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Shelf sea habitats contain significant sedimentary carbon stocks, due to their large spatial extent, and act as key
ecosystems for global carbon cycling. These shelf sediments are subject to a range of anthropogenic pressures
including seabed trawling, climate change and the introduction of man-made structures (MMS), such as oil and
gas platforms. In the North Sea, following their production lifespan, MMS are required to be mandatorily
decommissioned under OSPAR Decision 98/3. Understanding the impact of decommissioned MMS on sedi-
mentary carbon stores is a significant research gap, as these platforms are widespread throughout many shelf
seas, with many now exceeding or approaching the end of their designed lifespan. In this study we quantify
carbon stocks, organic and inorganic carbon content, and sediment characteristics from shelf sediment cores
taken at increasing distances (50-3200 m) away from two decommissioned North Sea oil and gas platforms,
Miller and North West Hutton. Carbon accumulation rates were also determined for sediments collected around
North West Hutton. Organic carbon content at Miller was highest within 50 m (24.55 + 2.49 mg/g of sediment)
of the decommissioned platform and significantly lower across all other sampling distances. Conversely, organic
carbon content at North West Hutton did not vary greatly with distance; however, a significant decrease was seen
at 200 m. These findings highlight that carbon dynamics around decommissioned oil and gas platforms are site-
specific. Moreover, the absence of pre-decommissioning data limits our ability or disentangle the effects of
decommissioning on sedimentary carbon.

Zhou, 2024).
The effect of O&G platforms on the marine environment is still an

1. Introduction

The North Sea has been extensively modified by anthropogenic ac-
tivities including the introduction of man-made structures (MMS)
(Fowler et al., 2020; Dannheim et al., 2018). The global footprint of
MMS, such as oil and gas (O&G) platforms and offshore wind farms, is
growing rapidly with projected expansion from 32,000 km? in 2018 to
39,400 km? by 2028 (Bugnot et al., 2021), driven by a rising demand for
fossil fuels and renewable energy (Birchenough and Degraer, 2020).
Within the Oslo and Paris Convention (OSPAR) maritime area alone
there are over 1350 offshore oil and gas installations that require
decommissioning in the coming decades (Fortune and Paterson, 2020).
By 2040, it is estimated that 2000 offshore oil and gas platforms will
have to be decommissioned worldwide (Vidal et al., 2022; Wei and
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expanding area of research, which has primarily focused on changes to
marine biology, such as food webs (Fowler et al., 2020; Todd et al.,
2018; Wright et al., 2020; Fujii and Jamieson, 2016), connectivity and
invasive species (Coolen et al., 2020; van der Molen et al., 2018; Tidbury
et al., 2020), fish attraction versus production (Todd et al., 2018;
Brickhill et al., 2005; Grossman et al., 1997; Pickering and Whitmarsh,
1997) and seabird interaction (Ronconi et al., 2015). However, the ef-
fect of MMS on the seabed around these structures, and particularly on
benthic carbon stocks, is poorly understood.

Shelf seas and the sediments therein play a key role in maintaining
marine carbon stocks (Legge et al., 2020; Burdige, 2007; Smeaton et al.,
2021) and supporting organic carbon sequestration potential (Graves
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et al., 2022; Atwood et al., 2020; LaRowe et al., 2020). Blue Carbon
refers to organic carbon that is captured and sequestered in marine
ecosystems, including coastal and ocean environments (Nellemann
et al., 2009). This organic carbon is modified and remineralised while it
descends through the water column (Soetaert et al., 2000). However, a
proportion is stored within shelf sediment where it is further reminer-
alised through diagenetic processes (Soetaert et al., 1996; Talin et al.,
2002) or eventually, buried (Burdige, 2007). Despite covering only
7-10 % of worldwide ocean area, shelf seas contribute 80 % of organic
carbon in sediments (Bauer et al., 2013), making them vital for climate
change mitigation (Luisetti et al., 2020). It is estimated that global
sedimentary blue carbon stocks are 2322 Pg C in the top 1 m of sediment
(Atwood et al., 2020). Furthermore, the North-West European conti-
nental shelf area is estimated to have a standing organic carbon stock of
between 230 and 882 Mt. of POC in the upper 10 cm of sediment
(Diesing et al., 2017).

Previous blue carbon research has largely focused on vegetated
coastal habitats as these sequester significantly more carbon than other
terrestrial habitats (McLeod et al., 2011; Macreadie et al., 2017, 2019;
Lovelock and Duarte, 2019). More recently, shelf sediment ecosystems
are increasingly recognised for their significant storage of blue carbon
due to their large spatial extent (Legge et al., 2020; Thomas et al., 2004;
Luisetti et al., 2019; Diesing et al., 2017). However, shelf sediment is
subject to substantial disturbance from activities such as trawling
(Eigaard et al., 2017; Palanques et al., 2014; Dounas et al., 2007) and
construction and decommissioning of offshore MMS (Birchenough and
Degraer, 2020; Dannheim et al., 2020; Fortune and Paterson, 2020).
While the effect of disturbance on carbon stocks remains unclear
(Epstein et al., 2022), it is essential to determine potential impacts of
anthropogenic activity, such as decommissioning of MMS, on shelf
sedimentary carbon stocks.

Currently under OSPAR Decision 98/3, MMS in the North Sea are
required by law to be fully removed from the sea at the end of its active
life cycle, and the marine environment to be returned to its natural state
prior to construction (Fortune and Paterson, 2020; Bull and Love, 2019;
Fowler et al., 2014, 2020). Recent literature has started to explore the
effect of disturbance to benthic carbon stocks, with an emphasis on
trawling (Porz et al., 2024; Epstein et al., 2022; De Borger et al., 2021;
Paradis et al., 2021). Any pressure which changes the degradation rates
within upper sediment depth, or input of carbon to the seabed will likely
disrupt the overall carbon stock and sequestration rates (Legge et al.,
2020). Decommissioning of MMS, especially ‘whole removal’ which is
preferred by OSPAR commission regulations (OSPAR, 1998) is a sig-
nificant form of marine disturbance (Sommer et al., 2019).

Removing oil and gas structures typically involves abrasive water
jetting, diamond wire cutting, hydraulic shears or explosives (Sommer
et al., 2019). These methods not only cause complete mortality of
attached invertebrates and nearby fish but likely impact the benthic
environment during the removal of the steel jackets and concrete
foundations (Jagerroos and Krause, 2016). With the mandatory
decommissioning of many platforms approaching rapidly, it is vital to
determine how these activities affect sedimentary organic carbon stor-
age and sequestration rates. Exclusion zones, particularly the 500 m
zones around active O&G platforms, provide an area free from distur-
bance by trawling and other extractive uses. These undisturbed zones
could potentially safeguard carbon stocks and facilitate recovery
(Epstein and Roberts, 2022). Moreover, decommissioned O&G platforms
are often surrounded by drill cuttings piles (Breuer et al., 2004). These
piles, produced during offshore hydrocarbon drilling operations, are
composed of subsurface rock coated with hydrocarbons and drilling
fluids (Bakke et al., 2013; Haanes et al., 2023), that could influence
seabed carbon stocks. Including carbon stock considerations, alongside
other factors such as expense and environmental impact (Hall et al.,
2022; Sommer et al.,, 2019) into cost-benefit analysis of decom-
missioning methods (Fowler et al., 2014) could provide managers with
more information to determine best practices (Fortune and Paterson,
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2020; Zawawi et al., 2012). This is the first study to investigate the
benthic carbon dynamics around decommissioned O&G structures in the
North Sea, and with samples taken as close as 50 m. The overall aim of
this study is to determine the effect of decommissioned O&G platforms
on organic sedimentary carbon stocks and sedimentation/carbon accu-
mulation rates, compared to areas which have not been excluded from
anthropogenic extraction activities.

2. Methods
2.1. Study sites

Sediments at two decommissioned O&G platforms, North West
Hutton (61°6' 23.9508", 1°18'32.9724") and Miller (58° 43’ 19.7004%, 1°
24’ 7.4016”), were sampled between 24th and the 30th of June 2021,
during a research cruise on the MRV Scotia (Fig. 1). The North West
Hutton platform was installed in 1981, with oil production commenced
in 1983 and continued until 2003 (Blacklaws and Johnston, 2013).
Topsides of the platform were removed in 2008 and removal of the
jacket structure was completed in 2009 (BP, 2005). Water depth at this
platform is 144.3 m (BP, 2005), with prevailing currents in a NE/SW
direction alongside weak residual currents (BP, 2005) with maximum
current speeds being 0.73 m/s at the surface and 0.47 m/s at the seabed.
The Miller platform was installed in 1991 and produced oil from June
1992 to September 2007 (BP, 2011). Topsides were removed between
2017 and 2018; jacket structure removal was completed in 2018 (BP,
2011). Water depth at the Miller platform is 103 m, with the Fair Isle/
Dooley current affecting the Miller platform which flows in a SE/NW
direction with maximum current speeds being 0.84 m/s at the surface
and 0.43 m/s at the seabed (BP, 2011). For both sites the jacket footings
and drill cuttings piles remain in-situ. Jacket footings were cut at 45 m
and 20 m above the seabed for the North West Hutton and Miller plat-
forms, respectively. The drill cutting pile at North West Hutton lies
directly beneath the footings, while at Miller, it is offset to the southeast
footing. These sites were selected due to age (over 40 years since
installation) and decommissioning status. Where possible, triplicate
sediment cores were taken at various distances along northern and
southern transects extending away from the decommissioned platforms
(50, 100, 200, 400, 800, 1600 m). Due to safety features of the research
vessel, samples could not be taken any closer than 50 m away from the
platforms. Control sites of similar sediment composition were selected at
3200 m away along each of the gradients. These control samples were
known to not be near other oil rigs at any phase during their use (i.e.,
construction, operational or decommissioned). There were no visible
signs of oil contamination on the sea surface during the survey.

2.2. Sediment core sampling and processing

Samples were obtained using a multi-corer, when weather permitted,
to extract three replicate sediment cores (inner ¢ 9.8 cm) at each sam-
pling distance. When weather was too severe for the multi-corer, cores
were collected using a grab, and cores taken from the grab only if the
sediment surface was intact (see Supplementary Table 1 for full sample
details). Depths of each core collected were noted. Cores were extruded
onboard and sliced into 1 cm depth increments and stored in plastic bags
at —20 °C until further analysis. Each sediment slice was measured for
wet weight (g) and freeze dried to give dry weight to determine porosity
and dry bulk density (DBD).

2.3. Biogeochemical analysis

Three homogenous powder subsamples of each 1 cm layer were
analysed for organic and inorganic carbon using a Formacs'T TOC
Analyser with Primacs™®® add-on module (SKALAR, The Netherlands).
Between 50 and 100 mg of each sample was weighted into quartz cru-
cibles, manually inserted into the analyser, and then heated to
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Fig. 1. Location of North West Hutton and Miller decommissioned platforms in the North Sea with sampling sites at varying distances (50-3200 m (Control)).

>1000 °C. For inorganic carbon, samples were acidified using 5 M
phosphoric acid and resultant CO, was measured. For each sample,
inorganic carbon was subtracted from total carbon to give a measure-
ment of organic carbon, giving measures of total, organic and inorganic
carbon for each core slice.

Particle size analysis (PSA) was conducted using the laser diffraction
unit Bettersizer S3 Plus (China). PSA methodology was adapted from the
National Marine Biological Analytical Quality control (NMBAQC)
scheme (Mason, 2022) Freeze dried sediment samples were analysed
using laser diffraction. The quantity of sample entered was varied to
ensure laser beam obscuration remained within 8 and 12 %. One
replicate was analysed for each 1 cm depth of the core with the particle
size analyser, taking another three replicate readings from each. Sedi-
ment characteristics statistics, mean and median grain size, skew, and
kurtosis were calculated using GRADISTAT software version 9.1 (S.
Blott, June 2020). Characterisation of sediment was determined using
Folk description, assigning sites to one of the fifteen major textural
groups as defined by the relative percentage of gravel (>2 mm), sand
(0.0625-2 mm), mud (<0.625 mm) (Folk, 1954).

Preliminary GC-MS analysis of hydrocarbon content in sediment
showed an insignificant contribution to total carbon content (<2 %)
even at sampling points closest to both platforms (50 m) see Gregson
et al., under review for methodology. Total hydrocarbon content (mg/g
of sediment) at varying distances from both North West Hutton and
Miller decommissioned platforms is included in supplementary Fig. 2
from the UK Benthos database v5.17 (Offshore Energies UK, 2015). As
both measures indicate hydrocarbon content within sediment to be <8
% of measured organic carbon content this was not considered in this

paper.

2.4. Estimated mass accumulation and sedimentation rates

Mass accumulation and linear sedimentation rates (MAR/LSR) were
determined using the Constant Flux — Constant Sedimentation (CFCS)
210pp_based modelling approach (Krishnaswamy et al., 1972) from ten
sediment cores collected at five distances (50, 100, 200, 400 and 3200
m) from each directional transect at North West Hutton. Approximately
27 g of each 1 cm slice were freeze dried, sieved down to 500 pm,
compressed, and sealed into plastic containers. After a period of three
weeks (to allow for secular equilibrium between 226Ra and 214Pb),
samples were analysed by gamma spectrometry using Broad Energy

Germanium detectors (ORTEC, GEM-FX 8530-S model, USA) to deter-
mine the total 2!°Pb and '¥”Cs activity concentrations with the emission
peaks of 46.5 and 662 keV respectively. Activity concentrations of total
226Ra were indirectly measured using the peak at 352 keV from the
presence of 21*Pb, one of its decay products. A certified reference ma-
terial from International Atomic Energy Agency (IAEA) — IAEA-465
Baltic Sea Sediment was used as a reference for quantifying these ra-
dioelements in the studied samples (International Atomic Energy
Agency, 2021).

2.4.1. Lead-210 based modelling and validation

Lead-210-based modelling approaches have been widely used to
estimate organic carbon accumulation rates (OCAR) in marine sediment
cores (de Haas, 1997; Masque et al., 2002; Arias-Ortiz et al., 2018).
These approaches rely on the depth distribution of unsupported fraction
of 21%pb, directly sourced from the decay of radon gas (*>?Rn) present in
the atmosphere and decaying at rate of 22.23 years. As the studied cores
were relatively shallow (<15 cm) and many natural and anthropogenic
disturbance were anticipated, including the presence of oil and gas
produced water derived particles enriched in 226Ra, 219pb and stable
elemental analogues, such as Ba and Pb (Ahmad et al., 2021; Haanes
et al., 2023) the constant flux-constant sedimentation (CF-CS) modelling
approach was favoured against other common modelling approaches
and selected to estimate directly the mass accumulation rate (MAR) from
each core. The CF-CS model was selected to enable the estimation of a
mean MAR below a potential surface mixed layer and was assumed to be
constant over time following Eq. (1):

210PbX — 210Pb0~e—lmx/MAR (1)

Wwith 21%Pb,: activity concentration of unsupported 2°Pb at mass
depth x (in Bq.kg™)); 21%Pby: activity concentration of unsupported
29} at water/sediment interface (in Bq.kg™); A: decay constant of
210pp — 0.031 y~1; my: accumulated mass stock (in g.cm™2) at depth x;
MAR: mass accumulation rate (g.cm 2.y ).

Linear sedimentation rates (LSR) could then be estimated at each
studied location by dividing with the average dry bulk density of the
core segment selected in the CF-CS model. Organic carbon accumulation
rates (OCARs) were determined using MAR multiplied by percentage of
organic carbon derived from the average along the entire core depth at
each site (%0C).

Fractions of anthropogenic 22Ra were subtracted from the total
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226Ra activity concentrations prior to utilising the CF-CS model, by
referring to barium (Ba) depth profiles, a chemical analogue of 226Ra,
and measured by ICP-MS following total microwave-assisted digestion,
alongside other stable elements (Agilent, 7900ce model, USA).

Where possible, the 1978 Sellafield-derived '3’Cs signature (i.e.,
1974-1975 peak discharge including a 4-year transient time from
discharge point (Gray et al., 1995; Povinec et al., 2003) were also used to
validate LSR results obtained from CF-CS modelling. For highly
contaminated cores at 50 m, mid-core enrichment of 226Ra was used as
an estimate to validate 21°Pb excess based CF-CS modelling rather than
to estimate MAR/LSR directly. This mid-core enrichment was deter-
mined as the mid-point of production from the platform. However, due
to this contamination, MAR/LSR were not calculated at 50 m due to
uncertainties without a clear fingerprinting tool.

2.5. Organic carbon stock calculations

Stock calculations of sedimentary carbon surrounding both plat-
forms were calculated using methods and equations from (Diesing et al.,
2017). Estimation of mass of particulate organic carbon (mpoc) was
calculated by multiplying particulate organic carbon as a dimensionless
fraction, dry bulk density (p,), sediment depth (d) and area (A).

Mpoc :POCO[)d.d.A (2)

2.5.1. Dry bulk density

Dry bulk density was calculated using Eq. (2). Where dry bulk den-
sity (pq) was determined using porosity (¢) and grain density (p,). Grain
density was assumed to be 2650 kg m 3.

pa=(1-g)p, 3

2.5.2. Porosity

Porosity was calculated using weight before (Weight,,,) and after
(Weightp,,) freeze drying as well as the specific gravity of the sediment
(SGseq) and density of water calculated based on salinity (pyyq,). For
offshore sediments of this nature this was assumed to be composed of
mostly quartz/feldspar so specific gravity was assumed to be 2.7.
Salinity for the density of water was assumed to be that of offshore water
(35) and a density of 1.035 kg/1.

|:SGSed - SGSed (WeightWet / ng'ghtD ) :|
ry
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normally distributed data were tested for significance using a Kruskal-
Wallis test, with p-values adjusted for multiple comparisons with Bon-
ferroni corrections (Bonferroni, 1936), followed by Dunn’s post hoc test
(Dunn, 1964) within the ‘FSA’ package (Ogle et al., 2020). Spearman
correlation tests were applied to assess correlations between organic
carbon content, inorganic carbon content, mud content, sand content
sedimentation rates and distance from platform. To test for effect size of
Kruskal-Wallis tests, Cohen’s f (Cohen, 1988) was calculated using the
‘rcompanion’ package (Mangiafico, 2023), followed by a power analysis
using the ‘pwr’ package (Champely, 2020) For pairwise comparisons
Cliff’s delta (Cliff, 1996) (with a large effect size being >0.474) was
calculated with the ‘effsize’ package (Torchiano, 2020) and subsequent
power analysis was calculated for each comparison with an acceptable
threshold of 0.8.

3. Results
3.1. Sediment composition

Sediment classifications varied from sand to sandy mud across both
sites and distance gradients. Sediment water depth, core type, classifi-
cation and porosity are displayed in Supplementary Table 1. Mud con-
tent across all sites ranged from 1.58 % to 86.28 %, although North West
Hutton had higher average mud content across all distances compared to
Miller (Fig. 2). Highest average mud content was found at 50 m and 100
m away from North West Hutton, with average mud percentage being
59 % and 38 %, respectively. Average mud content at Miller was simi-
larly high at the 50 m distance with an average of 47 %. Mud content
remained lower with greater distance from Miller. Sediment composi-
tion at both sites was predominantly either sand or mud, with very few
observed gravel particles, hence, mud and sand percentages inversely
mirror each other. Sand content across all sites ranged from 13.72 % to
96.96 % (Fig. 2). Miller consistently had higher sand content across all
distances compared to North West Hutton.

3.2. Organic carbon content
Organic carbon content ranged from 0.26 to 51.78 mg/g of sediment

(Fig. 3). Highest average organic carbon content (31.62 + 1.09 mg/g of
sediment; mean 4 SE) was found 1600 m from North West Hutton,

4

+

@ =
[SGSed - SGSed (WeightWet WeightD )
Ty

2.6. Statistical analysis

All statistical analysis was conducted using R version 4.2.1. All fig-
ures were generated using the ‘ggplot2’ (Wickham, 2010), ‘corrplot’ (Wei
and Simko, 2021) and ‘cowplot’” (Wilk, 2020) packages. Data was
initially tested for normality using Shapiro-Wilk tests (Shapiro and Wilk,
1965) and subsequent Bartlett tests (Bartlett, 1937) to determine ho-
mogeneity of variance between groups. Normally distributed data were
tested for significance using ANOVAs, with p-values adjusted for mul-
tiple comparisons using the Benjamini-Hochberg procedure (Benjamini
and Hochberg, 1995), followed by a Tukey’s HSD (Tukey, 1953) post
hoc test within the ‘agricolae’ (De Mendiburu, 2020) package. Non-

Pwater — Pwater (WeightWEf / WeightD,y> :|

followed by the control site (3200 m) (27.78 £ 1.12 mg/g of sediment).
Organic carbon content was significantly lower at 200 m (17.86 + 1.22
mg/g of sediment) away from North West Hutton (Kruskal-Wallis, 2 =
76.535, P = 1.854e 1%, 1 - p = 1) compared to all other sampling dis-
tances. Conversely, a different trend was seen at the Miller, with the
highest average organic carbon content at the closest distance (50 m)
(24.54 + 2.49 mg/g of sediment), which was significantly higher
(Kruskal-Wallis, y2 = 66.084, P = 2.635e’12, 1 - p = 1) than all other
distances. On average, organic carbon content was higher at the North
West Hutton compared to Miller, for example average organic carbon
content at the control site of North West Hutton was up to 6.6-fold
higher compared to sediment collected at the corresponding site at
Miller. Pairwise comparisons of organic carbon of effect size and power
between distance groups are shown in Supplementary table 2. Organic
carbon depth profiles are displayed in supplementary Figs. 3 to 6.
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Fig. 2. Mud and sand content (%) of 1 cm sediment core slices collected at increasing distances (50-3200 m) away from two decommissioned oil and gas platforms,
Miller and North West Hutton. Sediment was analysed to 10 cm at North West Hutton and 6 cm at Miller. Letters above boxes (a, b, ¢) indicate significant differences
between distances (P < 0.05, Kruskal-Wallis test followed by Dunn’s post hoc test); different letters indicate significant differences.

3.3. Inorganic carbon content

Inorganic carbon content ranged from 0.14 to 45.14 mg/g of sedi-
ment across both decommissioned platforms (Supplementary Fig. 1). A
similar pattern was observed for inorganic carbon content, that was also
seen for organic carbon content. A significantly higher average inor-
ganic carbon content (Kruskal-Wallis, y2 = 133.16, P = 2.2¢71°) was
found at the control site of North West Hutton (24.29 + 0.62 mg/g of
sediment), when compared to closer distances (e.g. 50, 100, 200, 400
and 800 m) away. The lowest average inorganic carbon content was
found at the 50 m distance, closest to North West Hutton (6.04 + 0.66
mg/g of sediment). Conversely, at Miller, average inorganic carbon
content was significantly higher (Kruskal-Wallis, y2 = 82.07, P =
1.334e %) closer, at 50 m distance (7.27 + 1.19 mg/g of sediment) than
all other distances (100, 200, 400, 800, 1600 and 3200 m). On average,
organic carbon content was higher at North West Hutton compared to
Miller. For example, average inorganic carbon content at the control site
of North West Hutton was up to 20.4-fold higher compared to sediment
collected at the same site at Miller.

3.4. Sediment organic carbon stocks

Average sediment organic carbon stocks ranged from 0.59 to 5.01 kg
m 2 across both sites and distances (Fi g. 4). Resolution of stocks ranged

from 3 cm to 10 cm with consistently higher resolution at North West

Hutton (ten sampling sites had 10 cm depths analysed). Miller resolution
ranged from 3 to 10 cm, but had an average depth of 6 cm. Estimated
carbon stocks were averaged and extrapolated to 10 cm (Fig. 4; repre-
sented by hashed portions of each bar). The largest average organic
carbon stocks were found at 800 m on the southern transect from North
West Hutton (5.01 + 0.62 kg m~2) and lowest was found at 400 m on the
southern transect of Miller (0.59 kg m~2), though this distance only had
one replicate to 5 cm depth.

Miller had highest organic carbon stocks at 50 m on both the
northern and southern transects with averages of 1.47 + 0.53 kg m >
and 3.74 + 0.36 kg m ™2, respectively. At greater distances (100 to 3200
m) along the southern transect, organic carbon stocks remained
consistently lower with an average of 0.88 + 0.13 kg m™2, at 100 m
distance, to 0.72 + 0.05 kg m’z, at 1600 m, and 0.68 kg m~2 at 3200 m,
however at 3200 m there was only one core available. A similar trend
occurred on the northern transect with average organic carbon stocks of
0.65 + 0.04 kg m~2, at 100 m, and 0.65 + 0.03 kg m~2 at 3200 m.

Comparatively, North West Hutton had consistently higher organic
carbon stocks than those found at Miller, which generally remained
constant with distance. Along the southern distance transect, average
organic carbon stocks at 50 m were 2.44 + 0.223 kg m~2 which grad-
ually increased to 3.65 + 0.35 kg m~2 at 400 m. At 800 m, organic
carbon stocks increased to 5.01 + 0.63 kg m? but subsequently
decreased to 3.27 + 0.67 kg m™~2 at 3200 m. Along the northern transect
at North West Hutton, average organic carbon stocks increased from
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Fig. 3. Organic carbon content (mg/g of sediment) of 1 cm sediment core slices collected at increasing distances (50-3200 m) from two decommissioned oil and gas
platforms, Miller and North West Hutton. Sediment was analysed to 10 cm at North West Hutton and 6 cm at Miller. Letters above boxes (a, b, ¢) indicate significant
difference between distances (P < 0.05 Kruskal-Wallis test followed by Dunn’s post hoc test) with differing letters indicating significant differences.
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2.75 + 0.20 kg m~2 at 50 m to 3.38 + 0.32 kg m~2 at 100 m. However,
average organic carbon stock decreased at 200 and 400 m to 1.44 +
0.24 kg m2and 1.63 + 0.13 kg m 2 respectively. Organic carbon stocks
then increased at 800 and 3200 m to 3.33 + 0.16 kg m~2 and 3.95 +
0.18 kg m? respectively.

3.5. Mass accumulation and sedimentation rates

Radiometric depth profiles of total 21°Pb, total 22°Ra, 17Cs as well as
stable Ba and Pb depth profiles at 50 m North/South and 3200 m North/
South (control) are displayed in Figs. 5 and 6, respectively.

As shown in Fig. 5, the depth profiles at 50 m North and South of

North West Hutton presented enhanced concentrations of 22°Ra in the
top 10 cm, a clear signature from the legacy discharges of oil and gas
produced water. This observation was confirmed when measuring its
chemical analogue Ba (Fig. 6), showing a net increase of barium in the
top 9 cm in the 50 m North core and 10 cm depth in the 50 m South core,
suggesting the presence of radiostrontiobarite particles (Ahmad et al.,
2021). These industrially derived signatures were subsequently used to
estimate LSR at these two locations. As the fate of radium particles re-
mains unclear (Ahmad et al., 2021) and operational discharge infor-
mation was not available, the middle of the two contaminated core
segments (i.e., 4.5 cm in the 50 m North and 5 cm in the 50 m South)
were assumed to correspond to the middle of the operational life of
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North West Hutton (1993) and indicated the LSR to be ranging between
0.16 and 0.18 cm.y .

Due to the presence of low activity concentrations of *Cs observed
near North West Hutton, unconfirmed at control distances, as well as the
potential presence of other 137Cs sources (i.e., from major nuclear fallout
events such as Chernobyl), the use of this nuclear-derived fingerprint
was not further considered in this study.

Also, as shown in Fig. 6, the Pb depth profiles did not follow the same
pattern as Ba profiles, implying the ratio of anthropogenic 22°Ra/
anthropogenic 2!%Pb to be variable over time. Therefore, it was not
possible to estimate the fraction of anthropogenic 21°Pb accurately close
to the platform (50 m). It is worth noting that the direct measurement of
219} by gamma spectrometry in sediment materials highly contami-
nated in Pb and other heavy metals such as Zn, Ba, Sr, would have also
suffered from high matrix self-attenuation (Dal Molin et al., 2018).,
limiting event further the application of 2!°Pb based modelling ap-
proaches for these contaminated sediment cores above 10 cm. In addi-
tion, the levels of unsupported natural 2!°Pb observed below 10 cm were
found to be very low and associated with high uncertainties from gamma
counting. Consequently, the CF-CS 2'°Pb modelling approach could not
be applied in cores collected within 200 m N/S from North West Hutton.
Nevertheless, a negligible influence was observed at 400 m and 3200 m
N/S (control), enabling the use of the full core 210p} excess profiles for
CF-CS modelling at these four sampling locations (see supp Fig. 2).

Averaged MARs were found to be approximately 0.27 and 0.19 g

cm~2 y~! within the North and South transects, respectively (Table 1).
Organic carbon accumulation rates (OCARs) ranged from 0.003 to
0.009 g ecm 2 y~! across both transects. The subsequent LSRs were
estimated to be averaging at 0.21 cm y ! within the North transect and
found to be slightly lower within the South transect, ranging between
0.14 and 0.15 cm y ! and agreeing with the estimations from 22%Ra
fingerprinting.

3.6. Correlation analysis

Spearman’s correlation analysis between the measured variables was
separated by site (Fig. 7). Where Spearman’s p values are positive this
shows a positive correlation and where they are negative this shows a
negative correlation. For Miller, organic carbon was significantly posi-
tively correlated to mud content (Spearman’s p = 0.65, P = 2.2e 1),
porosity (Spearman’s p = 0.59, P = 1.19e!%), inorganic carbon
(Spearman’s p=0.39,P = 8.07e”7) and gravel content (Spearman’s p =
0.18, P = 0.03) and significantly negatively correlated with distance
(Spearman’s p = —0.49, P = 9.37e 1), dry bulk density (Spearman’s p
=—-0.59, P = 1.19e’15), mean grain size (Spearman’s p = —0.52, P =
2.2¢71%) and sand content (Spearman’s p = —0.65, P = 2.2¢716).
Conversely, organic carbon content at North West Hutton was weakly
positively correlated with distance (Spearman’s p = 0.18, P = 0.001),
dry bulk density (Spearman’s p = 0.25, P = 1e ®), sand content
(Spearman’s p = 0.13, P = 0.01) and weakly negatively correlated with
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decommissioned platform on both North and South transects.

Table 1

Linear sedimentation rates from traditional 2!°Pb radiometric dating techniques and novel *°Ra oil and gas attributed fingerprint, average dry bulk densities (DBD),
219ph mass accumulation rates (MAR) and 2!°Pb organic carbon accumulation rate (OCAR) of six cores collected at increasing distances (50-3200 m) along two
directional gradients (North and South) from North West Hutton decommissioned platform.

Distance Direction (N/  2!°PbLSR (cm/  Mean dry bulk density 21%ph MAR (g/ Average carbon content ~ Pb OCAR  22°Ra LSR O&G fingerprint
(m) ) 2] (DBD) cm®/y) (%) (g/em®/  (em/y)
y)

50 North “ 1.102 “ 2.83 “ 0.161

400 North 0.211 1.211 0.258 1.26 0.003 N/A

3200 North 0.216 1.330 0.286 3.24 0.009 N/A

50 South a 1.056 “ 2.78 “ 0.179

400 South 0.141 1.252 0.176 2.45 0.004 N/A

3200 South 0.154 1.292 0.199 3.16 0.006 N/A

# not estimated.

mud content (Spearman’s p = —0.11, P = 0.04), porosity (Spearman’s p
=-0.25P=1e".

4. Discussion
4.1. Organic carbon content/stock variability between sites

Organic carbon content of sediments varied spatially around both
study sites with distinct trends observed at each. North West Hutton
showed consistently higher average organic content across all sampling
distances compared to Miller. Additionally, the relationship between
organic and distance varied between sites, with North West Hutton
carbon content increasing slightly with distance, whereas Miller dis-
played elevated levels closer to the structure (50 m), with consistently
lower levels at increasing distance. Overall, organic carbon content in
this region of the North Sea was higher than modelled studies such as
Diesing et al. (2017, 2021) and Wilson et al. (2018). In these estima-
tions, carbon percent ranges from 0.39 % at North West Hutton and 0.68
% at Miller (Wilson et al., 2018). However, these predictive models do
not account for the presence of MMS which likely explains their inability
to capture the site-specific trends observed in this study.

In this study, Miller exhibited an enrichment of organic carbon

within close proximity (50 m) to the structure, displaying a ‘halo’ effect,
likely linked to activity from the O&G platform during its active pro-
duction stage. The combination of a large effect size and statistical
power indicates that this is a reliable and reproducible result (Supple-
mentary table 2). This enrichment could be caused by the presence of
attached epifauna on the remaining jacket footings, potentially
increasing organic carbon content through deposition of faecal matter
(Schutter et al., 2019). Artificial structures can support significantly
higher biomass (up to 500 times more) than soft sediments, due to the
availability of hard substrate for epifauna attachment (Maar et al.,
2009). Organisms that colonise artificial structures tend to be fouling
attached epifauna dominated by filter feeders (Schutter et al., 2019).
These organisms may act as a large-scale biofilter, depleting organic
matter from the water column while enriching nearby sediment with
faeces, larvae, dissolved organics, and nutrients (Coates et al., 2014;
Maar et al., 2009). For example, in Maar et al.’s model, sedimentation
rate around an offshore wind structure in the North Sea significantly
increased up to 40 m from the foundation due to the excretion of faecal
pellets (Maar et al., 2009). Similar patterns are observed at southern
North Sea windfarms, where colonizing organisms accumulate carbon
during operation and only a small proportion (0.50 + 0.06 %) of the
area is disturbed by decommissioning activities (Heinatz and Scheffold,
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2023). In this study, measurements of attached epifauna were not taken,
however, other offshore platforms in the North Sea have been shown to
be fully covered with marine fouling organisms (van der Stap et al.,
2016), particularly at the depth of the Miller footings. Despite O&G
platforms having less structures in each area compared to wind farms,
the principle of localised carbon enrichment through biodeposition
could explain the higher carbon content close to the Miller platform.
Without epifauna or associated carbon flux values, future work deter-
mining organic carbon composition could further qualify this conclu-
sion. This also highlights a significant knowledge gap to fill in pre-
decommissioning assessments.

The ‘halo’ trend seen at Miller is consistent with environmental
impact assessments of other decommissioned North Sea platforms. At
the Ninian Northern decommissioned platform, sediment organic matter
was higher near the structure (4.9-5.5 % at 0 m) compared to more
distant sites (0.9-3.8 % at 100-10,000 m) (CNR International, 2017)
mirroring the elevated carbon content near Miller. Similarly, sediment
near the Murchison decommissioned platform showed elevated organic
carbon at 250 m and 500 m (3 and 4 % respectively) when compared to
sites up to 8000 m, where values remained below 1 % (CNR Interna-
tional, 2013). This pattern was attributed to drilling activity at the site,
which elevated the proportion of fine-grained sediment and organic
matter content (CNR International, 2017), with some of this likely being
hydrocarbons. This aligns with Miller sediment composition results,
where higher fines were observed at 50 m compared to the rest of the
distances, indicating a localised halo area of mud content (fines) and
organic carbon. However, having data pre and post decommissioning of
other platforms would allow for comparison and ability to determine
relative effects of decommissioning on carbon stocks.

While elevated mud content was also observed at North West Hutton,
its weak negative correlation with organic carbon suggests that this
factor alone does not fully explain the observed variance with distance.
The higher sediment carbon content near the platform could be due to
elevated epifauna based faeces, increased fine-grained sediments,
increased hydrocarbons, or a combination of these factors. Regardless,
this halo effect at Miller has implications for decommissioning practice
of specific platforms to protect the seabed integrity, and the carbon

stored within them. MMS (active or decommissioned) will likely have
distinct signatures and impacts on the seabed, linked to environmental
context such as water depth, distance from MMS, and time and activity
since decommissioning (change in trawling activity on seabed since
decommissioning and removal of exclusion zone). As current OSPAR
regulations require complete removal of these structures, except for a
few derogations (such as those presented in this study), this practice of
removing embedded structures causes a significant disturbance to the
seabed carbon (Fortune and Paterson, 2020; Birchenough and Degraer,
2020).

In contrast to Miller, sediments at North West Hutton, exhibited the
lowest organic carbon at 200 and 400 m with similar levels at all other
distances. Comparisons between 200 m and distances other than 400 m
showed large effect size and high statistical power which indicates that
this is a reliable result avoiding type I/1I errors (Supplementary table 2).
This lower carbon content may reflect increased carbon mineralisation
from microbes or bioturbation from macrofauna (Burdige, 2007) present
from a lack of sediment disturbance., During the operation of the plat-
form, the 500 m exclusion zone limits disturbance from activities, such
as trawling (Sciberras et al., 2016; De Borger et al., 2021; van der Molin
et al., 2013) which would alter macrofauna assemblages within sedi-
ment (Eigaard et al., 2017). Carbon mineralisation rates are strongly
impacted by physical organic carbon removal through trawling-induced
resuspension of sediment, which is further exacerbated by removal of
bioturbating macrofauna (De Borger et al., 2021). Bioturbation is the
movement of sediment particles by organisms, such as bivalves, and
burrowing polychaetes, which create burrows and move sediment (and
carbon) within the surface layers (Kristensen and Blackburn, 1987;
Michaud et al., 2006). This movement oxygenates sediment which en-
hances mineralisation through oxidation (Soetaert et al., 1996; Talin
et al., 2002) causing a reduction in organic carbon content in the surface
layers (Glud et al., 2016). The lack of trawling activity within the
exclusion zone would increase the presence and abundance of these
bioturbators, (De Borger et al., 2021) increasing the oxic status of the
sediments and reducing the amount of carbon sequestered in the surface
sediments. The observed dip in carbon content at 200 and 400 m may
therefore have resulted from long term exclusion of trawling and
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distance from localised contaminants. Trawling is known to cause
mortality of benthic organisms (Sciberras et al., 2016; Hiddink et al.,
2017; Epstein and Roberts, 2022; Eigaard et al., 2017), which may
explain why the amount of carbon increases again outside of the set
exclusion zone distance, and at 800 m (the next distance increment) the
carbon content is similar to what is seen at the control site (3200 m),
where reduced bioturbation enhances carbon content in surface
sediments.

This trend in decreasing carbon with distance, as seen in the carbon
stock values, from the MMS was also seen in a study around the L7A
decommissioned platform (in the Southern North Sea), where
decreasing carbon content at greater distances away from the structure
was observed in 3 out of 4 directional transects (Klunder et al., 2018).
The L7A platform is located much further south, but this suggests that
decommissioned platforms may affect organic carbon differently
depending on a variety of factors such as sediment composition and
subsequent natural background particular organic carbon, decom-
missioning practices, sedimentation rates, current regimes, drill cutting
composition and time of production (Klunder et al., 2018). The L7A
platform, in a different location, combined with the carbon dynamics
seen around North West Hutton and Miller in this study, implies patterns
of carbon storage around different decommissioned platforms are site
specific and cannot be generalized for all MMS; each needs to be
assessed on a case-by-case basis considering the different environmental
variables and age of structures.

Interestingly, organic carbon results correlated differently with mud
percentage between sites with a positive correlation at Miller and a weak
negative correlation at North West Hutton. A positive relationship be-
tween organic carbon and mud/fines content is typical of shelf sediment
(De Falco et al., 2004; Diesing et al., 2017; Leipe et al., 2011; Smeaton
et al., 2021). However, we observed a weak reverse correlation, indi-
cating that there are some underlying and unknown variables, perhaps
the presence of North West Hutton, may alter this relationship, as
despite highest mud content occurring at 50 and 100 m, these were sites
with the lowest recorded organic carbon content.

This study presents both organic carbon content (mg/g of sediment)
and organic carbon stocks (kg m?) in sediments surrounding these
decommissioned platforms. By calculating organic carbon stocks (which
include porosity and dry bulk density) (Graves et al., 2022) this provides
a more comprehensive understanding of carbon dynamics than content
alone. Carbon stock values are a useful indicator of how sediment
composition affects carbon content. Uniquely, unlike other carbon stock
assessments this study provides mass accumulation rates for the North
West Hutton site, allowing quantification of the rate that carbon accu-
mulates over time (g cm 2 yr’l) which is rarely directly measured in
offshore shelf sediment, with the exception of de Haas (1997) and Ler-
ida-Toro et al. (2022). Comparing carbon stocks between the two sites
was limited by poor resolution of sediment core depths at the Miller
decommissioned platform, necessitating the extrapolation of stock
measurements from shallow core depths. Despite this, a clear trend was
still seen at this site with significantly higher carbon content at the 50 m
distance. Furthermore, due to limitations in sampling opportunities, this
study was unable to fully disentangle the effects of decommissioning on
sedimentary carbon stocks without pre-decommissioning sample
collection.

4.2. Naturally occurring radioactivity from legacy oil and gas produced
water discharges and impact on sedimentation rate estimations

Elevated levels of 22°Ra were observed in the top 10 cm fraction of
the cores collected within 200 m from North West Hutton likely
reflecting the legacy discharge of produced water during the platform’s
operational phase (Olsgard and Gray, 1995; Ahmad et al., 2021). While
the radiological and chemical impacts of these industrial contaminants
on benthic communities remain unclear, these site-specific signatures
offer a powerful tool for assessing the spatial and temporal extent of the
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impact of wastewater contamination to nearby sediment and help esti-
mate sedimentation rates near oil and gas platforms.

The combination of 22°Ra and Ba concentrations provides a novel
tool in environmental forensic science to determine the impact of
offshore oil and gas platforms on local sedimentary processes in the
North Sea. This method may overcome limitations associated with
traditional nuclear tracers like '*’Cs (from Chernobyl and Sellafield),
which are less effective offshore due to multiple sources and low con-
centrations (Arias-Ortiz et al., 2018). Determining offshore carbon
accumulation rates remains a constraint on UK shelf sea carbon budgets
(Luisetti et al., 2019). Currently, there are few novel forensic approaches
including less conventional nuclear derived isotopes such as %I, but
these approaches are generally limited to specific UK marine regions
(Lérida Toro et al., 2022). As demonstrated in this study, using known
operational timelines of offshore platforms allows the tracking of sedi-
mentation and carbon accumulation rate in recent timescales. While
current carbon stock measurements offer valuable insight into carbon
dynamics, accurate accumulation rates are essential for understanding
temporal changes and improving carbon budget estimates for the UK
shelf (Graves et al., 2022; Luisetti et al., 2019). In turn, we can disen-
tangle the long-term impacts of man-made structures from other
anthropogenic activities and determine how carbon stock dynamics vary
across the shelf in an area of ocean which has historically had a poor
resolution of mass accumulation of sediment.

Mass accumulation rates could not be determined accurately for
sediment cores taken within 400 m of North West Hutton through
traditional lead-210 measurement by gamma spectrometry, as these
sediments showed elevated levels of heavy metals, including Pb and Ba
causing high levels of matrix self-attenuation during gamma counting
(Dal Molin et al., 2018). In this context, the use of the alternative alpha
spectrometric method for measuring polonium-210, 210po, a direct
decay product of 2'°Pb, would offer a more suitable analytical
alternative.

4.3. Influence of drill cuttings pile

Both sites sampled in this study exhibit extensive drill cutting piles
near the decommissioned structures, resulting from drilling operations
that return hydrocarbon-rich rock to the seafloor (Ball et al., 2012). Drill
cuttings often consist of drilling fluids (oil-based fluids, synthetic fluids,
and water-based fluids) depending on the age of the structure and the
drilling practice at the time of construction (Breuer et al., 2004). The
higher mud content close to each site, and the subsequent change in
sediment composition to finer, carbon rich particles, could be due to
drill cuttings, which remain close to the drilling well (Breuer et al.,
2004). At North West Hutton, wells were drilled with two types of
drilling fluid, water-based fluids, for shallower (1000 m) sections of the
well, and oil-based fluids for deeper drilling (BP, 2005). Similarly, at
Miller, oil-based fluids were used throughout production as drilling
fluids (Aquatera Ltd, 2007). Despite the presence of oil-based drilling
fluid within drill cuttings piles at North West Hutton, organic carbon
content at 50 m to 100 m was similar to 800 m to 3200 m, indicating that
the pile had little effect on carbon content likely due to the final trawling
operations during decommissioning (BP, 2005) that would resuspend
and disperse carbon enriched sediment. Conversely, Miller showed
elevated organic carbon at 50 m suggesting possible enrichment from
the cutting’s pile. However, the influence of elevated hydrocarbons on
sediment carbon storage from drill cutting piles was determined as an
insignificant proportion of total organic carbon from measurements
from the UK Benthos Database (Offshore Energies UK, 2015) (Supple-
mentary Fig. 2). Determining the contaminant composition and hydro-
carbon influence on carbon stored around oil and gas decommissioned
platforms would help identify the effect of drill cuttings piles on local
microbes and fauna involved in carbon cycling.
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4.4. Local current regime

Organic carbon stocks vary between direction of transects, particu-
larly at North West Hutton. One potential influence is the local hydro-
dynamics. A study by Klunder et al. (2018) observed a ‘shadow’ effect at
the L7A decommissioned platform in the southern North Sea where the
predominant current direction dictated a depleted gradient of total
organic carbon with increasing distance; explained by a biofilter effect
of epifauna and acceleration of flow due to the physical structure
causing a deposition of particles at greater distance. However, North
West Hutton is located on the edge of the North East Atlantic Current
and only experiences small residual currents below 0.1 m/s (De Domi-
nicis et al., 2018; Winther and Johannessen, 2006) with a maximum
current speed of 0.43 m/s at the seabed (BP, 2005). Therefore, it is
unlikely that hydrodynamics was the driver in different benthic mea-
surements. Despite being affected by the Fair Isle/Dooley current, very
little difference in organic carbon was seen between the North and South
transects at Miller. However, hydrodynamics would likely play a larger
role in more dispersive environments, such as the Southern North Sea,
where the ‘shadow’ effect has previously been recorded (Klunder et al.,
2018), and where drill cuttings piles do not persist due to dispersive
hydrodynamics.

5. Conclusion

In conclusion, this study finds that carbon dynamics around
decommissioned platforms are site specific and therefore extrapolating
carbon dynamics from one or two decommissioned sites across the North
Sea is not recommended. Decommissioning practice and activity may
have an impact on organic carbon stocks and dynamics within surface
sediments; however, this requires sampling pre and post decom-
missioning to disentangle the effects. Future work could include carbon
stock, sediment composition, and carbon accumulation assessments
during all phases of oil and gas activity to determine the overall effect of
these structures on sedimentary blue carbon throughout their opera-
tional and then decommissioning lifespan. By sampling pre-
construction, during operational phase and pre- and post-
decommissioning could provide greater insight into the effect of oil
and gas activity on sedimentary blue carbon. This would also give an
insight into OSPAR mandatory decommissioning; partial removal may
reduce the impact on sedimentary blue carbon and maintenance of a
small-scale exclusion zone at specific sites could provide protection for
this elevated carbon.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.marpolbul.2025.118250.
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