
onion routing [13], and traffic padding [14], aim to obfuscate 
communication patterns and protect user privacy. Randomized 
response [15], noise injection [16], and data masking [17] are 
examples of data perturbation techniques that introduce 
randomness or distortion to data to protect privacy.  

Differential privacy (DP) [18], another notable technique, 
provides a rigorous framework for privacy guarantees. DP adds 
noise to data to obscure it, ensuring that sensitive information 
cannot be accurately inferred. Although there exist rich works 
on data privacy [19]-[22] for wireless networks, only a few 
works have addressed the privacy issue in physical-layer signal 
processing [23],[24]. The DP technique can be applied to 
protect CSI by adding controlled noise to the precoding matrix 
derived from CSI, a method known as precoding perturbation. 
This ensures that the precise channel characteristics are 
obscured, preventing attackers from gaining accurate insights 
while still allowing the system to perform effectively. The 
authors of [23],[24] developed privacy-preserving channel 
estimation schemes that inject noise into the channel matrix to 
protect data. However, these perturbation mechanisms 
inherently introduce a trade-off between privacy protection and 
data utility. The presence of perturbation/noise can alter the 
statistical properties of the data, posing challenges for accurate 
and reliable statistical analysis of the precoding matrix. 
Motivated by this challenge, we propose a novel precoding 
matrix perturbation method that considers the trade-off between 
privacy protection and data utility within the DP framework.  

This paper focuses on an eavesdropping adversary capable of 
passively monitoring communications between the transmitter 
and users [25]. This adversary aims to extract sensitive 
information²such as user locations and network topology²by 
analyzing the precoding matrix derived from CSI [26]. To 
protect against this threat, we utilize the Riemannian manifold 
(RM) structure, a mathematical framework in differential 
geometry, to introduce controlled variations into the precoding 
matrix. The RM structure ensures that these variations respect 
the geometric properties of the precoding matrix, such as 
maintaining orthogonality, symmetric positive definiteness 
(SPD), or unitarity. This preserves communication quality, such 
as the signal-to-interference-plus-noise ratio (SINR) or channel 
capacity, while making it difficult for the adversary to infer the 
original matrix. As the SPD property of the precoding 
matrix could potentially be exploited by the adversary, we 
employ the DP mechanism to carefully calibrate the smooth 
variations injected into the precoding matrix. The privacy 
budget of DP controls the amount of variation imposed, 
enVXUing WhaW Whe adYeUVaU\¶V abiliW\ Wo infeU VenViWiYe 

information is mathematically bounded. A smaller privacy 
budget provides stronger privacy guarantees, making 
reconstruction of the original matrix more difficult for the 
adversary. Conversely, a larger privacy budget allows for better 
utility, enabling more accurate communication and improved 
system performance. We address this trade-off between privacy 
and utility for secure and efficient 5G communication systems.  

The contributions of this study are summarized as follows: 
- We propose a novel approach to protecting sensitive 

information of precoding matrices. The approach does not 
preserve the privacy of data, since data can be protected 
using cryptographic methods. Instead, it protects the 
sensitive information of the precoding matrix during 
transmission, which cryptographic methods cannot 
safeguard. Our approach strikes a balance between privacy 
and data utility through calibrated perturbations.  

- We develop an RM structure to introduce controlled 
variations in precoding matrices. To the best of our 
knowledge, this is the first work that leverages RM for 
privacy preservation in wireless communications. We 
consider the space of analog precoding matrices as a 
manifold to analyze the relationships between different 
precoding matrix configurations, identifying regions of 
interest for perturbation based on the geometric properties 
of the manifold. Utilizing tangent vectors within each 
tangent space, we effectively navigate through the 
manifold and accurately measure the distances between 
points on the manifold. This approach maintains the 
geometric integrity of the data. 

- We calculate the geodesic of the proposed RM, which are 
curves on the manifold representing the shortest paths 
between points, to find neighbors of each element of the 
precoding matrix with similar characteristics of the original 
point, which correspond to a perturbed precoding matrix. 
The neighborhoods around each point in the precoding 
matrix are located to apply controlled perturbations along 
geodesics for precoding information modification. This 
ensures that the variations introduced to the analog 
precoding matrix are small while safeguarding the 
precoding matrix information. 

- Numerical simulations along with theoretical analysis 
validate the substantial enhancement achieved by our 
approach in preserving privacy and efficient signal 
transmission. 

    The remainder of the paper is organized as follows: We 
describe the problem statement and system model in Section 2. 
The fundamental concept of privacy is elucidated in Section 3. 
In Section 4, we formulate the optimization problem and 
develop an RM structure to solve it. In Section 5, we develop a 
Riemannian gradient method to solve the optimization problem 
and then design a precoding perturbation algorithm to find the 
optimal perturbed precoding matrix. Section 6 provides 
simulation results and performance evaluation of the proposed 
approach. We conclude our work in Section 7. 
Notation: Bold lowercase 𝒂 and uppercase 𝑨 letters denote 
vectors and matrices, respectively. |∙| denotes the absolute 
value of a number, ‖∙‖ଶ indicates the Euclidean norm of a 
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vector, ‖∙‖ଶ
ଶ represents the squared Euclidean norm of a vector, 

and ‖∙‖ி and ‖∙‖ி
ଶ  represent the Frobenius norm and squared 

Frobenius norm, respectively, which measure the magnitude of 
a matrix. 𝑨ு, 𝑡𝑟ሺ𝑨ሻ, 𝑑𝑖𝑎𝑔ሺ𝑨ሻ, and 𝑨ଵ

ଶൗ  respectively denote the 
conjugate transpose of a matrix 𝑨, the trace of a square matrix 
𝑨, the diagonal matrix formed from the elements of a vector or 
a matrix 𝑨, and the square root of a matrix 𝑨. The key notation 
of this paper is presented in Table 1. 
 
Table 1. The key notation 

Notation Definition 
𝑁் The number of transmitter antennas 
𝑁ௌ The number of data streams 
𝑁ோி The number of RF chains 
𝐾 The number of wireless users 
𝑭஻஻ ∈ ℂேೄൈேೃಷ  The digital precoding matrix 
𝑭ோி ∈ ℂேೃಷൈே೅  The analog precoding matrix 
𝑭෩௜ ∈ ℂ𝑁𝑅𝐹ൈ𝑁𝑇  The perturbed precoding matrix 

𝑭ഥோி ∈ ℂ𝑁𝑅𝐹ൈ𝑁𝑇  The Riemannian geometric mean matrix 
𝒔 ∈ ℂேೄൈଵ The signal vector 
𝑷௧௥ ∈ ℂ𝐾ൈ𝐾 The transmit power 
𝑃௠௜௡ The minimum transmit power 
𝑃௠௔௫ The maximum transmit power 
𝐱 ∈ ℂ𝑁𝑅𝐹ൈ1 The transmitted signal 
𝑋 The input signal space 
ෝ࢟ The output signal 
𝐲 The desired output signal 
𝑍 The output signal space 
𝜏 The BER threshold 
𝜀 The privacy budget 
𝛿 The privacy risk 
∆௙ The sensitivity  
𝜎௡

ଶ The noise variance 
𝜆௜ The eigenvalues of the precoding matrix 𝑭ோி 
࢜௜ The i-th tangent vector of the space 
𝑁 The number of points on the tangent space 
𝑑 ೃࣧಷ The Riemannian distance 
𝑔௣  The Riemannian metric tensor at point 𝑝 
𝑇௉  The tangent space at point 𝑝 in ࣧ 
𝛾 The geodesic distance 
𝑨, 𝑩 The arbitrary SPD matrices  
𝑿 ∈ ℂ𝑁𝑇ൈ𝑁𝑇  The invertible matrix 

𝑼 ∈ ℂ𝑁𝑇ൈ𝑁𝑇   The unitary matrix 

𝑽 ∈ ℂ𝑁𝑇ൈ𝑁𝑇  The orthogonal matrix containing 
eigenvectors 

∋ ࢫ ℂ𝑁𝑇ൈ𝑁𝑇 The diagonal matrix containing positive 
eigenvalues 

઩૚
૛ൗ ∈ ℂ𝑁𝑇ൈ𝑁𝑇   The diagonal matrix containing the square 

root of the eigenvalues 
઩𝑹ி ∈ ℂ𝑁𝑇ൈ𝑁𝑇   The diagonal matrices containing the 

eigenvalues of 𝑭ோி 
઩௜ ∈ ℂ𝑁𝑇ൈ𝑁𝑇  The diagonal matrices containing the 

eigenvalues of 𝑭෩௜ 
𝑝 and 𝑞 The arbitrary points on the tangent space 
𝜂௧  The step size 

 
II. PROBLEM DESCRIPTION 

A. System Model 

Consider downlink communications of a multi-user multiple 
input multiple output (MU-MIMO) system in which a hybrid 
transmitter equipped with 𝑁் antennas and 𝑁ோி ൑  𝑁்  radio 
frequency (RF) chains convey 𝑁ௌ data streams for 𝐾 single-
antenna users. The transmitter first performs the digital 
precoding technique. Digital precoding is especially useful in 
multi-user/multi-antenna (i.e., multi-stream) scenarios where 
multiple data streams can be transmitted simultaneously over 
the same frequency band. The data stream vector 𝒔 ∈ ℂேೄൈଵ is 
multiplied by the digital precoding matrix 𝑭஻஻ ∈ ℂேೄൈேೃಷ  to 
produce the precoded signal 𝐱 ൌ  𝑭஻஻𝒔.   

The digital precoding matrix contains complex different 
weights that are assigned to each stream in such a way that each 
data stream can be transmitted over the same frequency band 
but along different spatial paths, allowing for effective spatial 
multiplexing and interference management. We consider that 
the data streams are uncorrelated and have equal average 

transmit power, given by ॱሼ𝒔 𝒔ுሽ ൌ
ฮ𝑷೟ೝฮಷ

௄
𝐈. Here, 𝑷௧௥ 

represents the transmit power matrix and 𝐈 is the identity matrix. 
Next, analog precoding is applied in the RF domain using an 
analog precoding matrix 𝑭ோி ∈ ℂேೃಷൈே೅. This stage focuses on 
beamforming and directional signal transmission, which is 
crucial for overcoming high path loss and interference. The 
analog precoding matrix contains phase shifts and amplitude 
adjustments that are applied to the RF signals to adjust the 
phases and amplitudes of the transmitted signals. These 
adjustments help in steering the signal beams towards the 
intended directions.  

We impose a normalization constraint |𝑭ோிሺ𝑖, 𝑗ሻ| ൌ
1

ඥ𝑁்
൘ , ∀𝑖 ∈ 𝑁ோி, ∀𝑗 ∈ 𝑁் to balance the power distribution 

across all transmitting antennas, avoiding certain signals from 
overpowering others that contribute to interference, where 
|𝑭ோிሺ𝑖, 𝑗ሻ| is the magnitude of the ሺ𝑖, 𝑗ሻ-th element of  𝑭ோி . We 
also impose ‖𝑷௧௥‖ி ൑ 𝑃௠௔௫  to ensure that the total transmit 
power 𝑷௧௥ does not exceed a predefined maximum limit 𝑃௠௔௫ 
for energy conservation and interference mitigation purposes, 
where ‖∙‖ி denotes the Frobenius norm. The hybrid precoding 
matrix 𝑭 ∈ ℂேೄൈ௄ is the product of the analog precoding matrix 
and the digital precoding matrix i.e., 𝑭 ൌ 𝑭஻஻𝑭ோி . 
   Hybrid precoding combines the benefits of digital and analog 
precoding, enhancing spectral efficiency and beamforming 
capabilities while reducing hardware complexity and power 
consumption. To ensure the total transmit power is distributed 
uniformly across all subcarriers and data streams, we set 
‖𝑭ோி𝑭஻஻‖ி

ଶ ൌ 𝑁ௌ𝑁், maintaining signal quality and avoiding 
excessive power in any subcarrier or stream.  
 
B. Threat Model and Precoding Privacy 

Although precoding techniques improve signal quality and 
enhance data transmission rates in wireless communication 
systems, they also introduce potential privacy risks. The 
precoding matrix, which contains critical information about the 
transmitter and connected users, can become a target for 
malicious actors. This information, including the number of 
connected users, number and arrangement of antennas, power 
levels, modulation schemes, and coding techniques, can be used 
to infer sensitive details about the communication system and 
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its users, such as their location, movement patterns, network 
topology, and potentially the content of their communications.  

Assume an eavesdropping adversary, an external entity who 
passively observes communication between the transmitter and 
users. The adversary in our model is passive and can only 
observe the perturbed precoding matrix. It cannot actively 
corrupt users or the system. When the adversary accesses the 
original precoding matrix components, such as channel gain or 
phase, it can approximate distances between devices, 
triangulate positions, and potentially deduce the content of 
communications, see Fig.2. For instance, by measuring the 
received signal strength (RSS), the adversary can approximate 
the distance between a transmitter and the signal receiver. 
Combining RSS readings from multiple points can help 
triangulate the device's position. Therefore, safeguarding this 
information is crucial for ensuring the privacy and security of 
wireless communication systems.  

 
 

 
Fig 2. System model diagram illustrating the steps of the precoding 
algorithm with precoding matrix perturbation the channel matrix, 
which is a critical component from a privacy perspective, is 
highlighted as the primary concern for ensuring privacy preservation. 

 
One way to address these challenges is by perturbing the 

precoding matrix to obfuscate the details and making it difficult 
for malicious actors to extract meaningful insights. By 
introducing small variations to the precoding matrix, sensitive 
information can be concealed, protecting it during transmission. 
This approach helps maintain the integrity and confidentiality 
of the communication system, ensuring that the transmitted data 
remains secure even if intercepted. However, the precoding 
matrix modification may lead to a degradation in signal quality 
at the receiver, resulting in inaccuracies or errors in data 
analysis and interpretation. When the precoding matrix is 
perturbed, a transmitted signal is altered or disturbed from its 
intended configuration, making it harder to detect at the 
receiver, increasing the bit error rate (BER), and potentially 

degrading communication quality. Therefore, it is 
indispensable to find a perturbation precoding matrix with a 
minimum distance from the original precoding matrix for data 
utility. With careful design, the perturbation can be minimized 
to ensure BER within acceptable limits while still providing 
sufficient obfuscation to protect sensitive information. 

 
III. PRIVACY CONSIDERATIONS IN PRECODING TECHNIQUES   

 

A. Essential Principles of Precoding Privacy 
To perturb the precoding matrix, we inject small variations 

into the precoding matrix 𝑭෩ோி ൌ 𝑭ோி ൅ 𝑾ோி , where 𝑭෩ோி  is the 
perturbed precoding matrix, and 𝑾ோி ∈ ℂேೃಷൈே೅ represents a 
perturbation weights matrix containing controlled variations 
that are injected into the original precoding matrix 𝑭ோி . 
 

Remark 1. While 𝑭෩ோிretains the SPD property, we ensure that 
the added variations satisfy DP guarantees. This ensures that 
the adversary cannot accurately reconstruct the original 
precoding matrix 𝑭ோிor infer individual user inputs, even with 
knowledge of the SPD structure.      

This process generates a perturbed signal vector 𝐱ො that 
closely approximates the original signal vector 𝐱 at the 
transmitter. Define 𝐱  and 𝐱ො  as 

𝐱 ൌ 𝑭஻஻𝑭ோி𝑷௧௥                                  (1) 
 and 

𝐱ො ൌ 𝑭஻஻𝑭෩ோி𝑷௧௥𝒔.                                (2) 
To ensure data utility, we wish to minimize the mean squared 
error (MSE) of the perturbed signal 𝐱ො with respect to the 
original signal 𝐱 as lim

ேೃಷ→ஶ

ଵ
ேೃಷ

∑ ॱሾ‖x௜ െ xො௜‖ଶ
ଶሿேೃಷ

௜ୀ଴ , where x௜ ∈

 𝐱, ∀𝑖 ∈ 𝑁ோி.   
As a result of perturbation, a valid signal can be converted to 

another valid signal that is adjacent to it; in this regard, we 
define adjacency between two signals to identify their 
similarity. The adjacency measure helps us identify pairs of 
signals that are close to each other. Adjacency between signals 
refers to the similarity or closeness of two signals in the signal 
space (i.e., both the magnitude and direction of the differences 
between the signals).  The adjacency between two signals can 
be measured as: 

Adjሺ𝐱, 𝐱́ሻ ൌ ට∑ หx௜ െ x௜
ᇱหଶ௡

௜ୀଵ .                              (3)   

where 𝑥௜ and 𝑥௜
ᇱ are the 𝑖-th elements of 𝐱 and 𝐱́, respectively. 

By considering the adjacency, we apply the perturbation 
selectively to signals that are sufficiently close, ensuring that 
perturbing one would not convert to another one, thereby 
preserving data utility. 
   Definition 1 (र૛-sensitivity). Suppose that fሺ𝐱ሻ is a 
perturbation function on the signal space X ൌ ൛𝐱ଵ, … , 𝐱୒౎ూൟ. 
The ℓଶ-Sensitivity can be defined as the maximum (ℓଶ-norm) 
of the difference in the function outputs for any two arbitrary 
signals that should be less than or equal to the adjacency 
between two signals, as follows: 

∆௙ൌ  max
𝐱,𝐱́

‖𝑓ሺ𝐱ሻ െ 𝑓ሺ𝐱́ሻ‖ଶ ൏ Adjሺ𝐱, 𝐱́ሻ.         (4) 

The ℓଶ-sensitivity quantifies how much the output of function f 
can change for adjacent signals when the precoding matrix is 
perturbed. Ensuring the ℓଶ-sensitivity is less than the adjacency 
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measure, we can control the extent of perturbation applied to 
the signal, ensuring it does not convert to another one (i.e., its 
adjacent signal) and preserving data utility. 
 

Definition 2 (Differential privacy). Consider two adjacent 
signals 𝐱, 𝐱́  ∈  𝑋, and let 𝑍 be the output space from 
perturbation, and 𝜀 and δ be positive real numbers. A 
mechanism 𝑀: 𝑋 → 𝑍 is said to satisfy (𝜀, 𝛿)-differential 
privacy, if for any pair of adjacent signals 𝐴𝑑𝑗ሺ𝐱, 𝐱́ሻ, the 
following condition holds: 

𝑃𝑟ሾ𝑀ሺ𝐱ሻ ∈ 𝑍ሿ ൑ 𝑒ఌ 𝑃𝑟ሾ𝑀ሺ𝐱́ሻ ∈ 𝑍ሿ ൅ 𝛿,                        (5) 
where 𝜀 is the privacy budget controlling the level of privacy, 
and 𝛿 is the acceptable risk of privacy loss. When 𝛿 ൌ 0, the 
mechanism is described as being 𝜀-differentially private. 
 

The choice of 𝜀 and 𝛿 in the defined differential privacy 
mechanism is crucial in balancing privacy protection and data 
utility. A smaller 𝜀 implies stronger privacy guarantees. When 
𝜀 is small, the probability distributions of the mechanism's 
outputs for adjacent signals (x and x') are very similar. This 
makes it harder for an adversary to distinguish between them, 
thereby protecting the privacy of the individual signal. 
However, a smaller 𝜀 often results in more noise being added to 
the output to achieve the desired level of privacy. This can 
degrade the utility of the data, making it less accurate or less 
useful for analysis. 𝛿 is a parameter that allows for a small 
probability of the differential privacy guarantee being violated. 
A smaller 𝛿 means that the privacy guarantee holds with higher 
probability, thus offering better privacy protection. Lowering 𝛿 
also typically requires adding more noise to the data. This can 
reduce the accuracy and utility of the data, similar to the effect 
of a smaller 𝜀. In contrast, large values of 𝜀 and 𝛿 maintain 
higher data utility by adding less noise, thus preserving the 
accuracy and usefulness of the data. However, they provide 
weaker privacy guarantees, making it easier for an adversary to 
distinguish between adjacent signals and potentially infer 
sensitive information. 

Lemma 1. For a perturbation function f with sensitivity ∆௙, 
there exist an upper bound for the privacy budget 𝜀 in 𝜀-
differential privacy, as follows: 

 𝜀 ൑ ∆೑

൫ଶఙ೙
మ൯ ୪୬భ

ഃ
 ,                                (6) 

 where 𝜎௡
ଶ is the noise variance. 

   Proof. See Appendix A. ∎ 

 
IV. PRIVACY PRESERVATION OPTIMIZATION PROBLEM  

   We here formulate the privacy preservation optimization 
problem as follows: 
min

𝑭ೃಷஷ𝑭෩೔
maxฮ𝑭ோி െ 𝑭෩௜ฮி

ଶ
 

s.t.    𝐶ଵ: supฮ𝑭ோி െ 𝑭෩௜ฮி
ଶ ൑ 𝜀 

        𝐶ଶ: ‖𝑷௧௥‖ி ൑ 𝑃௠௔௫  
        𝐶ଷ: ฮ𝑭෩௜ሺ𝑖, 𝑗ሻฮ

ி
ൌ 1

ඥ𝑁்
൘  

        𝐶ସ: 𝐵𝐸𝑅൫𝑭෩௜൯ ൑ 𝜏,                                                   (7) 

where 𝑭෩௜ denote specific perturbations, 𝑖 represents the 𝑖-th 
perturbed precoding matrix that exhibits the maximum 
similarity to the original matrix. Constraint 𝐶ଵ defines the 
privacy budget of the problem limiting the perturbation 
magnitude. By setting an upper bound (𝜀) on the Frobenius 
norm of the difference between the original and perturbed 
precoding matrices, it ensures that the perturbation does not 
deviate too much from the original, hence maintaining data 
utility while masking the transmission characteristics. 𝐶ଶ 
ensures that the total transmit power does not exceed a specified 
maximum value, 𝑃௠௔௫. By capping the transmit power, the 
power levels remain within a safe and efficient range and help 
maintain good signal quality. This prevents adversaries from 
inferring sensitive information caused by excessive power such 
as signal distortion or interference. 𝐶ଷ enforces normalization 
of the elements of the perturbed precoding matrix 𝑭෩௜. This helps 
balance the signal power distribution across all elements, 
pUeVeUYing Whe Vignal¶V inWegUiW\ and qXaliW\. 𝐶ସ limits the BER 
to a maximum threshold (𝜏) ensuring that the perturbed signal 
remains within an acceptable error margin, preventing 
adversaries from easily decoding or interpreting the signal. 
   Without loss of generality, we define the following BER 
function to measure data accuracy: 

𝐵𝐸𝑅൫𝑭෩௜൯ ൌ ଵ
ேೞ

∑ ॴሺ𝑦௜ ് 𝑦ො௜ሻ
ேೞ
௜ୀଵ ,                          (8) 

where 𝑦௜ is the actual received signal; 𝑦ො௜ is the estimated signal 
obtained through the perturbed beamforming matrix; ॴሺ∙ሻ is the 
indicator function, which returns 1 if the condition inside the 
parentheses is true, and 0 otherwise. The BER function 
calculates the average number of symbol errors per symbol due 
to the perturbation in the precoding matrix.  

Constraints 𝐶ଵ to 𝐶ସ work together to balance the dual goals 
of privacy preservation and data utility. The parameters 𝜀, 
𝑃௠௔௫, and 𝜏are crucial in fine-tuning this balance, influencing 
how much privacy protection is achieved at the expense of data 
utility and vice versa. 𝜀 controls the maximum allowable 
perturbation. A smaller 𝜀 means stricter control over how much 
the precoding matrix can be altered, which tends to preserve 
data utility but might weaken privacy. Conversely, a larger 𝜀 
allows more significant perturbations, enhancing privacy but 
potentially degrading data utility. Setting 𝑃௠௔௫  determines the 
upper limit of the transmit power. A higher 𝑃௠௔௫ can improve 
signal strength and quality, which is good for data utility but 
may reveal more about the transmission setup and user data. A 
lower 𝑃௠௔௫  enhances privacy by limiting the power, making it 
harder for adversaries to extract information from the power 
levels. 𝜏sets the maximum allowable BER. A lower 𝜏ensures 
high data quality by minimizing errors, which is beneficial for 
data utility. However, it might require less perturbation, 
potentially compromising privacy. A higher 𝜏 allows for more 
errors, enhancing privacy by making the signal harder to decode 
accurately, but at the cost of data utility. 

 
A. Riemannian Manifold for Privacy Preservation 
 The precoding matrices in wireless communication systems are 
SPD matrices and exist in a non-Euclidean space [28], meaning 
that it does not follow the standard geometric rules of Euclidean 
space. Thus, to solve the optimization problem (7), we need 
appropriate mathematical tools of differential geometry that 
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accurately model this non-Euclidean space. An RM is a 
fundamental concept in differential geometry, offering a 
framework for studying the geometric properties of non-
Euclidean spaces in which SPD matrices exist. By leveraging 
the RM framework, we can accurately model the geometric 
properties of the precoding matrices, e.g., distances, angles, and 
curvature, and find perturbations (i.e., small changes) to the 
matrices that align with the intrinsic geometry of the SPD 
matrix space, resulting in preserving data utility.  
    When we perturb the precoding matrices²introducing small 
changes to them²we need to ensure that these perturbations do 
not destroy the essential characteristics of the matrices. In the 
context of SPD matrices, this means maintaining their positive 
definiteness and symmetry. Positive definiteness ensures that 
the matrices have all positive eigenvalues, which is crucial for 
maintaining the stability and performance of the signal 
transmission. Symmetry ensures that the matrix remains 
unchanged when transposed, which is important for the 
mathematical operations used in signal processing. If 
perturbations do not respect the geometric structure of the SPD 
manifold, the resulting matrices might lose their positive 
definiteness or symmetry, leading to degraded signal quality 
and transmission errors. The RM allows us to define and follow 
geodesics, which are the shortest paths between points on the 
manifold. By perturbing the matrices along these geodesic 
paths, we can ensure the changes remain small and controlled, 
minimizing the distortion of the original matrix properties. 
    According to SPD matrices, the precoding matrix 𝑭ோி  can be 
represented as follows: 

𝑭ோி ൌ 𝑽઩ோி𝑽ு,                                           (9) 
where 𝑽 identifies the orthogonal matrix containing 
eigenvectors, and ઩ோி represents the diagonal matrix 
containing positive eigenvalues of 𝑭ோி  as follows:  

઩ோி ൌ diagሺ𝜆௜ሻ, ∀𝑖 ൌ 1,2, … , 𝑁், 𝜆௜ ൐ 0,              (10)  
 

  Remark 2. Since 𝑭ோி  is an SPD matrix, it must 
be square and Hermitian (𝑭ோி ൌ 𝑭ோி

ு ), implying 𝑁ோி ൌ 𝑁்.    
  
  Designing a perturbation method based on the RM structure 
involves treating the space of precoding matrices as a manifold. 
The manifold represents the space of all possible precoding 
matrices. Each point on the manifold corresponds to a specific 
precoding matrix configuration. By identifying neighborhoods 
around the point that corresponds to the precoding matrix on the 
manifold, we can achieve small perturbations in matrices that 
are still close to the original matrix (i.e., with minimum 
distortion) and have similar characteristics.   
     Consider a differentiable RM, denoted as ோࣧி, comprising 
all configurations of the analog precoding matrix 𝑭ோி . The 
manifold is equipped with the tangent space 𝑇ிೃಷ , and the 
metric tensor 𝑔ிೃಷ .  Each point on the manifold represents a 
unique configuration of 𝑭ோி . For each point on the manifold 
(such as 𝑭ோி), we have a tangent space containing all tangent 
vectors at that specific point. Tangent vectors represent the 
direction and rate of change of a curve or surface at a specific 
point on the manifold. The metric tensor [29] is a mathematical 
concept that defines the inner product of tangent vectors at each 
point on the manifold, e.g., 𝑔ிೃಷ: 𝑇ிೃಷ ൈ 𝑇ிೃಷ → 𝑅, at 𝑭ோி  
point. Indeed, this determines how distances between points 
(precoding matrices) are measured.  Therefore, we can measure 

how the precoding matrix changes as we move from one point 
to another on the manifold. 
     The aim is to find a perturbed precoding matrix 𝑭෩௜ nearby 
𝑭ோி   (i.e., introducing small variations in 𝑭ோி) that has the 
minimum distance from 𝑭ோி  (i.e., similar characteristics) for 
both privacy and data utility. For this purpose, we need to move 
along its tangent space 𝑇ிೃಷ , see Fig. 3, respecting the geometry 
defined by the RM tensor, as follows: 

𝑇𝑭ೃಷ ൌ ൜࢜௜ ൌ 𝑢𝑝𝑝𝑒𝑟 ൬𝑭ோி
ିଵ

ଶൗ  log𝑭ೃಷ൫𝑭෩௜൯ 𝑭ோி
ିଵ

ଶൗ ൰  ∈

                       ℝ
ேሺேାଵሻ

ଶൗ ൠ,                                                      (11) 

where ࢜௜ denotes the i-th tangent vector of the space, 𝑁 is the 
number of points on the tangent space, the 𝑢𝑝𝑝𝑒𝑟ሺ∙ሻ operator 
retains the upper triangular part of the matrix and transforms it 
into a vector log𝑭ೃಷ൫𝑭෩௜൯ ∶ 𝑭෩௜  →  ࢜௜  where 

log𝑭ೃಷ൫𝑭෩௜൯ ൌ  𝑭ோி

ଵ
ଶൗ  log ൬𝑭ோி

ିଵ
ଶൗ  𝑭෩௜ 𝑭ோி

ିଵ
ଶൗ ൰ 𝑭ோி

ଵ
ଶൗ .               (12) 

There is a logarithmic mapping operator log𝑭ೃಷ൫𝑭෩௜൯ ∶ 𝑭෩௜  →
 ࢜௜ , mapping from the surface of the manifold to the tangent 
space, which is expressed as  
log𝑭ೃಷ൫𝑭෩௜൯ ∶ൌ  𝑽 𝑑𝑖𝑎𝑔൫logሺ𝜆ଵሻ, … , log൫𝜆ேೃಷ൯𝑽ு൯,          (13) 

and the inverse operation exp𝑭ೃಷሺ࢜௜ሻ ∶  ࢜௜ → 𝑭෩௜ ; the 
exponential mapping from the tangent space to the surface of 
the manifold, as follows: 
exp𝑭ೃಷሺ࢜௜ሻ ≔ 𝑽 𝑑𝑖𝑎𝑔൫exp൫𝜆ሶଵ൯, … , exp൫𝜆ሶேೃಷ൯𝑽ு൯,          (14) 
where 𝜆ሶ௜ ൌ |࢜௜|𝑭ೃಷ identifies the magnitude of the tangent 
vector ࢜௜. 
 

 
Fig. 3. Configurations of the analog precoding matrix 𝑭ோி and their 
corresponding tangent vectors on the differentiable RM, ோࣧி, with 
tangent space 𝑇ிೃಷ and metric tensor 𝑔ிೃಷ. 
 
   Remark 3. An RM equipped with an affine-invariant 
Riemannian metric (AIRM) [30] ensures that the distance 
between two SPD (precoding) matrices is invariant under affine 
transformations (such as rotation, scaling, and shearing). The 
distance between two SPD matrices 𝐴 and 𝐵 in the RM is given 
by the AIRM: 

𝑑஺ூோெሺ𝐴, 𝐵ሻ ൌ ቛlog ቀ𝐴ିଵ
ଶൗ  𝐵 𝐴ିଵ

ଶൗ ቁቛ ி.            (15) 
This is particularly useful in maintaining the consistency of 
distance measures when the precoding matrices undergo 
transformations during the perturbation process. 
   Following the AIRM, we rewrite the perturbation 
optimization problem as follows: 

𝑭෩௜ ൌ arg min
𝑭෩೔

∑ ฯlog ൬𝑭ோி
ିଵ

ଶൗ  𝑭෩௜ 𝑭ோி
ିଵ

ଶൗ ൰ฯ
ி

ே
௜ୀଵ .         (16) 
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The perturbation is achieved along geodesic curves [31], which 
are the shortest paths between points on a manifold. Given two 
points 𝑝 and 𝑞 on the RM, the Riemannian distance is 

𝑑ࣧೃಷ ሺ𝑝, 𝑞ሻ ൌ ට𝑔௣൫࢜𝒑, ࢜𝒒൯, where 𝑔௣ is the tangent vector 

from tangent points ࢜𝒑 to ࢜𝒒.  
The Riemannian distance between two SPD matrices 𝑭ோி  

and 𝑭෩௜ on the RM can be calculated using the logarithmic 
mapping log𝑭ೃಷ൫𝑭෩௜൯, as given by  

𝑑ࣧೃಷ ൫𝑭ோி, 𝑭෩௜൯ ∶ൌ  ฮlogሺ𝑭ோிሻ െ log൫𝑭෩௜൯ฮ
ி

.          (17) 
The logarithmic mapping maps 𝑭ோி  and 𝑭෩௜ to the tangent space 
𝑇ிೃಷ , where all tangent vectors of 𝑭ோி  can be captured. The 
tangent vectors represent the direction and magnitude of the 
smallest change needed to move from 𝑭ோி  to 𝑭෩௜  within the 
manifold. In this way, we can accurately measure and control 
the distance between the original 𝑭ோி  and perturbed 𝑭෩௜ 
precoding matrices, ensuring that perturbations preserve 
essential characteristics and maintain data utility. 
 
B. Geodesic Distance Analysis for Precoding Perturbation on 
the Riemannian Manifold 
      In the Riemannian structure, the geodesic distance between 
two SPD matrices represents the shortest path between them 
within the manifold. 
 

  Definition 3 (Geodesic). A geodesic is a fundamental path 
that connects points on the manifold in a way that minimizes 
the distance according to the metric structure of the manifold. 
For a pair of points on the manifold ࣧ, denoted as p and q, and 
considering the set of all curves 𝛾ሶ ∶  ሾ𝑎, 𝑏ሿ → ࣧ with 𝛾ሶሺ𝑎ሻ ൌ 𝑝 
and 𝛾ሶሺ𝑏ሻ ൌ 𝑞, the geodesic 𝛾 is the curve that minimizes the 
total length 𝐿ሺ𝛾ሻ: 
𝐿ሺ𝛾ሻ ∶ൌ infሼ𝐿ሺ𝛾ሶሻ|𝛾ሶ ∶  ሾ𝑎, 𝑏ሿ → ࣧ, 𝑤𝑖𝑡ℎ 𝛾ሶሺ𝑎ሻ ൌ 𝑝, 𝛾ሶሺ𝑏ሻ ൌ 𝑞 ሽ.  (18) 

In the context of a perturbed precoding matrix, the geodesic 
represents the path of minimal distortion between the original 
matrix 𝑭ோி   and the perturbed matrix 𝑭෩௜ within the RM. This 
distance can be calculated using logarithmic mapping, which 
translates the points into the tangent space where the Euclidean 
norm can be applied.   
 

     To construct the geodesic path between 𝑭ோி  and 𝑭෩௜, we first 
use the logarithmic map to project 𝑭෩௜ onto the tangent space at 
𝑭ோி . This gives us a tangent vector 𝑣௜ ൌ log𝑭ೃಷ൫𝑭෩௜൯. The 
Riemannian distance from 𝑭ோி  to the nearby 𝑭෩௜ closely 
resembles the Euclidean distance between their corresponding 
points in the tangent spaces ࢜ோி and ࢜௜, i.e., 𝑑ࣧೃಷ൫𝑭ோி, 𝑭෩௜൯ ൎ
 ‖࢜ோி െ ࢜௜‖ி. In the tangent space, the shortest path between 
the origin (࢜ோி) and the point 𝑣௜ is simply a straight line. To 
map this straight-line path back into the manifold, we use the 
exponential map.  

For a point 𝑡𝑣௜ (where 𝑡 is a scalar parameter representing 
how far along the path we are), the corresponding point on the 
manifold is 𝑒𝑥𝑝𝑭ೃಷሺ𝑡𝑣௜ሻ. Considering 𝑣 ൌ logሺ𝑭ሻ, the geodesic 
can be expressed as 

𝛾ሺ𝑡ሻ ൌ exp ቀሺ1 െ 𝑡ሻ logሺ𝑭ோிሻ ൅ 𝑡 log൫𝑭෩௜൯ቁ.           (19) 
where 𝛾ሺ𝑡ሻ: ሾ0,1ሿ → ࣧ. As 𝑡 varies from 0 to 1, it determines 
the linear combination of the logarithms, tracing a path that 
smoothly transitions from the logarithm of matrix 𝑭ோி  to the 

logarithm of matrix 𝑭෩௜. When 𝑡 ൌ 0, 𝛾ሺ𝑡ሻ ൌ logሺ𝑭ோிሻ; when 
𝑡 ൌ 1, 𝛾ሺ𝑡ሻ ൌ log൫𝑭෩௜൯. By following geodesics, we can ensure 
that the perturbations to the precoding matrices are minimal, 
resulting in preserving data utility.  
 

V. OPTIMIZATION OF MULTIFACED PRECODING MATRICES 
    In the perturbation process by the RM technique, the 
precoding matrix projects from the manifold to the tangent 
space and vice versa, which involves intricate transformations. 
If the projections are not handled carefully, there is a risk that 
the SPD property could be lost, rendering the matrices invalid 
in the wireless communication system. To ensure that the 
intrinsic properties of the matrices (i.e., SPD property- positive 
definiteness and symmetry) are preserved, we apply 
congruence transformations, leveraging the congruence 
invariance property [32] of the Riemannian metric, which 
guarantees that the geometric properties of the matrices are 
preserved during these projections.  
 
A. Privacy-Aware Optimization Framework 

During the perturbation process, the distance between the 
original precoding matrix 𝑭ோி  and its perturbed version 𝑭෩௜must 
be accurately measured to ensure minimal impact on data 
utility. Congruence invariance guarantees that these distances 
remain consistent even after transformations, which is vital for 
mainWaining Whe inWegUiW\ of Whe V\VWem¶V peUfoUmance. 
Furthermore, this ensures the precoding matrices remain valid 
(i.e., still SPD) during perturbation in communication systems. 

 

Definition 4 (Congruence transformation). If 𝑨  is an SPD 
matrix and 𝑿 is an invertible matrix, the congruence 
transformation is expressed as  𝑨ᇱ  ൌ 𝑿ு𝑨 𝑿. 
 

Definition 5 (Congruence invariance). Given two SPD 
matrices 𝑨, 𝑩 ∈ ࣧ, and an invertible matrix 𝑿, the congruence 
transformations are defined as: 

𝑨ᇱ  ൌ 𝑿ு𝑨 𝑿,                                   (20) 
and 

𝑩ᇱ  ൌ 𝑿ு𝑩 𝑿.                                    (21) 
The congruence invariance property ensures that the distance 
between  𝑨 and 𝑩 remains unchanged under congruence 
transformation as follows: 

𝑑஺ூோெሺ𝑨, 𝑩ሻ ൌ 𝑑஺ூோெሺ𝑨ᇱ, 𝑩ᇱ ሻ,                       (22) 
where 𝑑஺ூோெ is the distance given by ARIM in (14). 
 
   According to Definition 5, the perturbation process maintains 
the properties of 𝑭ோி  as the SPD matrix if  there exists an 
invertible matrix 𝑿, so that 𝑑஺ூோெ൫𝑭ோி, 𝑭෩௜൯ ൌ
𝑑஺ூோெ൫𝑿ு𝑭ோி 𝑿, 𝑿ு𝑭෩௜ 𝑿 ൯. 
 

Theorem 1. For two SPD precoding matrices 𝑭ோி, 𝑭෩௜ ∈ ࣧ, 
there exists a non-singular (invertible) matrix 𝑿 ∈ 𝑅ேೃಷൈேೃಷ  
providing the congruence invariance property under the 
congruence transformation, so that  

𝑿ு𝑭ோி 𝑿 ൌ 𝐈,                                (23)  
and  

𝑿ு𝑭෩௜ 𝑿 ൌ ઩𝒊,                                (24) 
where ࢫ𝒊 ∈ ॲேೃಷൈேೃಷ  states the diagonal matrix containing 
eigenvalues of  𝑭ோி

ିଵ𝑭෩௜. 𝑭ோி
ିଵ𝑭෩௜is a scalar transformation of 𝑭ோி , 
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which represents the scaling factor applied to the eigenvalues 
of 𝑭ோிto obtain 𝑭෩௜.  
 Proof. See Appendix B. ∎ 
 

Corollary 1. Suppose that 𝑭ோி  and 𝑭෩௜ are nonsingular. For any 
invertible matrix 𝑿, we have 

 𝑑ࣧೃಷ൫𝑿ு𝑭ோி 𝑿, 𝑿ு𝑭෩௜ 𝑿 ൯ ൌ 𝑑ࣧೃಷ ൫𝑭ோி, 𝑭෩௜൯.         (25) 
 Proof. See Appendix C. ∎ 
 

      To simplify the analysis and complex operations, such as 
logarithmic and exponential mappings, we apply the identity 
matrix 𝐈 ∈ ℂேೃಷൈேೃಷ as the tangent space basis in our analysis. 
With the identity matrix as the basis, perturbations can be 
interpreted as deviations from the identity, making it easier to 
understand and control the nature and extent of these 
perturbations, ensuring that the perturbed matrices remain close 
to the original matrices. Based on the congruence invariance 
property, the Riemannian distance between the perturbed 
precoding matrix 𝑭ோி  and the original precoding matrix 𝑭෩௜ with 
the identity matrix 𝐈 ∈ ℂேೃಷൈேೃಷ as the tangent space can be 
calculated as follows: 

𝑑 ೃࣧಷ൫𝑭ோி, 𝑭෩௜൯ ൌ 𝑑 ೃࣧಷ ቀ𝐈, 𝑭ோி
ିଵ

ଶൗ  𝑭෩௜𝑭ோி
ିଵ

ଶൗ ቁ ൌ  ቛlogሺ𝐈ሻ െ

 log ቀ𝑭ோி
ିଵ

ଶൗ  𝑭෩௜𝑭ோி
ିଵ

ଶൗ ቁቛ
ி

ൌ  ቛlog ቀ𝑭ோி
ିଵ

ଶൗ  𝑭෩௜𝑭ோி
ିଵ

ଶൗ ቁቛ
ி

ൌ

 ൫∑ logଶ𝜆௜൫𝑭ோி
ିଵ𝑭෩௜൯ேೃಷ

௜ୀଵ ൯
ଵ

ଶൗ
,                              (26) 

where 𝑭ோி ൌ 𝑭ோி
ିଵ

ଶൗ  𝑭ோி
ିଵ

ଶൗ   , and 𝜆௜൫𝑭ோி
ିଵ𝑭෩௜൯ collect the 

eigenvalues of 𝑭ோி
ିଵ𝑭෩௜.  

Using the geodesic concept, we can calculate the minimum 
distance the matrices 𝐈 and 𝑭ோி

ିଵ
ଶൗ  𝑭෩௜𝑭ோி

ିଵ
ଶൗ  as 

𝛾଴ሺ𝑡ሻ ൌ exp ቀlog ቀ𝑭ோி
ିଵ

ଶൗ  𝑭෩௜𝑭ோி
ିଵ

ଶൗ ቁ 𝑡ቁ 

ൌ ቀ𝑭ோி
ିଵ

ଶൗ  𝑭෩௜𝑭ோி
ିଵ

ଶൗ ቁ
௧
,                           (27) 

where 𝛾଴ሺ𝑡ሻ states the geodesic on the RM between 𝐈 and 
𝑭ோி

ିଵ
ଶൗ  𝑭෩௜𝑭ோி

ିଵ
ଶൗ . 

We use the congruence invariance property to ensure that the 
SPD property of the perturbed matrix is maintained during 
transformations and perturbations. Therefore, the geodesic path 
based on the congruence invariance property can be rewritten 
as follows: 

𝛾ሺ𝑡ሻ ൌ  𝑭ோி
ଵ

ଶൗ  ൫𝛾଴ሺ𝑡ሻ൯𝑭ோி
ଵ

ଶൗ     

ൌ 𝑭ோி
ଵ

ଶൗ  ቀ𝑭ோி
ିଵ

ଶൗ  𝑭෩௜𝑭ோி
ିଵ

ଶൗ ቁ
௧

𝑭ோி
ଵ

ଶൗ ,      (28) 
where 𝛾ሺ0ሻ ൌ  𝑭ோி and 𝛾ሺ1ሻ ൌ  𝑭෩௜.This ensures that the 
geodesic is independent of the chosen tangent space basis and 
provides a smooth transition between the two matrices while 
preserving their geometric properties.  
    To move between the manifold and the tangent space, the 
exponential/logarithmic map for matrices 𝑭ோி, 𝑭෩௜ and 𝑇𝑭෩೔ ∈
 𝑇𝑭ೃಷ  with  𝑇𝑭ೃಷ  ⊂  𝑭ோி  is expressed as follows: 

𝑭෩௜ ൌ exp𝑭ೃಷ൫𝑇𝑭෩೔൯    

ൌ  𝑭ோி
ଵ

ଶൗ exp ቀ𝑭ோி
ିଵ

ଶൗ  𝑇𝑭෩೔𝑭ோி
ିଵ

ଶൗ ቁ 𝑭ோி
ଵ

ଶൗ ,    (29) 
where  

𝑇𝑭෩೔ ൌ  log𝑭ೃಷ൫𝑭෩௜൯  ൌ

 𝑭ோி
ଵ

ଶൗ  log ቀ𝑭ோி
ିଵ

ଶൗ  𝑭෩௜𝑭ோி
ିଵ

ଶൗ ቁ 𝑭ோி
ଵ

ଶൗ .                          (30) 
 

Theorem 2. On a complete RM ࣧ, there exists a unique 
geodesic between any pair of points, 𝑝, 𝑞 ∈ ࣧ. 
 Proof. See Appendix D. ∎ 
 
B. Multifaceted Precoding Matrices   

With these newly established geodesics and mappings, we 
can assess relationships between SPD matrices with minimal 
distortions in the tangent space. However, when dealing with a 
substantial dataset containing multiple SPD precoding 
matrices, determining the appropriate tangent space basis may 
not be straightforward. Using the identity matrix 𝐈 as the tangent 
space basis may lead to distortions when projecting to the 
tangent space 𝑇ிೃಷ𝐈, particularly if the data points are located in 
regions of the manifold that are far from 𝐈. In this case, the 
geometric mean of the matrices on the manifold can be 
identified and employed as a reference point.  

The Riemannian geometric mean matrix, e.g., 𝑭ഥோி, is the 
matrix that minimizes the sum of squared Riemannian distances 
to each of the matrices in the given SPD precoding matrices set. 
Unlike the arithmetic mean, the geometric mean considers the 
manifold¶V cXUYaWXUe. IW iV affine-invariant, preserving intrinsic 
properties of SPD matrices such as positive definiteness and 
symmetry during transformations and projections. Therefore, 
we construct a tangent space at the geometric mean, 𝑇𝑭ഥೃಷ , and 
project the SPD precoding matrix onto the tangent space 
𝑇𝑭ഥೃಷ ൌ log𝑭ೃಷሺ𝑭ഥோிሻ. 

Given a set of SPD precoding matrix ൛𝑭ோி,ଵ, … , 𝑭ோி,௄ൟ on the 
RM, a Riemannian geometric mean matrix 𝑭ഥோி can be 
expressed as  

𝑭ഥோி ൌ arg min
𝑭ഥೃಷ

∑ 𝑑஺ூோெ൫𝑭ഥோி, 𝑭ோி,௞൯ଶ௄
௞ୀଵ .                 (31) 

   The goal is to find the matrix 𝑭ഥோி within this space that 
minimizes the sum of squared Riemannian distances to each of 
the precoding matrices in the set and this is the optimal 
precoding perturbation matrix. The Riemannian distance 
𝑑஺ூோெ൫𝑭ഥோி, 𝑭ோி,௞൯ is a measure of dissimilarity between the 
matrices 𝑭ഥோி  and  𝑭ோி,௞ on the RM. Based on the AIRM, the 
optimization problem (31) can be reformulated as follows:            

𝑭ഥோி ∶ൌ arg min
𝑭ഥೃಷ

∑ ቛlog ቀሺ𝑭ഥோிሻିଵ
ଶൗ  𝑭ோி,௞ ሺ𝑭ഥோிሻିଵ

ଶൗ ቁቛ
ி

௄
௞ୀଵ .   (32) 

To compute 𝑭ഥோி , we use an iterative method. We start with an 
initial point 𝑭ഥோிሺ0ሻ ൌ 𝑭ோி,௝, selecting one of the matrices 
randomly, 𝑭ோி,௝, 𝑗 ∈ 𝐾. We update 𝑭ഥோி as follows: 
𝑭ഥோிሺ𝑡 ൅ 1ሻ ൌ

𝑭ഥோிሺ𝑡ሻ exp ቀଵ
௄

 ∑ log ቀሺ𝑭ഥோிሺ𝑡ሻሻିଵ
ଶൗ  𝑭ோி,௞ ሺ𝑭ഥோிሺ𝑡ሻሻିଵ

ଶൗ ቁ௄
௞ୀଵ ቁ

𝑭ഥೃಷሺ௧ሻ
     

                                                                                         (33) 
We repeat (33) until convergence, i.e., ‖𝑭ഥோிሺ𝑡 ൅ 1ሻ െ
𝑭ഥோிሺ𝑡ሻ‖ி  ൑  𝜀. 
   By constructing the tangent space at the geometric mean, 
𝑇𝑭ഥೃಷ , the projection and analysis are centered around the most 
representative point. This approach minimizes the overall 
projection errors and distortions for the entire dataset of SPD 
matrices. When perturbing the precoding matrices, starting 
from the geometric mean ensures any changes or optimizations 
are balanced and less likely to introduce significant deviations. 
For large datasets of SPD matrices, using the geometric mean 
simplifies the process of choosing a tangent space basis. Instead 
of evaluating multiple potential bases, the geometric mean 
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provides a natural and efficient starting point that is 
computationally tractable and robust. 
 

VI. INCENTIVE RIEMANNIAN GRADIENT METHOD 
A. Gradient Descent Approach 
To solve problem (7), we apply the Riemannian gradient 
descent algorithm as follows: 

𝑭෩௜ሺ𝑡 ൅ 1ሻ ൌ  exp𝑭෩೔ ൬െ𝜂௧∇ࣧ𝐉 ቀ𝑭෩௜ሺ𝑡ሻቁ൰,               (34) 

where 𝜂௧ is the step size at iteration 𝑡, ∇ࣧ𝐉 ቀ𝑭෩௜ሺ𝑡ሻቁ denotes the 
Riemannian gradient of the objective function in which  
𝐉 ቀ𝑭෩௜ሺ𝑡ሻቁ ൌ min

𝑭ೃಷஷ𝑭෩೔
maxฮ𝑭ோி െ 𝑭෩௜ฮி

ଶ
 is the objective function.  

Taking partial derivatives with respect to the elements of 
𝑭෩௜obtains the optimal perturbation precoding matrix for privacy 
preservation and data utility (see Fig.4). These derivatives 
guide the iterative update process within the Riemannian 
gradient descent, allowing for the fine-tuning of the 
perturbation matrix to strike a balance between minimizing the 
distance from the original precoding matrix 𝑭ோி  while 
satisfying the constraints imposed by the privacy budget. 

 

 
Fig.4. Riemannian gradient descent optimization 
 
Theorem 3. The proposed precoding perturbation method is 
ሺ𝜀, 𝛿ሻ-differential privacy. 
Proof. See Appendix E. ∎ 
 
B. Precoding Perturbation Algorithm 

We develop a robust precoding perturbation algorithm to find 
the optimally perturbed precoding matrix that minimizes data 
distortion, with the pseudo-code presented in Algorithm 1. 

Algorithm 1 iteratively adjusts the elements of 𝑭ோி  along the 
conjugate directions on the RM, using the Riemannian gradient. 
It efficiently navigates the solution space, utilizing conjugate 
directions to avoid unnecessary steps and accelerate 
convergence. The computational complexity of the algorithm is 
primarily driven by the matrix operations involved in each 
iteration. Logarithmic and exponential maps and gradient 
computation, involving matrix operations, have a complexity of 
𝑂ሺ𝑁ோி

ଷ ሻ for 𝑁ோி ൈ 𝑁ோி matrices. Each geodesic update also 
involves matrix operations and eigen decomposition, 𝑂ሺ𝑁ோி

ଷ ሻ. 
Suppose that 𝑇 is the number of iterations until convergence, 
the overall complexity is 𝑂ሺ𝑁ோி

ଷ 𝑇ሻ. 
 
   Algorithm 1.  Perturbation Algorithm 

1. Initialize  𝑷𝒕𝒓, 𝑭𝑹𝑭, 𝑭ഥோி, 𝒔. 

2. Output: Perturbed precoding matrix 𝑭෩௜.  
3. Set  𝑁், 𝑁ோி, 𝑁௦, and 𝐾, 𝜀, 𝜏.  
4. Compute a Riemannian geometric mean matrix 

 𝑭ഥ𝑹𝑭 ൌ arg min
ிതೃಷ

෍ 𝑑஺ூோெ൫𝑭ഥோி, 𝑭ோி,௜൯
ଶ

௄

௞ୀଵ

 
5. Construct the tangent space 𝑇𝑭ഥ𝑹𝑭 at 𝑭ഥ𝑹𝑭 
6. Set step size 𝜂௧, and 𝑡 ൌ 0. 
7. For all RF precoding matrices 
8.    Repeat 
9.       Project 𝑭ோி,௜ onto the 𝑇𝑭ഥ𝑹𝑭: 

log𝑭ഥ𝑹𝑭൫ 𝑭ோி,௜൯ ൌ  log ቀሺ𝑭ഥோிሻି૚
૛ൗ  𝑭ோி,௜ ሺ𝑭ഥோிሻି૚

૛ൗ ቁ 
10.       Find 𝐉 ቀ𝑭෩௜ሺ𝑡ሻቁ ∶ൌ arg min maxฮlog𝑭ഥ𝑹𝑭൫𝑭ோி,௜൯ െ log𝑭ഥ𝑹𝑭൫𝑭෩௜൯ฮ

ி

ଶ  

so that ‖𝑷௧௥‖ி ൑ 𝑃௠௔௫, ฮ𝑭෩௜ሺ𝑖, 𝑗ሻฮ
ி

ൌ 1
ඥ𝑁்

൘  , and 𝑭෩௜ ൌ

arg min
𝑭෩೔

∑ ฮlog𝑭ഥ𝑹𝑭൫𝑭ோி,௜൯ฮ
ி

ே
௜ୀଵ  

11.       Compute the search direction 𝑣௜ሺ𝑡ሻ ൌ ∇ࣧ𝐉 ቀ𝑭෩௜ሺ𝑡ሻቁ  
12.       Update the perturbed precoding matrix 𝑭෩௜ሺ𝑡 ൅ 1ሻ ൌ

 Exp𝑭ഥ𝑹𝑭 ൬െ𝜂௧∇ࣧ𝐉 ቀ𝑭෩௜ሺ𝑡ሻቁ൰ 
13.       Update the search direction: 𝑣௜ሺ𝑡 ൅ 1ሻ ൌ െ∇ࣧ𝐉 ቀ𝑭෩௜ሺ𝑡ሻቁ 
14.       𝑡 ൌ 𝑡 ൅ 1 
15.    Until  ቀሺ𝐵𝐸𝑅൫𝑭෩௜൯ ൑ 𝜏ሻ and ሺ𝑠𝑢𝑝ฮ𝑭𝑹𝑭 െ 𝑭෩𝒊ฮ𝑭

൑ 𝜀ሻቁ 

16.  Update the precoding matrix 𝑭ோி,௜ 
17.   End for  

 
VII. NUMERICAL RESULTS 

In this section, we evaluate the proposed approach against a 
privacy-preserving channel estimation scheme labeled as PPCE 
[21] and a privacy-preserving distributed optimization scheme 
known as PPDO [22] method. We consider a MIMO network 
consisting of a BS equipped with 𝑁் ൌ 16 antenna elements 
and 𝑁ோி ൌ 8 RF chains conveying 𝑁ௌ ൌ 4 data streams and 
serves 𝐾 ൌ 4  single-antenna users. We assume each user 
receives one data stream, and generate random complex-valued 
vectors for each data stream following a Gaussian distribution. 
All experiments are conducted over 3000 runs, where each run 
comprises 1800 random sets of the RF precoding matrix 𝑭ோி  
and digital precoding matrix 𝑭஻஻. The elements of these 
matrices are set using the Gaussian random number generation 
function numpy.random.normal. The bound of the BER is 𝜏 ൌ
0.01, the maximum transmission power is 𝑃௠௔௫ ൌ 33 dB, and 
the noise variance is 𝜎௡

ଶ ൌ 0.03  for all antennas. The key 
numerical values used in the simulation setup are summarized 
in Table 2.  

 
Table 2. Simulation parameters 

Number of transmitter antennas  𝑁் ൌ 64 
Number of RF chains  𝑁ோி ൌ 8 
Number of data streams 𝑁ௌ ൌ 4 
Number of users 𝐾 ൌ 4 
Minimum transmit power 𝑃௠௜௡ ൌ 11 𝑑𝐵 
Noise variance  𝜎௡

ଶ ൌ 0.03   
BER threshold 𝜏 ൌ 0.01 
Maximum transmit power 𝑃௠௔௫ ൌ 33 𝑑𝐵 
Scaling factor 0 ൑ 𝛼 ൑ 1 
Step size 0 ൑ 𝜂 ൑ 1 
 
We also employ the DeepMIMO dataset for CSI-based 

precoding matrices and compare the results with those obtained 

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3579291

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on June 19,2025 at 09:09:25 UTC from IEEE Xplore.  Restrictions apply. 



 
 

from randomly generated RF precoding matrices. While the 
random precoding matrix serves as a worst-case scenario since 
it lacks adaptation to actual channel conditions, the DeepMIMO 
dataset provides real-world channel characteristics, including 
spatial correlations, multipath effects, and realistic propagation 
conditions.  

In Fig. 5, we evaluate the outage probability of the proposed 
method for a random set of RF precoding matrices and CSI-
based RF precoding from the DeepMIMO dataset. In the case 
of random RF precoding matrices, we set the minimum power 
for reliable communication as 𝑃௠௜௡ ൌ 11 dB and generate 900 
random values for the RF precoding matrix under a Gaussian 
distribution with zero mean and a standard deviation of 1. We 
conduct simulations under four different privacy budgets 𝜀 ൌ
0.5, 𝜀 ൌ 3, 𝜀 ൌ 7, and 𝜀 ൌ 10. Higher privacy budgets indicate 
less noise added to the data, and the RF precoding matrix retains 
more of its original structure and properties, reducing the 
outage probability, see Fig. 5(a). Furthermore, the superiority 
of our method is demonstrated in reliability, with the outage 
probability close to zero in the presence of perturbations to the 
RF precoding matrix. Two other methods, however, experience 
a higher outage probability, ranging from 0.2 to 0.6. For 
instance, with 𝑆𝑁𝑅 ൌ 25 dB, the outage probability is 0.54 for 
the PPCE and 0.37 for the PPDO, whereas the proposed method 
with 𝜀 ൌ 10 experiences an outage probability of almost 0.15. 
The near-zero outage probability observed in our method 
compared to the other methods is from the use of geodesic 
perturbation in the RM.  

Additionally, the results demonstrate that CSI-based 
precoding significantly enhances system performance, reducing 
the outage probability and improving spectral efficiency 
compared to random RF precoding (see Fig. 5(b)). The 
DeepMIMO dataset offers precoding matrices derived from 
realistic CSI, a more structured and realistic representation of 
the channel, enabling better beamforming and alignment with 
the channel conditions. This allows for more effective 
precoding and reduced outages. 

In Fig. 6, we evaluate the impact of ℓଶ-sensitivity on the BER 
of all benchmarks.  Fig. 6(a) analyzes the BER using a Gaussian 
random precoding matrix, where the elements of the RF 
precoding matrix 𝑭ோி  and digital precoding matrix 𝑭஻஻ are 
generated following a standard normal distribution. We define 
the ℓଶ-sensitivity based on the adjacency relation of two input 
signals (3), which imposes stringent conditions to maintain data 
utility. To measure ∆௙, we set an upper bound for Adjሺ𝐱, 𝐱́ሻ as 
𝛼𝑠଴ where 𝑠଴ ൌ  𝑚𝑖𝑛௜|𝑥௜ െ 𝑥௜

ᇱ| represents the minimum 
difference between the input signal components, and 0 ൑ 𝛼 ൑
1 is a scaling factor. Therefore, according to Definition 1, the 
ℓଶ-sensitivity should be as ∆௙൑ 𝛼𝑠଴. We run the experiments 
for three adjacency values with 𝑠଴ ൌ 3, 𝑠଴ ൌ 5, and 𝑠଴ ൌ 8. 

We also vary 𝛼 from 0.1 to 0.95. When the scaling factor is 
small (𝛼 ൌ 0.12), the perturbations may not effectively 
preserve the privacy of the wireless users, resulting in 
compromised performance. Conversely, excessively large 
scaling factors (𝛼 ൌ 0.83) can lead to overly aggressive 
perturbations, causing distortion in the transmitted signals and 

consequently higher BER. The findings show that the proposed 
method exhibits a BER of 0.0053 for 𝛼 ൌ 0.48 and 𝑠଴ ൌ 8, 
while the PPCE and PPDO schemes suffer higher BER of 0.054 
and 0.031, respectively. Our method uses geodesic distances, 
guiding the perturbations in directions that preserve signal 
characteristics and minimize information loss. This ensures that 
the transmitted signals remain closer to their original states, 
reducing the likelihood of errors and resulting in a lower BER 
compared to methods that neglect the manifold's geometry. 

   

 
(a) 

 
(b) 

Fig.5. The outage probability versus different SNRs under four 
different privacy budgets 𝜀 ൌ 0.5, 𝜀 ൌ 3, 𝜀 ൌ 7, and 𝜀 ൌ 10. (a) 
Outage probability under a random set of RF precoding matrices. (b) 
Comparison of outage probability between random RF precoding 
matrices and CSI-based RF precoding using the DeepMIMO dataset. 

 
In Fig. 6(b), we investigate the BER using the real-world 

DeepMIMO dataset and compare the results with those 
obtained from random precoding matrices. Without leveraging 
CSI, the system operates blindly, leading to inefficient resource 
allocation, degraded communication performance, and 
increased BER. In contrast, the DeepMIMO dataset allows for 
CSI-aware precoding, enabling more effective beamforming, 
reduced interference, and improved signal alignment, 
improving overall system reliability. By leveraging real CSI, 

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3579291

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on June 19,2025 at 09:09:25 UTC from IEEE Xplore.  Restrictions apply. 



 
 

we assess how our approach adapts to practical deployment 
conditions. The results highlight the robustness of our method, 
showing that CSI-based precoding achieves significantly lower 
BER than the randomly generated RF precoding matrices, 
particularly at lower SNR levels. 

We also investigate the impact of the privacy budget on the 
BER performance of all methods in Fig.7. We consider four 
various privacy budgets: 𝜀 ൌ 0.5, 𝜀 ൌ 3, 𝜀 ൌ 7, and 𝜀 ൌ 10, 
respectively, and perform simulations under different 
transmission rates ranging from 0.5 ൈ 10ହ bit to  3 ൈ 10ହ bit. 
The results show that our privacy preservation mechanism 
significantly experiences lower BER compared to alternative 
methods. As the transmission rate increases, the BER of PPCE 
and PPDO schemes significantly increases, whereas our 
approach shows a steady increase. Additionally, increasing the 
privacy budget leads to an increase in BER. The primary reason 
for this is the privacy-preserving mechanism introduces noise 
that degrades the quality of the transmitted signal, making it 
more susceptible to errors. 

Fig. 8 extends the analysis of Fig. 7 to higher transmission 
rates, ensuring a comprehensive evaluation of the privacy 
budget's impact across a broader range of operating conditions. 
In Fig. 7, the transmission rate is varied from 0.5 ൈ 10ହ 
to 3 ൈ 10ହ bits. This range is relatively low and focuses on 
understanding BER performance at lower transmission rates. In 
Fig. 8, the transmission rate is increased to a much higher range, 
from 2 ∗ 10ହ to 12 ∗ 10ହ bits. This expansion allows for a 
broader analysis of how BER behaves at higher transmission 
rates, which is critical for evaluating the robustness and 
scalability of the methods under more demanding conditions. 
The BER of our method increases with the transmission rate, 
consistently demonstrating lower values compared to other 
benchmarks. This is because the method effectively balances 
privacy with communication reliability, resulting in lower BER 
across a range of transmission rates. 
   Fig. 9 investigates privacy loss against sensitivity under 
different noise variances. We run the experiments under four 
different noise variances: 𝜎௡

ଶ ൌ 0.01, 𝜎௡
ଶ ൌ 0.1, 𝜎௡

ଶ ൌ 0.5, and 
𝜎௡

ଶ ൌ 0.8. We vary sensitivity from 0.01 to 0.06. The results 
show that increasing the noise variance generally leads to a 
decrease in privacy loss, especially at higher sensitivities. For 
example, the proposed method incurs a privacy loss of 0.39 
under 𝜎௡

ଶ ൌ 0.01 and ∆௙ൌ 0.045 whereas it only experiences a 
privacy loss of 0.18 when 𝜎௡

ଶ ൌ 0.8 and  ∆௙ൌ 0.045. This is 
because higher noise variances result in greater perturbations to 
the output of our proposed privacy function, making it more 
difficult to infer sensitive information about individual data 
points. Two PPCE and PPDO schemes suffer privacy losses of 
0.58 and 0.41 under 𝜎௡

ଶ ൌ 0.8 and ∆௙ൌ 0.045 which is much 
more than that of the proposed approach. The reason is that 
these schemes do not adequately perturb the data, resulting in 
greater privacy loss. Our method does not provide much 
additional privacy protection at extremely high levels of noise 
variance. This is because the added noise reaches a point of 
saturation where further increases in sensitivity have 
diminishing effects on privacy loss reduction. 

 

 
(a) 

 
(b) 

Fig. 6. BER under different scaling factors 𝛼 for three different 
adjacency values with 𝑠଴ ൌ 3, 𝑠଴ ൌ 5, and 𝑠଴ ൌ 8. (a) BER analysis 
using Gaussian random RF precoding matrices. (b) Comparison of 
BER between random RF precoding matrices and CSI-based RF 
precoding using the DeepMIMO dataset. 

 
In Fig. 10, we evaluate the privacy loss of our method under 

both the randomly generated precoding matrix (Fig. 10(a)) and 
the realistic DeepMIMO dataset (Fig. 10(b)). We quantify 
privacy risk using a probabilistic scale ranging from 0 to 1, with 
0 indicating no risk and 1 indicating certainty of risk. We 
conduct the simulation for four different privacy risks: 𝛿 ൌ 0, 
𝛿 ൌ 0.1, 𝛿 ൌ 0.5, and 𝛿 ൌ 1 under noise variance 𝜎௡

ଶ ൌ 0.5 
over the same sensitivity values in previous experiments. It is 
shown that the privacy risk directly influences the level of 
privacy loss experienced in all methods.  

As the privacy risk increases, the potential for privacy loss 
also increases. Factors such as sensitivity and noise variance all 
contribute to the overall privacy risk. For instance, the privacy 
loss of our approach is 0.13 under ∆௙ൌ 0.01 and 𝛿 ൌ 0.5, while 
it is 0.29 when ∆௙ൌ 0.06 and 𝛿 ൌ 0.5. The results indicate that 
randomly generated RF precoding matrices exhibit lower 
privacy loss compared to the DeepMIMO dataset-based 
scenario. This difference arises because, while randomly 
generated precoding matrices introduce a high degree of 
diversity, they may not fully capture the complex spatial 
dependencies and structural correlations present in real-world 
channels. Consequently, this can lead to an overestimation or 
underestimation of privacy loss due to the lack of structured 
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interference patterns. 
 

 
Fig 7. The BER performance under different transmission rates at 

various privacy budgets: 𝜀 ൌ 0.5, 𝜀 ൌ 3, 𝜀 ൌ 7, and 𝜀 ൌ 10. 
 

 
Fig 8. The BER performance for various transmission rates. 
 
 
Fig. 11 analyzes the impact of the privacy budget on privacy 

loss under different values of sensitivity for all benchmarks. 
Four various privacy budgets are set as 𝜀 ൌ 0.5, 𝜀 ൌ 3, 𝜀 ൌ 7, 
and 𝜀 ൌ 10 for 𝛿 ൌ 0.3 and 𝜎௡

ଶ ൌ 0.6. Our method 
demonstrates superior performance compared to PPCE and 
PPDO approaches even in a wide range of privacy budgets, 
from smaller to larger values. This is because of its robustness 
and adaptability to varying privacy budgets and sensitivity 
levels. The results illustrate how our method minimizes privacy 
loss even in scenarios with high sensitivity, where other 
approaches may struggle to strike a balance between privacy 
preservation and data utility. 

 
 

 
Fig. 9. The impact of sensitivity on privacy loss under different 

noise variances. 
 

 
(a) 

 
(b) 

Fig. 10. Impact of sensitivity on privacy loss under different privacy 
risks with noise variance 𝜎௡

ଶ ൌ 0.5. (a) Privacy loss analysis using 
Gaussian random RF precoding matrices. (b) Comparison of privacy 
loss between random RF precoding matrices and CSI-based RF 
precoding using the DeepMIMO dataset. 
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Fig.11. The impact of privacy budget on the privacy loss under 

different values of sensitivity at 𝛿 ൌ 0.3 and 𝜎௡
ଶ ൌ 0.6. 

 
 

VII. CONCLUSION 
In this study, we designed a privacy preservation approach 

for wireless communications that leverages the concept of RM 
to introduce perturbations to the precoding matrix of the 
transmitted signals. We analyzed the relationships between 
different precoding matrix configurations and identified regions 
of interest for perturbation through an understanding of the 
geometric properties of the manifold. By following geodesics, 
we were able to find neighborhoods around each point in the 
precoding matrix, representing regions where nearby points 
have similar properties or characteristics. Subsequently, we 
applied controlled perturbations along geodesics to introduce 
privacy-preserving modifications. This approach enabled us to 
modulate the magnitude and direction of perturbations in the 
precoding matrix, ensuring effective privacy preservation while 
minimizing distortion to the data space. Through extensive 
simulations, we demonstrated the efficacy of our proposed 
approach in achieving robust privacy preservation while 
maintaining the integrity and utility of the transmitted signals. 
In future work, we plan to extend the usage of RM techniques 
to other aspects of wireless communication systems, such as 
channel estimation, privacy protection and system performance 
enhancement. An intriguing future direction is to explore how 
the proposed precoding approach performs in the presence of 
internal corruption. In particular, we will investigate how to 
handle internal corruptions effectively and elegantly by 
leveraging the proposed geometric optimization. 

 
APPENDIX A 

PROOF OF LEMMA 1 
 Suppose 𝑓 is a deterministic function and 𝜎௡

ଶ is known. 
According to (5), we define 𝑝 ൌ 𝑃𝑟ሾ𝑓ሺ𝐱ሻ ∈ 𝑍ሿ and 𝑝́ ൌ
𝑃𝑟ሾ𝑓ሺ𝐱́ሻ ∈ 𝑍ሿ. From Definition 2, we can write 

𝑝 ൑ 𝑒ఌ.                                         (35) 
We want to find the maximum value of 𝜀 so that (35) holds for 
all possible subsets 𝑋 and adjacent signals 𝐱 and 𝐱́. Rearranging 
(35), we have  

𝜀 ൒ ln ቀ௣
௣́

ቁ.                                      (36) 

Given that 𝑝 and 𝑝́ are probabilities, ௣
௣́
 lies in the range [0,1]. 

So, ln ቀ௣
௣́

ቁ ൑ 0. To bound 𝜀, we maximize ln ቀ௣
௣́

ቁ. This 
maximum occurs when 𝑝 is the maximum (𝑝 ൌ 1) and 𝑝́ is the 
minimum (𝑝́ ൌ 0). This means that 𝑓ሺ𝐱ሻ is deterministic and 
always outputs 𝑍 for 𝐱, and 𝑓ሺ𝐱́ሻ is deterministic and never 
outputs 𝑍 for 𝐱́. In this case, ln ቀ௣

௣́
ቁ ൌ ln ቀଵ

଴
ቁ, which is 

undefined. However, ln ቀ௣
௣́

ቁ → ∞ as ௣
௣́

→ ∞. Thus, the 

maximum of ln ቀ௣
௣́

ቁ is infinity. Therefore, the maximum of 𝜀 is 
infinity, which is not meaningful. 

   To make 𝜀 meaningful, we need to bound it. For this 
purpose, we introduce a noise with variance 𝜎௡

ଶ. According to 
the Gaussian distribution, for a given sensitivity ∆௙, the added 

noise should have a standard deviation 𝜎 ൌ  ∆೑

ቀଶ ୪୬ቀଵ
ఋൗ ቁቁ

. Now, 𝜀 

can be bounded by the ratio of the sensitivity to the noise 
standard deviation as follows: 

𝜀 ൑ ∆೑

ቀଶఙ೙
మ ୪୬ቀଵ

ఋൗ ቁቁ
.                               (37) 

This completes the proof. ∎ 
 

APPENDIX B 
PROOF OF THEOREM 1 

Since 𝑭ோி  and 𝑭෩௜are SPD matrices, they can be diagonalized 
by a unitary matrix. Let 𝑼 be a unitary matrix such that: 

𝑭ோி ൌ 𝑼઩ோி𝑼ு,                                (38) 
and 

𝑭෩௜ ൌ 𝑼઩௜𝑼ு,                                 (39) 
where ઩𝑹ிand ઩௜ are diagonal matrices with positive 
eigenvalues of 𝑭ோி  and 𝑭෩௜, respectively; 𝑼 is the unitary matrix. 
   Define 𝑿 ൌ 𝑼઩ିଵ

ଶൗ , where ઩ିଵ
ଶൗ  is a diagonal matrix 

containing the square root of the eigenvalues of 𝑭ோி
ିଵ𝑭෩௜. 𝑿 is 

invertible because ઩ has positive eigenvalues. Thus,  

𝑿ு𝑿 ൌ  𝑼ு ቀ઩ିଵ
ଶൗ ቁ

ு
઩ିଵ

ଶൗ 𝑼 ൌ  𝑼ு𝑼 ൌ 𝐈.                 (40) 
We now apply the congruence transformation to 𝑭ோி: 

𝑿ு𝑭ோி 𝑿 ൌ  ቀ𝑼઩ିଵ
ଶൗ ቁ

ு
𝑭ோி ቀ𝑼઩ିଵ

ଶൗ ቁ ൌ

        ቀ઩ିଵ
ଶൗ ቁ

ு
𝑼ு𝑼઩ோி𝑼ு ቀ𝑼઩ିଵ

ଶൗ ቁ ൌ ቀ઩ିଵ
ଶൗ ቁ

ு
 ઩ோி઩ିଵ

ଶൗ ൌ 𝑰  
(41) 

As a result, 𝑿ு𝑭ோி 𝑿 ൌ 𝑰.  
Similarly, we imply the congruence transformation to 𝑭෩௜ as 

𝑿ு𝑭෩௜ 𝑿 ൌ ቀ𝑼઩ିଵ
ଶൗ ቁ

ு
𝑭෩௜ ቀ𝑼઩ିଵ

ଶൗ ቁ . Since 𝑭ோி  and 𝑭෩௜ are SPD 
matrices, we can define 𝑭ோி

ିଵ𝑭෩௜ ൌ 𝑼෩઩௜𝑼෩ு, where 𝑼෩  is the matrix 
of the eigenvalues of 𝑭ோி

ିଵ𝑭෩௜.  
On the other hand, we can write 𝑭෩௜ ൌ  𝑭ோி𝑼෩઩௜𝑼෩ு, thus 

𝑿ு𝑭෩௜ 𝑿 ൌ ቀ𝑼઩ିଵ
ଶൗ ቁ

ு
𝑭ோி𝑼෩઩௜𝑼෩ு ቀ𝑼઩ିଵ

ଶൗ ቁ 

ൌ ቀ઩ିଵ
ଶൗ ቁ

ு
𝑼ு𝑼઩ோி𝑼ு𝑼෩઩௜𝑼෩ு𝑼 ቀ઩ିଵ

ଶൗ ቁ 

ൌ ቀ઩ିଵ
ଶൗ ቁ

ு
 ઩ோி𝑼෩઩௜𝑼෩ு ቀ઩ିଵ

ଶൗ ቁ .                        (42) 
Since 𝑼෩  diagonalizes 𝑭ோி

ିଵ𝑭෩௜  , we have 

ቀ઩ିଵ
ଶൗ ቁ

ு
઩ோி𝑼෩઩௜𝑼෩ு ቀ઩ିଵ

ଶൗ ቁ ൌ  𝑼෩઩௜𝑼෩ு.             (43) 
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On the other hand, as ઩ோிand ઩௜ are diagonal, 

ቀ઩ିଵ
ଶൗ ቁ

ு
 ઩ோி઩ିଵ

ଶൗ  and ቀ઩ିଵ
ଶൗ ቁ

ு
 ઩௜઩

ିଵ
ଶൗ  are also diagonal, 

and ઩ is the diagonal matrix with these eigenvalues. Hence,  
𝑿ு𝑭෩௜ 𝑿 ൌ ઩௜.                           (44) 

This demonstrates the existence of matrix 𝑿 satisfying the 
specified conditions. This completes the proof.∎ 

 
APPENDIX C 

PROOF OF COROLLARY 1 
  We first imply the congruence transformation of the matrices 
by the invertible matrix 𝑿, i.e., 𝑿ு𝑭ோி 𝑿 and 𝑿ு𝑭෩௜ 𝑿. Let 
ሺ𝑿ு𝑭ோி 𝑿ሻିଵ be the inverse of the congruence transformation 
of 𝑭ோி . Since 𝑭ோி  is SPD, its inverse is also SPD. To investigate 
the relative relationship between the two transformed matrices 
after the transformation, we calculate ሺ𝑿ு𝑭ோி 𝑿ሻିଵ൫𝑿ு𝑭෩௜ 𝑿൯, 
which simplifies to 𝑿ିு𝑭ோி

ିଵ𝑿ିଵ𝑿ு𝑭෩௜ 𝑿 ൌ 𝑿ିு ൫𝑭ோி
ିଵ 𝑭෩௜൯𝑿, 

where 𝑿ିு is the inverse of 𝑿ିு. As a result, the eigenvalues 
of 𝑭ோி

ିଵ 𝑭෩௜are the same as those of 𝑿ு ൫𝑭ோி
ିଵ 𝑭෩௜൯𝑿, i.e.,  

𝜆௜൫𝑭ோி 𝑭෩௜
ିଵ൯ ൌ  𝜆௜ ൬ሺ𝑿ு𝑭ோி 𝑿ሻ൫𝑿ு𝑭෩௜ 𝑿൯ିଵ൰, 

where 𝜆௜ሺ∙ሻ denotes the 𝑖-th eigenvalue of the matrix. Because 
the eigenvalues, and thus the essential spectral properties, 
remain unchanged, the Riemannian distance 𝑑ࣧೃಷ  calculated 
using these eigenvalues is invariant under the transformation. 
This completes the proof. ∎ 
 

APPENDIX D 
PROOF OF THEOREM 2 

    Let 𝑝, 𝑞 ∈ ࣧ be any pair of points on a complete ࣧ. We 
first show that there exists a geodesic connecting 𝑝 and 𝑞. Given 
that ࣧ is complete, ∀𝑝 ∈ ࣧ, there exists a neighborhood 𝑈௣ 
containing 𝑝 such that each pair of points within 𝑈௣ can be 
connected by a unique geodesic segment. Now, let 𝐴௣ be the set 
of all points in ࣧ that can be connected to 𝑝 through 
minimizing geodesic as follows: 

𝐴௣ ൌ  ൜𝑥 ∈  ࣧ: 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔 
𝑔𝑒𝑜𝑑𝑒𝑠𝑖𝑐 𝑓𝑟𝑜𝑚 𝑝 𝑡𝑜 𝑥 ൠ.         (45)  

in which 𝐴௣ is non-empty since 𝑝 ∈ 𝐴௣. Furthermore, 𝐴௣ is an 
open set because geodesics are continuous curves. We now 
define a set 𝐵௣ as follows: 

𝐵௣ ൌ  ൜
𝑥 ∈ ࣧ: 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝑔𝑒𝑜𝑑𝑒𝑠𝑖𝑐 

𝑓𝑟𝑜𝑚 𝑝 𝑡𝑜 𝑥 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑 𝑖𝑛 𝑈௣
ൠ.        (46) 

Similar to 𝐴௣, the set 𝐵௣ is a non-empty open set. All open 
subsets of ࣧ are complete because ࣧ is complete. According 
to the Hopf-Rinow theorem [33], any locally compact, 
connected, and complete space that can connect any two points 
by minimizing geodesic is also a complete RM. Therefore, 𝐵௣ 
is a complete RM. Thus, there exists a complete RM 𝐵௣ 
containing 𝑝. As a result, there exists a minimizing geodesic 
connecting any pair of points in 𝐵௣ (Hopf-Rinow theorem). 
Hence, there is a minimizing geodesic from 𝑝 to 𝑞 contained 
entirely within 𝐵௣, since 𝑞 ∈ 𝐵௣. Consequently, there exists a 
geodesic connecting 𝑝 and 𝑞 in ࣧ. 
  We now demonstrate the uniqueness of this geodesic. Assume 
two distinct geodesics 𝛾ଵ and 𝛾ଶ connecting 𝑝 and 𝑞. Because 
of the characteristics of geodesics, 𝛾ଵ and 𝛾ଶ must coincide at 
their initial points, 𝑝 [34]. In the same way, they have to line up 

at their terminal point, 𝑞, which is fully contained in 𝑝 in 𝐵௣. 
Consequently, 𝑝 and 𝑞 in ࣧ are connected with a geodesic.  
   Let 𝐿ሺ𝛾ሻ be the length function measuring the length of 
geodesic curves connecting two points 𝑝 and 𝑞. For a smooth 
curve 𝛾 parameterized by 𝑡 from 𝑝 to 𝑞, the length function is  

𝐿ሺ𝛾ሻ ൌ ∫ ‖𝛾ሶሺ𝑡ሻ‖௤
௣ 𝑑𝑡,                            (47) 

where 𝛾ሶሺ𝑡ሻ is the derivative (tangent vector) of 𝛾 at 𝑡, and 
‖𝛾ሶሺ𝑡ሻ‖ is the norm of the tangent vector, which is computed 
using the Riemannian metric 𝑔௣.  
  Geodesics are critical points of the length functional, meaning 
that they locally minimize the length among all possible curves 
connecting the same two points. Since 𝛾ଵ and 𝛾ଶ are geodesics, 
they are critical points of 𝐿ሺ𝛾ሻ. As geodesics are characterized 
by second-order ordinary differential equations (ODEs), there 
exists only a single solution that satisfies the equation. This 
means that if two curves (𝛾ଵ and 𝛾ଶ) satisfy the geodesic 
equation and share the same initial position and velocity, they 
must coincide across all values of the parameter. This 
uniqueness ensures that 𝛾ଵ and 𝛾ଶ are the same curve. There is 
only one geodesic connecting any two points 𝑝 and 𝑞 on ࣧ. ∎ 

 
APPENDIX E 

PROOF OF THEOREM 3 
   Let 𝑭෩௜ represents a privacy mechanism implying that 
𝑀ሺ𝐱ሻ ൌ 𝑭෩௜ሺ𝑡ሻ. 𝑀ሺ𝐱ሻ ∈ 𝑍 verifies that the constraints are 
satisfied for 𝑭ோி  and 𝑭෩௜. According to (34), we can express 

𝑝ሺ𝑀ሺ𝐱ሻ ∈ 𝑍ሻ ൌ 𝑭෩௜ሺ𝑡 ൅ 1ሻ,                         (48) 
and 

𝑝ሺ𝑀ሺ𝐱́ሻ ∈ 𝑍ሻ ൌ 𝑭෩௜ሺ𝑡ሻ.                              (49) 
As a result, we have 

𝑝ሺ𝑀ሺ𝐱ሻ ∈ 𝑍ሻ
𝑝ሺ𝑀ሺ𝐱́ሻ ∈ 𝑍ሻ ൌ  

𝑭෩௜ሺ𝑡 ൅ 1ሻ
𝑭෩௜ሺ𝑡ሻ

 

ൌ exp ൬െ𝜂௧∇ࣧ𝐉 ቀ𝑭෩௜ሺ𝑡ሻቁ ൅ 𝜂௧ିଵ∇ࣧ𝐉 ቀ𝑭෩௜ሺ𝑡 െ 1ሻቁ൰.  50) 

Based on the triangle inequality, the following is derived: 
ቛ𝜂௧∇ࣧ𝐉 ቀ𝑭෩௜ሺ𝑡ሻቁ ൅ 𝜂௧ିଵ∇ࣧ𝐉 ቀ𝑭෩௜ሺ𝑡 െ 1ሻቁቛ

ி
 ൑

 |𝜂௧| ቛ∇ࣧ𝐉 ቀ𝑭෩௜ሺ𝑡ሻቁቛ
ி

൅ |𝜂௧ିଵ| ቛ∇ࣧ𝐉 ቀ𝑭෩௜ሺ𝑡 െ 1ሻቁቛ
ி

.       (51) 

On the other hand, we have 

ฮ𝑭ோி െ 𝑭෩௜ฮி
ଶ ൌ ∑ ቀ𝑭ோிሺ𝑛, 𝑘ሻ െ  𝑭෩௜ሺ𝑛, 𝑘ሻቁ

ଶ
௡,௞ .              (52) 

Differentiating (52) with respect to the eigenvalues yields: 
డฮ𝑭ೃಷି𝑭෩೔ሺ௧ሻฮమ

డఒ೙,ೖ
ൌ 2 ቀฮ𝑭ோி െ 𝑭෩௜ሺ𝑡ሻฮி

ቁ డ
డఒ೙,ೖ

ቀ𝑭ோி െ 𝑭෩௜ሺ𝑡ሻቁ.      (53) 

Based on the function 𝐉 ቀ𝑭෩௜ሺ𝑡ሻቁ, we can obtain 

‖∇𝑱‖ி ൑  ൭4 ∑ ቀ𝑭ோிሺ𝑛, 𝑘ሻ െ  𝑭෩௜ሺ𝑛, 𝑘ሻቁ
ଶ

௡,௞  ቆ డ
డఒ೙,ೖ

ቀ𝑭ோி െ

                         𝑭෩௜ሺ𝑡ሻቁቇ
ଶ

൱

ଵ
ଶൗ

.                                                     (54) 

Due to the constraint 𝐶ଵ, we have: 

ฬ డ
డఒ೙,ೖ

ቀ𝑭ோி െ 𝑭෩௜ሺ𝑡ሻቁฬ  ൏ 𝜖,                        (55) 

Given that 𝜖 is a constant, from (51), we have 
|𝜂௧| ቛ∇ࣧ𝐉 ቀ𝑭෩௜ሺ𝑡ሻቁቛ

ி
൅ |𝜂௧ିଵ| ቛ∇ࣧ𝐉 ቀ𝑭෩௜ሺ𝑡 െ 1ሻቁቛ

ி
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              ൑ 4𝜀 ሺ𝜀ଶ 𝜖ଶ 𝑁ோி 𝐾ሻଵ
ଶൗ ൌ 4𝜀ଶ𝜖ሺ 𝑁ோி 𝐾ሻଵ

ଶൗ .        
(56) 

Let 𝐶 ൌ 4𝜀ଶ𝜖ሺ 𝑁ோி 𝐾ሻଵ
ଶൗ , thus, we can rewrite (50) as  

௣ሺெሺ𝐱ሻ∈௓ሻ
௣ሺெሺ𝐱́ሻ∈௓ሻ

 ൑  𝑒஼.                                (57) 

Without loss of generality, we consider 𝑒஼ ൌ  𝛿, given the 
constancy of 𝐶. Therefore, (57) can be rewritten as  

𝑝ሺ𝑀ሺ𝐱ሻ ∈ 𝑍ሻ  ൑  𝑒ఌమ𝑝ሺ𝑀ሺ𝐱́ሻ ∈ 𝑍ሻ ൅ 𝛿,           (58) 
and this completes the proof. ∎ 
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