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Abstract— Inherent broadcast characteristics can raise privacy
risks of wireless networks. The specifics of antenna ports, antenna
types, orientation, and beamforming configurations of a
transmitter can be susceptible to manipulation by any device
within range when the signal is transmitted wirelessly. Personal
and location information of users connected to the transmitter can
be intercepted and exploited by malicious actors to track user
movements and profile behaviors or launch targeted attacks, thus
compromising user privacy and security. In this paper, we propose
a novel precoding perturbation approach for privacy preservation
in wireless communications. Our approach perturbs the precoding
matrix of the transmitter using a Riemannian manifold (RM)
structure that adaptively adjusts the magnitude and direction of
perturbation based on the geometric properties of the manifold.
The approach ensures robust privacy protection while minimizing
the distortion of the transmitted signals, thus balancing privacy
preservation and data utility. Privacy can be preserved without
relying on additional cryptographic mechanisms, resulting in the
computational and communication overhead reduction. Our
approach operates directly on the transmission of signals, making
them inherently secure against eavesdropping and interception.
Simulation results underscore the superiority of the approach,
showing a 17.21% improvement in privacy preservation while
effectively maintaining data utility.

Index Terms— Privacy preservation, precoding perturbation,
Riemannian manifold, wireless communication.

I. INTRODUCTION
As the modern world embraces digitization and connectivity,
the importance of privacy preservation [1],[2] has ever been
more pronounced. The fifth-generation (5G) systems often use
massive multiple input multiple output (MIMO) configurations
with a large number of antennas (e.g., 64x64) to improve
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spectral efficiency and coverage. These configurations, while
beneficial for performance, increase the surface area for
potential eavesdroppers to exploit. 5G systems often use
channel state information (CSI) feedback and precoding
techniques to optimize signal transmission and enhance
communication reliability.

The information contained in the precoding matrix derived
from CSI can be exploited by adversaries to infer sensitive
information, such as user locations or network topology. By
analyzing the precoding matrix, an adversary can potentially
infer the number of users and their directions relative to the base
station, which can be used to triangulate the users. On the other
hand, CSI contains detailed information about the channel gains
between the transmitter and receiver. In a time-varying radio
propagation environment, CSI needs to be shared between the
transmitter and receiver for effective transmission. The phase
of the CSI can expose information about the relative distances
and angles between the transmitter and receiver, which can be
used for localization. The changes in CSI can reveal movement
patterns of users, enabling adversaries to track their locations.
Adversaries can also use these vectors to infer the spatial
location of users, see Fig.1.
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Fig.1. Potential risks of privacy distortion - This figure illustrates how
sensitive information transmitted over networks can be intercepted by
eavesdroppers or unauthorized entities, leading to the inference of
private details about users.

This raises privacy concerns about sensitive information
within the networks. In response to privacy concerns, existing
literature  employs  different methods in  wireless
communications. Secure multi-party computation (SMPC) [3]-
[5] enables multiple parties to jointly compute a function over
their inputs without revealing individual inputs, thereby
preserving privacy. Homomorphic encryption [6],[7] allows



computations to be performed on encrypted data without
decrypting it, enabling privacy-preserving data analysis.
Advanced authentication techniques such as eye tracking [8]
and Swift-eye [9] leverage biometric data to enhance security
while incorporating advanced encryption and anonymization
methods to prevent re-identification of individuals.
Furthermore, methods such as obfuscation [10] and
perturbation [11] were proposed to protect users’ location
privacy in location-based services and applications. Techniques
to counter traffic analysis attacks, such as mix networks [12],
onion routing [13], and traffic padding [14], aim to obfuscate
communication patterns and protect user privacy. Randomized
response [15], noise injection [16], and data masking [17] are
examples of data perturbation techniques that introduce
randomness or distortion to data to protect privacy.
Differential privacy (DP) [18], another notable technique,
provides a rigorous framework for privacy guarantees. DP adds
noise to data to obscure it, ensuring that sensitive information
cannot be accurately inferred. Although there exist rich works
on data privacy [19]-[22] for wireless networks, only a few
works have addressed the privacy issue in physical-layer signal
processing [23],[24]. The DP technique can be applied to
protect CSI by adding controlled noise to the precoding matrix
derived from CSI, a method known as precoding perturbation.
This ensures that the precise channel characteristics are
obscured, preventing attackers from gaining accurate insights
while still allowing the system to perform effectively. The
authors of [23],[24] developed privacy-preserving channel
estimation schemes that inject noise into the channel matrix to
protect data. However, these perturbation mechanisms
inherently introduce a trade-off between privacy protection and
data utility. The presence of perturbation/noise can alter the
statistical properties of the data, posing challenges for accurate
and reliable statistical analysis of the precoding matrix.
Motivated by this challenge, we propose a novel precoding
matrix perturbation method that considers the trade-off between
privacy protection and data utility within the DP framework.
This paper focuses on an eavesdropping adversary capable of
passively monitoring communications between the transmitter
and users [25]. This adversary aims to extract sensitive
information—such as user locations and network topology—by
analyzing the precoding matrix derived from CSI [26]. To
protect against this threat, we utilize the Riemannian manifold
(RM) structure, a mathematical framework in differential
geometry, to introduce controlled variations into the precoding
matrix. The RM structure ensures that these variations respect
the geometric properties of the precoding matrix, such as
maintaining orthogonality, symmetric positive definiteness
(SPD), or unitarity. This preserves communication quality, such
as the signal-to-interference-plus-noise ratio (SINR) or channel
capacity, while making it difficult for the adversary to infer the
original matrix. As the SPD property of the precoding
matrix could potentially be exploited by the adversary, we
employ the DP mechanism to carefully calibrate the smooth
variations injected into the precoding matrix. The privacy
budget of DP controls the amount of variation imposed,
ensuring that the adversary’s ability to infer sensitive

information is mathematically bounded. A smaller privacy
budget provides stronger privacy guarantees, making
reconstruction of the original matrix more difficult for the
adversary. Conversely, a larger privacy budget allows for better
utility, enabling more accurate communication and improved
system performance. We address this trade-off between privacy
and utility for secure and efficient 5G communication systems.

The contributions of this study are summarized as follows:

- We propose a novel approach to protecting sensitive
information of precoding matrices. The approach does not
preserve the privacy of data, since data can be protected
using cryptographic methods. Instead, it protects the
sensitive information of the precoding matrix during
transmission, which cryptographic methods cannot
safeguard. Our approach strikes a balance between privacy
and data utility through calibrated perturbations.

- We develop an RM structure to introduce controlled
variations in precoding matrices. To the best of our
knowledge, this is the first work that leverages RM for
privacy preservation in wireless communications. We
consider the space of analog precoding matrices as a
manifold to analyze the relationships between different
precoding matrix configurations, identifying regions of
interest for perturbation based on the geometric properties
of the manifold. Utilizing tangent vectors within each
tangent space, we effectively navigate through the
manifold and accurately measure the distances between
points on the manifold. This approach maintains the
geometric integrity of the data.

- We calculate the geodesic of the proposed RM, which are
curves on the manifold representing the shortest paths
between points, to find neighbors of each element of the
precoding matrix with similar characteristics of the original
point, which correspond to a perturbed precoding matrix.
The neighborhoods around each point in the precoding
matrix are located to apply controlled perturbations along
geodesics for precoding information modification. This
ensures that the variations introduced to the analog
precoding matrix are small while safeguarding the
precoding matrix information.

- Numerical simulations along with theoretical analysis
validate the substantial enhancement achieved by our
approach in preserving privacy and efficient signal
transmission.

The remainder of the paper is organized as follows: We
describe the problem statement and system model in Section 2.
The fundamental concept of privacy is elucidated in Section 3.
In Section 4, we formulate the optimization problem and
develop an RM structure to solve it. In Section 5, we develop a
Riemannian gradient method to solve the optimization problem
and then design a precoding perturbation algorithm to find the
optimal perturbed precoding matrix. Section 6 provides
simulation results and performance evaluation of the proposed
approach. We conclude our work in Section 7.

Notation: Bold lowercase a and uppercase A letters denote

vectors and matrices, respectively. || denotes the absolute

value of a number, ||-||, indicates the Euclidean norm of a



vector, ||*||3 represents the squared Euclidean norm of a vector,
and |||l and ||||? represent the Frobenius norm and squared
Frobenius norm, respectively, which measure the magnitude of
amatrix. A7, tr(A4), diag (A), and A2 respectively denote the
conjugate transpose of a matrix A, the trace of a square matrix
A, the diagonal matrix formed from the elements of a vector or
a matrix A, and the square root of a matrix A. The key notation
of this paper is presented in Table 1.

Table 1. The key notation

Notation Definition

Nr The number of transmitter antennas

Ng The number of data streams

Nip The number of RF chains

K The number of wireless users

Fpp € CNs*NrF | The digital precoding matrix

Fgp € CVRFXNT | The analog precoding matrix

F, € cVreNr The perturbed precoding matrix

Fpr € CNrFXNT The Riemannian geometric mean matrix

s € CNsx1 The signal vector

ptr ¢ cKxK The transmit power

pmin The minimum transmit power

pmax The maximum transmit power

x € ¢NrFX1 The transmitted signal

X The input signal space

y The output signal

y The desired output signal

A The output signal space

T The BER threshold

£ The privacy budget

) The privacy risk

Ar The sensitivity

a2 The noise variance

A The eigenvalues of the precoding matrix Fgp

v; The i-th tangent vector of the space

N The number of points on the tangent space

Aatpp The Riemannian distance

Ip The Riemannian metric tensor at point p

Tp The tangent space at point p in M

y The geodesic distance

A B The arbitrary SPD matrices

x € cNr>Nr The invertible matrix

U e NNt The unitary matrix

v € cNt>Nr The orthogonal matrix containing
eigenvectors

A € cNTxNr The diagonal matrix containing positive
eigenvalues

A1/2 e ¢Nt*Nr The diagonal matrix containing the square
root of the eigenvalues

Agp € CNTXNT The diagonal matrices containing the
eigenvalues of Fgp

A; € VN The diagonal matrices containing the
eigenvalues of F;

p and q The arbitrary points on the tangent space

Ne The step size

II. PROBLEM DESCRIPTION
A. System Model

Consider downlink communications of a multi-user multiple
input multiple output (MU-MIMO) system in which a hybrid
transmitter equipped with Ny antennas and Npp < N radio
frequency (RF) chains convey Ng data streams for K single-
antenna users. The transmitter first performs the digital
precoding technique. Digital precoding is especially useful in
multi-user/multi-antenna (i.e., multi-stream) scenarios where
multiple data streams can be transmitted simultaneously over
the same frequency band. The data stream vector s € CVs*? is
multiplied by the digital precoding matrix Fpp € CNS*NRF to
produce the precoded signal x = Fggs.

The digital precoding matrix contains complex different
weights that are assigned to each stream in such a way that each
data stream can be transmitted over the same frequency band
but along different spatial paths, allowing for effective spatial
multiplexing and interference management. We consider that
the data streams are uncorrelated and have equal average

Here, P!

represents the transmit power matrix and I is the identity matrix.
Next, analog precoding is applied in the RF domain using an
analog precoding matrix Frr € CVNRFXNT This stage focuses on
beamforming and directional signal transmission, which is
crucial for overcoming high path loss and interference. The
analog precoding matrix contains phase shifts and amplitude
adjustments that are applied to the RF signals to adjust the
phases and amplitudes of the transmitted signals. These
adjustments help in steering the signal beams towards the
intended directions.

We impose a normalization constraint

. . ptr
transmit power, given by E{ss"}= I K”FI'

|[Fre(i, )| =
1 /\/N_,Vi € Ngp, Vj € Ny to balance the power distribution
T

across all transmitting antennas, avoiding certain signals from
overpowering others that contribute to interference, where
|Frr(i,j)| is the magnitude of the (i, j)-th element of Fgp. We
also impose ||P'"||z < P™% to ensure that the total transmit
power P does not exceed a predefined maximum limit P™®*
for energy conservation and interference mitigation purposes,
where |||z denotes the Frobenius norm. The hybrid precoding
matrix F € C¥s*K is the product of the analog precoding matrix
and the digital precoding matrix i.e., F = FggFpp .

Hybrid precoding combines the benefits of digital and analog
precoding, enhancing spectral efficiency and beamforming
capabilities while reducing hardware complexity and power
consumption. To ensure the total transmit power is distributed
uniformly across all subcarriers and data streams, we set
|[FrrFggll% = NgNy, maintaining signal quality and avoiding
excessive power in any subcarrier or stream.

B.  Threat Model and Precoding Privacy

Although precoding techniques improve signal quality and
enhance data transmission rates in wireless communication
systems, they also introduce potential privacy risks. The
precoding matrix, which contains critical information about the
transmitter and connected users, can become a target for
malicious actors. This information, including the number of
connected users, number and arrangement of antennas, power
levels, modulation schemes, and coding techniques, can be used
to infer sensitive details about the communication system and



its users, such as their location, movement patterns, network
topology, and potentially the content of their communications.

Assume an eavesdropping adversary, an external entity who
passively observes communication between the transmitter and
users. The adversary in our model is passive and can only
observe the perturbed precoding matrix. It cannot actively
corrupt users or the system. When the adversary accesses the
original precoding matrix components, such as channel gain or
phase, it can approximate distances between devices,
triangulate positions, and potentially deduce the content of
communications, see Fig.2. For instance, by measuring the
received signal strength (RSS), the adversary can approximate
the distance between a transmitter and the signal receiver.
Combining RSS readings from multiple points can help
triangulate the device's position. Therefore, safeguarding this
information is crucial for ensuring the privacy and security of
wireless communication systems.
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Fig 2. System model diagram illustrating the steps of the precoding
algorithm with precoding matrix perturbation the channel matrix,
which is a critical component from a privacy perspective, is
highlighted as the primary concern for ensuring privacy preservation.

One way to address these challenges is by perturbing the
precoding matrix to obfuscate the details and making it difficult
for malicious actors to extract meaningful insights. By
introducing small variations to the precoding matrix, sensitive
information can be concealed, protecting it during transmission.
This approach helps maintain the integrity and confidentiality
of the communication system, ensuring that the transmitted data
remains secure even if intercepted. However, the precoding
matrix modification may lead to a degradation in signal quality
at the receiver, resulting in inaccuracies or errors in data
analysis and interpretation. When the precoding matrix is
perturbed, a transmitted signal is altered or disturbed from its
intended configuration, making it harder to detect at the
receiver, increasing the bit error rate (BER), and potentially

degrading communication quality. Therefore, it is
indispensable to find a perturbation precoding matrix with a
minimum distance from the original precoding matrix for data
utility. With careful design, the perturbation can be minimized
to ensure BER within acceptable limits while still providing
sufficient obfuscation to protect sensitive information.

III. PRIVACY CONSIDERATIONS IN PRECODING TECHNIQUES
A. Essential Principles of Precoding Privacy
To perturb the precoding matrix, we inject small variations
into the precoding matrix Fgrr = Fgp + Wy, where Fyp is the
perturbed precoding matrix, and Wy, € CVRFXNT represents a
perturbation weights matrix containing controlled variations
that are injected into the original precoding matrix Fgp.

Remark 1. While F gpretains the SPD property, we ensure that
the added variations satisfy DP guarantees. This ensures that
the adversary cannot accurately reconstruct the original
precoding matrix Fggor infer individual user inputs, even with
knowledge of the SPD structure.

This process generates a perturbed signal vector X that
closely approximates the original signal vector X at the
transmitter. Define x and X as

X = FpgFpp P (1)
and

R = FppFgpPts. ()
To ensure data utility, we wish to minimize the mean squared
error (MSE) of the perturbed signal X with respect to the

original signal X as lim LZI-V_ROF E[|lx; — &;|15], where x; €
NRF—®© NRF =

X, Vi € Ngp.

As a result of perturbation, a valid signal can be converted to
another valid signal that is adjacent to it; in this regard, we
define adjacency between two signals to identify their
similarity. The adjacency measure helps us identify pairs of
signals that are close to each other. Adjacency between signals
refers to the similarity or closeness of two signals in the signal
space (i.e., both the magnitude and direction of the differences
between the signals). The adjacency between two signals can
be measured as:

Adi(x, ) = [Ty e - xi” S
where x; and x| are the i-th elements of x and X, respectively.
By considering the adjacency, we apply the perturbation
selectively to signals that are sufficiently close, ensuring that
perturbing one would not convert to another one, thereby
preserving data utility.

Definition 1 (£,-sensitivity). Suppose that f(x) is a
perturbation function on the signal space X = {X, ..., Xngp}-
The #,-Sensitivity can be defined as the maximum (£,-norm)
of the difference in the function outputs for any two arbitrary
signals that should be less than or equal to the adjacency
between two signals, as follows:

b= maxllf () - D, < Adj(x 0. (@)
The £,-sensitivity quantifies how much the output of function f
can change for adjacent signals when the precoding matrix is
perturbed. Ensuring the £,-sensitivity is less than the adjacency



measure, we can control the extent of perturbation applied to
the signal, ensuring it does not convert to another one (i.e., its
adjacent signal) and preserving data utility.

Definition 2 (Differential privacy). Consider two adjacent
signals x,X € X, and let Z be the output space from
perturbation, and & and & be positive real numbers. A
mechanism M:X — Z is said to satisfy (¢, §)-differential
privacy, if for any pair of adjacent signals Adj(x,X%), the
following condition holds:

PriM(x) e Z] < e® Pr(M(X) € Z] + 6, (5)
where ¢ is the privacy budget controlling the level of privacy,
and ¢ is the acceptable risk of privacy loss. When § = 0, the
mechanism is described as being e-differentially private.

The choice of ¢ and § in the defined differential privacy
mechanism is crucial in balancing privacy protection and data
utility. A smaller € implies stronger privacy guarantees. When
€ is small, the probability distributions of the mechanism's
outputs for adjacent signals (x and x') are very similar. This
makes it harder for an adversary to distinguish between them,
thereby protecting the privacy of the individual signal.
However, a smaller € often results in more noise being added to
the output to achieve the desired level of privacy. This can
degrade the utility of the data, making it less accurate or less
useful for analysis. § is a parameter that allows for a small
probability of the differential privacy guarantee being violated.
A smaller § means that the privacy guarantee holds with higher
probability, thus offering better privacy protection. Lowering &
also typically requires adding more noise to the data. This can
reduce the accuracy and utility of the data, similar to the effect
of a smaller ¢. In contrast, large values of € and § maintain
higher data utility by adding less noise, thus preserving the
accuracy and usefulness of the data. However, they provide
weaker privacy guarantees, making it easier for an adversary to
distinguish between adjacent signals and potentially infer
sensitive information.

Lemma 1. For a perturbation function f with sensitivity A,
there exist an upper bound for the privacy budget ¢ in &-
differential privacy, as follows:

Ar
= Gomt’ ©

where o2 is the noise variance.

Proof. See Appendix A. m

IV. PRIVACY PRESERVATION OPTIMIZATION PROBLEM
We here formulate the privacy preservation optimization
problem as follows:

. =12
F;I;l_#n?i max”FRF - Fi”p

s.t. Cy:supl||Frp — F'i”i <e
Cy: |IP||p < P

Cs: ”Fz(lr])”F = 1/\/N_T

C,: BER(F;) <, (7

where F; denote specific perturbations, i represents the i-th
perturbed precoding matrix that exhibits the maximum
similarity to the original matrix. Constraint C; defines the
privacy budget of the problem limiting the perturbation
magnitude. By setting an upper bound (¢) on the Frobenius
norm of the difference between the original and perturbed
precoding matrices, it ensures that the perturbation does not
deviate too much from the original, hence maintaining data
utility while masking the transmission characteristics. C,
ensures that the total transmit power does not exceed a specified
maximum value, P™%*. By capping the transmit power, the
power levels remain within a safe and efficient range and help
maintain good signal quality. This prevents adversaries from
inferring sensitive information caused by excessive power such
as signal distortion or interference. C3 enforces normalization
of the elements of the perturbed precoding matrix F;. This helps
balance the signal power distribution across all elements,
preserving the signal’s integrity and quality. C, limits the BER
to a maximum threshold (7) ensuring that the perturbed signal
remains within an acceptable error margin, preventing
adversaries from easily decoding or interpreting the signal.

Without loss of generality, we define the following BER
function to measure data accuracy:

BER(F;) = -0, 10y # 9)). ®
where y; is the actual received signal; y; is the estimated signal
obtained through the perturbed beamforming matrix; I(+) is the
indicator function, which returns 1 if the condition inside the
parentheses is true, and O otherwise. The BER function
calculates the average number of symbol errors per symbol due
to the perturbation in the precoding matrix.

Constraints C; to C, work together to balance the dual goals
of privacy preservation and data utility. The parameters ¢,
P™* "and tare crucial in fine-tuning this balance, influencing
how much privacy protection is achieved at the expense of data
utility and vice versa. € controls the maximum allowable
perturbation. A smaller € means stricter control over how much
the precoding matrix can be altered, which tends to preserve
data utility but might weaken privacy. Conversely, a larger &
allows more significant perturbations, enhancing privacy but
potentially degrading data utility. Setting P™%* determines the
upper limit of the transmit power. A higher P™%* can improve
signal strength and quality, which is good for data utility but
may reveal more about the transmission setup and user data. A
lower P™®* enhances privacy by limiting the power, making it
harder for adversaries to extract information from the power
levels. Tsets the maximum allowable BER. A lower tensures
high data quality by minimizing errors, which is beneficial for
data utility. However, it might require less perturbation,
potentially compromising privacy. A higher t allows for more
errors, enhancing privacy by making the signal harder to decode
accurately, but at the cost of data utility.

A. Riemannian Manifold for Privacy Preservation

The precoding matrices in wireless communication systems are
SPD matrices and exist in a non-Euclidean space [28], meaning
that it does not follow the standard geometric rules of Euclidean
space. Thus, to solve the optimization problem (7), we need
appropriate mathematical tools of differential geometry that



accurately model this non-Euclidean space. An RM is a
fundamental concept in differential geometry, offering a
framework for studying the geometric properties of non-
Euclidean spaces in which SPD matrices exist. By leveraging
the RM framework, we can accurately model the geometric
properties of the precoding matrices, e.g., distances, angles, and
curvature, and find perturbations (i.e., small changes) to the
matrices that align with the intrinsic geometry of the SPD
matrix space, resulting in preserving data utility.

When we perturb the precoding matrices—introducing small
changes to them—we need to ensure that these perturbations do
not destroy the essential characteristics of the matrices. In the
context of SPD matrices, this means maintaining their positive
definiteness and symmetry. Positive definiteness ensures that
the matrices have all positive eigenvalues, which is crucial for
maintaining the stability and performance of the signal
transmission. Symmetry ensures that the matrix remains
unchanged when transposed, which is important for the
mathematical operations used in signal processing. If
perturbations do not respect the geometric structure of the SPD
manifold, the resulting matrices might lose their positive
definiteness or symmetry, leading to degraded signal quality
and transmission errors. The RM allows us to define and follow
geodesics, which are the shortest paths between points on the
manifold. By perturbing the matrices along these geodesic
paths, we can ensure the changes remain small and controlled,
minimizing the distortion of the original matrix properties.

According to SPD matrices, the precoding matrix Fgp can be
represented as follows:

Fpp = VAgpV", ©)
where V identifies the orthogonal matrix containing
eigenvectors, and Agr represents the diagonal matrix
containing positive eigenvalues of Fyy as follows:

Agr = diag(X), Vi =1,2,.., Ny, 4; >0, (10)

Remark 2. Since Fppis an SPD matrix, it must
be square and Hermitian (Frr = Fiy), implying Ngp = Nr.

Designing a perturbation method based on the RM structure
involves treating the space of precoding matrices as a manifold.
The manifold represents the space of all possible precoding
matrices. Each point on the manifold corresponds to a specific
precoding matrix configuration. By identifying neighborhoods
around the point that corresponds to the precoding matrix on the
manifold, we can achieve small perturbations in matrices that
are still close to the original matrix (i.e., with minimum
distortion) and have similar characteristics.

Consider a differentiable RM, denoted as My, comprising
all configurations of the analog precoding matrix Fgp. The
manifold is equipped with the tangent space Tr,,, and the
metric tensor gg,,. Each point on the manifold represents a
unique configuration of Fgr. For each point on the manifold
(such as Fgp), we have a tangent space containing all tangent
vectors at that specific point. Tangent vectors represent the
direction and rate of change of a curve or surface at a specific
point on the manifold. The metric tensor [29] is a mathematical
concept that defines the inner product of tangent vectors at each
point on the manifold, e.g., grp.: Trpp X Trpe = R, at Fpp
point. Indeed, this determines how distances between points
(precoding matrices) are measured. Therefore, we can measure

how the precoding matrix changes as we move from one point
to another on the manifold.

The aim is to find a perturbed precoding matrix F; nearby
Frr (i.e., introducing small variations in Fgg) that has the
minimum distance from Fgp (i.e., similar characteristics) for
both privacy and data utility. For this purpose, we need to move
along its tangent space Tr,, see Fig. 3, respecting the geometry
defined by the RM tensor, as follows:

_1/2 - _1/2
Tppe = (Vi = upper | Fp, logFRF(FL-) F,.'*| €
N(N+1

R (1)
where v; denotes the i-th tangent vector of the space, N is the
number of points on the tangent space, the upper(-) operator
retains the upper triangular part of the matrix and transforms it
into a vector logFRF(F'i) : F; - v; where

—_ 1 _1 — _1 1
logg,,(F:) = F,/? log (FRF/ 2, F,,/ 2) Fl2. (12)

There is a logarithmic mapping operator logg,,. (E) :F; -
v; , mapping from the surface of the manifold to the tangent
space, which is expressed as

l0gp e (F;) := V diag(log(Ay), ..., 10g(Ay,, )VH),
and the inverse operation expg,, (v;) : v; > F; ; the
exponential mapping from the tangent space to the surface of
the manifold, as follows:

eprRF(vi) =V diag(exp(}ll), ...,exp(/iNRF)VH), (14)
where A; = |v;|p,, identifies the magnitude of the tangent
vector v;.

(13)

Euclidean distAance = “ Vg, — Vppe ||

EXPpp. (vg)

Fig. 3. Configurations of the analog precoding matrix Fgy and their
corresponding tangent vectors on the differentiable RM, Mgy, with
tangent space Tg,, and metric tensor g,

Remark 3. An RM equipped with an affine-invariant
Riemannian metric (AIRM) [30] ensures that the distance
between two SPD (precoding) matrices is invariant under affine
transformations (such as rotation, scaling, and shearing). The
distance between two SPD matrices A and B in the RM is given
by the AIRM:

dairu (A, B) = ||1og (42 B 472 1. (15)

This is particularly useful in maintaining the consistency of
distance measures when the precoding matrices undergo
transformations during the perturbation process.

Following the AIRM, we rewrite the perturbation
optimization problem as follows:

_1/2~ _1/2
log(Fp. “F; Fp, i (16)

~ e
F;=argminy,.,
L



The perturbation is achieved along geodesic curves [31], which
are the shortest paths between points on a manifold. Given two
points p and g on the RM, the Riemannian distance is

A (0, @) = / gp(vp, vq), where g,, is the tangent vector

from tangent points v,, to v,.

The Riemannian distance between two SPD matrices Fyp
and F; on the RM can be calculated using the logarithmic
mapping logr,,.(F;), as given by

dacpy (Fre Fi) = ||log(Fre) — log(F)[|,. (17
The logarithmic mapping maps Fr and F; to the tangent space
Trpp» Where all tangent vectors of Fgp can be captured. The
tangent vectors represent the direction and magnitude of the
smallest change needed to move from Fgy to F; within the
manifold. In this way, we can accurately measure and control
the distance between the original Fpr and perturbed F;
precoding matrices, ensuring that perturbations preserve
essential characteristics and maintain data utility.

B. Geodesic Distance Analysis for Precoding Perturbation on
the Riemannian Manifold

In the Riemannian structure, the geodesic distance between
two SPD matrices represents the shortest path between them
within the manifold.

Definition 3 (Geodesic). A geodesic is a fundamental path
that connects points on the manifold in a way that minimizes
the distance according to the metric structure of the manifold.
For a pair of points on the manifold M, denoted as p and q, and
considering the set of all curves y : [a,b] » M withy(a) =p
and y(b) = q, the geodesic y is the curve that minimizes the
total length L(y):

L(y) :==inf{Ly)|y : [a, b] - M, withy(a) =p,y(b) =q}. (18)
In the context of a perturbed precoding matrix, the geodesic
represents the path of minimal distortion between the original
matrix Frr and the perturbed matrix F; within the RM. This
distance can be calculated using logarithmic mapping, which
translates the points into the tangent space where the Euclidean
norm can be applied.

To construct the geodesic path between Fpy and F;, we first
use the logarithmic map to project F; onto the tangent space at
Fgpp. This gives us a tangent vector v; = logp,, (F'l) The
Riemannian distance from Fgp to the nearby F; closely
resembles the Euclidean distance between their corresponding
points in the tangent spaces vgp and v;, i.e., dMRF(FRF, F'i) ~

[lvgr — villF. In the tangent space, the shortest path between
the origin (vgr) and the point v; is simply a straight line. To
map this straight-line path back into the manifold, we use the
exponential map.

For a point tv; (where t is a scalar parameter representing
how far along the path we are), the corresponding point on the
manifold is expp, . (tv;). Considering v = log(F), the geodesic
can be expressed as

y(t) = exp ((1 —t)log(Fgp) + t log(fi)). (19)
where y(t): [0,1] > M. As t varies from 0 to 1, it determines

the linear combination of the logarithms, tracing a path that
smoothly transitions from the logarithm of matrix Fgy to the

logarithm of matrix F;. When t = 0, y(t) = log(Fgr); when
t=1,y@®) = log(E). By following geodesics, we can ensure
that the perturbations to the precoding matrices are minimal,
resulting in preserving data utility.

V. OPTIMIZATION OF MULTIFACED PRECODING MATRICES
In the perturbation process by the RM technique, the
precoding matrix projects from the manifold to the tangent
space and vice versa, which involves intricate transformations.
If the projections are not handled carefully, there is a risk that
the SPD property could be lost, rendering the matrices invalid
in the wireless communication system. To ensure that the
intrinsic properties of the matrices (i.e., SPD property- positive
definiteness and symmetry) are preserved, we apply
congruence transformations, leveraging the congruence
invariance property [32] of the Riemannian metric, which
guarantees that the geometric properties of the matrices are
preserved during these projections.

A. Privacy-Aware Optimization Framework

During the perturbation process, the distance between the
original precoding matrix Fgp and its perturbed version F;must
be accurately measured to ensure minimal impact on data
utility. Congruence invariance guarantees that these distances
remain consistent even after transformations, which is vital for
maintaining the integrity of the system’s performance.
Furthermore, this ensures the precoding matrices remain valid
(i.e., still SPD) during perturbation in communication systems.

Definition 4 (Congruence transformation). If A is an SPD
matrix and X is an invertible matrix, the congruence
transformation is expressed as A’ = XHA X.

Definition 5 (Congruence invariance). Given two SPD
matrices A, B € M, and an invertible matrix X, the congruence
transformations are defined as:

A =X"AX, (20)
and

B' =X"BX. 21
The congruence invariance property ensures that the distance
between A and B remains unchanged under congruence
transformation as follows:

dairm(A, B) = dyjru (4", B"),

where dy;zy is the distance given by ARIM in (14).

(22)

According to Definition 5, the perturbation process maintains
the properties of Fpr as the SPD matrix if there exists an
invertible  matrix X, so that dygpy (F RF» E) =
darrn (XU Fpe X, X"'F; X).

Theorem 1. For two SPD precoding matrices Fgp, F; € M,
there exists a non-singular (invertible) matrix X € RVRFXNRF
providing the congruence invariance property under the
congruence transformation, so that

XAFp- X =1, (23)
and

XUF, X = A, (24)
where A; € FNRFXNRF gtates the diagonal matrix containing
eigenvalues of Fz}F;. FxiF;is a scalar transformation of Fpgp,



which represents the scaling factor applied to the eigenvalues
of Fgpto obtain F;.
Proof. See Appendix B. m
Corollary 1. Suppose that Fg and F; are nonsingular. For any
invertible matrix X, we have

dpcpp (X! Frpe X, X"F; X ) = dap, (Frre, ).
Proof- See Appendix C. m

(25)

To simplify the analysis and complex operations, such as
logarithmic and exponential mappings, we apply the identity
matrix I € CNRFXNRF ag the tangent space basis in our analysis.
With the identity matrix as the basis, perturbations can be
interpreted as deviations from the identity, making it easier to
understand and control the nature and extent of these
perturbations, ensuring that the perturbed matrices remain close
to the original matrices. Based on the congruence invariance
property, the Riemannian distance between the perturbed
precoding matrix Fy and the original precoding matrix F; with
the identity matrix I € CNRF*NRF a5 the tangent space can be
calculated as follows:

dMRF(FRF'Fi) = dg, (I’ FRF_l/Z FiFRF_l/Z) = ||10g(1) -
log (FRF_1/2 FL'FRF_l/Z) |F = ||10g (FRF_1/2 FiFRF_l/Z)”F =
1
(50 log22,(Fre ™ F)) ", (26)
where Fpp = FRF_l/Z FRF_l/Z ,and Ai(FRF_IF'L-) collect the

eigenvalues of Fpp ' F;.
Using the geodesic concept, we can calculate the minimum

distance the matrices I and FRF_l/Z F'iFRF_l/Z as
_1/ ~ _1
Yo(t) = exp (log (FRF /2 FiF g /2) t)
— t
= (Far™ 2 FiFpe72) @7)
where y,(t) states the geodesic on the RM between I and
Fpp™ /2 FiFpe™ /2.
We use the congruence invariance property to ensure that the
SPD property of the perturbed matrix is maintained during
transformations and perturbations. Therefore, the geodesic path

based on the congruence invariance property can be rewritten
as follows:

1 1
Y(t) = Fgp /2 (Vo(t))FRF /2
— t

= FRF1/2 (FRF_l/z FiFRF_l/Z) FRFl/Z, (28)
where y(0) = Fgr and y(1) = F;.This ensures that the
geodesic is independent of the chosen tangent space basis and
provides a smooth transition between the two matrices while

preserving their geometric properties.
To move between the manifold and the tangent space, the
exponential/logarithmic map for matrices Frg, F; and Ty, €

Trp, With T, C Fgp is expressed as follows:
ﬁl’ = €XPrgp (TT'"i)
= Fgr 2 exp (FRF_1/2 TT:,-FRF_l/Z) Frp a, (29)
where
T, = 108Fg, (T:l) =
FRFl/2 log (FRF_l/z FiFRF_l/Z) FRFl/Z' (30)

Theorem 2. On a complete RM M, there exists a unique
geodesic between any pair of points, p,q € M.
Proof. See Appendix D. m

B. Multifaceted Precoding Matrices

With these newly established geodesics and mappings, we
can assess relationships between SPD matrices with minimal
distortions in the tangent space. However, when dealing with a
substantial dataset containing multiple SPD precoding
matrices, determining the appropriate tangent space basis may
not be straightforward. Using the identity matrix I as the tangent
space basis may lead to distortions when projecting to the
tangent space Tr, I, particularly if the data points are located in
regions of the manifold that are far from I. In this case, the
geometric mean of the matrices on the manifold can be
identified and employed as a reference point.

The Riemannian geometric mean matrix, e.g., Fgp, is the
matrix that minimizes the sum of squared Riemannian distances
to each of the matrices in the given SPD precoding matrices set.
Unlike the arithmetic mean, the geometric mean considers the
manifold’s curvature. It is affine-invariant, preserving intrinsic
properties of SPD matrices such as positive definiteness and
symmetry during transformations and projections. Therefore,
we construct a tangent space at the geometric mean, T, and
project the SPD precoding matrix onto the tangent space
TFre = 108Fge (Frp).

Given a set of SPD precoding matrix {F rF1s - FRE, K} on the
RM, a Riemannian geometric mean matrix Fgr can be
expressed as

— . - 2
Fgp = arg Ill};? Yi=1dairm (FRF: FRF,k) . (1)

The goal is to find the matrix Fgp within this space that
minimizes the sum of squared Riemannian distances to each of
the precoding matrices in the set and this is the optimal
precoding perturbation matrix. The Riemannian distance
darrm (f‘RF, F RF,R) is a measure of dissimilarity between the
matrices Fpp and Fpgp . on the RM. Based on the AIRM, the
optimization problem (31) can be reformulated as follows:

Fpp = argr%lg;l P ”108 ((F'RF)_I/Z Frr (FRF)_1/2)||F~ (32)

To compute Fg, we use an iterative method. We start with an
initial point Frr(0) = Fgp;, selecting one of the matrices
randomly, Fgp j,j € K. We update Fpgp as follows:

Fpe(t+1) =

- - - Frr(t)
Frp(t) exp (% k=1log ((FRF )z Frpi (Frr (t))_l/z)) "
(33)

We repeat (33) until convergence, i.e. |Fgp(t+1)—
Fre®llr < e

By constructing the tangent space at the geometric mean,
TFgp» the projection and analysis are centered around the most
representative point. This approach minimizes the overall
projection errors and distortions for the entire dataset of SPD
matrices. When perturbing the precoding matrices, starting
from the geometric mean ensures any changes or optimizations
are balanced and less likely to introduce significant deviations.
For large datasets of SPD matrices, using the geometric mean
simplifies the process of choosing a tangent space basis. Instead
of evaluating multiple potential bases, the geometric mean



provides a natural and efficient starting point that is
computationally tractable and robust.

VI. INCENTIVE RIEMANNIAN GRADIENT METHOD
A. Gradient Descent Approach

To solve problem (7), we apply the Riemannian gradient
descent algorithm as follows:

File + 1) = expp, (1.9, (Fi)),

where 7, is the step size at iteration t, V] (f‘i(t)) denotes the

(34

Riemannian gradient of the objective function in which
= T Lo .
J (Fi(t)) = min max||Fgr — F;|| . is the objective function.
FRrp#F; F

Taking partial derivatives with respect to the elements of
F;obtains the optimal perturbation precoding matrix for privacy
preservation and data utility (see Fig.4). These derivatives
guide the iterative update process within the Riemannian
gradient descent, allowing for the fine-tuning of the
perturbation matrix to strike a balance between minimizing the
distance from the original precoding matrix Fgr while
satisfying the constraints imposed by the privacy budget.

Fig.4. Riemannian gradient descent optimization

Theorem 3. The proposed precoding perturbation method is
(&, §)-differential privacy.
Proof. See Appendix E. m

B. Precoding Perturbation Algorithm

We develop a robust precoding perturbation algorithm to find
the optimally perturbed precoding matrix that minimizes data
distortion, with the pseudo-code presented in Algorithm 1.

Algorithm 1 iteratively adjusts the elements of Fy along the
conjugate directions on the RM, using the Riemannian gradient.
It efficiently navigates the solution space, utilizing conjugate
directions to avoid unnecessary steps and accelerate
convergence. The computational complexity of the algorithm is
primarily driven by the matrix operations involved in each
iteration. Logarithmic and exponential maps and gradient
computation, involving matrix operations, have a complexity of
O(N3p) for Ngp X Npp matrices. Each geodesic update also
involves matrix operations and eigen decomposition, O (N3g).
Suppose that T is the number of iterations until convergence,
the overall complexity is O(N3zT).

Algorithm 1. Perturbation Algorithm

1. Initialize P, Fpp, Fpp, S.

2. Output: Perturbed precoding matrix F;.

Set Ny, Ngp, Ng, and K, €, T.

Compute a Riemannian geometkic mean matrix
darrm (FRFI F RF,i)Z
Construct the tangent space T 1at Fp

bl

Fpp = argmin
FRrE

Set step size n;, and t = 0.
For all RF precoding matrices
Repeat

A A

Project Fpp; onto the g,
logFRF( FRF'i) = log ((iRF)_l/z Fgr; (iRF)_l/Z) 2
10. Find J (Fi(t)) := argmin max”logF”(FRF'i) _ lngRp(T:i)”F

so that ||| < P ||F,(i, )|, = 1/ - and F; =
VN7
argmin %L, [10gr, (Fer )|l
1. Compute the search direction v;(t) = V] (f‘i (t))
12. Update the perturbed precoding matrix F;(t + 1) =
Exprg, (—1e50) (Fi(0)
13. Update the search direction: v;(t + 1) = —V,J (F i(t))
14. t=t+1

15, Until ((BER(F;) < 1) and (sup||Fer — Fi]|, < ©))
16.  Update the precoding matrix Fpp;
17.  End for

VIIL. NUMERICAL RESULTS

In this section, we evaluate the proposed approach against a
privacy-preserving channel estimation scheme labeled as PPCE
[21] and a privacy-preserving distributed optimization scheme
known as PPDO [22] method. We consider a MIMO network
consisting of a BS equipped with Ny = 16 antenna elements
and Nir = 8 RF chains conveying Ng = 4 data streams and
serves K =4 single-antenna users. We assume each user
receives one data stream, and generate random complex-valued
vectors for each data stream following a Gaussian distribution.
All experiments are conducted over 3000 runs, where each run
comprises 1800 random sets of the RF precoding matrix Fyp
and digital precoding matrix Fgg. The elements of these
matrices are set using the Gaussian random number generation
function numpy.random.normal. The bound of the BER is 7 =
0.01, the maximum transmission power is P™** = 33 dB, and
the noise variance is 62 = 0.03 for all antennas. The key
numerical values used in the simulation setup are summarized
in Table 2.

Table 2. Simulation parameters

Number of transmitter antennas | Np = 64
Number of RF chains Ngr =8
Number of data streams Ng =4
Number of users K=4
Minimum transmit power P™n = 11dB
Noise variance o2 =0.03
BER threshold =001
Maximum transmit power P™X =33 dB
Scaling factor 0<ac<l1
Step size 0<n<1

We also employ the DeepMIMO dataset for CSI-based
precoding matrices and compare the results with those obtained



from randomly generated RF precoding matrices. While the
random precoding matrix serves as a worst-case scenario since
it lacks adaptation to actual channel conditions, the DeepMIMO
dataset provides real-world channel characteristics, including
spatial correlations, multipath effects, and realistic propagation
conditions.

In Fig. 5, we evaluate the outage probability of the proposed
method for a random set of RF precoding matrices and CSI-
based RF precoding from the DeepMIMO dataset. In the case
of random RF precoding matrices, we set the minimum power
for reliable communication as P™" = 11 dB and generate 900
random values for the RF precoding matrix under a Gaussian
distribution with zero mean and a standard deviation of 1. We
conduct simulations under four different privacy budgets € =
0.5, e = 3,& = 7, and € = 10. Higher privacy budgets indicate
less noise added to the data, and the RF precoding matrix retains
more of its original structure and properties, reducing the
outage probability, see Fig. 5(a). Furthermore, the superiority
of our method is demonstrated in reliability, with the outage
probability close to zero in the presence of perturbations to the
RF precoding matrix. Two other methods, however, experience
a higher outage probability, ranging from 0.2 to 0.6. For
instance, with SNR = 25 dB, the outage probability is 0.54 for
the PPCE and 0.37 for the PPDO, whereas the proposed method
with € = 10 experiences an outage probability of almost 0.15.
The near-zero outage probability observed in our method
compared to the other methods is from the use of geodesic
perturbation in the RM.

Additionally, the results demonstrate that CSI-based
precoding significantly enhances system performance, reducing
the outage probability and improving spectral efficiency
compared to random RF precoding (see Fig. 5(b)). The
DeepMIMO dataset offers precoding matrices derived from
realistic CSI, a more structured and realistic representation of
the channel, enabling better beamforming and alignment with
the channel conditions. This allows for more effective
precoding and reduced outages.

In Fig. 6, we evaluate the impact of £,-sensitivity on the BER
of all benchmarks. Fig. 6(a) analyzes the BER using a Gaussian
random precoding matrix, where the elements of the RF
precoding matrix Fgr and digital precoding matrix Fgp are
generated following a standard normal distribution. We define
the €,-sensitivity based on the adjacency relation of two input
signals (3), which imposes stringent conditions to maintain data
utility. To measure A, we set an upper bound for Adj(x, X) as
as, where s, = min;|x; — x;| represents the minimum
difference between the input signal components, and 0 < a <
1 is a scaling factor. Therefore, according to Definition 1, the
?,-sensitivity should be as A¢< as,. We run the experiments
for three adjacency values with sy = 3,5, = 5, and s, = 8.

We also vary a from 0.1 to 0.95. When the scaling factor is
small (@ = 0.12), the perturbations may not effectively
preserve the privacy of the wireless users, resulting in
compromised performance. Conversely, excessively large
scaling factors (¢ = 0.83) can lead to overly aggressive
perturbations, causing distortion in the transmitted signals and

consequently higher BER. The findings show that the proposed
method exhibits a BER of 0.0053 for ¢ = 0.48 and s, = 8,
while the PPCE and PPDO schemes suffer higher BER of 0.054
and 0.031, respectively. Our method uses geodesic distances,
guiding the perturbations in directions that preserve signal
characteristics and minimize information loss. This ensures that
the transmitted signals remain closer to their original states,
reducing the likelihood of errors and resulting in a lower BER
compared to methods that neglect the manifold's geometry.

—+—PPDO
—=—Proposed approach-e=3
—+—Proposed approach-e=7

©o—Proposed approach-¢=0.5
—e—Proposed approach-e=10
—=—PPCE

Outage probability

5 10 15 20 25 30 35
SNR (dB)

(a)
- — = Proposed approach-DeepMIMO (£=0.5)
—e— Proposed approach-Random matrices (e=0.5)
- = = Proposed approach-DeepMIMO (e=3)
—e— Proposed approach- Random matrices (¢=3)
- = = Proposed approach-DeepMIMO(e=10)
—e— Proposed approach-Random matrices (¢=10)

Outage probability

0.1 Performance gap
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Fig.5. The outage probability versus different SNRs under four
different privacy budgets € = 0.5, e =3, ¢ =7, and € = 10. (a)
Outage probability under a random set of RF precoding matrices. (b)
Comparison of outage probability between random RF precoding
matrices and CSI-based RF precoding using the DeepMIMO dataset.

In Fig. 6(b), we investigate the BER using the real-world
DeepMIMO dataset and compare the results with those
obtained from random precoding matrices. Without leveraging
CSI, the system operates blindly, leading to inefficient resource
allocation, degraded communication performance, and
increased BER. In contrast, the DeepMIMO dataset allows for
CSl-aware precoding, enabling more effective beamforming,
reduced interference, and improved signal alignment,
improving overall system reliability. By leveraging real CSI,



we assess how our approach adapts to practical deployment
conditions. The results highlight the robustness of our method,
showing that CSI-based precoding achieves significantly lower
BER than the randomly generated RF precoding matrices,
particularly at lower SNR levels.

We also investigate the impact of the privacy budget on the
BER performance of all methods in Fig.7. We consider four
various privacy budgets: € = 0.5, e =3, ¢ =7, and € = 10,
respectively, and perform simulations under different
transmission rates ranging from 0.5 X 10° bit to 3 X 10° bit.
The results show that our privacy preservation mechanism
significantly experiences lower BER compared to alternative
methods. As the transmission rate increases, the BER of PPCE
and PPDO schemes significantly increases, whereas our
approach shows a steady increase. Additionally, increasing the
privacy budget leads to an increase in BER. The primary reason
for this is the privacy-preserving mechanism introduces noise
that degrades the quality of the transmitted signal, making it
more susceptible to errors.

Fig. 8 extends the analysis of Fig. 7 to higher transmission
rates, ensuring a comprehensive evaluation of the privacy
budget's impact across a broader range of operating conditions.
In Fig. 7, the transmission rate is varied from 0.5 x 10°
to 3 x 105 bits. This range is relatively low and focuses on
understanding BER performance at lower transmission rates. In
Fig. 8, the transmission rate is increased to a much higher range,
from 2 * 10° to 12 * 10° bits. This expansion allows for a
broader analysis of how BER behaves at higher transmission
rates, which is critical for evaluating the robustness and
scalability of the methods under more demanding conditions.
The BER of our method increases with the transmission rate,
consistently demonstrating lower values compared to other
benchmarks. This is because the method effectively balances
privacy with communication reliability, resulting in lower BER
across a range of transmission rates.

Fig. 9 investigates privacy loss against sensitivity under
different noise variances. We run the experiments under four
different noise variances: ;2 = 0.01, g2 = 0.1, 62 = 0.5, and
02 = 0.8. We vary sensitivity from 0.01 to 0.06. The results
show that increasing the noise variance generally leads to a
decrease in privacy loss, especially at higher sensitivities. For
example, the proposed method incurs a privacy loss of 0.39
under g2 = 0.01 and Ap= 0.045 whereas it only experiences a
privacy loss of 0.18 when ¢ = 0.8 and Ar=0.045. This is
because higher noise variances result in greater perturbations to
the output of our proposed privacy function, making it more
difficult to infer sensitive information about individual data
points. Two PPCE and PPDO schemes suffer privacy losses of
0.58 and 0.41 under 6> = 0.8 and Ap= 0.045 which is much
more than that of the proposed approach. The reason is that
these schemes do not adequately perturb the data, resulting in
greater privacy loss. Our method does not provide much
additional privacy protection at extremely high levels of noise
variance. This is because the added noise reaches a point of
saturation where further increases in sensitivity have
diminishing effects on privacy loss reduction.
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Fig. 6. BER under different scaling factors a for three different
adjacency values with sy = 3, so = 5, and 54 = 8. (a) BER analysis
using Gaussian random RF precoding matrices. (b) Comparison of
BER between random RF precoding matrices and CSI-based RF
precoding using the DeepMIMO dataset.

In Fig. 10, we evaluate the privacy loss of our method under
both the randomly generated precoding matrix (Fig. 10(a)) and
the realistic DeepMIMO dataset (Fig. 10(b)). We quantify
privacy risk using a probabilistic scale ranging from 0 to 1, with
0 indicating no risk and 1 indicating certainty of risk. We
conduct the simulation for four different privacy risks: § = 0,
§=0.1, § =0.5, and § = 1 under noise variance g2 = 0.5
over the same sensitivity values in previous experiments. It is
shown that the privacy risk directly influences the level of
privacy loss experienced in all methods.

As the privacy risk increases, the potential for privacy loss
also increases. Factors such as sensitivity and noise variance all
contribute to the overall privacy risk. For instance, the privacy
loss of our approach is 0.13 under Ay= 0.01 and § = 0.5, while
itis 0.29 when A= 0.06 and § = 0.5. The results indicate that
randomly generated RF precoding matrices exhibit lower
privacy loss compared to the DeepMIMO dataset-based
scenario. This difference arises because, while randomly
generated precoding matrices introduce a high degree of
diversity, they may not fully capture the complex spatial
dependencies and structural correlations present in real-world
channels. Consequently, this can lead to an overestimation or
underestimation of privacy loss due to the lack of structured



interference patterns.
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Fig 7. The BER performance under different transmission rates at
various privacy budgets: € = 0.5, =3,& =7, and € = 10.
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Fig 8. The BER performance for various transmission rates.

Fig. 11 analyzes the impact of the privacy budget on privacy
loss under different values of sensitivity for all benchmarks.
Four various privacy budgets are setas ¢ = 0.5, e =3, e =7,
and =10 for § =03 and o¢?=0.6. Our method
demonstrates superior performance compared to PPCE and
PPDO approaches even in a wide range of privacy budgets,
from smaller to larger values. This is because of its robustness
and adaptability to varying privacy budgets and sensitivity
levels. The results illustrate how our method minimizes privacy
loss even in scenarios with high sensitivity, where other
approaches may struggle to strike a balance between privacy
preservation and data utility.
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Fig. 9. The impact of sensitivity on privacy loss under different
noise variances.
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Fig. 10. Impact of sensitivity on privacy loss under different privacy
risks with noise variance o2 = 0.5. (a) Privacy loss analysis using
Gaussian random RF precoding matrices. (b) Comparison of privacy
loss between random RF precoding matrices and CSI-based RF
precoding using the DeepMIMO dataset.
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Fig.11. The impact of privacy budget on the privacy loss under
different values of sensitivity at § = 0.3 and 6> = 0.6.

VIL CONCLUSION

In this study, we designed a privacy preservation approach
for wireless communications that leverages the concept of RM
to introduce perturbations to the precoding matrix of the
transmitted signals. We analyzed the relationships between
different precoding matrix configurations and identified regions
of interest for perturbation through an understanding of the
geometric properties of the manifold. By following geodesics,
we were able to find neighborhoods around each point in the
precoding matrix, representing regions where nearby points
have similar properties or characteristics. Subsequently, we
applied controlled perturbations along geodesics to introduce
privacy-preserving modifications. This approach enabled us to
modulate the magnitude and direction of perturbations in the
precoding matrix, ensuring effective privacy preservation while
minimizing distortion to the data space. Through extensive
simulations, we demonstrated the efficacy of our proposed
approach in achieving robust privacy preservation while
maintaining the integrity and utility of the transmitted signals.
In future work, we plan to extend the usage of RM techniques
to other aspects of wireless communication systems, such as
channel estimation, privacy protection and system performance
enhancement. An intriguing future direction is to explore how
the proposed precoding approach performs in the presence of
internal corruption. In particular, we will investigate how to
handle internal corruptions effectively and elegantly by
leveraging the proposed geometric optimization.

APPENDIX A
PROOF OF LEMMA 1
Suppose f is a deterministic function and ¢ is known.
According to (5), we define p = Pr[f(x) €Z] and p =
Pr[f (X) € Z]. From Definition 2, we can write
p < et (35)
We want to find the maximum value of ¢ so that (35) holds for
all possible subsets X and adjacent signals X and X. Rearranging

(35), we have
e>1In (f) (36)

Given that p and p are probabilities, % lies in the range [0,1].

So, In (E) < 0. To bound &, we maximize In (E) This
b b
maximum occurs when p is the maximum (p = 1) and p is the
minimum (P = 0). This means that f(x) is deterministic and
always outputs Z for X, and f(X) is deterministic and never

outputs Z for X. In this case, In (5) =1In (%), which is
undefined. However, In (g) — o as §—> oo, Thus, the

maximum of In (z) is infinity. Therefore, the maximum of € is

infinity, which is not meaningful.

To make & meaningful, we need to bound it. For this
purpose, we introduce a noise with variance ¢;2. According to
the Gaussian distribution, for a given sensitivity Ag, the added

. .. A

noise should have a standard deviation o = 7{

(21n(%/5))

can be bounded by the ratio of the sensitivity to the noise
standard deviation as follows:

. Now, ¢

b (37)

£ = Tatn(,))

This completes the proof. m

APPENDIX B
PROOF OF THEOREM 1
Since Fgr and F;are SPD matrices, they can be diagonalized
by a unitary matrix. Let U be a unitary matrix such that:
Frr = UARpUY, (38)
and
F; = UANUY, (39)
where Agppand A; are diagonal matrices with positive
eigenvalues of Fy and F;, respectively; U is the unitary matrix.
Define X = UA~"/ 2, where A2 is a diagonal matrix
containing the square root of the eigenvalues of Fz}F;. X is
invertible because A has positive eigenvalues. Thus,

H
Xix = U (A2) Aev = Uty =1,
We now apply the congruence transformation to Fyp:
H -~y H -y
X'Fp X = (UA2) Frp (UA"72) =
H H
(A"2)" U"UARU" (UA2) = (A72) Ageh~ 2 =1
(41)

(40)

Asaresult, XHFpp X = I
Similarly, we imply the congruence transformation to F; as

~ H __ ~
XHF, X = (UA—l/z) F, (UA‘l/Z) . Since Fgp and F; are SPD
matrices, we can define FgiF; = UA; U, where U is the matrix

of the eigenvalues of Fz}F;.
On the other hand, we can write F; = FpUA;U", thus

XIF, X = (UA‘1/2>H FreUATY (UA~2)
= (A‘1/2>H U UA UM TAT"U (A~2)

H -
= (A7"2)" AgeUAT" (A72). (42)
Since U diagonalizes Fz+F; , we have
_1/” Fa TH (A=) — TiA TiH
(A"72)" AeUATY (A-2) = TAT". (43)



On the other hand, as

(A_I/Z)H AgeA” /2 and (A_I/Z)H A;A” 72 are also diagonal,
and A is the diagonal matrix with these eigenvalues. Hence,

XUF, X = A,;. (44)
This demonstrates the existence of matrix X satisfying the
specified conditions. This completes the proof.m

Agrand A; are diagonal,

APPENDIX C
PROOF OF COROLLARY 1

We first imply the congruence transformation of the matrices
by the invertible matrix X, i.e., X" Fgr X and X"F; X. Let
(X" Fgrr X)™1 be the inverse of the congruence transformation
of Fpp. Since Fgp is SPD, its inverse is also SPD. To investigate
the relative relationship between the two transformed matrices
after the transformation, we calculate (X" Fz X) ' (X"'F; X),
which simplifies to X HFpiX 'X"F; X = X" (Fz} F))X,
where X~H is the inverse of X™#. As a result, the eigenvalues
of Fz} Fare the same as those of X (Fz2 F))X, i.e.,

A(Fre FiY) = 4 ((XHFRF X)(X"F, X)_l),

where 4;(-) denotes the i-th eigenvalue of the matrix. Because
the eigenvalues, and thus the essential spectral properties,
remain unchanged, the Riemannian distance dy;,, calculated

using these eigenvalues is invariant under the transformation.
This completes the proof. m

APPENDIX D
PROOF OF THEOREM 2
Let p,q € M be any pair of points on a complete M. We
first show that there exists a geodesic connecting p and q. Given
that M is complete, Vp € M, there exists a neighborhood U,
containing p such that each pair of points within U, can be
connected by a unique geodesic segment. Now, let A,, be the set
of all points in M that can be connected to p through
minimizing geodesic as follows:
A = {x € M:there is a minimizing }
P geodesic fromp to x
in which 4, is non-empty since p € A,. Furthermore, 4, is an
open set because geodesics are continuous curves. We now
define a set B, as follows:
{x € M:there is a minimizing geodesic} (46)
fromp to x contained in U, '
Similar to A,, the set By, is a non-empty open set. All open
subsets of M are complete because M is complete. According
to the Hopf-Rinow theorem [33], any locally compact,
connected, and complete space that can connect any two points
by minimizing geodesic is also a complete RM. Therefore, B,
is a complete RM. Thus, there exists a complete RM B,
containing p. As a result, there exists a minimizing geodesic
connecting any pair of points in B, (Hopf-Rinow theorem).
Hence, there is a minimizing geodesic from p to g contained
entirely within B,, since q € B,. Consequently, there exists a
geodesic connecting p and q in M.

We now demonstrate the uniqueness of this geodesic. Assume
two distinct geodesics y; and y, connecting p and q. Because
of the characteristics of geodesics, y; and y, must coincide at
their initial points, p [34]. In the same way, they have to line up

(45)

B, =

at their terminal point, g, which is fully contained in p in By,
Consequently, p and q in M are connected with a geodesic.

Let L(y) be the length function measuring the length of
geodesic curves connecting two points p and q. For a smooth
curve y parameterized by t from p to g, the length function is

L) = [Iv©ll dt, (47)
where y(t) is the derivative (tangent vector) of y at t, and
[l7(t)]] is the norm of the tangent vector, which is computed
using the Riemannian metric gp,.

Geodesics are critical points of the length functional, meaning
that they locally minimize the length among all possible curves
connecting the same two points. Since y; and y, are geodesics,
they are critical points of L(y). As geodesics are characterized
by second-order ordinary differential equations (ODEs), there
exists only a single solution that satisfies the equation. This
means that if two curves (y; and y,) satisfy the geodesic
equation and share the same initial position and velocity, they
must coincide across all values of the parameter. This
uniqueness ensures that y; and y, are the same curve. There is
only one geodesic connecting any two points p and g on M. m

APPENDIX E
PROOF OF THEOREM 3
Let F; represents a privacy mechanism implying that
M(x) = F;(t). M(x) € Z verifies that the constraints are
satisfied for Fyr and F;. According to (34), we can express
p(M(x) € 2) =F,(t+1), (48)
and
p(M(X) € Z) = F;(0).
As aresult, we have
pMMx) €Z) Fit+1)
p(ME) €Z)  Fi(t)
= exp (=130 (Fi() + 11V (Fule = 1)) ). 50)
Based on the triangle inequality, the following is derived:
”Utvml (Fi(t)) + 1t-1Vac] (Fi(t - 1))||F <

(49)

el [V (Fi®)||+ el [Wd (Fie =) . 1)
On the other hand, we have
~ 112 ~ 2
|Frr = Fill; = Sax (Frr (k) = Fi(n k)" (52)
Differentiating (52) with respect to the eigenvalues yields:
76'”?;2(0” =2 (”FRF - Fi(t)”F) %ﬂk (FRF - ii(t)) (53)
Based on the function J (Fi(t)), we can obtain
- 2
V1l < (4 Sk (Fre(n k) — Fy(n,k)) (ﬁ (Far -
2\ /2
'E(t))) ) (54)
Due to the constraint C;, we have:
F) ~
o (Fee - Fi0)| <. (59)

Given that € is a constant, from (51), we have

el ||V (Fi®) ||+ el |[Voed (Fie = D) |



< 4e (€2 €2 Ngp K) /2 = 4e2e( Npp K) /2.
(56)

Let C = 4e?e( Ngp K)l/z, thus, we can rewrite (50) as

PM®ED _ ¢

p(M(X)€z) — (57)

Without loss of generality, we consider e¢ = &, given the
constancy of C. Therefore, (57) can be rewritten as

p(M(x) €Z) < e p(M(X) € Z) + 6, (58)

and this completes the proof. m
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