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A Summary of the Work 

Chronic pain (CP) imposes significant burdens on individuals and healthcare systems. 

Identifying its risk factors is essential for informing prevention and intervention strategies. 

While socioeconomic inequalities in health are well-established, the relationship between 

socioeconomic status (SES) and CP, particularly its mechanisms, remains underexplored. 

Given CP's strong link to chronic stress dysregulation, incorporating biomarkers into research 

provides critical insights. Biological processes such as allostatic load (AL) and hypothalamic-

pituitary-adrenal (HPA) axis dysregulation illuminate how SES might contribute to CP, while 

the lifecourse model contextualizes how exposures across life stages influence CP risk. 

However, these frameworks remain underutilized in pain research.  

 

This study addressed CP through four aims: (1) assessing AL’s prospective association with CP 

outcomes, (2) examining HPA axis dysfunction, measured by diurnal salivary cortisol rhythms, 

and CP outcomes, (3) exploring the lifecourse SES-CP relationship, and (4) evaluating AL and 

salivary cortisol rhythms as mediators. Data from the MIDUS study provided longitudinal 

evidence spanning 20 years.  

 

Findings revealed that metabolic dysregulation in AL predicted high interference CP and pain 

in three or more sites. Individuals without baseline CP but with blunted diurnal cortisol slopes 

were more likely to develop pain in three or more sites after seven years. Chain-of-risk models 

showed that adult SES mediated the effects of early-life disadvantage on cortisol dynamics 

and AL phenotypes. Lifecourse SES was directly associated with CP interference via recent SES, 

while its link to CP widespreadness appeared contingent on multimorbidity. Chronic stress 

biomarkers did not mediate these relationships. These results underscore the roles of chronic 
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stress dysregulation and SES disparities in shaping CP outcomes. Addressing these factors 

through targeted interventions can enhance prevention and management. Lifecourse SES 

perspectives and stress biomarkers offer valuable insights into CP, informing precise 

strategies for its mitigation. 
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Abstract 

Each year, chronic pain (CP) significantly impacts various aspects of life and imposes a 

substantial burden on healthcare systems. Identifying risk factors for CP is crucial to alleviate 

the burden on individuals, inform preventive and interventional medical strategies, and 

reduce public health demands. While research has established socioeconomic inequalities in 

disease prevalence, studies examining the relationship between socioeconomic status (SES) 

and CP within the general population remain limited. In particular, limited research has 

addressed whether and how SES is associated with chronic pain. Given the close link between 

CP and dysregulated chronic stress, epidemiological survey data incorporating biomarkers 

offers new opportunities to explore this association. Investigating biomarkers of chronic 

stress dysregulation in relation to CP not only provides insight into how SES may contribute 

to CP but also adds valuable risk factor information to the broader field of pain epidemiology, 

aiding the development of precise pain management. Additionally, the lifecourse model, 

which explains the origins of chronic diseases by outlining how disease risk exposures at 

various life stages relate to future disease outcomes, holds promise for informing optimal 

timing for interventions. However, this model has not been thoroughly examined in the 

context of chronic pain. 

 

The first and second aims of this paper are to examine the associations between CP and 

biomarkers of chronic stress dysregulation. Typically, chronic stress dysregulation is reflected 

in dysregulation within the hypothalamic-pituitary-adrenal (HPA) axis and multisystem 

dysregulation, with the latter commonly measured through allostatic load (AL). These two 

investigations are essential, not only because they represent different mainstream 

measurements of chronic stress dysregulation but also because they provide detailed 
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information on how localized and multisystem stress dysregulation may contribute to chronic 

pain, enriching prevention strategies. The third and fourth aims of this study investigate the 

association between lifecourse SES and CP, and separately examine the potential mediating 

roles of AL and salivary cortisol. 

 

To address these aims, we utilized different samples from the MIDUS study. Aim 1 examined 

the prospective relationship between AL, measured in the Biomarker Project of MIDUS 2 

(2004-2006), and CP in MIDUS 3 (2013-2014). Aim 2 investigated the link between HPA axis 

dysregulation, as measured in the National Study of Daily Experiences (NSDE) of MIDUS 2, and 

CP in MIDUS 3. Aims 3 and 4 assessed the association between lifecourse SES and CP using 

three waves of MIDUS data spanning 20 years, with separate analyses examining the 

mediating roles of AL and salivary cortisol. 

 

For Aim 1, findings indicated that metabolic dysregulation phenotypes in AL were 

prospectively associated with high interference CP and with pain at three or more sites. In 

Aim 2, we found that among individuals without baseline chronic pain, those with blunted 

early and mid post-wake diurnal cortisol slopes (DCSs) had higher odds of developing pain in 

three or more regions approximately seven years later. In Aims 3 and 4, findings supported 

chain-of-risk models linking SES with the mid post-wake DCS and the cortisol dynamic range 

(CDR), suggesting that proximal adult socioeconomic disadvantage mediates the adverse 

effects of early-life disadvantage and directly impacts these cortisol indicators. Additionally, 

we identified a risk chain for metabolic dysregulation phenotypes in AL, with both childhood 

and recent SES directly linked to these phenotypes. Our results further substantiated a chain-

of-risk model connecting lifecourse SES with CP interference, highlighting the mediating role 
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of recent SES. For CP widespreadness, we found that the relationship between lifecourse SES 

and the number of pain sites may be contingent on the degree of multimorbidity. However, 

no mediating role of chronic stress biomarkers was observed. 
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1 Introduction 

1.1 What is chronic pain and what are its consequences? 

According to the International Association for the Study of Pain (IASP), pain is defined as "an 

unpleasant sensory and emotional experience associated with, or resembling that associated 

with, actual or potential tissue damage" (Raja et al., 2020). CP, on the other hand, is defined 

as pain that persists or recurs for longer than three months (Nicholas et al., 2019) according 

to IASP. Compared to the current definition, the previous definition of CP described it as "pain 

that persists past normal healing time" (Bonica and Hoffman, 1954). This earlier definition of 

pain and by extension, CP, implicitly acknowledges that CP originates from an initial injury or 

condition but is less explicit about the emotional aspects of pain or the possibility of CP 

occurring without an initial injury (Treede et al., 2019). These limitations in the early pain and 

CP definitions have been acknowledged and addressed in the current defintions. 

 

The updated definition of pain reflects a further distinction between types of pain and 

signifies a shift in pain management from the traditional biomedical model to a 

biopsychosocial model. Chronic primary pain refers to pain persisting or recurring in one or 

more anatomical regions for more than three months, accompanied by significant emotional 

distress or functional disability, and cannot be better explained by another chronic pain 

condition (Nicholas et al., 2019). The diagnostic classifications within this group are divided 

into chronic widespread pain, complex regional pain syndromes, chronic primary headache 

and orofacial pain, chronic primary visceral pain, and chronic primary musculoskeletal pain 

(Treede et al., 2019). Chronic secondary pain syndromes, on the other hand, are associated 

with other diseases where pain arising as a symptom secondary to an underlying disease or 
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medical condition. Chronic secondary pain syndromes include chronic cancer-related pain, 

chronic postsurgical or posttraumatic pain, chronic neuropathic pain, chronic secondary 

headache or orofacial pain, chronic secondary visceral pain, and chronic secondary 

musculoskeletal pain (Treede et al., 2019). 

 

Pain is subjective and personal, making self-reporting the most commonly used method for 

its assessment (Fillingim et al., 2016). Evaluations of pain encompass various domains, such 

as pain intensity and pain impact. Categorical scales, numerical rating scales, visual analog 

scales, the Faces Pain Scale (McGrath et al., 2008), the Brief Pain Inventory (Keller et al., 2004), 

and the Graded Chronic Pain Scale (Von Korff et al., 1990) are commonly used to measure 

pain intensity or pain impact. Other tools including the McGill Pain Questionnaire (Katz and 

Melzack, 2011), PainDetect (Freynhagen et al., 2006), the Neuropathic Pain Scale (Galer and 

Jensen, 1997), the Neuropathic Pain Symptom Inventory (Bouhassira et al., 2004), the Leeds 

Assessment of Neuropathic Symptoms and Signs (Bennett, 2001), and the Dolour 

Neuropathique-4 Questions (DN4). are used to measure perceived attributes of pain 

(Bouhassira et al., 2005). In addition, other pain assessments consider the temporal 

characteristics of pain, such as duration (e.g., time since chronic pain onset in months or years) 

and variability (e.g., the presence or absence of pain and fluctuations in its intensity over time). 

They also examine pain location and bodily distribution, often through pain drawings, as well 

as provocative pain measures and pain behaviors, such as straight leg raising, digital palpation, 

facial expressions, and actions like limping, guarding, or bracing (Fillingim et al., 2016). 

 

CP and its poor prognosis are the primary cause of years lost to disability among Americans 

(US Burden of Disease Collaborators et al., 2018). In 2016, it was estimated that over fifty 
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million American adults experienced CP. By 2021, approximately 20.9% of American adults 

(51.6 million people) were reported to have experienced CP, with 6.9% (17.1 million people) 

suffering from high-impact CP, which significantly restricts daily activities and involves greater 

pain intensity (Rikard et al., 2023). CP imposes a substantial economic burden on both the 

public health system and individuals. For instance, a report by the Institute of Medicine in 

2010 estimated that CP incurs annual costs ranging from $560 billion to $635 billion in medical 

expenses and productivity losses (Steglitz et al., 2012). 

 

Furthermore, beyond the economic implications, CP exacerbates broader personal and 

societal challenges in the United States. Among CP patients, there is an increased prevalence 

of anxiety and depression, accompanied by observed reductions in brain gray matter, which 

are associated with alterations in emotional regulation and cognition (Bushnell et al., 2015). 

Additionally, research consistently reports a decline in the overall quality of life, deterioration 

in interpersonal relationships, and impaired workplace performance among CP patients (Fine, 

2011; Meints and Edwards, 2018). Given the impacts of CP on individual well-being, public 

health, and the economy, continued research on etiology of CP is critical. Understanding the 

mechanisms of CP, as well as identifying effective interventions, is crucial for improving the 

prognosis and quality of life for those affected. The ongoing rise in CP prevalence, coupled 

with its connection to psychological distress and functional limitations, underscores the 

urgency to explore new strategies for prevention and treatment. Furthermore, with CP 

contributing to societal issues like reduced workplace productivity and increased mental 

health concerns, addressing this condition is essential to alleviating its broader social and 

economic burdens. 
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In recent years, the rising all-cause mortality rate among middle-aged Americans and the 

declining life expectancy in the U.S. have garnered significant public concern (Woolf and 

Schoomaker, 2019). Leading contributors to this trend are drug overdoses, alcohol-related 

deaths, and suicides, collectively referred to as "deaths of despair" (Case and Deaton, 2017). 

These deaths have been linked to several socioeconomic factors, including persistent trade 

deficits, ongoing deindustrialization, and long-term economic decline, particularly affecting 

industrial workers with lower educational attainment (Case and Deaton, 2022). The absence 

of robust social safety nets and the unique market for opioids and other drugs further 

exacerbate this sense of despair (King et al., 2022). The rising prevalence of CP parallels the 

trends in deaths of despair, with the rate of adult pain increasing steadily since the 1990s 

(Grol-Prokopczyk, 2017; Zajacova et al., 2021a; Zimmer and Zajacova, 2018). In this context, 

CP is increasingly recognized as a significant contributor to the epidemic of despair, both as a 

direct and indirect driver of these deaths (Macchia, 2023). 

 

CP contributes to deaths of despair not only through its debilitating physical effects but also 

through its profound social and psychological consequences. For many, CP leads to 

unemployment, disability, and social isolation, which, in turn, increase the risk of suicide, 

substance abuse, and alcohol dependency (Racine, 2018). The link between CP and mental 

health is well-documented, with pain often triggering or exacerbating anxiety and depression 

(Fonseca-Rodrigues et al., 2022), both of which are closely tied to suicidality. Furthermore, CP 

is strongly associated with substance use disorders, including opioid and alcohol dependence 

(Egli et al., 2012; Martel et al., 2018). As CP patients turn to opioids or alcohol for relief, they 

become more vulnerable to drug overdose and alcohol-related deaths, further fueling the 

deaths of despair crisis. Addressing the rising burden of CP is therefore critical to mitigating 
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deaths of despair. Providing better pain management, access to mental health services, and 

economic support for those disabled by pain may potentially reduce the incidence of these 

preventable deaths. Given the substantial consequences of CP, identifying modifiable risk 

factors for CP may add information to pain prevention and management. 

1.2 Confounders, colliders, mediators, and moderators  

1.2.1 Confounders 

Four key concepts are confounders, colliders, mediators, and moderators, each describing a 

distinct way a third variable can influence the relationship between an exposure and an 

outcome. Understanding these roles is essential for robust study design, accurate associations, 

and meaningful interpretation of findings in social epidemiologic research on CP.  

 

In epidemiology, a confounder is classically defined as an extraneous variable that is 

associated with both the exposure and the outcome, but is not on the causal pathway 

between them. Because a confounder influences both variables of interest, it can create a 

spurious association or mask a true relationship if not properly controlled. In other words, the 

presence of a confounder can mix up the effects, making it unclear whether the exposure 

truly affects the outcome or if the observed association is partly or wholly due to the 

confounding factor. To qualify as a confounder, a variable generally must: (1) be correlated 

with the exposure, (2) have a causal (or at least independent) influence on the outcome, and 

(3) not be a result of the exposure (Morabia, 2011). When these conditions hold, failure to 

account for the confounder can bias the estimated exposure-outcome relationship. 
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By controlling for confounders, researchers remove the backdoor paths of spurious 

association and obtain a clearer estimate of the true causal effect of the exposure on the 

outcome. Neglecting a confounder can lead to biased conclusions, for instance, overstating 

the effect of exposures on pain when in reality part of that observed effect was due to 

unmeasured factors. Conversely, over-adjusting for variables that are not true confounders 

can attenuate or distort the effect estimates (Gao et al., 2025). In sum, accounting for 

confounders improves the internal validity of studies and strengthens confidence that an 

observed association reflects a likely causal relationship rather than a mere correlation due 

to some third factor. 

1.2.2 Colliders 

A collider is the conceptual opposite of a confounder. While a confounder is a variable that 

influences both the exposure and the outcome, a collider is influenced by both, it is a common 

effect of two variables, often the exposure and outcome. In causal diagrams, a collider 

appears where two arrows converge. Crucially, while failing to control for a confounder can 

bias results, controlling for or conditioning on a collider can also introduce bias, but for the 

opposite reason. Conditioning on a collider induces a spurious association between its causes, 

even if no true causal relationship exists between them. In epidemiology, this is known as 

collider bias, a type of selection bias that arises when analysis is restricted to individuals 

selected based on a variable that lies downstream of both the exposure and outcome (Hernán 

and Monge, 2023). 

 

A classic illustration of collider bias can be seen in the context of U.S. college admissions. 

Among admitted students, there often appears to be an inverse relationship between 
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academic aptitude and athletic ability, that is, students with strong academic records tend to 

be less athletically inclined, and vice versa. However, this observed association is not 

necessarily causal; rather, it reflects the effect of conditioning on a collider. Since both 

academic ability and athletic talent can independently increase a student's likelihood of 

admission, restricting analysis to admitted students (i.e., conditioning on college admission) 

introduces a non-causal, negative association between these two traits (Griffith et al., 2020). 

1.2.3 Mediators and moderators 

A mediator is an intermediate variable that transmits the effect of the exposure to the 

outcome. In a causal sequence X→M→Y, the mediator M lies on the pathway from X to Y, 

meaning that X affects M, which in turn affects Y (Rijnhart et al., 2021). Understanding 

mediators is crucial for explaining how or why an exposure influences an outcome. Each 

validated mediator adds a layer of explanation to the biopsychosocial model, telling us how 

an upstream factor gets under the skin to influence CP. Identifying mediators allows 

researchers to unpack the black box between cause and effect and can suggest targets for 

intervention. It is important to note that mediators should not be adjusted for in analyses that 

aim to estimate the total effect of an exposure on outcome, because doing so blocks the very 

pathway through which the effect operates (Schisterman et al., 2009). Adjusting for a 

mediator would remove part of the causal effect. Instead, mediators are typically examined 

in mediation analyses to decompose total effects into direct and indirect components.  

 

A moderator is a variable that alters the strength or direction of the relationship between an 

exposure and an outcome. In statistical terms, a moderator is involved in an interaction effect: 

the effect of X on Y depends on the level or value of the moderator Z. Unlike a mediator, a 
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moderator is not on the causal pathway between X and Y, but rather influences the magnitude 

of the X→Y association under different conditions. Epidemiologists often refer to this as effect 

modification, the effect of the exposure is modified by another factor. Identifying moderators 

is key to understanding for whom or under what conditions an exposure has a larger or 

smaller impact. This has practical importance as it can reveal vulnerable subgroups or suggest 

that interventions might need tailoring based on patient characteristics. 

1.3 Biomarkers of chronic stress: potential risk factors and mediators for CP 

Biological processes not only serve as proximal risk factors for disease but also act as 

mediators that link a wide range of psychosocial risk factors with disease outcomes. Biological 

investigations of CP have largely been conducted in laboratory settings, as well as within 

small-scale and clinical samples, which poses challenges to the generalizability of the results 

(Harris et al., 2008). In recent years, the collection of biomarkers in population-based 

epidemiological and social surveys has aided in addressing the objectives of the National Pain 

Strategy, which aims to identify risk factors for CP across populations (Interagency Pain 

Research Coordinating Committee, 2022). Although the underlying mechanisms of CP remain 

unclear, numerous studies suggest that stress dysregulation due to chronic stress may be an 

etiological risk factor for CP (Woda et al., 2016). 

1.3.1 Biological response to chronic stress 

An organism's response to stress involves a coordinated cascade of neuroendocrine and 

autonomic processes aimed at promoting adaptation and survival. Upon perceiving a stressor, 

the sympathetic nervous system (SNS) is rapidly activated via projections from the locus 

coeruleus and brainstem nuclei. This initiates the "fight or flight" response, characterized by 

increased heart rate, vasoconstriction, bronchodilation, and energy mobilization, largely 
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mediated by the adrenal medulla’s secretion of catecholamines, adrenaline (epinephrine) and 

noradrenaline (norepinephrine) (McEwen, 2007).  

 

Simultaneously, the hypothalamic-pituitary-adrenal (HPA) axis is engaged. The 

paraventricular nucleus (PVN) of the hypothalamus secretes corticotropin-releasing hormone 

(CRH) and arginine vasopressin (AVP) into the hypophyseal portal system, stimulating the 

anterior pituitary to release adrenocorticotropic hormone (ACTH) into systemic circulation. 

ACTH then acts on the adrenal cortex, promoting synthesis and secretion of cortisol, the 

primary glucocorticoid in humans (Herman and Cullinan, 1997). Cortisol helps maintain 

energy supply by increasing glucose levels. Cortisol also exerts negative feedback on both the 

hypothalamus and pituitary, reducing CRH and ACTH output through binding to glucocorticoid 

receptors (GRs) in these regions, thereby attenuating the stress response once the stressor is 

removed. Meanwhile, the parasympathetic nervous system (PNS), primarily through vagal 

activation, serves to restore autonomic balance by promoting digestive activity, reducing 

cardiovascular arousal, and supporting recovery processes (Thayer and Sternberg, 2006). This 

dynamic interplay between SNS activation, HPA-axis modulation, and PNS-mediated 

restoration ensures the body mounts an efficient acute stress response while returning to 

baseline once safety is re-established.
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Figure 1-1 The hypothalamic-pituitary-adrenal axis pathway activated during stress 

(Kim, 2024) 

 

The hypothalamic-pituitary-adrenal (HPA) axis and autonomic pathways activated during stress: 
External stressors (physical or psychological) trigger the hypothalamus to secrete corticotropin-
releasing hormone (CRH) along with arginine vasopressin (AVP). CRH and AVP released from the 
hypothalamic paraventricular nucleus act on the anterior pituitary, stimulating the release of 
adrenocorticotropic hormone (ACTH). In turn, ACTH enters the circulation and prompts the adrenal 
cortex to synthesize and secrete glucocorticoid hormones (cortisol in humans). As cortisol levels rise, 
they exert negative feedback on the HPA axis: cortisol binds to glucocorticoid receptors in the 
hypothalamus and pituitary, suppressing further CRH and ACTH release.  
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However, the repeated and long-standing activation of the stress response system is harmful, 

a condition well described by dysregulations of the HPA axis and by the framework of 

allostatic load (AL). Prolonged activation of the HPA axis leads to sustained secretion of 

cortisol, which over time disrupts negative feedback regulation by impairing GR sensitivity 

and downregulating receptor expression in key brain regions such as the hippocampus and 

hypothalamus (Fries et al., 2005; McEwen and Gianaros, 2010). This impaired feedback loop 

results in inadequate suppression of CRH and ACTH, perpetuating hypercortisolemia and 

altering circadian rhythms of cortisol release. Initially, such dysregulation often presents as 

HPA-axis hyperactivity, but over time may transition to hypoactivity (Fries et al., 2005). In 

parallel, the autonomic nervous system undergoes maladaptive shifts. The SNS remains 

persistently activated, maintaining elevated norepinephrine and epinephrine levels, while the 

PNS becomes less effective in restoring homeostasis (McEwen and Seeman, 1999). This 

reduced vagal tone has been associated with poorer emotion regulation, increased 

inflammatory tone, and reduced cardiovascular flexibility. Research has found that 

dysregulation of the HPA axis is associated with various clinical outcomes (Miller et al., 2007).  

 

Another concept reflecting chronic stress dysregulation is AL, which encompasses 

information about HPA axis dysregulation while additionally incorporating the long-term 

consequences of chronic stress, broadly involving dysregulation across downstream systems. 

AL refers to the cumulative wear and tear on the body and brain resulting from ongoing 

efforts to adapt to environmental demands (McEwen and Stellar, 1993). Changes in the core 

response systems, including the HPA axis, SNS and PNS, significantly affect the downstream 

systems.  
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Prolonged HPA axis activation leads to sustained cortisol secretion, which, while initially 

adaptive, can promote metabolic disturbances when chronically elevated, contributing to 

insulin resistance, visceral adiposity, and dyslipidemia (McEwen and Seeman, 1999). 

Importantly, chronic stress does not uniformly lead to hypersecretion; over time, some 

individuals exhibit hypoactivity of the HPA axis, including flattened diurnal cortisol rhythms 

or glucocorticoid resistance at the receptor level. Such dysregulation may paradoxically 

enhance pro-inflammatory signaling, since glucocorticoids normally exert anti-inflammatory 

effects (Hannibal and Bishop, 2014). Persistent SNS hyperactivation increases cardiac output 

and vascular tone, raising heart rate and blood pressure, thus burdening the cardiovascular 

system and promoting atherogenesis (Seeman et al., 2010). At the same time, blunted PNS 

activity impairs the body's capacity to return to baseline, leaving it in a persistent state of 

physiological arousal and compromised recovery (Thayer and Lane, 2007). This imbalance 

between activation and restoration constitutes a key mechanism underlying allostatic burden.  

 

Collectively, these physiological changes constitute the secondary outcomes of allostatic load 

and have measurable impacts on various downstream systems, including metabolic (e.g., 

glucose and lipid regulation), immune (e.g., inflammation), cardiovascular (e.g., blood 

pressure), and even neural (e.g., hippocampal atrophy) domains. A recent systematic review 

reaffirmed that higher AL index scores are consistently associated with adverse outcomes 

across a range of conditions, including cardiovascular disease, diabetes, cognitive decline, and 

premature mortality (Guidi et al., 2021). Thus, AL offers a powerful integrative model for 

linking chronic psychosocial stress to long-term physiological dysregulation and adverse 

health outcomes. It also provides a valuable conceptual bridge between biological embedding 

of stress and the development of complex, stress-related chronic conditions such as CP. 
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1.3.2 Two proposed biological risk factors of chronic stress for CP: HPA axis 

dysfunction and AL 

Regarding CP research, separate examinations of HPA axis dysfunction and systematic stress 

response dysregulation will add to current epidemiological studies of CP. The dysregulation 

of the HPA axis and AL are primary biomarkers for measuring chronic stress dysregulation. 

Therefore, studying the associations between HPA axis dysregulation, AL, and CP separately 

is essential. According to the AL framework, HPA axis dysregulation marks the onset of 

multisystem dysregulation, while AL may reflect a state of prolonged chronic stress 

dysregulation. Their associations with CP could provide additional insights into the 

chronicization of pain. 

 

HPA axis is a primary stress response system and recent meta analysis has suggested trends 

toward specific deviations of HPA axis in CP patients (Beiner et al., 2023). The dysregulation 

of the HPA axis transitions from a state of hyperactivity to hypoactivity (Fries et al., 2005). 

This process is typically accompanied by the downregulation or resistance of glucocorticoid 

receptors and an increased affinity of cortisol for mineralocorticoid receptors, both of which 

are closely associated with chronic inflammation (Hannibal and Bishop, 2014). Furthermore, 

during the attenuation of HPA axis activity, antagonistic effects of the HPA axis on 

catecholamines is weakened, exacerbating inflammation in conjunction with the 

aforementioned conditions (Fries et al., 2005; Hannibal and Bishop, 2014). Inflammation is 

often directly related to pain perception (Ji et al., 2018). Moreover, genes related to the HPA 

axis play a crucial role in regulating stress responses and glucocorticoid signaling. Genetic 

variations in these genes are closely associated with the development of CP. For instance, the 
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methylation of HPA axis genes such as pro-opiomelanocortin and corticotropin-releasing 

hormone binding protein can predict the progression of CP (Branham et al., 2023). 

Additionally, impaired glucocorticoid receptor function leads to a failure to inhibit nuclear 

factor-κB (Pavlov et al., 2003), resulting in the transcription of algogens such as cytokines, 

growth factors, and chemokines like CCL2, which trigger inflammation and stimulate or 

sensitize nociceptors, inducing central sensitization and hyperalgesia (Kawasaki et al., 2008; 

Walsh and McWilliams, 2014). In addition, chronic inflammation linked to HPA axis 

dysregulation further enhances the excitability of sensory transmission pathways, leading to 

peripheral and/or central nervous system sensitization (Veldhuijzen et al., 2018). This 

increases synaptic efficiency and reduces inhibition, amplifying pain responses, and can allow 

low-threshold sensory inputs to activate pain circuits even in the absence of inflammation 

(Woolf, 2011). 

 

In addition to HPA axis, AL encompasses a broader range of biological responses to stress, 

emphasizing the cumulative burden of chronic stress from a holistic perspective. Evidence 

suggests a substantial overlap between AL and CP in physiological and biological 

manifestations (Borsook et al., 2012; Woda et al., 2016). For example, dysfunctions in HPA 

axis, SNS, PNS, and immune system, which are manifestations of AL, are often observed in CP 

patients (Juster et al., 2010; Woda et al., 2016). Although the field has not yet reached a 

consensus on how the systematic stress response results in CP, peripheral and central 

sensitization is thought to be a possible mechanism (Veldhuijzen et al., 2018). For example, 

AL often comes with changes in the central nervous system's processing of pain (Apkarian et 

al., 2011). This includes alterations in the function and connectivity of brain regions involved 

in pain perception, such as the amygdala, prefrontal cortex, and anterior cingulate cortex 
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(Zambreanu et al., 2005). These changes can result in central sensitization, where the central 

nervous system becomes more responsive to pain signals, leading to an amplification of pain 

(Woolf, 2011). In addition, inflammation is extensively connected to various dysregulated 

stress response systems (Veldhuijzen et al., 2018), during which immune cells release pro-

inflammatory cytokines (such as IL-1β, TNF-α, and IL-6), chemokines, and growth factors that 

sensitize nociceptors (Ji et al., 2014), contributing to pain. Chronic stress also disrupt 

cardiovascular and metabolic systems, potentially amplifying spinal nociception by weakening 

the descending inhibition of spinal pain processing, which is closely related to heightened pain 

perception (Rhudy et al., 2021). 

 

HPA axis dysregulation and AL represent distinct but interrelated manifestations of the 

chronic stress response, each carrying important implications for understanding and 

managing CP. HPA axis dysregulation may serve as an early indicator of maladaptive stress 

responses (Juster et al., 2010), highlighting potential targets for timely interventions before 

long-term and widespread physiological damage occurs. By contrast, AL reflects the 

cumulative and systemic impact of ongoing stressors, encompassing widespread alterations 

across multiple biological systems. Investigating these two processes individually allows us to 

identify both the initial signs of dysregulation and the subsequent, more entrenched 

physiological consequences. From an epidemiological and public health perspective, 

understanding HPA axis dysregulation can inform early prevention strategies, improve clinical 

detection of populations at heightened risk, and guide the development of targeted 

behavioral and pharmacological therapies. Similarly, recognizing the evolution of AL offers 

insights into the mechanisms by which chronic stress contributes to downstream health 

complications, including CP, thus underscoring the need for comprehensive, long-term 
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interventions and policies aimed at reducing stress-related disease burden in the community. 

In summary, biomarkers related to chronic stress may serve as an intermediary mechanism 

linking distal risk factors to CP outcomes, offering a potential pathway to deepen the 

understanding of CP etiology. 

1.4 Theoretical framework on the association between socioeconomic status and 

health 

In recent years, the growing socioeconomic disparities in CP have garnered increasing 

attention. Understanding the potential mediating mechanisms linking SES and CP can inform 

the development of effective interventions to curb the prevalence of CP, with biological risk 

factors associated with chronic stress dysregulation being possible mediators. The prevalence 

of CP in the United States has followed a pattern where the most socioeconomically 

disadvantaged individuals suffer from more severe CP, with the situation worsening as the 

macroeconomic conditions deteriorate (Case and Deaton, 2022; King et al., 2022; Zajacova et 

al., 2021b). The origins of sociological studies on health can be traced back to the work of 

Émile Durkheim, whose research demonstrates that economic instability can lead to a state 

of anomie, increasing rates of suicide and other social pathologies (Durkheim, 2002). 

Following this perspective, socioeconomic instability may be related to an individual's health 

status. 

 

The concept of socioeconomic status (SES) originated from the works of social theorists Karl 

Marx and Max Weber. Marx posited that an individual’s social class is determined by their 

relationship to the means of production (Galobardes et al., 2007). Those who own the means 

of production occupy higher social class positions (Krieger et al., 1997). In contrast, Weber 
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expanded the definition to include not only economic status but also social status and political 

power. Weber proposed that disparities in economic opportunities, knowledge, and skills lead 

to differences in 'life chances,' resulting in unequal probabilities of individuals accessing 

specific economic goods (Lynch and Kaplan, 2000; Weber, 2009). SES has long been viewed 

as a fundamental cause of chronic disease inequalities (Phelan et al., 2010). In the field of 

social epidemiology, the fundamental cause theory (FCT)  plays a dominant role in explaining 

the origins and disparities of chronic diseases. The FCT posits that individuals with higher SES 

possess more flexible resources, including knowledge, money, power, prestige, and beneficial 

social connections, enabling them to avoid health risks, thereby creating health disparities 

among groups (Clouston and Link, 2021; Phelan et al., 2010).  

 

With the advancement of social epidemiology, new supplements to the theory of 

fundamental causes have emerged continuously. These new theoretical frameworks even 

extend to explaining the social stratification of infectious diseases, with the social history 

theory being a notable example. This theory encompasses explanations for the 

socioeconomic disparities observed in both infectious and chronic diseases. The social history 

theory, with its inflection point approach, proposes that temporal differences in the 

availability of new knowledge or technologies rooted in the SES hierarchy contribute to health 

inequalities (Clouston and Link, 2021). Specifically, diseases transition through four patterns 

in prevalence or mortality. At the onset of a disease outbreak, all social groups face similarly 

high levels of risk due to the limited availability of knowledge regarding its prevention and 

treatment. As new knowledge or technology diffuses disproportionately and at different 

paces between SES groups, the gaps in prevalence and prognosis will increase. Eventually, as 

innovations spread more widely and deeply, the inequalities will decrease and ideally be 
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eliminated (Clouston et al., 2016). For instance, greater access to colonoscopy screenings and 

the ability of individuals with higher SES to shelter in place and practice social distancing 

contribute to disparities in colorectal cancer mortality and COVID-19 prevalence, respectively, 

particularly during the early stages of disease-related knowledge dissemination. With the 

widespread adoption of colonoscopy, the deepening public awareness of social distancing, 

and the broad distribution of vaccines, mortality rate disparities have gradually diminished 

(Clouston et al., 2021, 2017). The social history theory seeks to elucidate the historical 

patterns of disease emergence and decline as stratified by SES, serving as a complement to 

the epidemiological transition theory. This perspective may shed light on the current phase 

of widening inequality in the prevalence of CP, potentially linked to the uneven progress in 

developing effective pain treatments and management strategies. However, the theory faces 

limitations in explaining CP-related SES disparities at the individual level due to the inherent 

risk of ecological fallacy. 

 

The metamechanism theory is another extension to FCT, suggesting three metamechanisms—

spillovers, habitus, and institutional processing—to account for the disparities without 

assuming agency lies exclusively with the individual, not with institutions (Freese and Lutfey, 

2011). This theory complements to the theoretical narrative of purposive action with different 

means (Freese and Lutfey, 2011). Specifically, this theory addresses the dilemma that arises 

when health-promoting resources, such as health behaviors, are easily accessible and their 

benefits are widely known, yet disparities endure. Spillovers refer to the phenomenon in 

which individuals with higher SES experience better health outcomes than those with lower 

SES, largely as a result of contextual advantages rather than individual agency. Habitus 

emphasizes socialization and upbringing in different SES, leading to "habitual ways of acting 
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when performing routine tasks" (Cockerham, 2005). The health practice is not intentional but 

rather a result of unconscious inertia rooted in individuals' SES. Institutional processing 

describes how social institutions, such as the family and the health care system, reproduce 

health inequalities through differentiated treatment. For example, women who quit smoking 

may suffer from second-hand smoke from spouses and extended family members. 

Additionally, access to and practices by the healthcare system may vary based on patient 

socio-demographic characteristics (Clouston and Link, 2021; Freese and Lutfey, 2011).  

 

In the CP settings, spillovers suggest that individuals in higher SES benefit from healthier 

environments (e.g., better healthcare, less stress) that reduce CP, even without active 

management, while lower SES individuals lack these contextual advantages. Habitus points to 

how socialization shapes habitual responses to pain, with lower SES individuals possibly 

normalizing pain or using less effective coping strategies, deepening disparities. Institutional 

processing highlights that healthcare systems often provide different levels of care based on 

SES, leading to under-treatment of CP in disadvantaged populations. Moreover, people with 

low SES are at higher risk for CP due to a compound effect of spillover, institutional handling, 

and habitual patterns. 

 

A competitive theory to the metamechanism theory is social stress theory of SES. Stress is 

defined as "a state of arousal resulting either from the presence of socioenvironmental 

demands that tax the ordinary adaptive capacity of the individual or from the absence of the 

means to attain sought-after ends" (Aneshensel, 1992). Stressors are external challenges or 

obstacles, while stress refers to the internal response they trigger. Chronic stress, therefore, 

refers to stress that endures for a long time (Baum et al., 1999). Individuals facing unfavorable 
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socioeconomic conditions suffer doubly: they experience demands and have limited access 

to resources. Stressful situations like financial difficulties, family conflicts, bereavement, 

substandard living conditions, crime, violence, and discrimination are linked to adverse 

socioeconomic conditions. Secondly, these conditions restrict access to essential resources 

such as money, education, power, prestige, and valuable social networks, which are necessary 

to manage these demands. In addition to the severity of these stressors, characterized by the 

imbalance between demands and resources, repeated exposure to these stressors increases 

the likelihood of chronic stress (Crielaard et al., 2021). Both competing theories underscore 

the external and structural plight, as well as the restricted responses of individuals. This thesis 

adopts the social stress theory of SES as its theoretical foundation. The stress theory offers a 

biosocial framework that links social disadvantage to health outcomes, allowing us to explore 

mediating mechanisms beyond the classic health behavior approach. This provides more 

nuanced insights for interventions aimed at improving CP management and reducing the 

burden of pain across populations. Although recent systematic reviews have indicated an 

association between SES and dysregulation related to chronic stress (Dowd et al., 2009; 

Johnson et al., 2017), research on the biosocial mechanisms of CP remains limited. Moreover, 

CP may represent a biological consequence of prolonged exposure to chronic stress, making 

stress-related biological outcomes a critical mediator in the relationship between SES and CP. 

In the following chapters, I will delve into the connections between chronic stress-related 

biological responses and CP. 

1.5 Association between SES indicators and CP 

The study of SES and its relationship to health has a long history, but due to its complexity, 

there has not yet been a consensus on a unified definition. Currently, social epidemiology 
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suggest that the core of SES lies in the availability of flexible resources—such as knowledge, 

money, power, prestige, and beneficial social networks—which may reduce or increase health 

disparities (Clouston and Link, 2021). SES influences health outcomes because those with 

greater access to these flexible resources are better able to protect and promote their health 

(Phelan et al., 2010). For example, individuals with higher SES are often better equipped to 

adopt healthier behaviors, secure timely medical interventions, or avoid environmental risks, 

thus reducing their exposure to health hazards. In contrast, those with lower SES may lack 

access to these resources, making them more vulnerable to adverse health outcomes due to 

limited access to quality healthcare, nutritious food, safe living conditions, and social support 

networks.  

 

Given the broad scope of SES, various regions have operationalized SES differently. For 

instance, in the U.S., social status is measured based on a series of questions regarding (a) 

ownership of capital assets, (b) control of organizational assets, and (c) possession of skill or 

credential assets. In Europe, particularly the U.K., social class measurement is based on long-

standing occupational class divisions (Krieger et al., 1997). Occupational status can influence 

health inequalities through material resources, social networks, and lifestyle factors 

(Galobardes et al., 2006a). Despite the marginal effects of occupation on CP in a recent meta-

analysis (Prego-Domínguez et al., 2021a), a substantially larger, more recent study using UK 

Biobank data, and genome-wide association analysis has suggested that lower occupational 

positions increase the risk of having CP (Farrell et al., 2023). Among a nationally 

representative sample of older adults in the United States, people who were not working due 

to disability had higher odds of having CP compared to those worked as a paid employee 

(LaRowe et al., 2024). Also, a longitudinal study from Sweden found non-skilled workers at 
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lower risk of moderate pain worsening compared with skilled and non-manual workers 

(Prego-Domínguez et al., 2021b). 

 

Additionally, there have been numerous alternative proxies for SES. Income-related measures 

are often used to assess SES as income directly reflects an individual’s ability to acquire 

material resources. This includes various components such as wages, dividends, interest, child 

support, alimony, transfers, and pensions. Poverty is a key income-related indicator as well. 

In the U.S., the poverty threshold is set at a basic level necessary for biological survival and is 

adjusted for factors such as year, household size, and the age of the household head (Krieger 

et al., 1997). Absolute deprivation, as measured by the poverty threshold, is just one lens for 

examining poverty; relative deprivation, which compares household income to the national 

poverty threshold, is also critical as it reflects the ability to meet survival needs (Diemer et al., 

2013). Empirical findings have provided evidence supporting the associations between 

income measures and CP. For example, a recent internet-based cross-sectional study found 

that people with lower household income had higher probability of reporting pain lasting six 

months or more (Johannes et al., 2010). Similarly, more recent studies found people with 

lower income were more likely to report high impact CP (Strath et al., 2024) or CP (LaRowe et 

al., 2024). 

 

Social epidemiology literature has long recognized the importance of relative deprivation for 

health, which is related to the fulfillment of human needs. In some Global South countries, 

the relationship between socioeconomic status and health is not driven by absolute 

deprivation but by relative deprivation (Marmot, 2005). Individuals’ perception of their 

economic circumstances are important since they reflect the stress of living in poverty or 
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economic hardship and a subjective evaluation of one's actual economic resources. Studies 

have shown that perceived economic hardship is linked to various health outcomes (Diemer 

et al., 2013). A study using 30-day diaries suggested that daily financial worry and the 

respondents' ability to afford basic necessities were associated with daily pain experiences 

among women with a diagnosis of osteoarthritis, fibromyalgia, or both (Rios and Zautra, 2011). 

 

Education is another commonly used SES indicator, typically measured by years of schooling 

or the highest level of educational attainment. Education serves as a key marker of both 

individual and family resources during the transition from childhood to adulthood and is a 

strong predictor of future employment and income. Additionally, education as a form of 

cultural capital reflects an individual’s capacity to access health knowledge and resources, 

thereby influencing health outcomes (Galobardes et al., 2006b). Education has been 

suggested as a risk factor for CP. A recent longitudinal study based on samples from four 

medical clinics across Germany, using the Chronic Pain Grade questionnaire, found that 

compared to people with tertiary education, people with upper secondary education had 

higher levels of CP intensity and disability (Fliesser et al., 2018). A more recent study also 

found an association between lower levels of education and higher risks or having high impact 

CP (Strath et al., 2024). 

 

In summary, SES is a multidimensional concept. While using a single SES indicator can provide 

benefits, such as model simplicity or clarifying the mechanisms linking specific aspects of SES 

to health outcomes, no single indicator can fully represent SES across all studies (Woo et al., 

2023), nor can it capture the complexity of SES as a unified construct (Galobardes et al., 

2006b). Research relying on single indicators often captures only one dimension of SES and 
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overlooks how its various dimensions interact to form the broader SES structure. So far, very 

few studies have used a multidimensional SES measure to examine the association of CP. A 

longitudinal study from Germany found higher multidimensional SES index were associated 

with lower CP disability and intensity (Fliesser et al., 2018). 

1.6 Absence of life course studies on the association between SES and CP 

Barker's hypothesis on fetal programming is widely recognized as a crucial foundation in the 

early evolution of life course epidemiology (Wagner et al., 2024). It integrates insights from 

both biomedical and social sciences, proposing that the origins of numerous chronic diseases 

can be traced back to the 'programming' of biological processes during embryonic 

development. These processes are significantly influenced by nutritional conditions during 

pregnancy, or even before conception, which are themselves shaped by the mother's 

developmental experiences in her own childhood or adolescence (Barker, 1997). After 

decades of development, the life course theory has evolved into a dominant paradigm in 

social epidemiology, with its specific components closely intertwined with the cumulative 

concept of social stress theory (Ben-Shlomo et al., 2014). The theory hypothesizes that risk 

factors at different life stages may influence health outcomes later in life in various 

combinations. 

 

Focusing on how life course SES translates into the unequal distribution of health risks in the 

population is crucial for the prevention and intervention of chronic diseases at the population 

level (Jones et al., 2019). Life course research on CP can help identify effective periods for 

intervention, yet related studies remain inadequate (Khalatbari-Soltani and Blyth, 2022). In 

general, there are four life course models: (a) the accumulation of risk with uncorrelated 



 25 

exposures, (b) the accumulation of risk with correlated exposures, (c) the chain of risk additive 

model, and (d) the chain of risk trigger model (Ben-Shlomo et al., 2014). 

 

The accumulation of risk with uncorrelated exposures (Figure 1 model a) suggests that various 

risk factors contribute separately to the overall risk of developing a particular health outcome 

and these factors are independent of each other. For instance, a person might carry a genetic 

predisposition, experience the loss of a parent due to war, and face unemployment in 

adulthood. These exposures are not related to each other. If each exposure increases risk, 

even to varying extents, then those exposed to multiple factors will have a higher overall risk 

compared to those exposed to fewer factors. In contrast, the accumulation of risk with 

correlated exposures model (Figure 1 model b) assumes exposures are clustered to an 

upstream factor, and like accumulation of risk with uncorrelated exposures, the exposures 

collectively increase the overall risk of having a disease. For instance, residing in a 

disadvantaged neighborhood might be linked to limited access to healthy food options, fewer 

opportunities for physical activity, and stronger peer pressure to smoke. Each of these factors 

could cumulatively elevate the risk of developing coronary heart disease (Ben-Shlomo et al., 

2014). 

 

The chain of risk additive model (Figure 1 model c) indicates each exposure contributes to an 

increasing level of risk, with one factor influencing the next in a sequence. For instance, 

smoking might directly contribute to the development of subclinical atherosclerosis by 

causing inflammation in the arteries. Additionally, smoking can lead to respiratory issues that 

decrease physical activity, further lowering aerobic capacity and increasing the likelihood of 

obesity. Obesity, in turn, is associated with insulin resistance syndrome, which is a significant 
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risk factor for coronary heart disease. Addressing obesity could improve health outcomes, but 

individuals who have followed this pathway are still at a higher risk compared to those who 

were never obese, due to the cumulative effects of their life course exposures. Finally, the 

chain of risk trigger model (Figure 1 model d) suggests that only the final event in a sequence 

of risk exposures can ultimately lead to a significant health outcome (Ben-Shlomo et al., 2014). 

 

In the case of SES, earlier SES strongly predicts future SES, and SES in different periods may 

be collectively and directly associated with CP, thus, the chain of risk additive model should 

be the most appropriate model (Ben-Shlomo et al., 2014). Models (a) and (b) disregard the 

temporal correlation among SES variables, while model (d) overlooks the possible direct 

association between SES and CP across different time periods. Furthermore, this theoretical 

model is particularly relevant in cases where the same exposure, such as SES, occurs at 

different time points, as its impact on later-life health outcomes may vary depending on the 

timing of exposure (Green and Popham, 2017). Furthermore, the critical period model and 

sensitive period model are embedded within the chain of risk additive model, offering a more 

comprehensive framework to explain how the timing of the same exposure can variably affect 

subsequent disease risk. The Critical Period Model suggests that exposure to certain factors 

during a specific time window can lead to a specific disorder. This model assumes no increased 

risk if exposure occurs outside this time window. In contrast, the Sensitive Period Model posits 

that exposure during different time windows may result in varying degrees of risk (Ben-

Shlomo et al., 2014). Therefore, employing the chain of risk additive model in researching CP 

can reveal the relationship between SES and CP over the life course, and provide evidence for 

formulating scientific and targeted public health policies for CP.



 27 

 

Figure 1-2 Life course model (Ben-Shlomo et al., 2014, p. 1529) 
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1.7 Research aims 

Aim 1: To investigate the prospective association between multisystem dysregulation, as 

indicated by AL, and CP. Evidence suggests a significant overlap between AL and CP symptoms. 

Although clinical evidence indicates a relationship between AL and CP, few studies have 

evaluated the cross-sectional association between AL and CP within general population 

samples. The first chapter aims to establish the prospective association between AL and CP 

using data from the Midlife in the United States (MIDUS) study, specifically the MIDUS 2 

Biomarker Project and MIDUS 3, spanning from 2004 to 2014. 

 

Aim 2: To examine the association between HPA axis function and CP. While clinical evidence 

suggests that impaired HPA axis function is related to CP, epidemiological findings are mixed. 

The second chapter focuses on exploring the prospective association between diurnal cortisol 

patterns and CP, utilizing data from the MIDUS study (2004 to 2014), specifically the MIDUS 

2 National Study of Daily Experiences (NSDE) and MIDUS 3. 

 

Aims 3 & 4: To investigate the association between life-course SES and CP, and to separately 

examine the potential mediating roles of AL and salivary cortisol. Currently, only a few studies 

have explored the relationship between life course SES and CP, and it remains unclear 

whether SES influences CP through stress-related biological mechanisms. Chapters three and 

four utilize data from MIDUS waves 1 through 3 to examine the association between life-

course SES and CP, and to separately test the potential mediating roles of AL and salivary 

cortisol. 



 29 

Overview of the MIDUS study 

The Midlife in the United States (MIDUS) study is a comprehensive national longitudinal 

investigation into the psychosocial, behavioral, and sociodemographic factors contributing to 

healthy aging. The baseline survey (MIDUS 1) took place between 1995 and 1996, targeting 

non-institutionalized, English-speaking adults aged 25-74 years across the United States. Data 

collection involved detailed phone interviews and self-administered questionnaires (SAQs). 

This initial phase included a nationally representative probability sample of 3,487 individuals, 

supplemented by oversamples from specific metropolitan areas (757 individuals), a sample 

of 950 siblings of the main respondents, and a national sample of 1,914 twin pairs, bringing 

the total baseline sample to 7,108 U.S. adults. About 9 years later, the second phase (MIDUS 

2) followed up with the original participants from 2004 to 2006, using similar methods of 

phone interviews and SAQs to replicate much of the baseline data collection. The third wave 

(MIDUS 3), conducted from 2013 to 2014, continued the longitudinal follow-up with the 

MIDUS 2 participants. This phase also employed phone interviews and SAQs, maintaining 

consistency with the baseline assessments.  

 

This study utilizes MIDUS as the primary database because it is one of the few public datasets 

that directly inquires about chronic pain rather than other pain conditions, even though its 

definition of chronic pain may not be the most up-to-date due to the time of its inception. 

Other reputable secondary datasets, such as the Health and Retirement Study and the English 

Longitudinal Study of Ageing, collect data on pain of unspecified duration, while 

Understanding Society records pain interference over the past month. Additionally, MIDUS 

boasts a robust collection of biomarkers, including comprehensive AL data and more optimal 

HPA axis function measurements. Furthermore, compared to the National Child Development 
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Study, which gathers chronic pain and biomarker data in the same wave, MIDUS offers the 

added advantage of enabling prospective mediation analyses. 

 

The Biomarker Project of MIDUS 2 contains data from the main survey sample (n = 1,054) and 

integrates biological, behavioral, and psychosocial factors. It aimed to identify 

biopsychosocial pathways affecting health outcomes and to explore how behavioral and 

psychosocial factors protect against or aid recovery from health challenges. The biomarker 

collection, relevant across multiple health endpoints, was conducted at University of 

California, Los Angeles (UCLA), the University of Wisconsin, and Georgetown University. 

Biomarkers assessed the hypothalamic-pituitary-adrenal axis, autonomic nervous system, 

immune system, cardiovascular system, musculoskeletal system, antioxidants, and 

metabolism. Specimens included fasting blood, 12-hour urine, and saliva. The protocol 

involved clinician assessments of vital signs, morphology, functional capacities, bone density, 

medication use, and physical exams. 

 

Independent of the Biomarker Project of MIDUS 2, the Daily Diary Project (National Study of 

Daily Experiences, NSDE) of MIDUS 2 includes longitudinal survey samples from 1,842 

participants, aiming to study how sociodemographic factors, health status, personality traits, 

and genetics influence daily stress exposure and reactivity. This project collects four saliva 

samples per day for cortisol assessment over four consecutive days, starting from day 2 of the 

diary study, which allows this research to measure the functioning of HPA axis. Before the 

first NSDE telephone interview, participants received an in-home saliva collection kit with 

instructions and 16 numbered, color-coded salivettes. Interviewers explained the collection 

process during the initial interview, and participants began saliva collection the next day. 
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Saliva samples were collected upon waking, 30 minutes after getting up, before lunch, and at 

bedtime. Exact times were recorded via nightly phone interviews and a paper log. Some 

participants used a "Smart Box" to store salivettes, which recorded opening and closing times. 

Correlations between self-reported and Smart Box times ranged from 0.75 to 0.95. Salivettes 

were frozen for storage and shipping, and cortisol levels were measured using a luminescence 

immunoassay (IBL, Hamburg, Germany). A detailed description of the study can be found on 

the MIDUS website (https://midus.wisc.edu/). Also, details of sample attrition are shown in 

the Data section in the following chapters. 
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2 Allostatic Load and Chronic Pain: A Prospective Finding from the 

National Survey of Midlife Development in the United States, 2004-2014 

2.1 Background 

Chronic pain (CP) is pain that lasts or recurs for more than 3 months (Treede et al., 2019). CP 

is becoming a major health issue worldwide. In the US, an estimated 20.5% of adults suffer 

from CP each year, causing significant burden to the healthcare system and costing over $296 

billion in lost productivity (Yong et al., 2022). The pathological progression of CP has been 

linked to chronic stress-related physiological dysregulation across multiple systems (Borsook 

et al., 2012; Rabey and Moloney, 2022; Woda et al., 2016). Such dysregulation has been well 

described by the framework of allostatic load (AL). AL is defined as the physiological ‘wear 

and tear’ resulting from repeated adaptations to chronic stressors (McEwen and Stellar, 1993). 

Long-term response to chronic stress leads to prolonged activation of the hypothalamus-

pituitary-adrenal (HPA) axis and sympathetic nervous system, resulting in elevated levels of 

glucocorticoids and catecholamines (Juster et al., 2010; McEwen, 1998). Over time, over-

accumulation of these substances can have downstream consequences and contribute to 

subclinical conditions across cardiovascular, metabolic, and immune systems. 

 

The history of the term "Allostatic load" dates back to the early 20th century, initially used to 

describe the new equilibrium that organisms achieve when adapting to environmental 

changes (Carbone et al., 2022). When these changes are extreme, organisms may develop 

maladaptive responses. It wasn't until 1988 that Sterling and Eyer published a groundbreaking 

work introducing the concept of allostasis (Sterling and Eyer, 1988). McEwen and Seeman 

were among the first scholars to operationalize AL, utilizing biomarkers such as DHEA-S, 
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urinary cortisol, norepinephrine, epinephrine, systolic and diastolic blood pressure, waist-to-

hip ratio, serum HDL cholesterol, total cholesterol-to-HDL cholesterol ratio, and HbA1c 

(McEwen and Seeman, 1999). Although there is still no strong consensus on the specific 

biomarkers that must be included in the operationalization of AL, it is suggested that to reflect 

the dysregulation of chronic stress responses, primary mediators—biomarkers of the 

neuroendocrine system—and secondary outcomes, including immune, metabolic, and 

cardiovascular biomarkers, should be incorporated (Juster et al., 2010). 

 

AL index is operationalized by summing the number of biomarkers that fall within high-risk 

quartiles, which represent physiological dysregulation across multiple systems. Although 

several methods exist for determining sample distribution cutoffs, the most commonly used 

is the high-risk quartile approach. In this method, participants in the top quartile of the risk 

distribution are categorized as dysregulated, while all others are classified as having normal 

values. Depending on the biomarker's clinical relevance, either the highest or lowest 25% of 

the sample is considered high risk. The AL index is then computed by summing the values of 

biomarkers deemed at risk. Sample-based cutoffs are often preferred over clinical cutoffs in 

AL research because clinical thresholds typically identify disease states, whereas AL theory in 

general focuses on subclinical markers that reflect the physiological wear and tear resulting 

from chronic stress (Carbone et al., 2022). Also, we selected the high-risk quartile index (based 

on sample 25th/75th percentiles) given its strong predictive utility for CP in population-based 

studies and clearer interpretability. Other formulations such as the z-score method or 

extreme decile-based index were not used due to their lower explanatory power and limited 

clinical interpretability, as highlighted in prior research (Sibille et al., 2017). However, this 

approach is not without limitations. As the quantile cutoffs were derived from the sample 
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distribution, the resulting index is sample-dependent and may limit comparability across 

studies. Additionally, dichotomizing continuous biomarkers can lead to information loss and 

may reduce the sensitivity to detect more subtle dose-response relationships. 

 

In the past few decades, there has been substantial evidence indicating the association 

between AL and various chronic diseases and symptoms (Guidi et al., 2021), however, the 

examination of the association between AL and CP is still in its preliminary stage. Evidence 

supporting a role for AL in the etiology of CP mainly comes from studies based on clinical 

samples. Notably, dysregulations in the HPA axis, autonomic nervous system, steroids and 

immune system have been reported in patients with CP (Abdallah and Geha, 2017; Woda et 

al., 2016), which are also manifestations of people with AL. Furthermore, patients with CP 

often undergo a range of maladaptive stress responses related to AL, including an inability to 

habituate to repeated similar stressors, a failure to turn off stress responses, and altered or 

inefficient responses to stress (Borsook et al., 2012; Juster et al., 2010). These processes may 

represent adaptive responses of the brain and body systems to the chronicity of pain. The 

resulting multisystem biological wear and tear could play a significant role in the pathology of 

CP (Borsook et al., 2012). 

 

Recent studies based on clinical samples found mixed results regarding the association 

between AL and CP. Research indicates that pediatric patients with pain exhibit a greater risk 

of experiencing AL, and AL is associated with pain-related functional impairments (Nelson et 

al., 2021). A prospective association between AL and CP has been suggested. A one-year 

longitudinal study reported a mild correlation between the AL index and pain severity among 

chronic low back pain patients (Wippert et al., 2022). Meanwhile, this study has found that a 
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combination of seven psychological factors and a set of five biomarkers, including 

norepinephrine, interleukin-6, triglycerides, waist-to-hip ratio, and resting pulse, has yielded 

good predictions of pain intensity and pain disability. However, another 6-year longitudinal 

study reported no longitudinal association between stress response systems, including HPA 

axis, immune system, and autonomic nervous system, and chronic widespread pain (CWP) 

(Generaal et al., 2016). While the use of validated CP assessments helped to control 

measurement errors, the inconsistent results may be due to inconsistencies in 

operationalizing chronic stress response dysregulation and in measuring CP outcomes. 

Additionally, the clinical samples limit the generalizability of these findings. 

 

Several population-based studies have consistently demonstrated a positive association 

between AL and CP in cross-sectional analyses. For example, higher levels of AL are associated 

with an increased likelihood of reporting CP, especially widespread bodily pain, among adults 

in the U.S. (Slade et al., 2012). However, this study only computed AL based on metabolic, 

inflammatory, and cardiovascular biomarkers, disregarding primary mediators such as 

biomarkers in the HPA axis and in sympathetic nervous system (Juster et al., 2010). Among a 

sample of adults over the age of 50 in England, severe CP has been associated with a high 

level of AL, which encompassed HPA axis biomarkers, after adjusting for sociodemographic 

factors, health behaviors, and chronic conditions (Sibille et al., 2017). However, the 

measurement of CP duration was vague, using the term 'often' without specific time frames. 

Furthermore, the cross-sectional nature limits the ability to establish causal direction 

between AL and CP or to account for baseline confounders that might influence CP. 

Additionally, the AL index in previous research primarily relied on a summative score. This 
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computation lacks the ability to discern AL differences within each biological system or across 

systems (Carbone et al., 2022).  

 

Employing a summative score for AL presents certain limitations. It combines several 

biomarkers into one index, which can oversimplify the complexity of physiological responses 

and obscure significant variations (Carbone et al., 2022). For example, this method assumes 

that each biomarker contributes equally to the total score, overlooking the possibility of 

unique patterns or combinations of biomarkers that could reflect distinct health profiles. In 

contrast, LCA identifies and characterizes latent subgroups by accounting for the covariances 

between biomarkers, adding information on the association between the specific risk profiles 

of AL and CP. 

 

Our study aimed to investigate the prospective relationship between AL and CP using a 

community-dwelling sample. The research question is whether AL is prospectively associated 

with CP. We utilized latent class analysis (LCA) to capture the nuances of AL phenotypes 

(Carbone, 2021; Forrester et al., 2019). Additionally, we used CP measures that adheres to 

the definition of CP in terms of pain duration (Bonica and Hoffman, 1954), thereby enhancing 

the validity of our pain assessments. Our examination was also adjusted for a range of factors 

including sociodemographic characteristics, health-related behaviors, multiple chronic 

conditions, and detailed medication information. We hypothesized that AL phenotypes would 

be prospectively associated with increased risk of experiencing CP, increased number of pain 

locations, and greater pain interference after seven years. 
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2.2 Methods 

2.2.1 Data 

This study used the Midlife in the United States (MIDUS) from 2004 to 2014, including two 

main survey waves (MIDUS 2 and MIDUS 3) and a Biomarker Project of MIDUS 2. MIDUS is a 

national, longitudinal study focusing on individual social status, psychological profiles, and 

biological processes of aging, initiated between 1995-1996 and followed 7,108 non-

institutionalized Americans aged 25 to 74 in the contiguous United States. The main survey 

collected data by phone interviews and self-administered questionnaires. The MIDUS is 

publicly accessible secondary data. More details of the study are available on the MIDUS 

website (Available at: http://midus.wisc.edu/). 

 

Of the participants, 1,255 were involved in the Biomarker Project of MIDUS 2, conducted from 

2004 to 2009. Samples meeting the following criteria were incorporated into the analyses 

(See figure 2-1): 1) samples that participated in the biomarker program and the MIDUS 3 

follow-up survey, 2) samples that provided complete information on the major variables (AL 

and CP).  
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Respondents at MIDUS 2 
Biomarker Project 

(N=1255) 
Excluded at MIDUS 2 Biomarker Project (n=310): 

• Deceased (n=30) 

• Physically and mentally unable to interview (n=14) 

• Refusal (n=10) 

• Unable to interview (n=14) 

• Withdrawals from study or out of sample (n=2)  

• Not at field (n=29): including individuals previously 
identified as deceased, those who had withdrawn from 
the study or were assessed as cognitively incapable of 
engaging in future research activities prior to being 
fielded 

• Non-working number (n=10) 

• Not in longitudinal survey - The Milwaukee sample 
(n=201) 

Respondents at MIDUS 3 main survey  
(N=945) 

Excluded (n=164): 

• Missing AL data (n=100) 

• Missing chronic pain data (n=64) 

•  

Respondents at MIDUS 3 main survey  
(N=781) 

Figure 2-1 Flow diagram for the study cohort 
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2.2.2 Measures 

2.2.2.1 AL 

AL biomarkers were collected from the Biomarker Project of MIDUS 2. The project collected 

12-hour urine samples, fasting blood samples, as well as nervous system function data from 

respondents during a one-day stay at a General Clinical Research Center (GCRC) of either 

UCLA, University of Wisconsin, or Georgetown University, depending on the residence of 

respondents (Ryff et al., 2022). 

 

For urine collection, two 2-liter containers were prepared: one acidified with 25 ml of 50% 

acetic acid for catecholamine (CATS) tests (red-labeled) and one without acid for cortisol 

(CORT) analysis (white-labeled). Participants began a 12-hour collection at 7:00 PM, voiding 

and discarding the initial sample. Subsequent voids were divided equally between the 

containers, refrigerated during the collection period, and concluded with a final void at 7:00 

AM. Missed or incomplete samples were documented. Collected urine was processed by 

measuring and recording the volume of each container. From the CORT container, aliquots of 

11 ml were transferred into two 13-ml tubes and 4 ml into two 5-ml vials. For the CATS 

container, the pH was adjusted below 5 with acetic acid, followed by the same aliquoting 

process. 

 

For blood collection, three 10-ml serum-separating tubes (SST), two 4-ml lavender 

Ethylenediaminetetraacetic acid (EDTA) tubes (one foil-wrapped), and one 4-ml or 2.7-ml blue 

sodium citrate tube were labeled. Fasting blood was drawn between 6:30 and 7:00 AM, 
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starting with the SST tubes, followed by the lavender tubes and then the blue tube. Tubes 

were gently inverted after collection, and forms were completed. The non-foil lavender tube 

was refrigerated, and the foil-wrapped tube is placed in an ice bath. 

 

Blood processing involved centrifuging the blue citrate tube at 4°C for 15 minutes, aliquoting 

1 ml plasma into two vials, and freezing. SST tubes stand for 15-30 minutes before 

centrifugation at 4°C for 20 minutes. Sera were aliquoted into red, white, green, and orange-

labeled vials. The foil-wrapped lavender tube was processed under dim lighting, centrifuged 

at 4°C for 15 minutes, and plasma was aliquoted into two yellow-labeled vials. All samples 

were stored in the -60°C to -80°C freezer for staff pickup (Ryff et al., 2022). The assay details 

are shown in the Assay descriptions in the MIDUS Biomarker Project (Ryff et al., 2022). 

 

Following previous studies (Carbone et al., 2023, 2022; Juster et al., 2010), AL was constructed 

into seven physiological systems from 27 biomarkers (shown in Table 1-1). A high-risk quartile 

of biomarkers were used (McEwen and Seeman, 1999). Dehydroepiandrosterone sulfate 

(DHEA-S) and cortisol in the upper or lower 25th quartile were regarded as at high risk. When 

high-frequency heart rate variability (HFHRV), low-frequency heart rate variability (LFHRV), 

root mean square of successive differences (RMSSD), standard deviation of heart beat to 

heart beat intervals (SDRR), and high-density lipoprotein (HDL) cholesterol strength fell within 

their lower 25th quartile ranges, individuals were classified as high risk. Other biomarkers 

falling into their upper 25th quartile were assigned to the high-risk range. Then, biomarkers in 

their high-risk quartile were coded as 1; otherwise, 0. The high-risk thresholds are detailed in 

Table 2-1. 
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Then, LCA was used to capture the phenotypes of AL (package “poLCA” in R). The binary 

biomarkers were fitted into 1-7 clusters, and the selection of the optimum number of cluster 

was based on log-likelihood, Akaike Information Criterion (AIC), Bayesian Information 

Criterion (BIC), entropy, and interpretability of classification. Regarding entropy, an ideal 

value is close to 1, and above 0.8 is acceptable (Weller et al., 2020). As for AIC and BIC, lower 

values indicate a better fit (Sinha et al., 2021). However, BIC tends to favor simpler models in 

larger samples due to its complexity penalty, while AIC may lean towards more complex 

models. Given these considerations, seeking points of inflection or plateauing for BIC and AIC 

can balance model complexity against the risk of overfitting (Sinha et al., 2021). Also, the 

classification should be meaningful from a clinical or a biological perspective (Sinha et al., 

2021). Additionally, each cluster should have at least 10% of the sample (Sinha et al., 2021; 

Weller et al., 2020). 5000 iterations were set to generate convergent estimation for each LCA 

model. 

 

Table 2-1 Values for high-risk quartiles 

Biomarkers Simple High Risk Quartile 

Hypothalamic Pituitary Adrenal Axis  

DHEA-s (ug/dL) ≤51 or ≥141 

Urine cortisol (μg/g) ≤6.7 or ≥19 

Sympathetic Nervous System  

Urine epinephrine (μg/g) ≥2.464 

Urine norepinephrine (μg/g) ≥32.964 

Urine Dopamine (μg/g) ≥182.964 

Parasympathetic Nervous System  
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HFHRV  ≤55.9 

LFHRV ≤103.4 

RMSSD ≤12.02 

SDRR (ms) ≤23.27 

Cardiovascular  

Resting heart rate (bpm) ≥79.8 

Resting systolic blood pressure (SBP) (mmHg) ≥144 

Resting diastolic blood pressure (mmHg) ≥82 

Metabolic-glucose  

Fasting glucose ≥105 

Hemoglobin A1c (HbA1c) (%) ≥6.242 

Homeostasis model of insulin resistance (HOMA-IR) ≥4.36 

Metabolic-lipids  

Triglycerides (mg/dL) ≥156 

Waist-to-hip ratio (WHR) ≥0.965 

Body mass index (BMI) (kg/m2) ≥33.028 

Low-density lipoprotein (LDL) cholesterol (mg/dL) ≥127 

High-density lipoprotein (HDL) cholesterol (mg/dL) ≤43 

Inflammation  

C-reactive protein (CRP) (mg/L) ≥3.655 

Interleukin-6 (IL6) (pg/mL) ≥1.23 

Tumor necrosis factor-α (TNF-α) (pg/mL) ≥2.51 

Fibrinogen (mg/dL) ≥399 

Soluble endothelial leukocyte adhesion molecule-1 (sE-

Selectin) (ng/mL) 
≥51.88 

Soluble intercellular adhesion molecule-1 (ICAM-1) (ng/mL) ≥335.185 

Blood fasting insulin-like growth factor 1 (IGF1) (ng/mL) ≥157 
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2.2.2.2 Outcome: CP 

The presence of CP, CP interference and the number of CP sites from MIDUS 3 were utilized. 

Respondents were first asked “Do you have CP, that is do you have pain that persists beyond 

the time of normal healing and has lasted from anywhere from a few months to many years?”, 

if so, they were then asked about CP interference. A pain interference index was generated 

by calculating a mean score of how much pain interfered with respondents’ activity, mood, 

relations, sleep, and enjoyment, ranging from 0 to 10 (Jensen, 2011; Li et al., 2021a). Then, 

the pain interference index was further categorized into no pain, low interference pain (≤4), 

and high interference pain (>4) as categorical variable (Jensen, 2011). In addition, if 

respondents reported having CP, they were asked about the location of the pain, including 

head, neck, back, arms, legs, shoulders, hips, knees, and other sites. We summed up the pain 

sites into an index and then categorized it into no pain, 1-2 sites, or 3 or more sites as a 

categorical variable (Li et al., 2021a, 2021b). 

 

The categorization is based on the consistency with previous practices (Li et al., 2021a, 2021b), 

as well as the distributions of both CP interference and the number of pain locations, which 

are highly skewed toward the lower end. This skewness presents challenges for linear 

modeling techniques, which assume normality of residuals. While negative binomial 

regression is a potential approach to address the count nature of our pain location data, it 

may not adequately account for the observed high skewness in the distribution. In addition, 

the sample sizes in our study are unevenly distributed across the potential range of these 

variables, with a significant drop-off in frequency as the number of pain locations increases. 

This sparsity in the upper range can undermine the reliability of regression estimates, as the 
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models would be driven by a small subset of the sample with higher pain counts. Therefore, 

categorization helps to stabilize the variance across groups. 

 

2.2.2.3 Covariates 

Covariates were selected by current knowledge about the association between AL and CP 

(Mills et al., 2019; Sibille et al., 2017; Slade et al., 2012). Sociodemographic covariates were 

obtained from the MIDUS 2 main survey and were coded as categorical variables except for 

the age variable, which was treated as continuous. Sociodemographic covariates included 

gender (ref: male; comparison: female), age, ethnicity (ref: White; comparison: non-White), 

educational attainment (i.e., the highest educational certificate a respondent had obtained, 

ref: high school or less; comparison: bachelor's degree, or master's degree and above), marital 

status (ref: married; comparison: divorced/separated/never married/widowed), and the 

income-to-needs ratio (INR, ref: affluent; comparison: adequate-income, or low-income or 

below) (Diemer et al., 2013) which was computed by dividing total household income by 

Federal Poverty Threshold (United States Census Bureau, 2022). Additionally, behavior factors 

from the MIDUS 2 Biomarker Project were considered. They were alcohol intake status (ref: 

moderate or more drinker; comparison: light drinker, or non-drinker or rarely drinker), 

smoking status (ref: current smoker; comparison: ex-smoker, or non-smoker), and categories 

of the metabolic equivalent of task (MET, ref: between 500-1000 minutes per week; 

comparison: greater than 1000, or less than 500) minutes per week (Li et al., 2021a; Office of 

Disease Prevention and Health Promotion, 2008). Also, the time gap between the two data 

collections was controlled for. Finally, adverse childhood experiences (ACEs) also possibly 

confound the relationship between AL and CP (Graves and Nowakowski, 2017; Misiak et al., 
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2022). In this case, we considered emotional abuse and physical abuse from parents. The ACE 

data were retrospectively collected in the MIDUS 1 and were treated as ordinal variables. 

 

Multimorbidity was also adjusted for (Diederichs et al., 2011; Mills et al., 2019). The chronic 

condition index summed up a count of “Yes” responses to the chronic conditions-related 

questions (Ryff et al., 2022). Then, the index was coded as a binary variable (ref: <2; 

comparison: ≥2) and the index more than 2 was regarded as multimorbidity. Since mental 

health conditions were already incorporated in this variable, there were no extra adjustments 

for depression and anxiety. 

 

MIDUS 2 Biomarker Project enhanced medication reports by linking medication names and 

IDs to Generic Names and Lexi-Data database and asking respondents for their reasons for 

taking medications (Ryff et al., 2022). A binary variable was created (ref: no; comparison: yes) 

to represent whether a participant had taken any medication from a selection of 

antihyperlipidemic agents, beta adrenergic blocking agents, antihypertensive combinations, 

anxiolytics sedatives and hypnotics, antidiabetic agents, sex hormones, thyroid hormones, 

antidepressants, and analgesics, including opioids and non-opioids. 

 

To clarify the hypothesized relationships in our analysis, a Directed Acyclic Graph (DAG, Figure 

2-2) was constructed to model the association between AL at MIDUS 2 (M2 AL) and CP at 

MIDUS 3 (M3 CP), while accounting for a comprehensive set of covariates. The DAG identifies 

potential confounding and mediating pathways based on existing literature and theoretical 

frameworks. Covariates include demographic factors (age, gender, race/ethnicity), 

psychosocial exposures (parental abuse), socioeconomic indicators (INR, education), health 
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behaviors (smoking, drinking, MET, medication use), health status (multimorbidity), and time 

between biomarker collection and pain assessment (year gap). These variables were included 

in the adjusted models to account for confounding effects.
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Figure 2-2 DAG of the association between AL and CP with covariate adjustment 

 

 

Abbreviations: AL, allostatic load; CP, chronic pain; INR, income-to-needs ratio; MET, the the 
metabolic equivalent of task 
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2.2.3 Statistical Methods 

Regression models were chosen according to types of CP variables. For a binary CP variable, 

logistic regressions were used. The number of pain location and pain interference were 

categorical variables, therefore, multinomial regressions were utilized. All main analyses 

presented were fully adjusted for relevant confounders to reduce spurious associations and 

were generated from the complete cases. 

 

Three sensitivity analyses were applied. Firstly, data missingness can lead to biased estimation 

(He, 2010; Sterne et al., 2009). Although Little’s MCAR test indicated that the data were 

consistent with missing completely at random (χ² = 124.05, df = 125, p = 0.507), there were 

more than 5% missing data (10.37%). Within this analytic dataset, variable-level missingness 

was generally low (mostly <5%, none >11%). To minimize potential bias and preserve 

statistical power, multiple imputation (MI) using the R package "MICE" (Buuren and 

Groothuis-Oudshoorn, 2011) was employed to address item nonresponse, based on the 

assumption of missing at random (MAR). Missing covariates were imputed in accordance with 

the specific distribution of each item, as recommended (Sterne et al., 2009). Twenty imputed 

datasets were generated, and the coefficients from all statistical models were combined using 

Rubin's rules. ANOVA tests and chi-squared tests were performed respectively for continuous 

variables and categorical variables to check the similarity of imputed datasets and the 

observed dataset. Secondly, bootstrapping method was used to estimate the variability and 

robustness of coefficients (Carpenter and Bithell, 2000). Bootstrap methods allow for the 

estimation of the standard errors and confidence intervals for various statistics without 

relying on strong parametric assumptions. This is particularly useful in small sample sizes or 
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when the sampling distribution of the statistic is complex or unknown. A total of 5000 

bootstrap samples were generated with replacement, each with the same sample size as the 

original dataset. The bootstrapping process was conducted by R. Thirdly, CP status at MIDUS 

2 was incorporated into the model and the binary measure of medication intake at MIDUS 2 

was substituted with specific individual medications.  

2.3 Results 

2.3.1 Descriptive Statistics 

Table 2-2 displays the descriptive statistics of the analytic sample (N=781). Of the participants, 

62.7% reported no CP, 24.6% had low interference pain, and 12.7% had high interference pain. 

In terms of the number of pain locations, 23.8% of participants reported 1-2 pain sites and 

13.4% of participants reported 3 or more pain sites. The back is the most common pain site 

among the participants. Additionally, participants with higher pain interference at follow-up 

were more likely to overlap with those experiencing more pain regions, regardless of baseline 

pain status (participants with baseline CP: χ2=828, P<0.001; participants without baseline CP: 

χ2=400, P<0.001). Among participants with 3 or more pain regions, about half of them 

reported low interference pain and the other half reported high interference pain; Among 

participants with one to two pain regions, about 75% reported low interference pain and 25% 

reported high interference pain. The majority of respondents were females, non-Hispanic 

Whites, affluent, and married, with over 48% of respondents being highly educated (above 

high school degree). Additionally, there were no significant differences between observed 

dataset and imputed datasets, supporting the validity of the imputation process. 
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Table 2-2 Sample description 

  Observed dataset Imputed dataset   

Variable Mean / N SD / Proportion Median Available value % Mean / N SD / Proportion Median Test 

Presence of CP 781   1.000    X2=0 

    No pain 490 62.70%    62.70%   

    CP 291 37.20%    37.20%   

Pain interference at MIDUS 3 781   1.000    X2=0 

    No pain 490 62.70%    62.70%   

    Low interference pain 192 24.60%    24.60%   

    High interference pain 99 12.70%    12.70%   

Number of pain sites at MIDUS 3 781   1.000    X2=0 

    No pain 490 62.70%    62.70%   

    1-2 186 23.80%    23.80%   

    3+ 105 13.40%    13.40%   
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AL phenotypes 781   1.000    X2=0 

    Baseline 403 51.60%    51.60%   

    Parasympathetic dysregulation  189 24.20%    24.20%   

    Metabolic dysregulation  189 24.20%    24.20%   

Sociodemographic         

Education 780   0.999    X2=0 

    high school or less 397 50.90%    50.90%   

    bachelor's degree 233 29.90%    29.90%   

    Master's degree and above 150 19.20%    19.20%   

Gender 781   1.000    X2=0 

    Male 351 44.90%    44.90%   

    Female 430 55.10%    55.10%   

Age 54 10.907 54 1.000 54 10.9 54 F=0 

Race/ethnicity 780   0.999    X2=0 

    White 723 92.70%    92.70%   



 52 

    Non-White 57 7.30%    7.30%   

Marital Status 780   0.999    X2=0 

    Married 570 73.10%    73.10%   

    Divorced & Separated 113 14.50%    14.50%   

    Never married & Widowed 97 12.40%    12.40%   

Income-to-needs ratio 767   0.982    X2=0.008 

    Affluent 437 57%    57%   

    Adequate-income 211 27.50%    27.50%   

    Low-income or below 119 15.50%    15.50%   

Year gap between data 

collections 
        

MIDUS 2 Biomarker Project to 

MIDUS 3 
6.7 1.249 6.833 1.000 6.7 1.249 6.833 F=0 

Childhood adversity         
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Childhood parent emotional 

abuse 
724   0.927    X2=0.1 

    1 (Never) 225 31.10%    30.70%   

    1.5 111 15.30%    15.40%   

    2 200 27.60%    27.40%   

    2.5 101 14%    14.20%   

    3 (Most frequent) 87 12%    12.20%   

Childhood parent physical abuse 732   0.937    X2=0.147 

    1 (Never) 309 42.20%    41.90%   

    1.5 116 15.80%    16.20%   

    2 184 25.10%    24.90%   

    2.5 71 9.70%    10%   

    3 (Most frequent) 52 7.10%    7.10%   

Health behavior         
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Total number of Metabolic 

Equivalent of Task (MET) minutes 

per week 

776   0.994    X2=0.001 

    500-1000 151 19.50%    19.50%   

    Greater than 1000 319 41.10%    41.10%   

    Less than 500 306 39.40%    39.40%   

Smoking behavior 780   0.999    X2=0 

    Current Smoker 87 11.20%    11.10%   

    Ex-Smoker 247 31.70%    31.70%   

    non-Smoker 446 57.20%    57.20%   

Drinking behavior 781   1.000    X2=0 

    Moderate + drinker 308 39.40%    39.40%   

    Light drinker 228 29.20%    29.20%   

    Non-drinker or rarely drink 245 31.40%    31.40%   

Health conditions         
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Multimorbidity 781   1.000    X2=0 

    <2 168 21.50%    21.50%   

    2+ 613 78.50%    78.50%   

Medication         

Medication intake 781   1.000    X2=0 

    Yes 204 26.10%    26.10%   

    No 577 73.90%    73.90%   

For continuous variables, values are reported as Mean, Standard Deviation (SD), and Median. For categorical variables, values are reported as Number (N) and 

Proportion. “Available value %” refers to the percentage of non-missing data for each variable. The “Test” column indicates the statistical test used to compare 

groups (e.g., ANOAV test and chi-square test), depending on variable type and distribution. 



 56 

 

Supplementary Table 1-1 presents the fit statistics for latent class model with 1-7 clusters, the 

3-cluster model was considered the optimal clustering. Despite the continuous reduction in 

AIC and BIC, along with the progressive improvement in log-likelihood, the enhancement in 

the fitness of the model with 4 and 5 clusters was rather moderate. On the other hand, the 

3-cluster model exhibited the best entropy, suggesting a good classification. Additionally, the 

3-cluster model had an ample number of observations within each cluster and presented 

meaningful separation. Therefore, the 3-cluster model was adopted.  

 

According to Supplementary Table 1-2, class 1 is designated as 'Baseline' due to its association 

with a low risk across most biomarkers. Class 2, termed 'Parasympathetic Dysregulation,' is 

distinguished by significantly lower values in HFHRV, LFHRV, RMSSD, and SDRR, suggesting 

potential impairments in parasympathetic system functioning. Class 3 is characterized by 

marked increases in fasting glucose, HbA1c, HOMA-IR, triglycerides, WHR, and BMI, coupled 

with a notable decrease in HDL concentrations. These characteristics are consistent with the 

physiological patterns commonly observed in metabolic dysregulation. Figure 2-3 shows the 

phenotypes of AL. 51.6% of the participants were classified as low AL risk group, 24.2% of 

participants were in the phenotype of parasympathetic dysregulation, and an additional 24.2% 

demonstrated signs of metabolic dysregulation.  
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Figure 2-3 Identified phenotypes of AL.  

 
Biomarkers are grouped by physiological systems: HPA-axis, sympathetic nervous system, parasympathetic nervous system, immune, 
cardiovascular, metabolic-glucose, and metabolic-lipids. Shaded backgrounds indicate system groupings. 
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2.3.2 Model Results 

Table 2-3 presents regression results. In the fully adjusted binary logistic regression models, 

there was no statistically significant association between any AL dysregulation phenotype and 

CP status compared to the low AL risk phenotype. In addition, compared to those with higher 

incomes, individuals with low or very low incomes had 130% higher odds of having CP at 

MIDUS 3. Those who engaged in more than 1,000 minutes per week of MET had 64% higher 

odds of having CP at MIDUS 3, compared to individuals with 500-1,000 minutes per week of 

MET. Additionally, people taking medication had 110% higher odds of having CP at MIDUS 3 

(Please refer to Supplementary Table 1-2). 

 



 59 

Table 2-3 Results from the logistic regression for the association between AL at MIDUS 2 Biomarker Project and CP status at MIDUS 

3 

  No CP vs reporting CP in MIDUS 3 

AL phenotypes Odds ratios (95% CI) 

Baseline Ref 

Parasympathetic dysregulation  

Main analysis 0.97 (0.64, 1.48) 

Sensitivity analysis  

Multiple Imputation 1.04 (0.70, 1.55) 

Bootstrapping Method (5000 iterations) 0.85 (0.51, 1.43) 

Adjustment for CP at MIDUS 2 and individual medications‡ 1.01 (0.64, 1.60) 

Metabolic dysregulation  

Main analysis 1.18 (0.76, 1.81) 

Sensitivity analysis  
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Multiple Imputation 1.14 (0.77, 1.7) 

Bootstrapping Method (5000 iterations) 1.40 (0.80, 2.45) 

Adjustment for CP at MIDUS 2 and individual medications‡ 1.18 (0.74, 1.89) 

† Adjusted for gender, age at MIDUS 2, race/ethnicity, marital status at MIDUS 2, INR at MIDUS 2, 

emotional/physical abuse from parents, multimorbidity at MIDUS 2 Biomarker Project, MET, drinking behavior, 

smoking behavior, medication intake (yes/no) and year gap between MIDUS 2 Biomarker Project and MIDUS 3 

main surveys  

‡ Medications included antihyperlipidemic agents, beta adrenergic blocking agents, antihypertensive 

combinations, analgesics, anxiolytics sedatives and hypnotics, sex hormones, thyroid hormones, antihistamines, 

antidepressants, analgesic (both opioids and non-opioids). 

Statistical significance markers: * p<0.05; ** p<0.01; *** p<0.001 

The bold values denote statistically significant results; CI denotes confidence interval. 
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In the multinomial regression models (Table 2-4), the prospective association between the 

metabolic dysregulation phenotype and high interference CP was significant (RRR=2.00, 95% 

CI: 1.06, 3.79, P<0.05), compared to the baseline phenotype. In the prospective association 

between the number of pain sites and biological dysregulation phenotypes, metabolic 

dysregulation was significantly associated with 3 or more CP sites (RRR=2.03, 95% CI: 1.08, 

3.83, P<0.05). There were no other significant associations between the parasympathetic 

phenotype of AL and CP outcomes found. People who were never married or widowed and 

experienced moderate emotional abuse had lower odds of having high interference pain. 

Non-smokers were less likely to report high interference pain and more pain regions, while 

women were more likely to report these pain outcomes. Ethnically minoritized people and 

people with low incomes were more likely to have more pain sites (Please refer to 

Supplementary Tables 1-3 to 1-4). 

 

In the sequent sensitivity analyses, the results remained similar. The similar results generated 

from the imputed datasets indicated that data missingness did not significantly biased the 

estimates. Also, the results generated from the bootstrapping samples were similar to the 

main analyses, indicating that the association was expected to persist even when accounting 

for potential uncertainties. Additionally, after extra adjusting for medication intakes as 

separate factors and CP status at MIDUS 2, the results remained stable.  
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Table 2-4 Results from the multinomial logistic regression for the association between AL at MIDUS 2 Biomarker Project and CP 

interference and the number of CP sites at MIDUS 3 

  No pain vs low interference pain No pain vs high interference pain 

AL phenotypes Relative risk ratios (95% CI) Relative risk ratios (95% CI) 

Baseline Ref Ref 

Parasympathetic dysregulation   

Main analysis 0.87 (0.54, 1.39) 1.24 (0.65, 2.39) 

Sensitivity analysis   

Multiple Imputation 0.96 (0.61, 1.49) 1.22 (0.66, 2.26) 

Bootstrapping Method (5000 iterations) 0.82 (0.49, 1.38) 0.99 (0.41, 2.38) 

Adjustment for CP at MIDUS 2 and individual medications‡ 0.93 (0.56, 1.53) 1.23 (0.60, 2.55) 

Metabolic dysregulation   

Main analysis 0.92 (0.56, 1.52) 2.00 (1.06, 3.79)* 

Sensitivity analysis   
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Multiple Imputation 0.92 (0.58, 1.46) 1.82 (1.01, 3.28)* 

Bootstrapping Method (5000 iterations) 1.08 (0.58, 2.02) 2.46 (1.10, 5.47)* 

Adjustment for CP at MIDUS 2 and individual medications‡ 0.94 (0.55, 1.59) 2.03 (1.01, 4.11)* 

     

  No pain vs 1-2 pain locations No pain vs 3+ pain locations 

AL phenotypes Relative risk ratios (95% CI) Relative risk ratios (95% CI) 

Baseline Ref Ref 

Parasympathetic dysregulation   

Main analysis 0.84 (0.51, 1.36) 1.30 (0.69, 2.44) 

Sensitivity analysis   

Multiple Imputation 0.91 (0.58, 1.45) 1.33 (0.73, 2.39) 

Bootstrapping Method (5000 iterations) 0.85 (0.50, 1.46) 0.83 (0.27, 2.62) 

Adjustment for CP at MIDUS 2 and individual medications‡ 0.90 (0.54, 1.51) 1.22 (0.61, 2.42) 

Metabolic dysregulation   

Main analysis 0.89 (0.54, 1.47) 2.03 (1.08, 3.83)* 
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Sensitivity analysis   

Multiple Imputation 0.91 (0.57, 1.44) 1.85 (1.03, 3.34)* 

Bootstrapping Method (5000 iterations) 1.00 (0.55, 1.81) 2.57 (1.15, 5.76)* 

Adjustment for CP at MIDUS 2 and individual medications‡ 0.89 (0.52, 1.52) 2.09 (1.06, 4.11)* 

† Adjusted for gender, age at MIDUS 2, race/ethnicity, marital status at MIDUS 2, INR at MIDUS 2, emotional/physical abuse from parents, multimorbidity 

at MIDUS 2 Biomarker Project, MET, drinking behavior, smoking behavior, medication intake (yes/no) and year gap between MIDUS 2 Biomarker Project 

and MIDUS 3 main surveys  

‡ Medications included antihyperlipidemic agents, beta adrenergic blocking agents, antihypertensive combinations, analgesics, anxiolytics sedatives and 

hypnotics, sex hormones, thyroid hormones, antihistamines, antidepressants, analgesic (both opioids and non-opioids). 

The proportional odds assumption for ordinal logistic regression was violated. Therefore, multinomial logistic regression was opted for. 

Statistical significance markers: * p<0.05; ** p<0.01; *** p<0.001; the bold values denote statistically significant results; CI denotes confidence interval. 
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2.3.3 Predicted Probabilities for CP outcomes by AL phenotypes 

Table 2-5 presents the adjusted prevalence for CP outcomes grouped by AL phenotypes. Using 

the average adjusted predicted probabilities from the models, we calculated the probability 

of CP outcomes by AL phenotypes. The metabolic dysregulation phenotype was significantly 

associated with high interference pain and 3 or more CP sites as shown in Table 2-4. 

Respondents with the metabolic dysregulation phenotype were more likely to experience a 

higher degree of CP conditions than those with a low AL risk profile. Specifically, those with 

metabolic dysregulation driven AL had a 4.88% adjusted probability of reporting high pain 

interference and had a 4.58% adjusted probability of reporting more than 3 pain locations. In 

contrast, these probabilities were lower, at 2.48% and 2.29% respectively, among 

respondents with a baseline AL profile. 

 

To interpret the clinical relevance of our findings, we prespecified thresholds of an absolute 

risk difference (ARD) ≥ 2 percentage points and a relative risk (RR) ≥ 1.5 (VanderWeele and 

Ding, 2017). A 2% absolute increase corresponds approximately to a number-needed-to-treat 

(NNT) of 50, which is commonly regarded as a moderate and meaningful effect size in long-

term health outcomes (Cook and Sackett, 1995). We found that the metabolic dysregulation 

phenotype significantly increased the probability of high interference pain (4.88% vs. 2.48%) 

and pain with 3 or more pain locations (4.58% vs. 2.29%,), surpassing the predefined 

threshold.  
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Table 2-5 Adjusted prevalence for CP outcomes grouped by AL phenotypes 

CP status No pain Reporting CP  

AL phenotypes  Average adjusted predicted probabilities  

Baseline 89.02% 10.98%  

Parasympathetic dysregulation 89.31% 10.69%  

Metabolic dysregulation 87.34% 12.66%  

    

CP interference No pain Low interference pain High interference pain  

AL phenotypes  Average adjusted predicted probabilities 

Baseline 89.74% 7.77% 2.48% 

Parasympathetic dysregulation 90.14% 6.76% 3.10% 

Metabolic dysregulation 88.11% 7.02% 4.88% 

    

The number of CP locations No pain 1-2 3+  

AL phenotypes  Average adjusted predicted probabilities 

Baseline 90.17% 7.54% 2.29% 

Parasympathetic dysregulation 90.66% 6.35% 3.00% 

Metabolic dysregulation 88.80% 6.62% 4.58% 

Note: Findings in bold are statistically significant at p < 0.05 based on binary/multinomial logistic 

regression results. 
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2.4 Discussion 

The present study identified three phenotypes of AL through LCA, encompassing low levels of 

biological dysregulation, AL driven by parasympathetic dysregulation, and AL driven by 

metabolic dysregulation. Also, consistent with previous research (Loevinger et al., 2007; 

Sibille et al., 2017, 2016; Slade et al., 2012), we found that AL driven by metabolic 

dysregulation is associated with more severe CP interference and a greater number of CP sites. 

For instance, a cross-sectional study based on a sample of population aged over 50 in the UK 

revealed that, after controlling for sociodemographic factors and comorbid conditions, high-

risk biomarker, defined by the upper quartile and including HDL, HBA1c, and WHR, are related 

to increased severity of CP (Sibille et al., 2017). Similarly, in American adults, higher BMI and 

triglyceride levels are associated with a higher prevalence of widespread bodily pain (Slade et 

al., 2012).  

 

Compared to previous studies, our research offers several advantages. Firstly, we employed 

a more comprehensive set of biomarkers, including those from the HPA axis, and the 

sympathetic and parasympathetic nervous systems, to construct a more valid AL 

measurement (Juster et al., 2010). Moreover, our use of LCA to identify AL phenotypes 

captures the common variability of biomarkers, while previous studies that used single 

biomarkers for regression with CP overlooked the interrelationships among biomarkers 

within the AL framework (Sibille et al., 2017; Slade et al., 2012). On the other hand, prior 

operationalizations of AL, based on summative computation that assigns equal weight to each 

biomarker, may obscure the specific impacts of different AL components on CP. In summary, 

LCA offers a nuanced method for exploring the specific components of AL that drive CP.  
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Furthermore, this study's strengths include its prospective design, community-dwelling 

sample, adjustments for early confounders, and the substantial avoidance of trivial and recent 

pain in measurement by adhering to the definition of CP in terms of pain duration. Thus far, 

this research may be the first community-dwelling study to examine the prospective 

association between AL and CP. 

 

However, this study also has limitations. Firstly, the measurement of pain is self-reported. 

Even when controlling for potential reporting biases from relevant sociodemographic factors, 

unobserved factors can still introduce biases in pain assessment. Furthermore, the variability 

in CP measures across various surveys partly limits the comparability of findings. For instance, 

the MIDUS survey assesses pain interference, which differs from the pain severity 

measurements used in other studies. While pain interference is associated with pain severity, 

their association is affected by patients' beliefs about pain, their tendency towards 

catastrophizing, and their pain coping strategies (Jensen et al., 2017). Stress biomarkers may 

be particularly relevant predictors of the broader impact or severity of pain, such as pain 

interference with daily activities or functional impairment, rather than simply the presence 

or absence of CP itself. Thus, it is plausible that stress biomarkers predominantly reflect how 

individuals experience and manage pain, rather than directly determining whether they 

experience pain at all. Therefore, there is a need for further prospective research to explore 

the link between AL and CP severity in more depth. 

 

Additionally, the available data on AL was only collected in MIDUS 2, however, the new 

biomarker data present opportunities for future research on the association between AL 

trajectories and the development of CP. Also, the sample composition is predominantly White, 
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and future studies including larger samples of ethnic minorities are encouraged. Moreover, 

our findings from U.S. data may not generalize to other countries. For instance, variations in 

access to healthcare, such as universal versus privatized systems, can influence the extent to 

which socioeconomic status affects CP through differential access to effective pain 

treatments. This could modify the impact of AL on pain progression or chronicity. 

Furthermore, sociocultural differences in pain expression, perceptions of pain severity, and 

medicalization practices could impact self-reporting patterns, thus affecting observed 

associations between socioeconomic status, physiological stress markers, and CP prevalence 

(Grol-Prokopczyk, 2017). Thus, cross-national variation in these factors might lead to differing 

associations between AL and CP. 

 

Lastly, this study only examined the prospective association in one direction and future 

research on the reverse association may be beneficial elucidate the causal direction. 

Distinguishing causal relationships from mere associations remains challenging in 

observational designs. Although our prospective approach strengthened temporal inferences, 

causality cannot be definitively established without quasi-experimental or intervention 

studies. Future studies employing causal inference techniques may help disentangle causality. 

 

While the underlying mechanism remains undetermined, several potential explanations could 

account for the prospective positive association between the metabolic dysregulation 

phenotype of AL and both high interference pain as well as an increased number of pain sites. 

The AL model proposes, when undergoing repeated stress adaptation, the prolonged 

secretion of stress hormones and inflammatory cytokines can disrupt the normal regulation 

of downstream physiological systems, such as the metabolic system (Juster et al., 2010). 
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Dyslipidemia and high BMI may be associated with upregulation of cytokines, leading to low-

grade inflammation, a condition frequently observed in patients with fibromyalgia (Ghafouri 

et al., 2022). Additionally, a high waist-to-hip ratio may be related to structural changes in 

intervertebral discs and being consistently subjected to high biomechanical loads (Hussain et 

al., 2017). This highlights the significant role that metabolic dysregulation related to adiposity 

may play in low back pain. Meanwhile, elevated blood glucose is associated with peripheral 

neuropathy or synergistically interacts with high BMI and the sequential inflammation, 

thereby potentially increasing the likelihood of experiencing daily pain (Mäntyselkä et al., 

2008). Also, metabolic dysregulation could potentially reduce the pain activation threshold 

via its interplay with inflammatory mechanisms. This interaction may intensify pain response 

by increasing synaptic strength and reducing inhibition, allowing even low-threshold stimuli 

to activate pain pathways (Veldhuijzen et al., 2018; Woolf, 2011).  

 

Therefore, broadly collecting a range of biomarkers related to chronic stress responses, 

including primary biomarkers and secondary outcomes, and identifying metabolic 

dysregulation phenotypes, could help establish a baseline for high-risk biomarkers. Detecting 

distinct metabolic dysregulation phenotypes could serve as an early indicator of vulnerability 

to CP. In clinical practice, such biomarker screening could be integrated into routine 

assessments by primary care providers or occupational health professionals, especially among 

middle-aged adults. This approach could support early identification of individuals at elevated 

risk for having high interference or multisite CP, enabling more targeted prevention and 

intervention strategies. 
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Nevertheless, we did not find any prospective associations between AL driven by the 

parasympathetic nervous system and CP. Low parasympathetic nervous system activity may 

represent low capacity to respond to chronic stress. A meta-analysis, which thoughtfully 

sieved through 26 moderate-high-quality studies from a pool of 17,350 publications, 

uncovered that biomarkers relating to the parasympathetic nervous system (LFHRV, HFHRV, 

RMSSD, R-R interval, and SDRR) exhibited an association with CP (Tracy et al., 2016). However, 

the association appears to be predominantly influenced fibromyalgia and its significance may 

vary across CP conditions (Woda et al., 2016). CP may also maladapt parasympathetic nervous 

system directly. Therefore, future research is encouraged to focus on exploring the potential 

links between the parasympathetic nervous system and different subtypes of CP to clarify 

these relationships. Datasets with larger sample sizes will facilitate the examinations for the 

associations between parasympathetic dysregulation of AL and pain at different sites. 

2.5 Conclusion 

In conclusion, our findings indicate that metabolic dysregulation as a phenotype of AL is 

prospectively associated with high interference CP and 3 or more CP sites. Differentiating 

nuances of biological dysregulation of AL could facilitate the development of clinical 

interventions aimed at specific biological mechanisms, which may alleviate the impacts of AL 

on the conditions of CP.
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3 Association of Diurnal Cortisol Rhythm with Chronic Pain: Evidence from 

a Prospective Cohort Study in Community-Dwelling Adults 

3.1 Introduction 

Chronic pain (CP), defined as pain persisting or recurring for over three months (Treede et al., 

2019), is highly prevalent and associated with significant societal and economic impacts, poor 

prognosis, and limited options for monitoring and prevention (Interagency Pain Research 

Coordinating Committee, 2022). The interference caused by CP, along with its widespread 

occurrence throughout the body, contributes to adverse outcome including poor health 

(Ezzati et al., 2019; Glei and Weinstein, 2023; Kamaleri et al., 2008), reduced quality of life 

(Hider et al., 2015; Jensen et al., 2007), negative effects on employment status (Gerdle et al., 

2008; Pooleri et al., 2023), and increased medical costs (Mose et al., 2021; Stockbridge et al., 

2015). These challenges highlight the need to investigate its mechanisms. One appealing 

biological factor is the hypothalamic-pituitary-adrenal (HPA) axis (Woda et al., 2016).  

 

The HPA axis plays a crucial role in the body’s stress response, operating through a regulatory 

circuit involving the hypothalamus, pituitary gland, and adrenal cortex. During stress, the 

hypothalamus releases corticotropin-releasing hormone (CRH), which stimulates the anterior 

pituitary to secrete adrenocorticotropic hormone (ACTH). This, in turn, prompts the adrenal 

cortex to produce cortisol, a stress hormone with widespread effects. Typically, HPA axis 

function is assessed by measuring cortisol levels in blood, saliva, or urine samples. While 

established methods, these short-term measures reflect either acute circulating cortisol 

levels (in plasma or saliva) or cumulative secretion over a collection period typically not 

exceeding 24 hours (in urine) (Stalder and Kirschbaum, 2012). They may not accurately reflect 
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the long-term changes in the function of the HPA axis. Also, the 24-hour urine cortisol 

measurement method has certain limitations, as it does not account for fluctuations in 

cortisol levels throughout the day or the peaks and troughs that occur after medication 

administration (Jung et al., 2014). Different patterns of cortisol secretion throughout the day 

may indicate varying functions of the HPA axis, therefore, using single-point measurements 

make it challenging to discern potential differences in the underlying pathogenic mechanisms. 

 

The dexamethasone suppression test is another method used to assess HPA axis function. 

This test involves administering the synthetic steroid dexamethasone to suppress cortisol 

production, thereby evaluating the feedback regulation of the HPA axis (Findling et al., 2004). 

However, the dexamethasone suppression test is limited in that it primarily assesses short-

term feedback regulation and hypercortisolism, rather than providing a comprehensive view 

of the natural fluctuations of cortisol throughout the day. Hair cortisol measurement, a novel 

technique, provides an indicator of long-term cortisol exposure (Stalder and Kirschbaum, 

2012). Although hair cortisol is considered a better tool for measuring the cumulative 

consequences of chronic stress responses, its levels may be highly correlated with overall 

cortisol secretion, reflecting only one aspect of HPA axis function (Short et al., 2016). This high 

correlation limits the opportunity for a comprehensive examination of the relationship 

between the HPA axis and CP. 

 

Collecting salivary cortisol samples multiple times over several days provides an opportunity 

to assess HPA axis function rather than short-term stress responses. Salivary cortisol is one of 

the end products of the HPA axis, and its natural daily cycle—peaking in the morning and 

declining throughout the day—characterizes the diurnal cortisol rhythm, reflective of the HPA 
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axis functioning (Adam and Kumari, 2009; Wesarg-Menzel et al., 2024). The cortisol 

awakening response (CAR), the rapid increase in cortisol levels within 30-45 minutes after 

waking, is activated by a central control network originating in the hypothalamus (Stalder et 

al., 2024). A reduced CAR disrupts circadian alignment, energy metabolism, immune 

regulation, and neurocognitive and emotional processes (Stalder et al., 2024) - mechanisms 

that are involved in CP pathology (Apkarian et al., 2011; Bumgarner et al., 2021; Bunk et al., 

2021; Held et al., 2019; Koechlin et al., 2018; van Tilburg et al., 2020). The surge then triggers 

negative feedback primarily involving the suprachiasmatic nucleus (SCN), mediated by 

glucocorticoid and mineralocorticoid receptors (GRs and MRs) (Lightman et al., 2020; 

Papadopoulos and Cleare, 2012). GRs restrain cortisol secretion when levels exceed basal 

values, while MRs maintain inhibitory control during the diurnal nadir due to their high 

cortisol affinity (Oster et al., 2017; Young et al., 1998). This regulation is captured by the 

diurnal cortisol slope (DCS), which measures the rate of cortisol decline from its peak 

throughout the day. A blunted DCS, commonly indicative of GR down-regulation and 

increased MR affinity (Jarcho et al., 2013), is associated with various diseases (Adam et al., 

2017), including CP (Hannibal and Bishop, 2014). The area under the curve (AUC) reflects total 

daily cortisol secretion, while cortisol dynamic range (CDR) measures the peak-to-nadir 

difference. Both parameters share the mechanisms regulating CAR and DCS while providing 

additional information: a lower AUC may indicate long-term epigenetic changes (Abelson et 

al., 2023), while a narrower CDR may capture biological aging (Karlamangla et al., 2022; Oster 

et al., 2017), linking AUC and CDR to mechanisms associated with CP (Aroke et al., 2024; 

Descalzi et al., 2015). 
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A recent meta-analysis (Beiner et al., 2023) and a cross-sectional study (Generaal et al., 2014) 

have suggested lower HPA axis activity, reflected in lower cortisol levels, in patients with 

fibromyalgia and chronic multisite pain. The recent meta-analysis found no difference in 

blood and urine cortisol levels between fibromyalgia patients and control groups. However, 

cortisol levels measured using saliva samples showed a decreasing trend in people with 

fibromyalgia (Beiner et al., 2023). The cross-sectional study found that various cortisol 

measurements—such as waking cortisol levels, the AUC relative to ground (AUCg), the AUC 

relative to increase (AUCi), evening cortisol levels, the diurnal slope, and cortisol suppression 

rate—were not associated with the intensity of CP. However, in individuals without 

depression or anxiety, lower waking cortisol levels, lower AUCg, and flatter diurnal slopes 

were significantly associated with a higher likelihood of experiencing chronic widespread 

musculoskeletal pain (Generaal et al., 2014). Another study found that the presence of 

chronic widespread pain was associated with lower salivary cortisol levels and higher post-

stressor serum cortisol levels. Additionally, failure to suppress cortisol in the dexamethasone 

suppression test were linked to chronic widespread pain (McBeth et al., 2005). 

 

However, prospective epidemiological findings have been mixed (Generaal et al., 2017, 2016; 

McBeth et al., 2007; Paananen et al., 2015). Two studies using the same database have shown 

that dysfunction of the HPA axis is not associated with either the onset or persistence of pain 

(Generaal et al., 2017, 2016). However, another research has found that high post-

dexamethasone cortisol levels, low morning salivary cortisol levels, and high evening salivary 

cortisol levels are associated with chronic widespread pain (McBeth et al., 2007). Compared 

to women with normal HPA axis function, women with low HPA axis reactivity who have a 

cold pain threshold above the median are more likely to experience musculoskeletal pain, and 
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this pain is more severe. Additionally, women with low HPA axis reactivity who have a cold 

pain threshold below the median are more likely to suffer from more severe musculoskeletal 

pain (Paananen et al., 2015). 

 

Inadequate sample sizes (Beiner et al., 2023), blood measurements sensitive to acute 

stressors (Paananen et al., 2015), a high proportion of participants with depression and/or 

anxiety (Generaal et al., 2017, 2016), and short-duration salivary assessments (Generaal et al., 

2016, 2014; McBeth et al., 2007, 2005), which may not capture long-term cortisol rhythms 

due to situational stress (Hellhammer et al., 2007; Hruschka et al., 2005), may contribute to 

the discrepancy. Furthermore, the role of different cortisol parameters in pain pathology is 

unclear. 

 

Given the uncertainty, a population-based sample with a more ideal cortisol measurement 

protocol is needed to clarify the prospective association between HPA axis dysfunction and 

CP, which could inform the prevention of CP among at-risk individuals. Additionally, the 

extent of pain interference in daily life and its presence in one or multiple body locations are 

important due to their broad implications, including but not limited to various health 

outcomes (Ezzati et al., 2019; Glei and Weinstein, 2023; Kamaleri et al., 2008), poorer quality 

of life (Hider et al., 2015; Jensen et al., 2007), negative effects on employment status (Gerdle 

et al., 2008; Pooleri et al., 2023), and increased medical costs (Mose et al., 2021; Stockbridge 

et al., 2015). Thus, examining the relationship between HPA axis dysfunction and CP 

conditions could enhance pain management and mitigate broader disadvantages. 
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Using the Midlife in the United States (MIDUS) study and its sub-project, the National Study 

of Daily Experiences (NSDE), we examined the prospective association between different 

parameters of diurnal cortisol rhythm and CP outcomes over an average follow-up period of 

seven years. Moreover, we explored the associations between cortisol diurnal rhythm and CP 

separately in those with and without CP at baseline, given that the relationship may depend 

on pain chronicity (Reyes del Paso et al., 2024). 

3.2 Method 

3.2.1 Data 

MIDUS is a longitudinal study, focusing on the impact of social, psychological, and 

physiological factors on health as people age from early adulthood to later life. The baseline 

survey (MIDUS 1) recruited non-institutionalized, English-speaking adults aged 25 to 74 from 

various locations across the United States in 1995-1996. The study included a national 

probability sample, with over-sampling from selected metropolitan areas, a sample of siblings 

of the main respondents, and a national sample of twin pairs. MIDUS 2 was conducted in 

2004-2006 as a follow-up to MIDUS 1 and MIDUS 3 is a follow-up to MIDUS 2 conducted in 

2013-2014. The study gathered comprehensive data via telephone interviews and self-

administered questionnaires (Brim et al., 2020). To examine the day-to-day lives, information 

on daily experiences over a span of consecutive eight days was collected through NSDE 

between 2004 and 2009 as a part of MIDUS 2. In the NSDE, participants completed brief daily 

phone interviews for eight days and answered questions about their past week on the last 

interview day. Participants were also asked to provide four saliva samples each day from days 

two to five.  
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Our study examined diurnal cortisol rhythm measured during NSDE at MIDUS 2, in association 

with CP outcomes measured at MIDUS 3. We excluded participants who did not provide at 

least one valid cortisol sample within the sampling time, had anomalous sleep patterns, 

experienced cortisol measurement errors, or dropped out at MIDUS 3 (Dmitrieva et al., 2013; 

Karlamangla et al., 2013). Anomalous sleep patterns and cortisol measurement errors may 

significantly affect cortisol levels, and extreme values can also impact model estimation. A 

flow diagram for the study cohort is illustrated in Figure 3-1.  
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Excluded at NSDE (n=374): 

• Only one valid cortisol sample with sampling time (n=237) 

• Participants awoke before 4 am (n=10) 

• The pre-lunch cortisol sample was 10 nmol/L or more higher 

than the morning-peak sample (n=7) 

• Respondents woke after 11 am (n=6) 

• Respondents who were awake more than 20 hours on a given 

day (n=5) 

• The 30-min post-waking sample collected earlier than 15 or 

later than 45 mins after his or her waking sample (n=83) 

• Cortisol values greater than 60nmol/L (n=26) 

Respondents at MIDUS 3 main survey  

(N=1246) 

Respondents at MIDUS 2 main survey also at 

NSDE 

(N=1468) 
Excluded (n=222): 

• Deceased (n=69) 

• Physically or mentally unable (n=18) 

• Consistently unable to interview (n=30) 

• Non-working number (n=22) 

• Global refusal or out of sample (n=2) 

• Not fielded at MIDUS 3 (n=45) 

NSDE 

(N=1842) 

Respondents at MIDUS 2 main 

survey 

(N=4963) 

Figure 3-1 Flow diagram for the study cohort 
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3.2.2 Measures 

3.2.2.1 Salivary cortisol sample collection information and calculation of diurnal cortisol 

rhythm parameters  

Saliva samples were collected immediately upon awakening, 30 minutes after awakening, 

prior to lunch, and at bedtime (Ryff and Almeida, 2009). Participants were advised to gather 

samples prior to consuming food or beverages or brushing their teeth. Furthermore, they 

were requested to avoid any caffeinated items such as coffee, tea, soda, or chocolate before 

sample collection (Ryff and Almeida, 2009). 

 

Data on the precise timing of each saliva sample collection provided by respondents were 

collected through nightly phone interviews and a paper log included with the collection kit, 

which included an instruction sheet and sixteen numbered, color-coded salivettes. 

Additionally, a subset of respondents were given a "Smart Box" to store their salivettes. These 

boxes were equipped with a computer chip that tracks when the box was opened and closed 

(Karlamangla et al., 2013; Ryff and Almeida, 2009). The correlations between self-reported 

times (from both paper-pencil logs and nightly phone interviews) exceeded 0.9 at each of the 

four sampling points. The correlations between self-reported times and those recorded by 

the "smart box" ranged between 0.75 and 0.95 (Karlamangla et al., 2013). Participants sent 

all 16 salivettes using a pre-addressed, prepaid courier package. The salivettes were shipped 

to the MIDUS Biological Core at the University of Wisconsin and stored at -60°C. Cortisol 

concentrations were measured using a luminescence immunoassay (IBL, Hamburg, Germany), 

with intra- and inter-assay variation below 5% (Ryff and Almeida, 2009).  
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3.2.2.2 Calculation of diurnal cortisol rhythm parameters  

The parameters of diurnal cortisol rhythm were operationalized as CAR, DCSs, the AUC with 

respect to ground, and CDR. Specifically, linear spline multilevel modeling was utilized with 

fixed knots to model the diurnal cortisol trajectory with natural log-transformation, setting 

the fixed knots at 0.5 hours, 4.5 hours, and 15 hours after awakening, consistent with prior 

practices (Adam et al., 2006; Charles et al., 2020; Karlamangla et al., 2013).  

 

Data from the NSDE were used to compute the diurnal cortisol rhythm (see Supplementary 

Table 2-1). To capture the nonlinearity of the diurnal cortisol rhythm, linear spline multilevel 

modeling was utilized. Linear spline model has shown a better fit for the rhythm compared to 

linear-cubic and quadratic spline models (Karlamangla et al., 2013). This model divides the 

data into distinct segments at specified knots and fits a separate regression for each segment. 

Knots are typically placed based on domain knowledge or data-driven methods; however, the 

latter can be unsatisfying due to a lack of robust and efficient statistical approaches. 

Therefore, we set the knots at 0.5 hours, 4.5 hours, and 15 hours after awakening, aligned 

with previous practice that has demonstrated good model fit (Yang et al., 2023). Additionally, 

based on a visual examination of Supplementary Figure 2-1, the knots are reasonable for 

capturing changes in the linear slopes. 

 

Although linear spline models offer intuitive interpretability and flexibility in modeling 

piecewise linear relationships, there are several limitations associated with their use. In this 

study, the knots were determined based on previous literature and visual inspection of the 

data. While this pragmatic approach is common in applied work, it is inherently subjective 

and may introduce bias or omit important change-points not readily apparent. Furthermore, 
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the estimation of knots is challenging due to nondifferentiability of the spline basis functions 

at the knots. Although recent advances, such as the semismooth estimating equation 

approach, address some of these computational challenges, their methods are still complex 

and may require careful implementation (Yang et al., 2023). 

 

In the linear spline model, the growth curve was adjusted for the following covariates: 

average wake time length (at the individual level), wake time (at the daily level), and the 

status of weekends versus weekdays (at the daily level) (Charles et al., 2020). Additionally, all 

growth curves accounted for random effects in cortisol measurements by incorporating 

random intercepts at the family level, random slopes for all growth curve parameters at the 

individual level, and random intercepts as well as random slopes for the early post-wake 

decline (from 0.5 hours to 4.5 hours after waking) at the daily level (Karlamangla et al., 2013). 

 

The regression results of the linear spline model were shown in Supplementary Table 2-2. For 

each one-unit increase in time within the interval between 0 to 30 minutes after awakening, 

the log-transformed cortisol level increases by 0.50. In the intervals between 30 minutes to 

4.5 hours, and after 15 hours post-awakening, the log-transformed cortisol level decreases by 

0.13. In the interval between 4.5 to 15 hours after awakening, the log-transformed cortisol 

level decreases by 0.16. Model-based cortisol diurnal pattern was shown in the 

Supplementary Figure 2-2.  

 

Fixed-effects estimates were combined with corresponding random effects at both familial 

and individual levels to obtain individual-specific estimates of growth curve parameters 

(Charles et al., 2020). The slope in the linear splines was used to compute the cortisol slopes. 
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The first linear spline (from awakening to 0.5 hours) represents the CAR, the second linear 

spline delineates the early post-wake DCS occurring from 0.5 to 4.5 hours post-awakening, 

and the third linear spline characterizes the mid post-wake DCS spanning 4.5 to 15 hours post-

awakening. The fourth linear spline represents the late post-wake DCS, extending beyond 15 

hours post-awakening, with a maximum duration of 20 hours; 95% of observed days conclude 

by 18 hours post-awakening. Then, cortisol estimates at specific individual timings (relative to 

awakening) were computed, and the logarithmic AUC was calculated using the trapezoidal 

formula (Pruessner et al., 2003), by first adding the areas of each trapezoid from awakening 

time to 30 minutes post-awakening, from 30 minutes post-awakening to lunchtime, and from 

lunchtime to bedtime. For individuals whose bedtime occurred less than 15 hours after 

awakening, the area from 4.5 hours post-awakening to bedtime was directly added. For 

individuals whose bedtime occurred more than 15 hours after awakening, the areas from 4.5 

to 15 hours post-awakening and from 15 hours post-awakening to bedtime were calculated 

separately and then summed. The CDR was calculated as the logarithmic peak cortisol minus 

the logarithmic nadir cortisol (Charles et al., 2020; Karlamangla et al., 2013). We then 

conducted Principal Component Analysis (PCA) to identify underlying structures. The PCA 

revealed that two significant factors sufficiently explained the variance in the data (see 

Supplementary Table 3). DCSs predominantly loaded onto Factor 1, while CAR, CDR, and AUC 

loaded onto Factor 2. Cortisol parameters were standardized at the between-individual level 

to facilitate comparison of the predictive utility of the different parameterizations in the 

regressions (Charles et al., 2020; Kumari et al., 2011). 

3.2.2.3 Measurement of CP at follow-up 

The presence of CP, CP interference and the number of CP sites were measured in both MIDUS 

2 and MIDUS 3. Respondents were asked “Do you have CP, that is do you have pain that 
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persists beyond the time of normal healing and has lasted from anywhere from a few months 

to many years?”, if they answered positively, they would be then asked about CP interference. 

A pain interference index was generated by calculating a mean score of how much pain 

interfered with respondents’ activity, mood, relations, sleep, and enjoyment, ranging from 0 

to 10 (Jensen, 2011; Li et al., 2021a). The pain interference index was further categorized into 

no pain, low interference pain (≤4), and high interference pain (>4) as categorical variable, 

based on the recommended threshold for the Pain Interference Subscale (Jensen, 2011). In 

addition, if respondents reported having CP, they were asked about the location of the pain, 

including head, neck, back, arms, legs, shoulders, hips, knees, and other sites. The pain sites 

were summed up into an index and then categorized it into no pain, pain at 1-2 regions, or 

pain at 3 or more regions as a categorical variable (Hoftun et al., 2012; Li et al., 2021b).  

3.2.2.4 Covariates 

The MIDUS 2 individual level covariates were chosen based on their known influences on both 

cortisol patterns and CP outcomes. These variables included income-to-needs ratio, 

education, age, sex assigned at birth (ref: male; comparison: female), race (ref: White; 

comparison: Black, Indigenous and People of Color (BIPOC)), marital status (ref: 

divorced/separated/widowed/never married; comparison: married), physical activity, 

smoking (ref: current smoker; comparison: ex-smoker or non-smoker) and drinking status (ref: 

moderate; comparison: more drinker, light drinker, or non-drinker or rarely drink), parental 

abuse (1: never-3: most frequent), body mass index (BMI), multimorbidity (ref: no; 

comparison: yes), and CP at MIDUS 2 (ref: no; comparison:yes) (Adam et al., 2017; Bernard et 

al., 2017; Karlamangla et al., 2013; Mills et al., 2019). Furthermore, the present study 

controlled for the use of steroid inhalers, oral steroids (Jevtovic-Todorovic et al., 2009; Woods 

et al., 2015), antidepressants or anti-anxiety medications (Manthey et al., 2011; Verdu et al., 
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2008), birth control pills (Jensen et al., 2018; Kirschbaum et al., 1999), and other hormonal 

medications (ref: no or yes). 

 

The income-to-needs ratio and education levels were coded on a scale ranging from 0 to 2 

(Gruenewald et al., 2012). Using the Poverty Thresholds by Size of Family and Number of 

Children from the United States Census Bureau (https://www.census.gov/data/tables/time-

series/demo/income-poverty/historical-poverty-thresholds.html), we calculated the ratio 

between household income and poverty thresholds. A ratio below 1 indicates poverty, 1 to 2 

indicates low income, and above 2 indicates adequate or affluent income, following 

established classification practices. These categories were then scaled from 2 to 0, where 2 

represents high socioeconomic disadvantage and 0 represents low socioeconomic 

disadvantage. Similarly, educational attainment was scaled into three levels: possessing a 

bachelor's degree or higher, completion of high school/GED or some college, and less than a 

high school education. Age and BMI were coded as continuous variables. Race and ethnicity 

were self-reported and categorized into White and BIPOC because of the limited number of 

participants from minoritized groups. The summary score for physical activity was calculated 

using three questions that inquired about the frequency of engagement in light, moderate, 

and vigorous activities, rated on a 6-point scale (1-never to 6-several times a week). To 

emphasize the importance of more vigorous activities, weights of 1, 3, and 5 were assigned 

to light, moderate, and vigorous activities respectively. The summary score was determined 

by taking the weighted average of the responses, ranging from 9 to 54 (Gruenewald et al., 

2012). Smoking status was categorized into three groups, current smoker, ex-smoker, and 

non-smoker. Acohol consumption patterns were defined in terms of moderate or severe 

drinker, light drinker, and non-drinker or rarely drink. Parental abuse was categorized into 
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two ordinal variables: emotional and physical abuse (Li et al., 2021b). These were derived 

from averaging the reported abuse from both parents. The scale ranges from 1 to 3, with 1 

indicating no abuse and 3 indicating severe abuse. The scale increases in increments of 0.5. 

Chronic condition index (Ryff et al., 2007) was coded as binary variable (<2; comparison: ≥2) 

to indicate multimorbidity (Dominick et al., 2012). Medication uses were coded as yes vs no. 

3.2.3 Statistical methods 

We compared characteristics between participants without CP at baseline and those with CP 

at baseline. For continuous variables that followed a normal distribution, analysis of variance 

(ANOVA) was applied. The Kruskal-Wallis tests were used for continuous variables that did 

not meet normality assumptions. Categorical variables were compared using the Chi-Square 

tests. The comparisons were further examined with effect size measures (Cohen's 

d/Phi/Cramér’s V) and their confidence intervals. Cohen's d measures the standardized 

difference between two means in continuous data, Phi assesses the association between 

binary variables, and Cramér's V evaluates the strength of association in categorical variables 

with more than two categories. 

 

Subsequently, mixed-effects logistic regressions were used to examine the prospective 

associations between each specific cortisol parameter and CP outcomes at follow-up, with 

each cortisol parameter analyzed in separate models. Family-level random intercepts were 

included to account for correlations between individuals from the same family (Karlamangla 

et al., 2022). Pooled analyses were performed to estimate the overall effect while adjusting 

for baseline CP and other covariates. To examine the role of diurnal cortisol rhythm in the 

development or persistence of CP, we conducted analyses stratified by baseline CP status, 
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adjusting for all covariates except baseline CP. The subgroup analyses would highlight 

important nuances related to pain chronicity. 

 

The present study also conducted a set of robustness checks, including multiple imputation, 

inverse probability of attrition weighting, exclusion of respondents with depression or anxiety, 

exclusion of respondents who used steroid inhalers, oral steroids, other hormonal treatments, 

antidepressants, anti-anxiety medications, and birth control, additional adjustment for daily 

stressor severity, using Bonferroni correction, and moderation analysis to reduce the risk of 

false negatives in subgroup analysis.  

 

Firstly, we adjusted the associations using the inverse probability of attrition weighting (IPAW) 

(Metten et al., 2022) to reduce the attrition bias. A multinomial logistic regression was used 

to examine participation outcomes in the MIDUS 3 among the eligible sample with income-

to-needs ratio, education, age, sex assigned at birth, marital status, physical activity, smoking 

and drinking status, parental abuse, BMI, multimorbidity, and baseline CP as predictors. These 

participation outcomes included participation, death, being physically or mentally unable, 

refusal, being unreachable for interviews, non-functional phone numbers, being outside the 

U.S., and not being fielded for various reasons. Then, we calculated the probability of a 

respondent being present at the follow-up and determined attrition weights by taking the 

inverse of this probability (See Supplementary Table 2-3). Secondly, to address the potential 

bias arising from item missingness in our main analysis, we made an assumption that the data 

was missing at random and then used multivariate imputation by chained equations (MICE), 

employing 10 imputations. Random forest imputation was used to accommodate 

nonlinearities and interactions and it does not require a particular regression model to be 
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specified (Shah et al., 2014). Thirdly, to further account for the confounding effects of 

depression and anxiety, we excluded respondents with these conditions in our analysis. We 

then examined the impact of medication use by excluding those with steroid inhalers, oral 

steroids, other hormonal treatments, antidepressants, anti-anxiety medications, and birth 

control uses from the sample. Also, we controlled for daily stressor severity to further reduce 

the influence of acute stress. In addition, the Bonferroni correction was used to reduce the 

likelihood of Type I errors when conducting multiple statistical tests, thereby enhancing the 

overall power of the study (Sedgwick, 2012). Finally, we performed a moderation analysis on 

the full sample to reduce the risk of false negatives inherent in subgroup analysis. 

3.3 Results 

3.3.1 Sample description 

Table 3-1 compares the characteristics of participants without CP (n=762) to those reporting 

CP (n=429), over a median follow-up of 7.6 years (IQR 6.3-8.3). Compared to those without 

CP at baseline, participants with CP at baseline reported higher degrees of pain interference 

and pain widespreadness at follow-up. Additionally, participants with higher pain 

interference at follow-up were more likely to overlap with those experiencing more pain 

regions, regardless of baseline pain status (participants with baseline CP: χ²=761, P<0.001; 

participants without baseline CP: χ²=400, P<0.001).  

 

As shown in Table 3-1, participants with CP at baseline exhibited a flatter CAR and late post-

wake DCS, and a narrower CDR, compared to those without CP. However, the effect sizes of 

these differences were small. Compared to participants without CP, those reporting CP at 

baseline were more likely to be taking birth control pills, to have more socioeconomic 
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disadvantages in terms of their income-to-needs ratio and education, to be older, more likely 

to be assigned female at birth, to report multimorbidity, and to have a higher BMI. The effect 

size measures indicated that differences in pain outcomes at follow-up, as well as in education, 

multimorbidity, and BMI, were significant. 
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Table 3-1 Baseline characteristics of study participants with non-standardized cortisol parameters stratified by the presence of 

baseline CP 

Pain status at baseline (MIDUS 2)  No CP (N=762) Reporting CP (N=429)   

Variables N Mean (SD) / N (%) Mean (SD) / N (%) P-value 
Cohen's d/phi/ 

Cramér’s V (95% CI)1 

Pain outcomes at follow-up (MIDUS 3)2      

Presence of CP 1124   <0.001 0.36 (0.31, 1.00)** 

    No  525 (72.8%) 147 (36.5%)   

    Yes  196 (27.2%) 256 (63.5%)   

Pain interference 1092   <0.001 0.36 (0.31, 1.00)** 

    No pain  525 (73.7%) 147 (38.7%)   

    Low interference CP  137 (19.2%) 133 (35.0%)   

    High interference CP  50 (7.02%) 100 (26.3%)   

Pain widespreadness 1116   <0.001 0.39 (0.34, 1.00)** 
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    No pain  525 (73.0%) 147 (37.0%)   

    CP with 1-2 sites  144 (20.0%) 123 (31.0%)   

    CP with 3 or more sites  50 (6.95%) 127 (32.0%)   

Cortisol parameters at baseline (MIDUS 2)3      

CAR (0-30 mins) 1185 0.53 (0.29) 0.47 (0.38) 0.011 0.16 (0.04, 0.28) 

Early post-wake DCS (30 mins-4.5 hours) 1185 -0.14 (0.05) -0.13 (0.05) 0.211 -0.08 (-0.20, 0.04) 

Mid post-wake DCS (4.5 hours-15 hours) 1185 -0.16 (0.04) -0.15 (0.04) 0.066 -0.11 (-0.23, 0.01) 

Late post-wake DCS (after 15 hours) 1185 -0.14 (0.04) -0.13 (0.04) 0.019 -0.14 (-0.26, -0.02) 

CDR 1183 2.49 (0.48) 2.38 (0.57) 0.001 0.21 (0.08, 0.33)* 

AUC 1183 4.84 (0.32) 4.81 (0.40) 0.110 0.10 (-0.02, 0.22) 

Covariates at baseline (MIDUS 2)      

Pain outcomes      

Pain interference 422 /    

    Low interference CP   311 (73.7%)   

    High interference CP   111 (26.3%)   
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Pain widespreadness 429 /    

    CP with 1-2 sites   259 (60.4%)   

    CP with 3 or more sites   170 (39.6%)   

Medication uses      

Steroid inhaler 1191   0.622 0.02 (0.00, 1.00) 

    No  739 (97.0%) 413 (96.3%)   

    Yes  23 (3.02%) 16 (3.73%)   

Oral steroid meds 1191   1.000 0.00 (0.00, 1.00) 

    No  741 (97.2%) 417 (97.2%)   

    Yes  21 (2.76%) 12 (2.80%)   

Other hormonal meds 1191   0.122 0.05 (0.00, 1.00) 

    No  739 (97.0%) 423 (98.6%)   

    Yes  23 (3.02%) 6 (1.40%)   

Anti-depressant or anti-anxiety meds 1191   0.146 0.04 (0.00, 1.00) 

    No  685 (89.9%) 373 (86.9%)   
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    Yes  77 (10.1%) 56 (13.1%)   

Birth control pills 1191   0.001 0.09 (0.05, 1.00) 

    No  674 (88.5%) 350 (81.6%)   

    Yes  88 (11.5%) 79 (18.4%)   

Sociodemographics      

Income-to-needs scale 1169 0.21 (0.54) 0.32 (0.65) 0.004 -0.18 (-0.30, -0.05) 

Education 1189 0.55 (0.54) 0.66 (0.58) 0.001 -0.20 (-0.32, -0.08)* 

Age 1191 54.7 (11.3) 56.9 (11.3) 0.001 -0.19 (-0.31, -0.07) 

Ethnicity 1170   0.702 0.02 (0.00, 1.00) 

    White  721 (95.9%) 398 (95.2%)   

    Black, Indigenous and People of Color (BIPOC)  31 (4.12%) 20 (4.78%)   

Sex assigned at birth 1191   0.024 0.07 (0.02, 1.00) 

    Male  355 (46.6%) 170 (39.6%)   

    Female  407 (53.4%) 259 (60.4%)   

Marital status 1190   0.107 0.05 (0.00, 1.00) 
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    Divorced/separated/widowed/never married  180 (23.6%) 120 (28.0%)   

    Married  582 (76.4%) 308 (72.0%)   

Health behavior      

Physical activity 1109 29.6 (10.4) 29.5 (10.9) 0.873 0.01 (-0.11, 0.13) 

Smoking status 1191   0.054 0.07 (0.00, 1.00) 

    Current smoker  76 (9.97%) 52 (12.1%)   

    Ex-smoker  455 (59.7%) 274 (63.9%)   

    Non-Smoker  231 (30.3%) 103 (24.0%)   

Drinking status 1191   0.260 0.05 (0.00, 1.00) 

    Moderate + Drinker  240 (31.5%) 136 (31.7%)   

    Light Drinker  234 (30.7%) 114 (26.6%)   

    Non-Drinker or Rarely Drink  288 (37.8%) 179 (41.7%)   

Health conditions      

Multimorbidity 1191   <0.001 0.25 (0.20, 1.00)* 

    No  401 (52.6%) 115 (26.8%)   
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    Yes  361 (47.4%) 314 (73.2%)   

BMI 1146 27.2 (5.01) 28.6 (6.11) <0.001 -0.25 (-0.38, -0.13)* 

Parental abuse at MIDUS 1      

Childhood emotional abuse 1100   0.975 0.02 (0.00, 1.00) 

    1 (Never)  246 (34.6%) 128 (32.9%)   

    1.5  103 (14.5%) 57 (14.7%)   

    2  189 (26.6%) 103 (26.5%)   

    2.5  89 (12.5%) 52 (13.4%)   

    3 (Most frequent)  84 (11.8%) 49 (12.6%)   

Childhood physical abuse 1108   0.587 0.05 (0.00, 1.00) 

    1 (Never)  318 (44.6%) 161 (40.8%)   

    1.5  112 (15.7%) 59 (14.9%)   

    2  174 (24.4%) 102 (25.8%)   

    2.5  59 (8.27%) 41 (10.4%)   

    3 (Most frequent)  50 (7.01%) 32 (8.10%)   
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1Tests for effect size: Cohen's d: *small effect (≥0.20 & <0.50); **medium effect (≥0.50 & <0.80); *** large effect (≥0.80); Phi: *small effect (≥0.10 & <0.30);  

**medium effect (≥0.30 & <0.50); *** large effect (≥0.50); Cramer’s V: *small effect (≥0.10 & <0.30); **medium effect (≥0.30 & <0.50); *** large effect (≥0.50). 

2At follow-up, low interference pain includes 196 with CP with 1-2 sites and 80 with CP with 3 or more sites, while high interference pain includes 66 and 86, 

respectively. Similarly, CP with 1-2 sites includes 196 with low interference pain and 66 with high interference pain, while CP with 3 or more sites includes 80 

and 86, respectively. Among participants with no baseline pain, 80.0% with CP with 1-2 sites reported low interference pain, while 20.0% reported high 

interference pain. For those with multisite pain, 53.2% had low interference pain, and 46.8% had high interference pain (χ²=761, P<0.001). Among participants 

with baseline pain, 68.7% of those with CP with 1-2 sites had low interference pain, while 31.3% reported high interference pain. For multisite pain, 45.8% 

had low interference pain, and 54.2% had high interference pain (χ²=400, P<0.001). 

3Note that cortisol parameters were non-standardized. An increase of CAR indicates a steeper CAR, whereas an increase of in DCSs indicates flatter DCSs. A 

higher value in CDR indicates a wider CDR, while a higher value in AUC indicates a larger AUC. 
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3.3.2 Regression results 

Table 3-2 shows results from the mixed-effects logistic regressions for the prospective 

associations between diurnal cortisol rhythm and CP conditions at follow-up, for both the 

stratified subgroup analysis and pooled analysis. In those without CP at baseline, blunter late 

post-wake DCS was associated with higher odds of developing CP (OR=1.26, 95% CI=1.03-1.55, 

P<0.05); no significant associations were observed for those with CP at baseline or for the 

pooled analysis.   

 

Regarding pain interference, in those without CP at baseline, blunter early post-wake DCS and 

mid post-wake DCS were associated with higher odds of developing high interference pain. 

Specifically, for each one standard deviation increase in the early post-wake DCS and mid 

post-wake DCS, the odds of developing high interference pain were 85% (OR=1.85, 95% 

CI=1.09-3.16, P<0.05) and 82% (OR=1.82, 95% CI=1.09-3.02, P<0.05) higher respectively. Also, 

the blunter early post-wake DCS was significantly associated with higher odds of experiencing 

high interference pain compared to low interference pain both among individuals without CP 

at baseline (OR=2.60, 95% CI=1.44-4.70, P<0.01) and within the pooled sample (OR=1.37, 95% 

CI=1.04-1.81, P < 0.05). No significant associations were observed between cortisol diurnal 

parameters at baseline and low interference pain at follow-up, in either subgroup or pooled 

analysis. 

 

Similarly, in those without CP at baseline, blunter early post-wake DCS (OR=2.16, 95% CI=1.41-

3.32, P<0.001), mid post-wake DCS (OR=1.93, 95% CI=1.28-2.90, P<0.01), and late post-wake 

DCS (OR=1.58, 95% CI=1.03-2.43, P<0.05) were associated with higher odds of developing CP 
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with 3 or more sites. Additionally, the early post-wake DCS was significantly associated with 

higher odds of CP with 3 or more sites compared to CP with 1-2 sites both among individuals 

without CP at baseline (OR=2.73, 95% CI=1.49-4.99, P< 0.01) and within the pooled sample 

(OR=1.33, 95% CI=1.01-1.75, P<0.05). The wider AUC was significantly associated with lower 

odds of CP with 3 or more sites compared to CP with 1-2 sites both within the pooled sample 

(OR=0.76, 95% CI=0.58-0.98, P<0.05). Furthermore, the mid post-wake DCS was significantly 

associated with higher odds of CP with 3 or more sites compared to CP with 1-2 sites among 

individuals without CP at baseline (OR=2.21, 95% CI=1.24-3.91, P < 0.01). In those with pre-

existing CP at baseline, no significant associations were observed between cortisol diurnal 

parameters at baseline and pain widespreadness at follow-up.  

 

To aid in interpreting the associations, Figure 3-2 illustrates the diurnal cortisol trajectories of 

participants by CP conditions at follow-up, stratified by baseline CP status. 
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Table 3-2 Results from the mixed-effects logistic regression for the prospective association between diurnal cortisol rhythm and 

CP interference and pain at 1-2 regions/at 3 or more regions † 

 Subgroups Pooled sample 

 No baseline CP Reporting CP at baseline Adjusting for CP at baseline 

No pain vs presence of CP at MIDUS 3 N OR (95% CI)  N OR (95% CI)  N OR (95% CI)  

CAR (0-30 mins) 610 0.93 (0.77, 1.13) 310 1.08 (0.81, 1.42) 920 0.96 (0.83, 1.12) 

Early post-wake DCS (30 mins-4.5 hours) 610 1.02 (0.84, 1.24) 310 1.07 (0.80, 1.43) 920 1.03 (0.89, 1.20) 

Mid post-wake DCS (4.5 hours-15 hours) 610 1.08 (0.89, 1.32) 310 1.05 (0.79, 1.40) 920 1.07 (0.92, 1.25) 

Late post-wake DCS (after 15 hours) 610 1.26 (1.03, 1.55)* 310 0.94 (0.71, 1.26) 920 1.15 (0.99, 1.35) 

CDR 610 0.90 (0.74, 1.09) 310 0.89 (0.66, 1.20) 920 0.89 (0.77, 1.04) 

AUC 610 1.09 (0.89, 1.33) 310 0.97 (0.73, 1.30) 920 1.03 (0.88, 1.20) 

No pain vs low interference pain at MIDUS 3 N OR (95% CI)  N OR (95% CI)  N OR (95% CI)  

CAR (0-30 mins) 568 1.11 (0.90, 1.37) 224 0.95 (0.69, 1.29) 792 1.05 (0.89, 1.24) 

Early post-wake DCS (30 mins-4.5 hours) 568 1.16 (0.93, 1.45) 224 0.96 (0.69, 1.33) 792 1.08 (0.91, 1.29) 
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Mid post-wake DCS (4.5 hours-15 hours) 568 1.08 (0.86, 1.35) 224 0.97 (0.70, 1.34) 792 1.03 (0.86, 1.22) 

Late post-wake DCS (after 15 hours) 568 0.83 (0.66, 1.04) 224 1.03 (0.76, 1.40) 792 0.89 (0.75, 1.05) 

CDR 568 1.06 (0.86, 1.30) 224 1.15 (0.83, 1.58) 792 1.08 (0.92, 1.28) 

AUC 568 0.90 (0.72, 1.13) 224 1.04 (0.75, 1.43) 792 0.95 (0.80, 1.13) 

No pain vs high interference pain at MIDUS 3 N OR (95% CI)  N OR (95% CI)  N OR (95% CI)  

CAR (0-30 mins) 490 1.01 (0.67, 1.53) 190 1.09 (0.71, 1.67) 680 0.97 (0.75, 1.25) 

Early post-wake DCS (30 mins-4.5 hours) 490 1.85 (1.09, 3.16)* 190 0.89 (0.59, 1.33) 680 1.28 (0.98, 1.66). 

Mid post-wake DCS (4.5 hours-15 hours) 490 1.82 (1.09, 3.02)* 190 0.83 (0.55, 1.24) 680 1.26 (0.68, 2.33) 

Late post-wake DCS (after 15 hours) 490 1.52 (0.95, 2.45). 190 0.70 (0.46, 1.06) 680 1.09 (0.83, 1.43) 

CDR 490 0.79 (0.53, 1.19) 190 0.87 (0.56, 1.37) 680 0.81 (0.63, 1.04) 

AUC 490 1.08 (0.71, 1.64) 190 0.92 (0.59, 1.42) 680 0.94 (0.73, 1.23) 

Low interference pain vs high interference pain at MIDUS 3 N OR (95% CI)  N OR (95% CI)  N OR (95% CI)  

CAR (0-30 mins) 154 1.10 (0.68, 1.77) 174 0.91 (0.64, 1.28) 328 0.94 (0.73, 1.20) 

Early post-wake DCS (30 mins-4.5 hours) 154 2.60 (1.44, 4.70)** 174 1.10 (0.74, 1.62) 328 1.37 (1.04, 1.81)* 

Mid post-wake DCS (4.5 hours-15 hours) 154 2.48 (0.94, 6.55) 174 1.01 (0.70, 1.47) 328 1.26 (0.96, 1.64) 
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Late post-wake DCS (after 15 hours) 154 1.25 (0.75, 2.08) 174 0.86 (0.59, 1.26) 328 0.97 (0.75, 1.26) 

CDR 154 0.77 (0.37, 1.59) 174 0.92 (0.65, 1.29) 328 0.88 (0.69, 1.14) 

AUC 154 0.89 (0.49, 1.62) 174 0.86 (0.60, 1.22) 328 0.86 (0.66, 1.11) 

No pain vs CP with 1-2 sites at MIDUS 3 N OR (95% CI)  N OR (95% CI)  N OR (95% CI)  

CAR (0-30 mins) 570 1.08 (0.88, 1.34) 214 0.82 (0.56, 1.19) 784 1.01 (0.84, 1.21) 

Early post-wake DCS (30 mins-4.5 hours) 570 1.15 (0.93, 1.43) 214 0.96 (0.68, 1.34) 784 1.09 (0.91, 1.29) 

Mid post-wake DCS (4.5 hours-15 hours) 570 1.06 (0.85, 1.31) 214 0.99 (0.7, 1.39) 784 1.02 (0.86, 1.21) 

Late post-wake DCS (after 15 hours) 570 0.83 (0.66, 1.04) 214 1.06 (0.78, 1.45) 784 0.87 (0.74, 1.04) 

CDR 570 1.09 (0.88, 1.34) 214 1.02 (0.70, 1.48) 784 1.06 (0.89, 1.26) 

AUC 570 0.87 (0.69, 1.09) 214 0.91 (0.63, 1.32) 784 0.88 (0.73, 1.06) 

No pain vs CP with 3 or more sites at MIDUS 3 N OR (95% CI)  N OR (95% CI) N OR (95% CI)  

CAR (0-30 mins) 491 0.83 (0.56, 1.21) 227 0.88 (0.62, 1.26) 703 0.89 (0.71, 1.10) 

Early post-wake DCS (30 mins-4.5 hours) 491 2.16 (1.41, 3.32)*** 227 0.93 (0.64, 1.34) 703 1.26 (0.99, 1.60). 

Mid post-wake DCS (4.5 hours-15 hours) 491 1.93 (1.28, 2.90)** 227 0.92 (0.64, 1.34) 703 1.22 (0.96, 1.55) 

Late post-wake DCS (after 15 hours) 491 1.58 (1.03, 2.43)* 227 0.87 (0.59, 1.29) 703 1.11 (0.87, 1.44) 
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CDR 491 0.74 (0.51, 1.06) 212 0.77 (0.53, 1.12) 703 0.81 (0.65, 1.01) 

AUC 491 0.81 (0.54, 1.21) 212 0.76 (0.51, 1.12) 703 0.83 (0.66, 1.04) 

CP with 1-2 sites vs CP with 3 or more sites at MIDUS 3 N OR (95% CI)  N OR (95% CI) N OR (95% CI)  

CAR (0-30 mins) 157 1.14 (0.71, 1.84) 186 0.80 (0.56, 1.14) 343 0.87 (0.68, 1.12) 

Early post-wake DCS (30 mins-4.5 hours) 157 2.73 (1.49, 4.99)** 186 0.95 (0.65, 1.39) 343 1.33 (1.01, 1.75)* 

Mid post-wake DCS (4.5 hours-15 hours) 157 2.21 (1.24, 3.91)** 186 0.98 (0.68, 1.41) 343 1.21 (0.93, 1.57) 

Late post-wake DCS (after 15 hours) 157 1.17 (0.71, 1.93) 186 0.96 (0.67, 1.37) 343 0.98 (0.76, 1.27) 

CDR 157 1.00 (0.62, 1.62) 186 0.80 (0.57, 1.12) 343 0.85 (0.67, 1.09) 

AUC 157 0.86 (0.54, 1.38) 186 0.69 (0.48, 1.00) 343 0.76 (0.58, 0.98)* 

Statistical significance markers: * p<0.05; ** p<0.01; *** p <0.001 

† Adjusted for age, race, sex assigned at birth, income-to-needs ratio, education, marital status, physical activity index, smoking and drinking status, 

multimorbidity, BMI, childhood experiences of parental emotional and physical abuse, and medication intakes (e.g., steroid inhalers, oral steroids, 

antidepressants, anti-anxiety medications, birth control pills, and other hormonal medications). A random intercept at the family level was included, to allow for 

correlations between individuals from the same family. 
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Note that cortisol parameters were standardized. An increase of one standard deviation in CAR indicates a steeper CAR, whereas an increase of one standard 

deviation in DCSs indicates flatter DCSs. One standard deviation increase in CDR indicates a wider CDR, while one standard deviation increase in AUC indicates a 

larger AUC. 
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Figure 3-2 Diurnal cortisol trajectories of participants by chronic pain conditions at 
follow-up, stratified by baseline chronic pain status 
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3.3.3 Robustness Check 

Results of the robustness checks are presented in Supplementary Tables 2-5 to 2-9. Among 

participants without baseline CP, late post-wake DCS was not significantly associated with CP 

development after multiple imputations, Bonferroni correction, exclusion of medication users, 

and controlling for daily stressors (see Supplementary Table 2-5).  

 

Early and mid post-wake DCSs were initially associated with high interference CP. However, 

these associations became non-significant following Bonferroni correction and additional 

adjustments (see Supplementary Table 2-6). Moderation analyses revealed no significant 

interactions between baseline CP status and these cortisol parameters for high interference 

CP compared to individuals with no pain at follow-up (see Supplementary Table 2-9).  

 

Associations between early and mid post-wake DCSs and CP with 3 or more sites remained 

consistent with the main analyses (see Supplementary Table 2-7). Significant moderation 

effects were observed for baseline CP and early and mid post-wake DCSs on the development 

of CP with 3 or more sites (see Supplementary Table 2-9).  

 

Only early post-wake DCS remained robust in its association with CP with 3 or more sites at 

MIDUS 3, compared to CP with 1-2 sites in samples without baseline pain. Most associations 

between other post-wake DCSs or AUC and pain types at MIDUS 3 were non-significant in this 

subgroup or in the pooled samples (Supplementary Table 2-8). Additionally, moderation 

analyses showed that the absence of baseline pain significantly interacted with early and mid 



 106 

post-wake DCSs, linking them to CP with 3 or more sites compared to CP with 1-2 sites, and 

to high interference pain compared to low interference pain (Supplementary Table 2-9). 

3.4 Discussion 

In this U.S. cohort of community-dwelling adults with multi-day cortisol collection, we found 

among individuals who did not report CP at baseline, those with blunter early and mid post-

wake DCSs had higher odds of developing CP with 3 or more sites about seven years later. 

Also, early post-wake DCS was associated with CP with 3 or more sites compared to CP with 

1-2 sites, among individuals without baseline CP. Sensitivity analyses did not substantially 

change these associations. No other robust associations were found in the same subgroup. 

Among those with pre-existing CP, no clear associations were found between diurnal cortisol 

rhythm and CP outcomes. Moreover, in the pooled sample, no robust associations were found 

between diurnal cortisol rhythm and CP outcomes. 

 

A previous study found that a blunted diurnal cortisol rhythm predicted an increased risk of 

new-onset chronic widespread pain 15 months later (McBeth et al., 2007). However, it had a 

smaller cohort size (n=269). Additionally, the previous study used actual clock time, and 

cortisol samples might have been taken at different points in each individual's diurnal cycle, 

potentially leading to measurement bias (Adam and Kumari, 2009). Using waking time as a 

reference in our study ensured that the measurements consistently reflected the natural 

rhythms of the participants. Our research findings echo the previous results. The DCS is 

primarily regulated by a negative feedback mechanism mediated jointly by GRs in peripheral 

and brain regions and MRs expressed in limbic structures (Kloet et al., 1998; Stalder et al., 

2024). However, GRs typically exhibit stronger inhibitory effects following the diurnal rhythm 
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peak, and as cortisol levels decline, MRs become more significant, particularly in maintaining 

the basal activity of the HPA axis (Kloet et al., 1998; Oster et al., 2017). Our linear spline 

modeling of DCS may capture the extent to which different receptors mediate negative 

feedback mechanisms at different time intervals. Our PCA analysis (Supplementary Table 2-3) 

shows that Factor 1 may reflect the synergistic functions of GRs and MRs, with GRs being 

dominant. Early post-wake DCS may primarily reflect GR activity, with minimal influence from 

MRs, resulting in lower factor loadings. Mid post-wake DCS may involve both GRs and slightly 

increased MR activity, leading to the highest factor loading. In late post-wake DCS, MR activity 

predominates while GR participation decreases, reducing synergy and yielding the lowest 

factor loadings. 

 

Therefore, on the one hand, our results emphasize the important role of GR downregulation 

in the development of pain with multiple sites as characterized by the flattening of early post-

wake DCS and mid post-wake DCS. GR downregulation reduces cortisol inhibition of 

catecholamine release (Fries et al., 2005; Hannibal and Bishop, 2014), which exacerbate 

inflammation and induce nociception. Additionally, the inflammation heightens the 

excitability of sensory transmission pathways, leading to both peripheral and central 

sensitization (Veldhuijzen et al., 2018). Moreover, impaired GR function fails to inhibit nuclear 

factor-κB (Pavlov et al., 2003), promoting algogen transcription and further sensitization and 

hyperalgesia (Kawasaki et al., 2008; Walsh and McWilliams, 2014). On the other hand, late 

post-wake DCS did not show robust association with CP with 3 or more sites, and in the 

comparison between CP with 1-2 sites and CP with 3 or more sites, only early post-wake DCS 

was significant. This may indicate that the MR mechanism has a limited role in the 

development of CP with 3 or more sites. 
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Furthermore, our results highlight the significant role of identifying DCS flattening in 

indicating the developmental stages of CP with 3 or more sites (McBeth et al., 2007). Recent 

studies collectively demonstrate that individuals experiencing acute pain or non-chronic 

regional pain, representing the early to mid-stages of CP development, often exhibit higher 

cortisol levels, such as elevated CAR and AUC (Begum et al., 2022; Reyes del Paso et al., 2024; 

Riva et al., 2012). However, as pain becomes chronic, cortisol levels gradually decline (Reyes 

del Paso et al., 2024). Although some studies have still observed increased cortisol levels 

following the onset of CP (Begum et al., 2022), recent research has clarified these associations. 

It suggests that cortisol levels may temporarily rise due to pain episodes within CP, but in the 

long term, the HPA axis function becomes downregulated, leading to decreased cortisol levels 

(Reyes del Paso et al., 2024). The latest meta-analyses and cross-sectional epidemiological 

studies consistently indicate that individuals with fibromyalgia and chronic multisite 

musculoskeletal pain have lower cortisol levels (Beiner et al., 2023; Generaal et al., 2014; 

McBeth et al., 2005). Similarly, our supplementary analyses showed that, after controlling for 

the same set of covariates, a flatter CAR and lower AUC were cross-sectionally associated with 

higher odds of CP with 3 or more sites (see Supplementary Table 2-10). Therefore, DCS 

flattening serves as a mid-to-late stage marker of HPA axis dysregulation, linking elevated 

cortisol levels at the early stage with reduced cortisol levels as a longer-term consequence of 

the dysregulation. 

 

Contrary to our findings, a study from the Netherlands Study of Depression and Anxiety 

(NESDA) reported that diurnal rhythm of cortisol was not associated with the development of 

chronic widespread pain (Generaal et al., 2016). However, incorporating cohorts with a high 
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proportion of patients with a history of depression and anxiety (71.4% of those who did not 

develop chronic widespread pain and 81.9% of those who did) (Generaal et al., 2016) could 

obscure the relationship between cortisol levels and the development of CP (Generaal et al., 

2014), as the cortisol changes in these conditions may introduce variability unrelated to pain, 

masking the true association (Knorr et al., 2010). This was confirmed in our supplementary 

analysis when we further excluded participants reporting anxiety, depression, or other 

emotional disorders in the past 12 months. Both early post-wake (OR=2.36, 95% CI=1.40-3.97, 

P<0.01) and mid post-wake (OR=2.20, 95% CI=1.33-3.64, P<0.01) DCSs showed even higher 

effect sizes among those without anxiety, depression, or other emotional disorders in the past 

12 months, compared to the main analysis (see Supplementary Table 2-7).  

 

Among respondents with baseline CP, we found no associations between diurnal cortisol 

rhythm and CP outcomes at follow-up, echoing the null association found in a previous study 

(Generaal et al., 2017). This may attenuate the association in the pooled analysis, resulting in 

nonsignificant findings. CP may become self-sustaining through central sensitization, in which 

neurons become hypersensitive, responding chaotically to normal stimuli or producing 

amplified responses to noxious stimuli (Woolf, 2011). Sustained pain may be less dependent 

on the HPA axis. Although participants who reported low interference pain and CP with 1-2 

sites after seven years exhibited more active HPA axis among those with CP with 3 or more 

sites at baseline (see Supplementary Table 2-11), the small subgroup sizes based on specific 

baseline CP conditions limit the ability to conduct systematic examinations, warranting 

cautious interpretation. Future studies with larger samples are needed to further clarify these 

relationships. 
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We did not find a robust association between diurnal cortisol rhythms and pain interference. 

One possibility is that reports of pain interference may reflect modulation by the anterior 

cingulate cortex (Rainville, 2002), shaping the pain experience through mechanisms such as 

attentional focus, emotional distress, and cognitive appraisal (Villemure and Bushnell, 2002; 

Wiech et al., 2008). In our sample, 47% of individuals with pain at 3 or more regions 

overlapped with those reporting high interference pain. The observed differences in the 

association between the HPA axis and pain outcomes suggest that the reports of pain 

interference by those with pain at 3 or more regions may be further affected by the complex 

interplay of biopsychosocial factors rather than by the pain condition alone (Miettinen et al., 

2019). Given the significant clinical implications of pain interference, further studies on its 

underlying mechanisms are needed. 

 

Our study has several key advantages, including repeated measurements of salivary cortisol 

over multiple days in naturalistic settings and a community-based cohort study design. 

Repeated measurements of salivary cortisol over multiple days in naturalistic settings can 

reduce the masking of the average diurnal rhythm of cortisol due to intra-individual 

differences in stress events during the week (Hellhammer et al., 2007). Additionally, by 

employing multiple knots in a multilevel model to parametrically define diurnal cortisol 

rhythm, our study enhances the ability to capture non-linearities in these trajectories, offering 

a more nuanced approach than a uniform declining slope post-peak (Ranjit et al., 2005b). 

Furthermore, compared to a previous population-based prospective study, we additionally 

controlled for medication uses, thereby further clarifying the confounding effects on the 

associations (McBeth et al., 2007). 
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The study has the following limitations. We could not obtain clinically validated pain measures 

from the MIDUS, such as chronic widespread pain or fibromyalgia, possibly including patients 

with milder symptoms (Generaal et al., 2014). Additionally, the measurement of CP lacks a 

minimum duration of three months and implicitly assumes preexisting tissue damage, making 

it less reflective of the broader biopsychosocial dimensions of pain. Given the global burden 

of CP, we call for the inclusion of rigorous measures of CP in population-based epidemiological 

studies. Second, the study could not detect changes in CP status between MIDUS 2 NSDE and 

MIDUS 3, potentially misclassifying those who recovered by MIDUS 3 as not experiencing CP 

during the seven-year follow-up.  

 

Another limitation of the study is the stringent criteria for selecting participants with viable 

cortisol data, which may introduce selection bias and limit the generalizability to the wider 

U.S. population. Meanwhile, BIPOC participants are underrepresented, indicating the need to 

increase the inclusion of ethnic minorities in future studies. Despite our cautious adjustment 

for confounders, the possibility of residual confounding due to imprecise measurements or 

unknown factors cannot be excluded in our study.  

 

In addition, as with all associations yielding insignificant results, the true differences may be 

obscured by Type II errors. Although further moderation analysis by pooling the samples did 

not substantially alter our findings (See Supplementary Table 2-9), future larger-scale studies 

are necessary to further elucidate these associations.  

 

Despite the advantages of cortisol collection via NSDE, factors like differences in collection 

times between groups, discrepancies between actual and intended collection times, and knot 
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selection may affect the accuracy of diurnal cortisol rhythm modeling. Future studies will 

benefit from strategies to improve collection compliance and precise knot estimation 

techniques. 

 

Finally, by restricting analyses to participants without chronic pain at baseline, we may have 

conditioned on a variable influenced by both diurnal cortisol patterns and unmeasured risk 

factors for CP, potentially inducing a spurious association. Future studies using causal 

inference methods may help address this issue. 

 

Our research has important implications for public health. First, we clarified the prospective 

associations between diurnal cortisol rhythms and the development of CP with 3 or more 

sites, providing information for identifying at-risk populations and informing strategies to 

monitor CP progression. While we did not estimate the proportion of future CP cases 

attributable to blunted DCS, future studies could use receiver operating characteristic (ROC) 

curve analysis to establish optimal cut-off values and assess sensitivity and specificity for risk 

stratification. Second, recent research shows that inhibiting FKBP51 upregulation can reduce 

pronociceptive GR signaling in inflammation and promote antinociceptive functions (Maiarù 

et al., 2016). Our findings may provide preliminary support for the potential of GR-related 

pharmacology in CP treatment. Longitudinal studies with repeated assessments of diurnal 

cortisol patterns and CP in large samples are needed to clarify their dynamic relationship and 

assess whether managing GR downregulation, indicated by blunted DCS, could reduce the 

burden of CP with 3 or more sites at the population level. 
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4 Life Course Socioeconomic Status, Chronic Pain, and the Mediating Role 

of Biological Dysregulation in Stress Response Systems: Findings from the 

Midlife in the United States 

4.1 Introduction 

Among the leading causes of disability, the top three are all non-communicable diseases. 

Notably, the first and third leading causes—low back pain and headaches—are both 

conditions that commonly present as chronic pain (CP) (Ferrari et al., 2024). The economic 

and societal impact of CP is substantial. A report from the Institute of Medicine in 2010 

estimated that about one-third of the U.S. population experiences CP, with annual costs for 

healthcare and lost productivity ranging from $560 billion to $635 billion (Steglitz et al., 2012). 

CP, however, does not affect everyone equally. Data from the Centers for Disease Control and 

Prevention (CDC) indicate that women, individuals with lower socioeconomic status (SES), 

veterans, and rural residents tend to have higher rates of CP (Dahlhamer et al., 2018). 

Research consistently demonstrates that CP has a pronounced social patterning, with the 

prevalence of CP exhibiting clear socioeconomic disparities. Recent studies in the United 

States have found a SES gradient in CP trends over time, with increasing disparities in pain 

(Grol-Prokopczyk, 2017; Zajacova et al., 2021a; Zimmer and Zajacova, 2018). Given the 

significant consequences of CP and the widening inequalities in its prevalence, it is essential 

to take immediate steps to address socioeconomic disparities related to CP, ease its burden, 

and enhance the resilience of those most affected. 
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4.1.1 Association between life course SES and CP 

Life course epidemiology provides multiple theoretical models to help understand how 

exposures throughout an individual's life influence health outcomes in later years and may 

facilitate understanding and prevention of CP. However, only few studies have focused on the 

association between SES during childhood and across the lifespan with CP. The critical period 

model suggests that exposure to unfavorable socioeconomic conditions during key 

developmental stages, such as early childhood, can result in long-term biological changes in 

the body's pain regulation systems, leading to a higher risk of CP in adulthood. This 

phenomenon is often referred to as biological programming. According to this model, 

exposure during these critical periods can have permanent effects on how individuals 

perceive and respond to pain. The sensitive period model shares some similarities with the 

critical period model, but differs in that it argues that certain phases of life are particularly 

important for health outcomes, yet the negative effects of exposures during these periods 

might still be partially reversed if conditions improve later in life. For instance, although low 

SES during certain life stages may elevate the likelihood of having CP, better access to 

resources after these sensitive periods could reduce this risk. The accumulation of risk model 

proposes that prolonged exposure to low SES over the course of life gradually imposes an 

increasing strain on the body’s pain regulation systems, ultimately heightening the risk of CP. 

In this case, the frequency, intensity, and duration of harmful exposures accumulate over time, 

amplifying the damage to health. Meanwhile, the pathway model focuses on how early-life 

socioeconomic disadvantages influence opportunities throughout adulthood, setting 

individuals on a course where limited access to education, employment, and healthcare 

increases the risk of CP later in life. Finally, the chain of risk additive model integrates aspects 

of both the accumulation of risk and pathway models. This model highlights how exposure to 
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multiple risk factors at various life stages can form a chain, where each additional exposure 

compounds the overall risk. In relation to CP, repeated exposures to low SES at different times 

in life may collectively increase susceptibility to CP as the individual grows older. Moreover, 

the chain of risk additive model can help identify whether certain periods of exposure to risk 

factors act as sensitive periods or critical periods (Ben-Shlomo et al., 2014; Kuh et al., 2003). 

 

Limited research studied the association between childhood SES and adulthood CP. Childhood 

SES, including the average educational attainment of both parents and family income, was 

found to be unrelated to the risk of chronic back pain in adulthood (Gonzalez et al., 2012). 

Two birth cohort studies revealed detailed associations between life course SES and chronic 

widespread pain (CWP). Based on the 1958 British Birth Cohort, the research found that after 

controlling for recent life events, self-rated health, mental health, body mass index, and 

physical activity, individuals in skilled manual, partly skilled, and unskilled social classes at age 

42 were at a higher risk of having CWP three years later compared to those in the professional 

class at the same age. Moreover, lower social class at age 42 was associated with CP in the 

forearm, lower back, and knee while only father's social class was associated with chronic 

forearm pain (Macfarlane et al., 2009). Another study using the 1946 British Birth Cohort 

found that groups reporting moderate to severe financial hardship at age 43 had a 1.3- and 

3.4-times higher risk of reporting CWP at age 68 compared to those who did not report 

financial hardship. Additionally, individuals renting at age 53 had a 62% increased risk of 

reporting CWP at age 68 compared to property owners. Compared to highly educated women, 

women with lower educational attainment had a 93% increased risk of reporting chronic 

regional pain (CRP) at age 68; however, for men, educational level was associated with CWP 

but not with CRP. Finally, compared to those who either reported no or only minimal 
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economic hardship, those reporting moderate to severe economic difficulties at ages 43 and 

between 60 to 64 had a 2.9 times higher risk of CWP. Childhood and SES from ages 60 to 64 

were unrelated to CWP at age 68 (Jay et al., 2019). In addition, a retrospective study found 

that parental educational years, government assistance during childhood, and hunger were 

associated with CP, but this association was attenuated after adjusting for adult SES indicators, 

including income, education, and public assistance in adulthood, indicating a potential 

mediating role of SES in adulthood (Goosby, 2013). 

 

However, previous studies on life course SES and CP have limitations. Firstly, SES and health 

conditions are largely determined by prior circumstances, such as how health status may 

affect occupational transitions (Hoffmann et al., 2018), and a history of chronic diseases and 

pain significantly predicts future pain reports (Mills et al., 2019). Thus, the lack of control for 

important confounding factors may exaggerate the association between SES and CP 

throughout the life course. Furthermore, previous life course studies were unable to provide 

information on additive effects and risk chains. Although a study has attempted to sum the 

same SES indicators collected at different times, this assumes that the effect of this indicator 

on CP is equal at different times, potentially overestimating or underestimating the effects of 

certain periods (Jay et al., 2019). Finally, previous research has either regressed SES indicators 

with CP alone or adjusted SES indicators against each other to explore the association 

between SES and CP. These measurements of SES either measures only one dimension of SES 

or overlooks the covariance present among various indicators, thus failing to represent the 

overall impact of SES as a multidimensional structure.  
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Scholars have long recognized the importance of relative deprivation indicators in health 

research because these involve a broader range of methods, capabilities, and psychological 

resources to cope with health risks, particularly for rich countries with low levels of material 

deprivation (Clouston and Link, 2021; Marmot, 2005). They are actually habitual and 

unconscious, internalized reflections of current socioeconomic plight. However, few life 

course CP studies have captured people's SES through relative deprivation indicators. 

Although some studies have included relative deprivation indicators, such as financial 

hardship (Jay et al., 2019), most have neglected the measurement of individuals' subjective 

perceptions of poverty and their experiences and adaptations to impoverished living (Diemer 

et al., 2013). Consequently, addressing the aforementioned disparities could prove 

advantageous in elucidating the relationship between life course SES and CP. 

4.1.2 Biological dysregulations of chronic stress and its association with SES 

Biological dysregulation associated with chronic stress is common among patients with CP 

(Woda et al., 2016) and low SES populations (Johnson et al., 2017), making it a potential 

mediator in the association between lifecourse SES and CP. However, only few studies have 

explored the potential of these biomarkers to link SES and CP (Slade et al., 2012; Strath et al., 

2024). Allostatic load (AL) describes the biological consequences of an organism's continuous 

adaptation to prolonged and repeated stress (Juster et al., 2010; McEwen, 1998). The 

biological cost of chronic stress initially manifests in alterations of the hypothalamic-pituitary-

adrenal (HPA) axis. A normal HPA axis, through its reactive hormonal secretion, prepares the 

organism for stress response (Herman et al., 2016). However, prolonged activation of the HPA 

axis, leading to over- or under-secretion of glucocorticoids and catecholamines, may 

eventually disrupt the production of substances necessary for maintaining the normal 



 118 

functioning of downstream physiological systems. This disruption can result in anomalies in 

biomarkers from multiple physiological systems (Juster et al., 2010). 

 

Individuals living in adverse socioeconomic conditions often endure dual hardships: there are 

needs for basic necessities, support, and opportunities, yet the resources available to meet 

them are limited. They are more likely to live with economic difficulties, family conflicts, 

bereavement, poor living conditions, crime, violence, and discrimination. These conditions in 

turn restrict opportunities to access essential resources such as money, education, power, 

prestige, and valuable social networks, which are critical for managing life’s demands 

(Aneshensel, 1992). In addition to the severity of these stressors, characterized by the 

imbalance between demands and resources, repeated exposure to these stressors increases 

the likelihood of chronic stress (Crielaard et al., 2021), leading to AL and dysregulations of 

HPA axis. It is essential to separately examine AL as a consequence of overall chronic stress 

dysregulation and HPA axis dysfunction as an early indicator of chronic stress dysregulation. 

This distinction can reveal differential associations between SES and various stages of chronic 

stress dysregulation throughout the life course, while also providing insights into the potential 

pathogenic mechanisms linked to SES. Moreover, the dysregulation of these two types of 

biomarkers may encompass the significant and different roles that chronic stress 

dysregulation plays at CP, thereby offering critical information for the early prevention and 

intervention of CP. 

 

People from low SES are more likely to have higher AL. A recent systematic review analyzed 

287 articles up to 2017, selecting 26 that met the criteria for studies on SES and AL. Despite 

the heterogeneity in the operationalization of SES and AL, 23 studies consistently found 
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higher AL indices in low SES populations compared to their higher SES counterparts and three 

studies found moderated effects by gender or by ethnicity (Johnson et al., 2017). All of the 

studies in the review operationalized AL with at least one cardiovascular and one metabolic 

biomarker, and 85% of the studies included at least one inflammatory biomarker. However, 

only 58% of the studies included at least one biomarker from the HPA axis. Recent research 

on life course SES and AL has found that cumulative low SES is associated with higher levels 

of AL. These studies measured SES through composite indices (Lunyera et al., 2020), 

occupational class (Robertson et al., 2014), and neighborhood disadvantage (Gustafsson et 

al., 2014). These associations might be explained through home ownership, income, smoking, 

poor diet, or physical activity (Barboza Solís et al., 2016; Robertson et al., 2015). However, 

despite the extensive literature on SES and AL, there is still a lack of research integrating a life 

course model into the study of the relationship between SES and AL, particularly regarding 

the examination of additive effects, sensitive periods, and critical periods. 

 

Dysregulations in the HPA axis are often observed among those in low SES. Previous research 

has indicated that lower SES is associated with a pronounced CAR (Kunz-Ebrecht et al., 2004a, 

2004b; Wright and Steptoe, 2005). SES has been measured using occupational status (Kunz-

Ebrecht et al., 2004a, 2004b) and perceived social status (Wright and Steptoe, 2005). However, 

the choice of SES measurements and variations in cortisol parameters may influence this 

association. For instance, a lower CAR has been observed among individuals experiencing 

financial strain (Steptoe et al., 2005). Lower income, educational attainment (Cohen et al., 

2006a), and occupational status (Li et al., 2007) are associated with higher levels of AUC for 

cortisol. Moreover, material hardship (Ranjit et al., 2005a), lower occupational grades among 

civil servants (Chandola et al., 2018; Kumari et al., 2010), and low individual and neighborhood 
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SES (Miller et al., 2021) are related to a flatter DCS. Similarly, individuals with lower education 

levels exhibit a slower decline in diurnal cortisol levels (Groffen et al., 2015; Karlamangla et 

al., 2013). Studies modeling cortisol levels at different times of the day have shown 

inconsistent results. For example, lower income and educational levels are associated with 

higher evening cortisol levels (Cohen et al., 2006b), while other research indicates lower 

morning and afternoon cortisol levels related to lower income and education with no 

relationship to nighttime levels (Brandtstädter et al., 1991; Groffen et al., 2015). Furthermore, 

there is still a lack of studies applying a life course approach to the association between SES 

and cortisol. 

4.1.3 Biological dysregulations of chronic stress and its association with CP 

AL and CP are pathologically associated, as evidenced not only by overlapping dysregulations 

in biological systems (Abdallah and Geha, 2017; Woda et al., 2016) but also by similar 

alterations in stress response manifestations (Borsook et al., 2012; Juster et al., 2010). Despite 

mixed results found in the clinical studies (Generaal et al., 2016; Nelson et al., 2021; Wippert 

et al., 2022), possibly due to differences in measurements of pain and chronic stress response 

dysregulation, several population-based studies have consistently demonstrated a positive 

association between AL and CP in cross-sectional analyses. For example, people reporting 

pain lasting more than 24 hours and widespread bodily pain are more likely to experience 

higher levels of AL (Slade et al., 2012). Moreover, severe CP is correlated with AL regardless 

of the method used to calculate AL (Sibille et al., 2017). Recent research using a different 

approach for AL operationalization has shown that a dysregulated metabolic phenotype of AL 

is prospectively associated with high interference CP and 3 or more CP sites (Liang and Booker, 

2024). To date, only one cross-sectional study has explored the mediating role of AL in the 
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association between SES and pain, and it did not find evidence of a mediating effect (Slade et 

al., 2012). However, it is likely that the pain measured in this study was acute pain rather than 

CP. Given that acute pain may involve entirely different pathological mechanisms compared 

to CP, this could explain the absence of a significant mediating effect. Additionally, the study 

did not include biomarkers related to the HPA axis when constructing AL, which raises 

challenges to the validity of the AL. Therefore, a gap exists in the literature regarding the 

intersection of SES, AL, and CP. 

 

In addition, given the socioeconomic gradient of CP and HPA axis activity, the diurnal pattern 

of cortisol may serve as a potential mediator in the link between SES and CP. Patients with CP 

often display reduced salivary cortisol levels, although the majority of evidence stems from 

fibromyalgia patients and case-control studies (Beiner et al., 2023). Yet, the results from 

population studies are not consistent. In the UK, a prospective study utilizing a population 

register sample from three general practitioners indicated that a blunted diurnal cortisol 

rhythm and higher levels of post-dexamethasone serum cortisol were associated with the 

development of CWP (McBeth et al., 2007). A cross-sectional study from the Netherlands 

Study of Depression and Anxiety (NESDA) showed that individuals with chronic multisite 

musculoskeletal pain exhibited significantly reduced cortisol levels at awakening and in the 

evening, with a decreased diurnal slope, particularly among those without depression or 

anxiety (Generaal et al., 2014). However, another longitudinal study using the same dataset 

did not confirm the association between cortisol levels and the onset or improvement of CP 

(Generaal et al., 2017, 2016). A prospective study from the Western Australian Pregnancy 

Cohort (Raine) Study found that lower cortisol reactivity to stress in young women with higher 

pain sensitivity was associated with chronic musculoskeletal pain (Paananen et al., 2015). The 
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inconsistency may be attributed to limited cortisol collection procedures in previous 

epidemiological surveys (Adam and Kumari, 2009). Although evidence supports the potential 

mediating role of cortisol in the association between SES and CP, no studies have yet 

examined the mediating role. 

 

To address the current research gap, this study utilizes the Midlife in the United States study 

(MIDUS) to explore the prospective association between life course SES, CP, and biological 

dysregulations of chronic stress response systems, and to examine the mediating effects of 

the dysregulations. SES during adulthood was collected in MIDUS 1 (1995-1996) and MIDUS 

2 (2004-2006), with retrospective childhood SES collected during MIDUS 1. AL biomarkers 

were collected in the MIDUS 2 Biomarker Project (2004-2006). Additionally, salivary cortisol 

was collected during the National Study of Daily Experiences (NSDE) phase of MIDUS 2 (2004-

2009). MIDUS 3 (2013-2014) collected the CP outcomes for this study, facilitating prospective 

research. Based on the identified research gaps, I propose the following research questions 

(RQs): 

 

(1) How is SES at different life states associated with future CP and are these associations 

independent of each other? 

H1: Childhood SES, MIDUS 1 SES, and MIDUS 2 SES are directly prospectively 

associated with MIDUS 3 CP, indicating an additive effect; 

H2: This study hypothesizes that earlier SES significantly influences later SES, and later 

SES has a direct and significant association with CP; 

H3: The impact of earlier SES on CP is mediated by later SES; 
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(2) How is SES at different life states associated with biological dysregulations in stress 

response systems and are these associations independent of each other? 

H4: Childhood SES, MIDUS 1 SES, and MIDUS 2 SES are directly prospectively 

associated with biological dysregulations in stress response systems, indicating an 

additive effect; 

H5: This study hypothesizes that earlier SES significantly influences later SES, and later 

SES has a direct and significant association with biological dysregulations in stress 

response systems; 

H6: The impact of earlier SES on biological dysregulations in stress response systems 

is mediated by later SES. 

 

(3) Are there mediating effects of biological dysregulations in stress response systems to the 

associations between life course SES and CP? 

H7: The impact of SES on CP is mediated through biological dysregulations in stress 

response systems 
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4.2 Methods 

4.2.1 Data 

This research utilized data from the MIDUS. The MIDUS main survey is a national, longitudinal 

study on individual social status, psychological profiles, and biological processes of ageing, 

begun between 1995-1996 and followed 7108 non-institutionalized Americans aged 25 to 74 

in the contiguous United States. The MIDUS 2 and MIDUS 3 main surveys followed the original 

respondents and collected data through phone interviews and self-administered 

questionnaires between 2004-2006, and 2013-2014 respectively. More details of the study 

are available on the MIDUS website (Available at: http://midus.wisc.edu/, accessed on April 

18, 2024). 

 

Based on participation in the MIDUS biomarker project or in the NSDE, the study sample was 

divided into two streams for analysis. A total of 1,054 respondents from the main longitudinal 

survey participated in the Biomarker Project of MIDUS 2 conducted from 2004 to 2009. 

Samples meeting the subsequent criteria were incorporated into the final analysis: samples 

that completed the baseline survey of the longitudinal survey, two MIDUS follow-up surveys 

and participated in the biomarker program (Details in Figure 4-1).  

 

MIDUS 2 collected information on daily experiences over a span of consecutive 8 days through 

NSDE in the same wave. From a total of 2,022 respondents participated in NSDE, 1,842 

respondents took part in the main longitudinal survey (MIDUS 1 to MIDUS 2), having been 

selected through random digit dialing. We excluded participants who did not provide at least 

one valid cortisol sample within the sampling time, had anomalous sleep patterns, 

http://midus.wisc.edu/
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experienced cortisol measurement errors, or dropped out at MIDUS 3 (Dmitrieva et al., 2013; 

Karlamangla et al., 2013) (Details in Figure 4-1). 
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Figure 4-1 Flowchart for the analytic sample 
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4.2.2 Measures 

4.2.2.1 Dependent variable: CP in MIDUS 3 

Assessing the level of pain interference and the number of CP sites, as opposed to simply 

reporting the presence of CP, can provide valuable insights into the intensity of pain, its 

impact on daily activities, and the extent of pain distribution across the body, which are crucial 

for devising effective pain interventions (Guerriero and Reid, 2019; Von Korff et al., 1990). 

Respondents were first asked “Do you have CP, that is do you have pain that persists beyond 

the time of normal healing and has lasted from anywhere from a few months to many years?”; 

if so, they were then asked about CP interference. A pain interference index was generated 

by a mean score of how much pain interfered with respondents’ activity, mood, relations, 

sleep, and enjoyment, ranging from 0 to 10 (Cleeland and Ryan, 1994). Then, the CP 

interference index was further categorized into no pain, low interference pain (≤4), and high 

interference pain (>4) as a categorical variable based on the Brief Pain Inventory Subscale 

cutpoint (Jensen, 2011; Li et al., 2021b). In addition, if respondents reported having CP, they 

were asked about the location of the pain, including head, neck, back, arms, legs, shoulders, 

hips, knees, and other sites. The pain sites were summed up to an index and then categorized 

it into no pain, 1-2 sites, or 3 or more sites as a categorical variable. 

 

The categorization is based on the consistency with previous practices (Li et al., 2021a, 2021b), 

as well as the distributions of both CP interference and the number of pain locations, which 

are highly skewed toward the lower end. This skewness presents challenges for linear 

modeling techniques, which assume normality of residuals. While negative binomial 

regression is a potential approach to address the count nature of our pain location data, it 
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may not adequately account for the observed high skewness in the distribution. In addition, 

the sample sizes in our study are unevenly distributed across the potential range of these 

variables, with a significant drop-off in frequency as the number of pain locations increases. 

This sparsity in the upper range can undermine the reliability of regression estimates, as the 

models would be driven by a small subset of the sample with higher pain counts. Therefore, 

categorization helps to stabilize the variance across groups. 

4.2.2.2 AL - potential mediator 

AL biomarkers were collected from the MIDUS 2 Biomarker Project. Followed by previous 

studies (Carbone et al., 2022; Gruenewald et al., 2012; Hastings et al., 2022; Juster et al., 2010; 

Karlamangla et al., 2014), AL was constructed by seven physiological systems and 27 

biomarkers (shown in Supplementary Table 3-1). High-risk quartiles of biomarkers were used 

to compute AL (McEwen and Seeman, 1999). DHEA-S and urinal cortisol in the upper or lower 

25th quartiles were regarded as at high risk. When HFHRV, LFHRV, RMSSD, and SDRR strength 

fell within their lower 25th quartile ranges, they were at high risk. Other biomarkers falling 

into their upper 25th quartiles were assigned as at high risk. Meanwhile, biomarkers in their 

high-risk quartiles were coded as 1; otherwise, 0. Then, an AL index was computed by 

summing up biomarker risk scores, which theoretically would range from 0 to 27.  

 

LCA was applied to identify AL phenotypes, utilizing the "poLCA" package in R. Binary 

biomarkers were grouped into clusters ranging from 1 to 7, with the optimal cluster count 

selected based on several statistical criteria, including log-likelihood, Akaike Information 

Criterion (AIC), Bayesian Information Criterion (BIC), entropy, and the clinical or biological 

relevance of the classification (Sinha et al., 2021). The log-likelihood measures model fit, with 

higher values generally indicating better fit for a given data and model structure. AIC and BIC 
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are used to balance fit quality with model simplicity, with lower values suggesting a preferable 

model. BIC, however, penalizes complex models more heavily in large samples, often favoring 

simpler solutions, while AIC may support more complex structures. Examining points of 

inflection or plateaus in AIC and BIC values can help determine an appropriate balance 

between model complexity and overfitting risk (Sinha et al., 2021). Entropy, reflecting 

classification quality, ranges from 0 to 1, with values above 0.8 generally considered 

acceptable for adequate cluster distinction (Weller et al., 2020). Also, the classification should 

be meaningful from a clinical or a biological perspective (Sinha et al., 2021). For reliable 

estimation, each model underwent 5000 iterations to ensure convergence (Please refer to 

Supplementary Table 3-2 for the LCA results). 

4.2.2.3 Diurnal Cortisol Rhythm - potential mediator 

Diurnal cortisol rhythm parameters were defined as CAR, DCSs, AUC relative to the ground, 

and CDR. Detailed description please refer to Sections 3.2.2.1 to 3.2.2.2. To model this rhythm, 

we used linear spline multilevel modeling with fixed knots at 0.5, 4.5, and 15 hours after 

waking, following prior work (Adam et al., 2006; Charles et al., 2020; Karlamangla et al., 2013). 

This model divides the cortisol curve into segments, fitting a separate regression for each, 

which helps capture nonlinear changes across the day more effectively than other models 

(Karlamangla et al., 2013). 

 

Data from the NSDE were analyzed to construct the diurnal cortisol rhythm. Supplementary 

Table 4-1 shows the charateristics of the participants in the NSDE. For each cortisol 

measurement, random intercepts were included at the family level and slopes at the 

individual level to account for variability. Week average wake time, daily wake times, and 

weekday/weekend status, were adjusted within the model (Charles et al., 2020). Regression 
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results are shown in Supplementary Table 4-2. To calculate the cortisol slope in each interval, 

we combined fixed- and random-effects estimates, providing individual-specific cortisol 

patterns. CAR represents the initial 0-0.5 hour post-wake increase, followed by early DCS from 

0.5 to 4.5 hours, mid DCS from 4.5 to 15 hours, and late DCS after 15 hours. Individual cortisol 

levels at specific time points were used to compute the AUC, utilizing the trapezoidal method 

from wake to bedtime (Pruessner et al., 2003). For individuals whose bedtime occurred more 

than 15 hours after awakening, the areas from 4.5 to 15 hours post-awakening and from 15 

hours post-awakening to bedtime were calculated separately and then summed. CDR was 

calculated as the log-transformed difference between peak and nadir cortisol levels. For 

comparison, cortisol parameters were standardized (Charles et al., 2020; Kumari et al., 2011). 

4.2.2.4 SES 

In addition to utilizing objective SES indicators, metrics assessing respondents' relative 

deprivation were integrated into the composite SES variable construction. This integration 

aimed to reflect respondents' broader methodologies, capabilities, and mental resources for 

addressing health risks (Marmot, 2005). The integration of both objective SES indicators and 

relative deprivation indicators to construct SES have been employed in previous studies, 

which identified significant associations between the composite indices and various health 

outcomes (Glover et al., 2023; Gruenewald et al., 2012; Surachman et al., 2019). There were 

three SES periods: childhood, adulthood in MIDUS 1 and MIDUS 2. Each SES indicator was 

recoded into an index ranging from 0 to 2, where 0 represented high SES conditions, 1 

represented middle SES conditions, and 2 signified the low SES conditions. Childhood SES was 

collected retrospectively during the MIDUS 1 period, including the highest level of parental 

education (0=bachelor's degree or more, 1=high school/GED/some college, 2=less than high 

school), financial situation growing up (2 = a lot/somewhat/a little worse off than average 
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family, 1 = same as average family, 0 = a lot/somewhat, a little better off than average family), 

and father's/male head of the household’s occupation (0=managerial and professional 

specialty occupations/technical, sales, and administrative support occupations/service 

occupations, 1=operators, fabricators, and laborers/farming, forestry, and fishing 

occupations, 2=precision production, craft, and repair occupations/experienced unemployed 

not classified by occupations).  

 

SES during adulthood (MIDUS 1 and MIDUS 2) included the income-to-needs ratio adjusted 

for family size and year (0=affluent/adequate-income, 1=low-income, 2=poor/extreme 

poverty) (United States Census Bureau, 2022), education (0=bachelor's degree or more, 

1=high school/GED/some college, 2=less than high school), rating of current financial 

situation (0=best, 1=medium, 2=worst), money to meet needs (0=more than enough money, 

1=just enough money, 2=not enough money), difficulty to pay monthly bills (0=not at all 

difficult, 1=not very difficult/somewhat difficult, 2=very difficult), and occupation 

(0=managerial and professional specialty occupations/technical, sales, and administrative 

support occupations/service occupations, 1=operators, fabricators, and laborers/farming, 

forestry, and fishing occupations, 2=precision production, craft, and repair 

occupations/experienced unemployed not classified by occupations). 
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Table 4-1 SES indicators used to compute the latent SES score 

 SES categories and values assigned 

 0 (High SES) 1 (Medium SES) 2 (Low SES) 

SES indicators    

Childhood SES    

Highest level of parental 

education (father's and 

mother's) 

bachelor's degree or more high school/GED/some college less than high school 

Financial level growing up 

1.a lot better off, 

2.somewhat better off, 

3.a little better off 

4. same as average family 

5.a little worse off, 

6.somewhat worse off, 

7.a lot worse off 

Father's/ male head of the 

household’s occupation 

1.managerial and professional 

specialty occupations,  

2.technical, sales and administrative 

1.operators, fabricators and 

laborers, 

1.precision production, craft and 

repair occupations,  
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(Census 1980 classification) 

* 

support occupations, 

3.service occupations 

2.farming, forestry and fishing 

occupations 

2.experienced unemployed not 

classified by occupations 

Adulhood SES (MIDUS 1 & 

MIDUS 2) 
   

Income-to-needs ratio 

adjusted for family size and 

year  

affluent/adequate-income low-income poor/extreme poverty 

Highest level of education bachelor's degree or more high school/GED/some college less than high school 

Rating of current financial 

situation  
best medium worst 

Money to meet needs  more than enough money just enough money not enough money 

Difficulty to pay monthly 

bills  
not at all difficult 

not very difficult/somewhat 

difficult 
very difficult 
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Occupation (Census 1980 

classification for MIDUS 1, 

Census 1990 classification 

for MIDUS 2) † 

1.managerial and professional 

specialty occupations,  

2.technical, sales and administrative 

support occupations, 

3.service occupations 

1.operators, fabricators and 

laborers, 

2.farming, forestry and fishing 

occupations 

1.precision production, craft and 

repair occupations,  

2.experienced unemployed not 

classified by occupations 

*Noting that if a father/male head of the household never worked due to disability, addiction, or mental issues, they were classified as 

unemployed. Occupational measures are in some sense transferable (Galobardes et al., 2006b). If they didn't work for other reasons like raising 

children at home, the mother's/female head of the household’s occupation represented the father's/male head of the household’s when 

childhood occupation variable was constructed (Galobardes et al., 2006b). 

†Noting that if the current employment status of a respondent was unemployed, permanently disabled, never worked, or due to other reasons, 

they were classified as unemployed. If they were temporarily laid off, on maternity or sick leave, or retired, their occupation was represented 

by their last held position (Stone et al., 2014). If they were a homemaker or a part-time student, their spouse or partner's occupation was 

represented (Galobardes et al., 2006b). The occupation of a full-time student was represented by their father's/male head of the household’s 

occupation (Galobardes et al., 2006b). 
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Confirmatory factor analysis (CFA) is a statistical method used to validate the structure of 

latent variables by optimizing the measurement of their multidimensional aspects, thereby 

simplifying their representation. Unlike other data reduction methods, such as principal 

component analysis and exploratory factor analysis, which are more descriptive and focus on 

elucidating relationships between variables that may represent underlying constructs, CFA 

aims to assess the structural model of a construct (Bryant and Yarnold, 1995). We utilize CFA 

to evaluate how well our SES variable set measures SES as a latent construct. 

 

Initially, these metrics were utilized in measurement invariance tests, as prior research 

employed identical item weights in computing the composite SES indices, assuming 

measurement invariance across items and over time (Glover et al., 2023; Gruenewald et al., 

2012; Surachman et al., 2019). By explicitly examining the temporal invariance of the SES 

factor structure and the factor loadings of each item, we aim to minimize the mis-specification 

errors when estimating the SES structure across different adult periods. Subsequent steps 

involved assessing configural invariance (identical factor structure), metric invariance 

(identical factor loadings), scalar invariance (identical intercepts), and residual invariance 

(identical residuals) (Meredith, 1993). Configural invariance assesses whether the same factor 

structure (e.g. the same set of observed variables corresponds to the same underlying 

constructs) holds across time, ensuring that the construct is defined similarly. Metric 

invariance goes further by testing if factor loadings are equal across time. Scalar invariance 

examines whether item intercepts are the same, allowing for valid comparisons of group 

means. Finally, residual invariance tests if the measurement error, or residuals, are identical, 

ensuring that any unexplained variance is consistent across groups. 
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The significance of the χ² change for two nested models was not only employed to assess the 

performance of the test invariance, but the ΔRMSEA was also utilized to avoid the 

oversensitivity of χ² to minor variations in large samples. A change rate below 0.015 is deemed 

acceptable (Putnick and Bornstein, 2016). Childhood SES was excluded from the 

measurement invariance analysis due to the inconsistency of indicators constructing 

childhood SES with those of adulthood. Supplementary Tables 3-3 and 4-3 reveal that, 

compared to configural invariance, models fitting metric, scalar, and residual invariance are 

less ideal, thus not supporting the hypothesis of measurement invariance.  

 

Subsequently, the SES of different periods was fitted separately using CFA. A comparative fit 

index (CFI) above 0.95 is considered an acceptable fit, and below 0.90 is perceived as a poor 

fit, while a Tucker-Lewis Index (TLI) above 0.90 indicates well-fitting models. CFI compares the 

fit of a proposed model to the fit of a baseline model and TLI also compares the fit of the 

model to a baseline model but it adjusts for model complexity, penalizing overly complex 

models. The root mean square error of approximation (RMSEA) is an absolute fit index that 

evaluates how well the model fits the sample-based covariance matrix, considering the 

complexity of the model. RMSEA below 0.08 is considered an acceptable fit (Hu and Bentler, 

1999; Yuan et al., 2016). Table 4-2 shows that the fit statistics of SES across different periods 

is satisfactory.
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Table 4-2 Confirmatory factor analysis for SES 

 Biomerker project stream NSDE stream 

SES items Childhood SES MIDUS 1 SES MIDUS 2 SES Childhood SES MIDUS 1 SES MIDUS 2 SES 

Father education 0.810   0.847     

Mother education 0.592   0.626   

Financial status growing up 0.389   0.391   

Father occupation 0.436   0.427   

       

Rate current financial situation  0.434 0.339  0.411 0.342 

Money to meet needs  0.445 0.386  0.487 0.487 

How difficult to pay monthly bills  0.411 0.262  0.314 0.266 

Education  0.321 0.456  0.299 0.443 

Income-to-needs ratio  0.642 0.439  0.596 0.446 

Occupation  0.307 0.357  0.272 0.314 
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Test statistic 1.283 20.82 4.641 15.524 11.002 4.744 

Degrees of freedom  2 4 4 2 4 4 

Comparative Fit Index (CFI)  1.000 0.981 0.999 0.979 0.994 0.999 

Tucker-Lewis Index (TLI)  1.00 0.93 0.997 0.937 0.976 0.997 

AIC 6746.921 8555.15 9165.501 8675.286 11428.837 11553.788 

BIC 6784.478 8636.331 9246.565 8714.938 11514.836 11639.177 

RMSEA 0.00 0.069 0.014 0.08 0.039 0.013 

SRMR 0.01 0.022 0.011 0.031 0.015 0.011 
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4.2.2.5 Covariates 

To account for time-invariant covariates, our analyses of SES measures and cortisol 

parameters and CP included controls for demographic and abuse-related variables. These 

included sex (ref: male; comparison: female), race (ref: White; comparison: non-White), 

parental emotional abuse, parental physical abuse, and living status with biological parents 

(ref: no; comparison: yes) (Mills et al., 2019; Misiak et al., 2022). 

 

For time-variant covariates, we further adjusted for age, marital status (ref: not married; 

comparison: married) (Leonard et al., 2006; Rote, 2017), multimorbidity (ref: <2; comparison: 

≥2) (Mills et al., 2019), health insurance (ref: yes; comparison: no) (Meghani et al., 2012), and 

CP (ref: no; comparison: yes) at different waves of the MIDUS study. Specifically, age, marital 

status, and chronic conditions from MIDUS 1 were controlled for in analyzing the association 

between SES in MIDUS 1, SES in MIDUS 2, and CP or biological dysregulations. Adjustments 

were made for the association between MIDUS 2 SES and CP or cortisol parameters, including 

age, marital status, chronic conditions, and health insurance. CP status (Mills et al., 2019) from 

MIDUS 2 was also adjusted for; however, the latter two variables were not collected in MIDUS 

1. 

 

Parental abuse was categorized into two continuous variables: emotional and physical abuse 

(Li et al., 2021b). These were derived from averaging the reported abuse from both parents. 

The scale ranges from 1 to 5, with 1 indicating no abuse and 5 indicating the most severe 

abuse. Chronic condition index (Ryff et al., 2007) was coded as a binary variable to indicate 

multimorbidity (Dominick et al., 2012). The chronic conditions included asthma, bronchitis, 

emphysema, tuberculosis, other lung problems, joint or bone diseases, sciatica, lumbago, 
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backache, skin trouble persistent, thyroid disease, hay fever, stomach trouble, urinary or 

bladder, constipated all or most, gall bladder trouble, foot trouble persistent, varicose veins, 

AIDs or HIV, lupus or autoimmune disorder, gum or mouth trouble, teeth trouble persistent, 

high blood pressure or hypertension, anxiety or depression, alcohol or drug problem, 

migraine headaches, chronic sleep problems, diabetes or high blood sugar, neurological 

disorder, stroke, ulcer, hernia, piles or hemorrhoids, swallowing problems (Ryff et al., 2018). 

The item of swallowing problems was not included in the chronic condition index at MIDUS 1. 

 

In the association between AL and CP, we additionally controlled for physical activity levels, 

smoking status (ref: current smoker; comparison: ex-smoker or non-smoker), drinking status 

(ref: moderate or more  drinker; comparison: light drinker, or non-drinker or rarely drink), as 

well as medication use such as antihyperlipidemic agents, beta adrenergic blocking agents, 

antihypertensive combinations, anxiolytics sedatives and hypnotics, antidiabetic agents, sex 

hormones, thyroid hormones, antidepressants, and analgesics (ref: no; comparison: yes). In 

the associations between cortisol parameters and CP, we additionally controlled for 

medication use such as steroid inhalers, oral steroids, other hormonal medications, 

antidepressants or anti-anxiety medications, and birth control pills (ref: no; comparison: yes).  

Body mass index was also adjusted for. The total score for physical activity was calculated by 

assigning different weights to responses from three questions that measured the frequency 

of participation in light, moderate, and vigorous activities, reported in the main study survey. 

Specifically, weights of 1, 3, and 5 were assigned to light, moderate, and vigorous activities, 

respectively, to emphasize the increased significance of more intense physical efforts in the 

overall score (Gruenewald et al., 2012). 
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4.2.3 Statistical methods 

All analyses were conducted using R Studio ‘Lavaan’ package and structural equation 

modeling (SEM) was used (Rosseel, 2012). First, confirmatory factor analysis was employed 

to measure latent variables for SES and to assess the efficacy of the single SES indicators used 

in measuring SES as a whole. Then, path analysis was used to examine the chain of risk 

additive model (see figure 4-2 a to e). In the context of a “chain of risk” framework, SEM 

allows us to estimate how earlier exposures may mediate later outcomes while accounting 

for complex interrelationships among exposures and mediators. We used separate path 

models with a 'probit' link and treated the categorical dependent variables as binary variables 

because 'Lavaan' is unavailable for multinomial outcomes. 

 

We used the following approach to derive each component of the mediation model, including 

the calculation of specific indirect effects and the subsequent estimation of total and 

proportion-mediated effects. For childhood SES, we estimated its direct effect on chronic pain 

outcomes, and then quantified three specific indirect effects: one operating via MIDUS 1 SES, 

one via the MIDUS 2 SES, and one via the sequential chain through both MIDUS 1 SES and 

MIDUS 2 SES. Each specific indirect effect was calculated as the product of the coefficients 

linking the variables along that path, and their sum gave the total indirect effect for childhood 

SES. Adding the direct effect to this total indirect effect yielded the total effect of childhood 

SES on pain. We then expressed each pathway’s contribution as a proportion mediated, that 

is, each specific indirect effect divided by the total effect, and also calculated the overall 

mediated proportion. For MIDUS 1 SES, we applied the same logic: its direct effect on pain 

and its indirect effect via MIDUS 2 SES were estimated, summed to derive its total effect, and 

the single indirect pathway’s share of that total effect was computed as its proportion 
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mediated. By the same token, mediation analyses for stress-related biomarkers were 

conducted using an identical procedure. The proportion mediated is expected to fall between 

0% and 100%, reflecting the extent to which the mediator accounts for the total effect. 

However, when the direct and indirect effects operate in opposite directions, the mediated 

proportion can exceed 100%. It may imply that the mediator is associated with the outcome 

both as a mediator and through an additional, independent effect. 

 

Although the counterfactual framework has become increasingly popular in epidemiology for 

causal mediation analysis (Imai et al., 2010), it requires several strong identification 

assumptions, most notably the absence of unmeasured confounding at each step of the 

mediated pathway and the stability of treatment assignment. These assumptions can be 

difficult to satisfy in observational settings, especially when multiple mediators are present 

or mediators are correlated with one another. By contrast, path analysis within a structural 

equation modeling framework provides a more direct way to model hypothesized chains of 

risk with multiple mediators, as long as the relationships among exposures, mediators, and 

outcomes are carefully specified. 

 

Full information maximum likelihood (FIML) method was applied to all models to handle 

missingness because it was found efficient under the assumptions of data being missing 

completely at random or missing at random (Enders and Bandalos, 2001). In addition, while 

FIML tends to have higher rejection rates compared to other missing data handling 

techniques like listwise deletion, pairwise deletion, mean imputation, and similar response 

pattern imputation, its parameter estimates are less biased and generally more efficient than 

those from ad hoc methods (Enders, 2001). Also, the rejection advantage of listwise deletion, 
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pairwise deletion, mean imputation, and similar response pattern imputation will disappear 

as missing data increase (Enders, 2001). 

 

To test the robustness of the estimations, we further fitted the path models with different 

specifications. First, we used complete case analyses to detect biases from the FIML as a 

missing data handling technique. Second, we employed maximum likelihood with robust 

standard errors (MLR) as the estimator for the SEM with FIML to handle the missing values. 

MLR is an approach for binary outcomes and is compatible with FIML as a missing data 

handling technique in Lavaan settings. It has been shown to produce relatively unbiased 

parameter estimates and standard errors compared to diagonally weighted least squares, 

another technique for categorized and non-normally distributed data (Bandalos, 2014; Savalei 

and Rosseel, 2022). 

 

A comprehensive assessment of each model fit can be achieved by simultaneously evaluating 

a set of specified indices. Generally, the CFI greater than 0.95 is considered acceptable fit and 

less than 0.90 is perceived as poor fit and TLI greater than 0.90 indicates good fitting models. 

The RMSEA less than 0.08 is considered acceptable fit (Hu and Bentler, 1999; Yuan et al., 2016). 

As the number of variables within the model increases, the RMSEA improves, while the CFI 

and TLI decrease (Kenny and McCoach, 2003).
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Figure 4-2 Chain of risk additive model of SES 
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(e) 

Note: black arrows represent hypothesized pathways among key study variables, including childhood SES, adulthood SES, biological mediators, and 

CP. Grey arrows indicate covariates adjusted for in the model. 
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4.3 Results 

4.3.1 Descriptive statistics 

Table 4-3 shows that there are significant differences in adulthood SES among samples from 

the Biomarker Project stream based on pain interference and pain distribution in a body. 

Childhood SES also differs significantly by the widespreadness of CP. Among participants with 

no pain at follow-up, about 52% had a healthy AL profile, while 24% showed parasympathetic 

and metabolic dysregulation. For participants with high interference CP and pain at three or 

more sites, approximately 43-44% had a healthy AL profile, 25-26% exhibited 

parasympathetic dysregulation, and 30-31% showed metabolic dysregulation. 

 

Table 4-4 indicates significant differences in adulthood SES among samples from the NSDE 

stream based on pain interference and the widespreadness of CP. Childhood SES also differs 

significantly by the widespreadness of CP. Significant differences in CAR, AUC, and CDR are 

observed across pain interference levels and pain regions. For example, individuals with more 

severe pain conditions tend to have flatter CAR, narrower CDR, and smaller AUC. Additionally, 

differences were found in late post-wake DCS. Individuals with no pain have a steeper late 

post-wake DCS compared to those in the other two groups. Supplementary Tables 3-4 and 4-

4 summarize the descriptive statistics of confounding variables across levels of pain 

widespreadness and pain interference. 

 

Supplementary Tables 3-5 and 4-5 compare the characteristics of participants who were 

retained with those who were lost to attrition. In the Biomarker Project stream, individuals 

who were male, ethnically minoritized, older, unmarried, had experienced more parental 
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physical abuse in childhood, had more chronic conditions, and were more socioeconomically 

disadvantaged both in childhood and at baseline were more likely to attrit. Participants in the 

NSDE stream show a similar pattern, but those who lived with their biological parents during 

childhood were more likely to attend the follow-up surveys. 
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Table 4-3 Analytic sample characteristics of SES and AL phenotype, stratified by CP conditions, among samples from Biomarker 

Project stream 

Pain interference No pain Low interference pain High interference pain   

Variable N Mean SD N Mean SD N Mean SD Test 

Childhood SES 479 -0.015 0.98 178 -0.031 1 97 0.15 1.1 F=1.159 

MIDUS 1 SES 517 -0.1 0.9 193 -0.018 1 99 0.39 1.2 F=10.676*** 

MIDUS 2 SES 511 -0.13 0.89 194 -0.013 0.98 98 0.46 1.2 F=15.855*** 

AL 490   192   99   X2=3.538 

     Baseline 255 52%  99 52%  43 43%   

     Parasympathetic Dysregulation 119 24%  49 26%  25 25%   

     Metabolic Dysregulation 116 24%  44 23%  31 31%   

Pain locations No pain 1-2 3+  

Variable N Mean SD N Mean SD N Mean SD Test 

Childhood SES 479 -0.015 0.98 175 -0.1 1 110 0.27 0.95 F=5.043*** 
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MIDUS 1 SES 517 -0.1 0.9 190 -0.062 0.86 116 0.47 1.4 F=16.535*** 

MIDUS 2 SES 511 -0.13 0.89 189 0.011 0.96 114 0.43 1.2 F=16.144*** 

AL 490   195   108   X2=2.423 

     Baseline 255 52%  99 51%  48 44%   

     Parasympathetic Dysregulation 119 24%  49 25%  28 26%   

     Metabolic Dysregulation 116 24%   47 24%   32 30%     

Statistical significance markers: * p<0.05; ** p<0.01; *** p<0.001; N denotes the number of observations and SD denotes standard deviation; 

The “Test” column indicates the statistical test used to compare groups (e.g., ANOAV test and chi-square test), depending on variable type 

and distribution. 
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Table 4-4 Analytic sample characteristics of SES and diurnal cortisol parameters, stratified by CP conditions, among samples from 

NSDE stream 

CP interference No pain Low interference pain High interference pain  

Variable (standardized) N Mean Sd N Mean Sd N Mean Sd Test 

SES           

Childhood SES 599 -0.038 0.990 227 -0.007 1.00 125 0.150 1.000 F=1.843 

MIDUS 1 SES 663 -0.110 0.870 254 0.007 1.10 137 0.380 1.100 F=14.541*** 

MIDUS 2 SES 640 -0.120 0.920 255 -0.026 1.00 135 0.500 1.100 F=22.902*** 

Diurnal cortisol parameters           

CAR 697 0.047 0.960 276 -0.002 1.000 150 -0.220 1.200 F=4.253** 

Early post-wake DCS 697 -0.024 0.990 276 -0.058 0.980 150 0.120 1.100 F=1.676 

Mid post-wake DCS 697 -0.038 0.990 276 -0.038 0.990 150 0.140 1.000 F=2.086 

Evening DCS 697 -0.056 1.000 276 0.049 0.950 150 0.110 0.910 F=2.385 

CDR 697 0.084 0.940 150 -0.300 1.100 276 -0.033 1.100 F=9.519*** 
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AUC 696 0.029 0.960 150 -0.180 1.200 275 0.038 1.000 F=2.885* 

CP locations No pain 1-2 3 or more  

Variable (standardized) N Mean Sd N Mean Sd N Mean Sd Test 

SES           

Childhood SES 599 -0.038 0.990 226 -0.082 1.000 148 0.340 0.950 F=9.728** 

MIDUS 1 SES 663 -0.110 0.870 248 -0.053 0.920 167 0.480 1.400 F=24.472*** 

MIDUS 2 SES 640 -0.120 0.920 248 -0.043 0.940 161 0.500 1.200 F=26.481*** 

Diurnal cortisol parameters           

CAR 697 0.047 0.960 274 0.024 0.940 177 -0.190 1.200 F=4.148** 

Early post-wake DCS 697 -0.024 0.990 274 -0.056 0.950 177 0.110 1.100 F=1.73 

Mid post-wake DCS 697 -0.038 0.990 274 -0.022 0.950 177 0.130 1.000 F=2.036 

Evening DCS 697 -0.056 1.000 274 0.091 0.940 177 0.091 0.920 F=3.034* 

CDR 697 0.084 0.94 274 -0.01 0.98 177 -0.27 1.2 F=9.021*** 

AUC 696 0.029 0.96 273 0.095 0.95 177 -0.2 1.2 F=4.922*** 
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Statistical significance markers: * p<0.05; ** p<0.01; *** p<0.001; N denotes the number of observations and SD denotes standard deviation; The “Test” 

column indicates the statistical test used to compare groups (e.g., ANOAV test and chi-square test), depending on variable type and distribution. 

Note that cortisol parameters were standardized. An increase of one standard deviation in CAR indicates a steeper CAR, whereas an increase of one standard 

deviation in DCSs indicates flatter DCSs. One standard deviation increase in CDR indicates a wider CDR, while one standard deviation increase in AUC indicates 

a larger AUC. 
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4.3.2 Path analysis results for the Biomarker Project (AL) stream 

Path analysis found that people who lived in lower SES during their early life stage had an 

increased likelihood of continuing to live in lower SES in adulthood. Lower SES in MIDUS 2 was 

associated with high interference pain (direct path: f, β=0.058, SE=0.017), and socioeconomic 

disadvantage in MIDUS 2 completely mediates the impact of low childhood SES (indirect path: 

cf, β=0.012, SE=0.004) and MIDUS 1 SES (indirect path: bf, β=0.023, SE=0.007) on high 

interference pain (see Figure 4-3 (a)). Additionally, low SES in childhood was associated with 

high interference CP completely through socioeconomic disadvantages in MIDUS 1 and 

MIDUS 2 (indirect path: abf, β=0.005, SE=0.002). In the sensitivity analyses, the associations 

remained significant, indicating the missing values or nonnormality may not bias the results 

(please refer to Supplementary Table 3-6). 

 

Also, Figure 4-3 (c) shows that low MIDUS 2 SES is associated with 3 or more pain sites (direct 

path: f, β=0.037, SE=0.018). The impact of socioeconomic disadvantage in MIDUS 1 on 

multiple pain sites is completely transmitted through MIDUS 2 SES (indirect path: bf, β=0.015, 

SE=0.007). However, the associations were not statistically significant in the complete-case 

sample or with the MLR estimator (please refer to Supplementary Table 3-6).  

 

The results also indicate that a lower degree of MIDUS 2 SES is associated with 1-2 pain sites 

(direct path: f, β=0.048, SE=0.022), and childhood (indirect path: cf, β=0.009, SE=0.004) and 

MIDUS 1 (indirect path: bf, β=0.019, SE=0.009) socioeconomic disadvantages completely 

transmit through MIDUS 2 SES (Details see Figure 4-3 (d)). In the sensitivity analyses, the 

associations remained significant (please refer to Supplementary Table 3-6).  
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Supplementary Tables 3-9 present the covariate associations within the main associations 

between lifecourse SES and CP, which remained robust following sequential sensitivity 

analyses. Among participants in the Biomarker Project stream, being female, having 

multimorbidity in MIDUS 1 and MIDUS 2, being unmarried in MIDUS 2, and having CP in 

MIDUS 2 increased the likelihood of experiencing high interference CP in MIDUS 3. 

Additionally, participants with CP and multimorbidity in MIDUS 2 were more likely to have 1-

2 pain locations. 
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Figure 4-3 Path analysis of SES and CP among sample of Biomarker Project stream 
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In the analysis of the association between SES and AL across the life course, we found that 

low childhood SES was associated with metabolic dysregulation of AL (direct path: d, β=0.046, 

SE=0.021). Low SES in MIDUS 2 was associated with metabolic dysregulation of AL (direct path: 

f, β=0.045, SE=0.023) (See Figure 4-4 (a)). In the sensitivity analyses, the associations 

remained significant (please refer to Supplementary Table 3-7). No mediating effects of SES 

in other life stages on metabolic dysregulation of AL were observed. Supplementary Tables 3-

9 present the covariate associations within the main associations between lifecourse SES and 

AL, which remained robust following sequential sensitivity analyses. Females were less likely 

to have metabolic dysregulation related to AL, whereas participants with multimorbidity were 

more likely to experience metabolic dysregulation of AL. 
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Figure 4-4 Path analysis of SES and AL phenotype 
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Regarding the association between AL and CP, the metabolic dysregulation phenotype is 

associated with higher odds of high interference pain (β=0.091, SE=0.040) (See Table 4-5). In 

the sensitivity analyses, the associations remained significant (please refer to Supplementary 

Table 3-8). 
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Table 4-5 Path analysis of AL and CP outcomes 

Pain: high pain interference Estimate Standard error P-value 

AL - metabolic dysregulation 0.091 0.040 0.038 

Chi-square (df)=298.784 (175); CFI=0.956; TLI=0.939; RMSEA=0.045   

AL - parasympathetic dysregulation 0.019 0.038 0.615 

Chi-square (df)=328.786 (175); CFI=0.947; TLI=0.926; RMSEA=0.050   

Pain: low pain interference Estimate Standard error P-value 

AL - metabolic dysregulation -0.057 0.052 0.269 

Chi-square (df)=311.466 (175); CFI=0.958; TLI=0.942; RMSEA=0.044   

AL - parasympathetic dysregulation -0.010 0.049 0.844 

Chi-square (df)=313.862 (175); CFI=0.958; TLI=0.942; RMSEA=0.043   

Pain: 3+ pain locations Estimate Standard error P-value 

AL - metabolic dysregulation 0.014 0.043 0.667 

Chi-square (df)=307.591 (175); CFI=0.956; TLI=0.939; RMSEA=0.046   

AL - parasympathetic dysregulation -0.043 0.041 0.291 

Chi-square (df)=300.987 (175); CFI=0.957; TLI=0.940; RMSEA=0.044   

Pain: 1-2 pain locations Estimate Standard error P-value 

AL - metabolic dysregulation -0.018 0.051 0.720 

Chi-square (df)=293.542 (175); CFI=0.962; TLI=0.947; RMSEA=0.041   

AL - parasympathetic dysregulation 0.013 0.049 0.796 

Chi-square (df)=331.004 (175); CFI=0.953; TLI=0.935; RMSEA=0.046   
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There are significant associations between SES and high interference CP, between SES and 

metabolic dysregulations of AL, and between metabolic dysregulations of AL and high 

interference CP, suggesting that metabolic dysregulations of AL may be a potential mediator 

between SES and high interference CP. However, we did not find the mediating role of 

metabolic dysregulations of AL in the association between life course SES and high 

interference CP (See Figure 4-5).  
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Figure 4-5 Path analysis of the mediation effects of AL 
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4.3.3 Path analysis results for the NSDE stream 

Path analysis results indicate that early socioeconomic disadvantage increases the likelihood 

of socioeconomic disadvantage in adulthood. Individuals with lower SES during MIDUS 2 are 

more likely to experience high interference CP (direct path: f, β=0.055, SE=0.016) and multiple 

pain sites (direct path: f, β=0.035, SE=0.016) (See Figure 4-6 (a), (c)). In the sensitivity analyses, 

the associations remained significant (please refer to Supplementary Table 4-6). Furthermore, 

a significant association was found between low SES in MIDUS 1 and 3 or more pain sites 

(direct path: e, β=0.033, SE=0.015). However, in the sensitivity analyses, the association 

became insignificant (please refer to Supplementary Table 4-6). 

 

SES in MIDUS 2 completely mediated the associations between childhood SES and high 

interference CP (Figure 4-6 (a), indirect path: cf, β=0.010, SE=0.004), as well as CP with 3 or 

more pain sites (Figure 4-6 (c), indirect path: cf, β=0.007, SE=0.003), and between MIDUS 1 

SES and high interference CP (Figure 4-6 (a), indirect path: bf, β=0.024, SE=0.007) and CP with 

3 or more pain sites (Figure 4-6 (c), indirect path: bf, β=0.015, SE=0.007). Additionally, SES in 

both MIDUS 1 and MIDUS 2 jointly and completely mediated the effects of childhood SES on 

high interference CP (Figure 4-6 (a), indirect path: abf, β=0.005, SE=0.002). In the sensitivity 

analyses, the results remained significant. No other mediation pathways were found to be 

significant in both the main analyses and sensitivity analyses (please refer to Supplementary 

Table 4-6). 

 

Supplementary Tables 4-9 present the covariate associations within the main associations 

between lifecourse SES and CP, which remained robust following sequential sensitivity 
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analyses. Among participants in the NSDE stream, having multimorbidity in MIDUS 1 and 

having no health insurance in MIDUS 2 increased the likelihood of experiencing high 

interference CP and 3 or more pain sites in MIDUS 3. Additionally, participants with CP in 

MIDUS 2 were more likely to have 3 or more pain sites. 
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Figure 4-6 Path analysis of SES and CP among sample of NSDE stream 
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Figure 4-7 shows the path analyses of lifecourse SES and cortisol parameters. We found that 

SES in MIDUS 2 was directly associated with mid post-wake DCS (Figure 4-7 (c), direct path: f, 

β=0.099, SE=0.038) and CDR (Figure 4-7 (e), direct path: f, β=0.114, SE=0.038), and these 

associations were also significant in different model specifications for sensitivity analyses 

(please refer to Supplementary Table 4-7). SES in MIDUS 2 mediated the effects of childhood 

SES and MIDUS 1 SES on mid post-wake DCS and CDR (See Figures 4-7 (3) and (5), indirect 

paths cf and bf), respectively, with results from sensitivity analyses remaining significant. 

However, SES in both MIDUS 1 and MIDUS 2 jointly and completely mediated the effects of 

childhood SES on CDR (Figure 4-7 (e), indirect path: abf, β=0.008, SE=0.003), while the joint 

mediation effects of SES in both MIDUS 1 and MIDUS 2 on the association between childhood 

SES and mid post-wake DCS were less robust (Figure 4-7 (c), indirect path: abf, β=0.007, 

SE=0.003). The associations between lifecourse SES, CAR, early post-wake DCS, and AUC were 

not robust. 

 

Supplementary Tables 4-9 present the covariate associations within the main associations 

between lifecourse SES and cortisol parameters, which remained robust following sequential 

sensitivity analyses. Among participants in the NSDE stream, those who were female, older at 

MIDUS 1, and unmarried at MIDUS 2 had steeper mid post-wake DCS slopes. In contrast, 

individuals who were from minoritized ethnic groups and older at MIDUS 2 had flatter mid 

post-wake DCS slopes. Additionally, females and older participants at MIDUS 2 had narrower 

CDR, while younger individuals at MIDUS 1 had wider CDR. 
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Figure 4-7 Path analysis of SES and cortisol parameters 
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The results showed significant associations between CDR (β = -0.033, SE=0.013), AUC (β = -

0.033, SE=0.014), and the number of CP locations (see Table 4-6). Larger CDR and AUC values 

predicted lower odds of having 3 or more pain locations.  
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Table 4-6 Path analysis of cortisol parameters and CP outcomes 

Pain: high pain interference Estimate Standard error 
P-

value 

CAR -0.006 0.013 0.632 

Chi-square (df)=445.040 (154); CFI=0.943; TLI=0.921; RMSEA=0.055    

Early post-wake DCS 0.023 0.013 0.070 

Chi-square (df)=444.164 (154); CFI=0.943; TLI=0.921; RMSEA=0.055    

Mid post-wake DCS 0.020 0.013 0.131 

Chi-square (df)=444.214 (154); CFI=0.943; TLI=0.921; RMSEA=0.055    

Late post-wake DCS 0.003 0.013 0.845 

Chi-square (df)=444.841 (154); CFI=0.943; TLI=0.921; RMSEA=0.055    

CDR -0.022 0.014 0.110 

Chi-square (df)=444.699 (154); CFI=0.943; TLI=0.921; RMSEA=0.055    

AUC -0.015 0.014 0.279 
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Chi-square (df)=445.996 (154); CFI=0.943; TLI=0.921; RMSEA=0.055    

Pain: low pain interference Estimate Standard error 
P-

value 

CAR -0.010 0.017 0.544 

Chi-square (df)=398.863 (154); CFI=0.957; TLI=0.939; RMSEA=0.047    

Early post-wake DCS -0.009 0.016 0.567 

Chi-square (df)=398.170 (154); CFI=0.957; TLI=0.939; RMSEA=0.047    

Mid post-wake DCS -0.005 0.016 0.738 

Chi-square (df)=398.433 (154); CFI=0.957; TLI=0.939; RMSEA=0.047    

Late post-wake DCS 0.017 0.016 0.287 

Chi-square (df)=398.909 (154); CFI=0.957; TLI=0.939; RMSEA=0.047    

CDR -0.013 0.017 0.420 

Chi-square (df)=398.619 (154); CFI=0.957; TLI=0.939; RMSEA=0.047    

AUC 0.002 0.017 0.910 

Chi-square (df)=398.701 (154); CFI=0.957; TLI=0.939; RMSEA=0.047    



 174 

Pain: 3+ pain locations Estimate Standard error 
P-

value 

CAR -0.024 0.013 0.065 

Chi-square (df)=432.056 (154); CFI=0.949; TLI=0.928; RMSEA=0.052    

Early post-wake DCS 0.025 0.013 0.063 

Chi-square (df)=430.823 (154); CFI=0.949; TLI=0.928; RMSEA=0.052    

Mid post-wake DCS 0.024 0.013 0.078 

Chi-square (df)=431.102 (154); CFI=0.949; TLI=0.928; RMSEA=0.052    

Late post-wake DCS 0.011 0.013 0.426 

Chi-square (df)=431.832 (154); CFI=0.949; TLI=0.928; RMSEA=0.052    

CDR -0.033 0.013 0.014 

Chi-square (df)=431.544 (154); CFI=0.949; TLI=0.928; RMSEA=0.052    

AUC -0.033 0.013 0.015 

Chi-square (df)=431.958 (154); CFI=0.949; TLI=0.928; RMSEA=0.052    
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Pain: 1-2 pain locations Estimate Standard error 
P-

value 

CAR 0.010 0.017 0.561 

Chi-square (df)=397.803 (154); CFI=0.956; TLI=0.938; RMSEA=0.047    

Early post-wake DCS -0.013 0.016 0.427 

Chi-square (df)=397.488 (154); CFI=0.956; TLI=0.938; RMSEA=0.047    

Mid post-wake DCS -0.009 0.017 0.592 

Chi-square (df)=397.459 (154); CFI=0.956; TLI=0.938; RMSEA=0.047    

Late post-wake DCS 0.015 0.016 0.342 

Chi-square (df)=397.891 (154); CFI=0.956; TLI=0.938; RMSEA=0.047    

CDR 0.001 0.017 0.964 

Chi-square (df)=397.620 (154); CFI=0.956; TLI=0.938; RMSEA=0.047    

AUC 0.027 0.017 0.120 

Chi-square (df)=397.772 (154); CFI=0.956; TLI=0.938; RMSEA=0.047    
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Based on the main results presented in Figures 4‑5, 4‑6, and Table 4‑6, as well as in 

Supplementary Tables 4‑6 through 4‑8, CDR is considered a potential mediator in the 

association between lifecourse SES and having three or more CP locations. However, there is 

no evidence supporting the mediating role of the diurnal pattern of cortisol in the association 

between life course SES and CP (See Figure 4-8). 

 

Chapter 3 of the thesis found significant associations between early and mid post-wake DCSs 

and pain in 3 or more locations among the participants without baseline pain. We tested the 

mediation effects of the diurnal pattern of cortisol in the association between life course SES 

and pain in 3 or more locations among the participants without baseline pain and found no 

significant mediation effect of the diurnal pattern of cortisol (Supplementary Table 4-10).  
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Figure 4-8 Path analysis of the mediation effects of CDR 
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4.4 Discussion 

4.4.1 Discussion of lifecourse SES and CP 

Utilizing MIDUS data, this study explored the prospective association between SES across the 

life course and CP outcomes, and examined the potential mediating role of biological 

dysregulations of stress response systems. The research not only identified a direct link 

between recent socioeconomic disadvantages (MIDUS 2) and CP conditions but also 

confirmed the mediating role of recent SES on SES in earlier adulthood. In both the Biomarker 

Project stream and the NSDE stream, we observed a direct effect of recent SES (MIDUS 2) on 

high interference CP. Additionally, MIDUS 2 SES served as a mediator for childhood SES and 

MIDUS 1 SES. The effect of childhood SES on CP was also mediated by the combined influence 

of MIDUS 1 and MIDUS 2 SES. However, in the Biomarker Project stream, recent SES was 

associated with 1-2 CP locations, while in the NSDE stream, recent SES was linked to 3 or more 

pain sites. 

 

Our findings revealed that people with lower recent SES may have higher odds of having high 

interference CP and more pain locations and previous lifecourse studies have also 

documented similar associations. For example, using 1958 British Birth Cohort, a study found 

being in a lower social class at age 42 was associated with a higher risk of CWP at age 45 

(Macfarlane et al., 2009). In additional, our results confirmed the mediating effects of recent 

SES on CP conditions among the participants in the Biomarker Project stream. Specifically, the 

effects on high pain interference and pain widespreadness of childhood and MIDUS 1 SES 

were totally mediated by recent SES. In spite of the potential mediating role of adulthood SES 

suggested by previous studies, they did not formally examine the mediation effects of SES in 
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later life stages (Goosby, 2013; Macfarlane et al., 2009). Using path analysis, our results may 

support the chain of risk model of the life course (Ben-Shlomo et al., 2014, p. 1531). Early 

socioeconomic disadvantages can influence the risk of having high interference pain in the 

future through ongoing socioeconomic challenges.  

 

The significant association of proximal SES, rather than distal SES, aligns with the broader 

literature on the relationship between SES and health outcomes across the life course (Elo et 

al., 2014; Pudrovska and Anikputa, 2014). Using a 10% household sample from the 1950 

Finnish Census, research found that the association between childhood SES and mortality 

after age 35 was significantly weakened once adult SES was taken into account (Elo et al., 

2014). Another study using data from the Wisconsin Longitudinal Study revealed that, 

compared to SES from high school in 1957 and SES measured in 1975, the more recently 

collected SES data from 1993 was directly associated with all-cause mortality. Furthermore, 

the association between 1957 SES and mortality was fully mediated by SES in 1975 and 1993 

combined (Pudrovska and Anikputa, 2014). These findings underscore the importance of 

mitigating recent socioeconomic disadvantage across the life course as a preventative 

approach for CP and suggest that interventions targeting SES during earlier periods may have 

limited effects on CP prevention. 

 

In our study on the widespreadness of CP, we found that lifecourse SES was associated with 

1-2 pain sites in participants from the Biomarker Project stream, while in NSDE stream, 

lifecourse SES was linked with pain in 3 or more sites. A possible explanation is that the 

number of pain sites, rather than pain interference, may be more sensitive to biological 

mechanisms associated with aging (Jay et al., 2019), potentially manifesting as an 
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intensification of multimorbidity. In the associations between covariates and CP conditions, 

it is possible that the synergy between multiple chronic conditions and low SES could be 

related to widespreadness of pain. When comparing the significance of covariates related to 

pain, we observed that the significance of the association between lifecourse SES and CP may 

largely depend on the development of multiple chronic conditions from MIDUS 1 to MIDUS 2.  

 

In NSDE stream participants, multiple chronic conditions at MIDUS 1 were significantly 

associated with the number of pain sites at MIDUS 3 (P=0.019 for 1-2 pain sites; P=0.000 for 

3 or more sites), suggesting that respondents had already experienced multimorbidity by 

MIDUS 1. Therefore, when pain data were collected at MIDUS 3, pain was likely widespread 

across multiple body areas. Conversely, in the Biomarker Project flow, multiple chronic 

conditions at MIDUS 2 (rather than MIDUS 1) were associated with both 1-2 pain sites 

(P=0.008) and 3 or more pain sites (P=0.047), indicating that multimorbidity may have 

developed later, around MIDUS 2. Thus, by the time pain data were collected at MIDUS 3, 

pain was more localized rather than widespread. This may explain the differences in the 

association between lifecourse SES and the distribution of pain. Several cohort studies have 

substantiated the relationship between SES and various chronic conditions (Kivimäki et al., 

2020). Our findings suggest that CP is both a symptom and a condition in its own right (Treede 

et al., 2019). Low SES may limit individuals' access to resources, increasing their health risk 

exposure and reducing their capacity to manage disease risks. Our results highlight the 

importance of addressing the long-term healthcare needs of low-SES groups with 

multimorbidity and secondary widespread pain. 
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Following mechanisms may explain the association between SES and CP at certain anatomical 

regions. A key pathway linking SES to CP at certain anatomical regions involves physically 

demanding occupations common among lower SES groups. For instance, lower occupational 

class is associated with higher prevalence of chronic low back pain, largely due to physical job 

demands accelerating spinal wear-and-tear or causing lumbar injuries (Mehlum et al., 2008). 

Additionally, repetitive arm movements, overhead work, or heavy tool use typical in lower-

status occupations significantly contribute to chronic shoulder and arm pain (Mehlum et al., 

2008). Similarly, physically strenuous work, particularly involving frequent squatting, kneeling, 

or lifting, explains a substantial proportion of SES-related disparities in knee pain, and these 

effects are amplified among individuals who are obese (Cutler et al., 2020).  

 

Moreover, lower SES, particularly lower educational attainment, is linked to disparities in pain 

management that may contribute to persistent pain in specific regions like the back, knees, 

and hips. A 2022 scoping review found that lower SES,particularly lower education, limits 

patients' access to appropriate CP management, including evidence-based treatments for 

conditions like osteoarthritis and back pain (Atkins and Mukhida, 2022). Patients with less 

education are more likely to be prescribed opioids due to limited awareness of their lower 

effectiveness in managing pain and their potential side effects (Shmagel et al., 2018) and less 

likely to receive referrals for surgery or rehabilitation. These disparities are especially harmful 

for pain in the back, knees, and hips, where early, multidisciplinary intervention is essential 

to prevent chronicity. 

 

Previous studies suggest that compared to individuals who continually report no or only 

minimal economic hardship, those reporting moderate or severe economic hardship at ages 
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43 and 60-64 had a 2.9 times higher risk of CWP (Jay et al., 2019). However, previous studies 

simply summed economic hardships from different periods, potentially overstating the effect 

of economic hardships at 60-64 and understating the effect at age 43. For instance, compared 

to those without economic hardship, individuals reporting the most severe economic 

hardship at age 43 had a 340% higher risk of reporting CWP, a more significant effect than the 

summed index of economic hardship across both periods. To our knowledge, this is the first 

study to test the additive effects in the life course model between SES and CP. The additive 

effect is directly reflected in the association between SES at different periods and pain 

outcomes. Our study suggests that the additive effect of SES may emerge only in adulthood 

and is likely contingent upon the extent of development of multiple chronic conditions. 

4.4.2 Discussion of lifecourse SES and AL 

Our results found that childhood SES and recent SES were directly associated with the 

metabolic dysregulation phenotype of AL, and no indirect effects of life course SES on AL were 

found. However, there is no evidence supporting the mediating role of AL in the association 

between SES and CP. We might be the first in applying the life course model to the study of 

the association between SES and AL. Although prior research has explored the relationship 

between life course SES and AL, employing summative additive methods to operationalize 

concurrent or lifetime socioeconomic disadvantages (Gruenewald et al., 2012; Gustafsson et 

al., 2014; Lunyera et al., 2020) or inter-adjusting for SES across different periods (Robertson 

et al., 2014), these studies either assumed equal weights of the components within 

concurrent or lifetime socioeconomic disadvantages or failed to consider the sequential 

relationships of SES over different periods, thus not examining formal life course models.  
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Our findings that SES in childhood and MIDUS 2 is directly related to metabolic dysregulation 

of AL support the cumulative effects of these periods on AL. A community-based study of 

middle-aged and elderly African American adults found that lower SES was often associated 

with higher AL scores in females, driven more by metabolic and immune dimensions than by 

neuroendocrine dysregulation (Hickson et al., 2012), echoing our findings. The focus on 

metabolic dysregulation under a chronic stress framework is increasingly becoming a focal 

point for health interventions as it is associated not only with poorer mental health outcomes, 

higher risks of cancer and cardiovascular diseases (Gluckman et al., 2009; Kappelmann et al., 

2021; Naaman et al., 2022), but also increased mortality risks (Carbone et al., 2023). Our study 

used path analysis and controlled for potential confounders, further clarifying the association 

between life course SES and AL. Efforts focused solely on recent SES risk exposure may not 

effectively mitigate the adverse consequences of early-life SES disadvantages on AL. However, 

addressing socioeconomic disadvantages both in childhood and recent years can help reduce 

the risks of metabolic dysregulation, thereby enhancing overall health outcomes. 

4.4.3 Discussion of lifecourse SES and cortisol parameters 

To our knowledge, this study may be the first to examine the association between life course 

SES and diurnal cortisol patterns using a community-based adult sample. The findings support 

the risk chain model for mid post-wake DCS and CDR, but not the critical period or cumulative 

effects hypotheses. The SES in MIDUS 2 is directly associated with mid post-wake DCS and 

CDR. Moreover, SES in MIDUS 2 mediates the effects of childhood SES and SES in MIDUS 1 on 

these variables. Additionally, the influence of childhood SES on CDR was solely through the 

combined effects of SES in MIDUS 1 and MIDUS 2. Currently, there is ongoing debate 

regarding how to measure DCS. By using segmented linear spline functions to model DCS, our 
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model accounted for 76.1% of the variability. Additionally, this model allows for a more 

detailed decomposition of DCS compared to the uniform DCS throughout the day decline, 

providing deeper insights into the social patterns of DCS over different time periods and their 

implications for health (Charles et al., 2020; Karlamangla et al., 2013; Ranjit et al., 2005b).  

 

Our findings on the associations between lower SES and blunted mid post-wake DCS, rather 

than CAR, early or late post-wake DCS, partly echoed those of previous studies (Chandola et 

al., 2018; Groffen et al., 2015; Kumari et al., 2010; Miller et al., 2021; Ranjit et al., 2005a). 

Previous research has linked material hardship (Ranjit et al., 2005a) and lower occupational 

grades among civil servants (Chandola et al., 2018; Kumari et al., 2010) to a flatter cortisol 

diurnal slope. Furthermore, individuals with lower educational levels exhibit a slower decline 

in daytime cortisol levels (Groffen et al., 2015; Karlamangla et al., 2013). However, these 

studies, which simplified the full-day DCS into a uniform slope, failed to capture the nonlinear 

characteristics of DCS. Simultaneously, previous research has identified contradictory 

associations between SES and CAR. In addition to the sole SES indicator, insufficient days of 

cortisol collection may also account for the inconsistencies in the results (Kunz-Ebrecht et al., 

2004a, 2004b; Steptoe et al., 2005; Wright and Steptoe, 2005). 

 

The CDR reflects the diurnal reactivity level of the HPA axis, with a flatter CDR associated with 

higher all-cause mortality over 7-12 years, poorer executive function, cognitive decline, and 

greater heterogeneity in AL (Charles et al., 2020; Karlamangla et al., 2022). While we observed 

an association between lifecourse SES and CDR, this finding warrants cautious interpretation, 

as robust significant association was detected between CAR, early and late post-wake DCSs 

and lifecourse SES. Given the correlations between CDR, CAR, and DCSs shown in 
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Supplementary Figure 4-1, this observed link may primarily be driven by the marginal effects 

of life-course SES on diurnal cortisol rhythms.  

 

Another interpretation is that, in addition to capturing the impairments in glucocorticoid 

receptor and mineralocorticoid receptor functions as reflected by mid post-wake DCS, the 

CDR may also convey additional information related to aging while reflecting the long-term 

consequences of chronic stress disorders similar to AL (Karlamangla et al., 2022; Oster et al., 

2017). This could provide additional insights into the pathogenic mechanisms linking SES with 

aging, thereby offering new avenues for interventions aimed at the prevention of age-related 

decline. However, further studies with larger sample sizes are needed to clarify the 

association.  

 

Additionally, we found no robust association with AUC. However, previous research has 

identified inconsistent associations between SES and AUC. Although one study measured 

cortisol under naturalistic conditions and found a prospective association between SES and 

lower cortisol levels, this study only collected cortisol at three time points in a single day, 

substantially influenced by situational factors and wake-up times (Brandtstädter et al., 1991). 

Another study was also constrained by a limited number of cortisol collection days and the 

few collection occurrences each day (Li et al., 2007). Remaining studies were limited by their 

small sample size (N=193 and N=488), making it difficult to generalize the results (Cohen et 

al., 2006a; Miller et al., 2021). In summary, compared to previous studies, the NSDE provides 

a more ideal protocol for cortisol collection, involving saliva cortisol collected four times daily 

over four days in a naturalistic setting, minimizing the bias from situational effects and 
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improving the fit of the diurnal cortisol pattern (Hellhammer et al., 2007; Ranjit et al., 2005b), 

thus generating more stable associations. 

4.4.4 Discussion of AL, cortisol parameters, and CP 

A recent study demonstrated a prospective association between the metabolic dysregulation 

phenotype of AL and high interference CP, as well as the presence of CP in three or more body 

sites (Liang and Booker, 2024). In contrast, our study, which controlled for a broader range of 

potential confounders—including, but not limited to, SES across three life stages—found that 

the association between the metabolic dysregulation phenotype of AL and high interference 

CP remained significant. However, the association with CP in three or more body sites 

disappeared. This finding may suggest that AL operates through distinct mechanisms to 

influence different pain outcomes. For instance, the experience of pain interference may 

involve stress-related processes, potentially mediated by the anterior cingulate cortex 

(Rainville, 2002), which shapes pain perception through mechanisms such as attentional focus, 

emotional distress, and cognitive appraisal (Villemure and Bushnell, 2002; Wiech et al., 2008). 

These processes are closely tied to AL, itself a consequence of chronic stress.  

 

Furthermore, we found that daily cortisol secretion levels and diurnal variations are 

associated with a greater number of pain sites in the pooled sample, which is inconsistent 

with our earlier findings. In the previous section, we controlled for the income-to-needs ratio 

and education level from the MIDUS 2 SES constructs, rather than SES as a latent variable, 

which may suggest that specific SES mechanisms impose more substantial confounding 

effects on the association between cortisol and multisite pain. A larger sample size will help 

clarify these relationships. 
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4.4.5 Discussion of the mediation effects of AL, cortisol parameters on CP 

Prior studies have highlighted the potential mediating role of AL, this research did not 

demonstrate a mediating effect of AL in the prospective association between SES and CP. 

Similarly, a cross-sectional study in the United States found no mediating effect of AL between 

SES and CP (Slade et al., 2012). However, their definition of pain accorded with acute rather 

than chronic conditions, potentially diminishing mediation effects of AL. Acute pain often 

results from specific diseases or injuries (Grichnik and Ferrante, 1991) and may not involve 

the same chronic stress-related pathways as CP. Furthermore, the CP measures utilized in this 

study assessed a general CP profile of the participants, wherein specific CP subtypes may not 

be associated with the dysregulation of the chronic stress response (Cohen et al., 2021). 

Therefore, a general measure of CP could obscure the potential correlation between AL and 

CP specific to chronic stress (Nicholas et al., 2019).  

 

This is also the first article to explore the mediating role of cortisol in the association between 

life course SES and CP, finding that the diurnal rhythm of cortisol did not mediate the 

association between SES and CP, both in the full sample analysis and in the subset not 

reporting CP in MIDUS 2. Although our results did not confirm the mediating role of the 

diurnal pattern of cortisol, the findings still hold significant implications. The results suggest 

that interventions targeting dysregulations in the diurnal pattern of cortisol may not 

effectively prevent CP related to low SES.  

 

As the social security system crumbles and economic pressures increase, the societal 

prevalence of CP is also rising (Zajacova et al., 2021b). However, the specific mechanisms by 

which adverse social structures impact individuals and trigger CP remain unclear, adding 
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complexity to the social aspects of pain management. On the one hand, our study 

underscores the urgent need for more in-depth research into other sociobiological 

mechanisms of CP, to more effectively inform public health policies and interventions. For 

example, recent study found epigenetic aging mediated the associations among income, 

education and chronic knee pain impact, highlighting the importance of epigenetic aging as a 

modifiable factor for CP (Strath et al., 2024). 

 

On the other hand, the lack of significant biological mediation in our study may underscore 

SES disparities in the day-to-day management of CP, highlighting the critical role of 

metamechanisms. Metamechanisms refer to overarching pathways linking low SES to worse 

health, for example, fewer flexible resources, spillover effects of living in more stressful or 

less health-oriented environments, an ingrained “health habitus,” or even bias in institutional 

interactions (Freese and Lutfey, 2011). For instance, individuals residing in more affluent 

neighborhoods or engaged in higher-status occupations may benefit from preventive pain 

management services without any proactive effort. Those with higher SES may also be more 

inclined to adopt behaviors conducive to pain control, such as routinely seeking proactive 

treatment and maintaining a more positive outlook. Additionally, disparities in the quality of 

pain management services available may exist based on SES. However, the influence of these 

metamechanisms on CP remains exploratory, underscoring the need for systematic empirical 

research in these areas. 

 

Also, in MIDUS, CP was measured using the question, “Do you have chronic pain, that is do 

you have pain that persists beyond the time of normal healing and has lasted from anywhere 

from a few months to many years?” Because this broad definition does not distinguish 
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between “primary” pain (often stress-related) and “secondary” pain (driven by underlying 

medical conditions), a substantial portion of the CP in our sample may stem from structural 

or disease-related causes. These “secondary” pain conditions are less reliant on chronic 

stress-related biological processes. Consequently, if much of the reported pain arises through 

mechanisms like injury, stress biomarkers may not fully capture their etiology. This 

heterogeneity makes it more difficult to detect mediation by stress-based biological pathways 

and could help explain why we did not observe significant mediation effects by AL or cortisol 

parameters. 

 

Finally, the extended interval between initial SES assessment, biomarker sampling, and CP 

measurement may have diluted the causal pathway we aimed to capture (Rijnhart et al., 

2022). One plausible explanation is that the physiological impacts of socioeconomic adversity 

develop and fluctuate dynamically over time rather than following a linear trajectory. Thus, 

even though SES is associated with current biomarkers, the relatively long interval between 

biomarker assessment and CP measurement may have allowed other factors, such as 

intervening health conditions, lifestyle changes, or medical treatments, to intervene, 

weakening the pathway from biomarkers to CP. In other words, while biomarkers measured 

at one point may still reflect SES-related physiological disturbances, their capacity to predict 

future CP could weaken considerably over longer intervals. Future research employing shorter 

intervals or repeated biomarker measurements could better clarify how timing affects the 

mediation process and potentially uncover stronger evidence for biological mediation 

between SES and CP. 
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4.4.6 Advantages and limitations 

This study has following additional advantages. Firstly, by integrating both primary and 

secondary biological indicators of chronic stress response to construct AL, it may enhance the 

measurement's validity. Beyond the classic summative method for operationalizing AL, this 

study utilized LCA to capture the interrelations among AL biomarkers. Additionally, it utilizes 

data from a more ideal cortisol collection protocol, making HPA axis measurements more 

reliable. In addition, compared to previous birth cohort studies, the sequential collection of 

biomarkers of stress response systems and CP data allows us to examine the prospective 

mediating role.  

 

Also, we consolidated SES into a composite index to capture its multidimensionality and our 

findings highlight the distinct contributions of its individual components. Affordability-related 

indicators (e.g., current financial situation, bill payment difficulty, income-to-needs ratio) are 

more salient in early adulthood, when financial strain is common, but their relevance 

diminishes with age. In contrast, traditional indicators like education and occupation gain 

importance over time. These shifting patterns suggest that SES-sensitive health policies 

should be tailored to life stage—prioritizing financial support in early adulthood and 

enhancing structural resources in later life to address social inequalities and improve health 

outcomes. 

 

Moreover, the prospective nature of this study allows for the inclusion of early confounders, 

thereby minimizing potential confounding effects and establishing a temporal sequence in 

the relationship between SES and CP. Finally, we applied life course models to these 
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associations, allowing for a formal and detailed examination of how SES is linked to biological 

dysregulations in stress response systems and CP. 

 

There are limitations in the present study. Like all observational studies, SEM is susceptible to 

unmeasured confounding, which occurs when there are unknown or unmeasured variables 

that influence both the predictor and the outcome. If such variables exist, the estimated 

relationships in the path model may be distorted, potentially leading to incorrect conclusions 

about direct or indirect effects. Although the demographic and health characteristics of the 

biomarker sample closely align with those of the national survey sample (Dienberg Love et al., 

2010), the analytic sample demonstrates an underrepresentation of ethnic minorities. Racial 

disparities in health outcomes are a profound concern in the United States (Clouston and Link, 

2021). The increasing disparity in the prevalence and treatment of CP among ethnic minorities, 

driven by structural factors such as discrimination and the chronic stress of socioeconomic 

disadvantage, calls for attention (Maly and Vallerand, 2018). Thus, future studies can 

prioritize the inclusion of ethnic minority groups to address this gap.  

 

Also, the association between SES and CP may be influenced by attrition bias, as participants 

with more SES disadvantages at baseline were more likely to drop out. This could lead to an 

underestimation of the true impact of SES on CP outcomes (See Supplementary Tables 3-8 & 

4-12). Furthermore, childhood indicators were measured retrospectively, which are subject 

to recall bias. However, the impact of this bias might be minimal. Studies validating the 

concordance of childhood SES indicators in MIDUS, using sibling and twin samples, have 

shown that recall measures were generally reliable (Ward, 2011). Nonetheless, employing 

prospective indicators for childhood conditions is recommended for future research.  
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In addition, we addressed missing values in the SES composite index, which includes the 

occupation of fathers or male heads and the educational level of mothers or female heads, 

using the full information maximum likelihood method. However, this approach is not without 

its limitations. For male heads of household who stayed home to raise children or were absent 

from the labor market for other reasons, we imputed their occupation based on the female 

head of household's occupation during childhood. On the one hand, this aligns with the 

household dominance framework for measuring the occupational status of the head of 

household in childhood (Krieger et al., 1997). On the other hand, given the social context of 

childhood in the MIDUS sample, using the occupation of the female head of household, 

typically representing the mother, to stand in for the male head's occupation may 

underestimate the occupational effect on pain. This is because women at that time were 

more likely to hold jobs with higher social status but relatively lower wages. Additionally, we 

were unable to distinguish respondents who lacked either a male or female head of 

household in childhood because MIDUS did not provide detailed information for the 

missingness. Given the association between single-parent households and poverty (Bradley 

and Corwyn, 2002), imputing data for these respondents may potentially weaken the 

association between SES and pain. 

4.5 Conclusion 

In conclusion, our findings underscore that recent low SES mediates the adverse impact of 

previous socioeconomic disadvantages on CP outcomes, particularly highlighting the 

importance of intervening in recent SES to effectively prevent CP. However, reducing the 

prevalence of multisite pain may require alleviation of multimorbidity burdens. We 



 193 

emphasize that the metabolic dysregulation phenotype of AL is influenced by the cumulative 

effects of childhood SES disadvantages and recent SES disadvantages, which points to the 

potential importance of these life stages in shaping long-term physiological outcomes. 

Similarly, interventions focused on recent individual SES may have some relevance for 

mitigating HPA axis dysregulation. However, we did not find evidence for dysregulations in 

stress response systems as mediators. How socioeconomic disadvantages profoundly get to 

the skin to cause or sustain CP remains an uncharted territory. Future research is needed to 

explore different mediating mechanisms and provide a basis for personalized interventions 

for CP.  
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5 Summary and Future Directions 

5.1 Summary of thesis work 

CP affects at least one-fifth of American adults (Yong et al., 2022), and this number is likely to 

continue rising. Calls to address the population-level crisis of CP emerged as early as the first 

decade of this century (Interagency Pain Research Coordinating Committee, 2022). 

Sociologists and economists have continuously emphasized that understanding the social 

causes of CP might be key to alleviating this major public health crisis. Additionally, experts in 

pain management have underscored the importance of a multidimensional approach to pain 

management (Case et al., 2020; Cohen et al., 2021; Zajacova et al., 2021b). Despite these calls, 

there remain significant gaps in the research on the social determinants of CP (Khalatbari-

Soltani and Blyth, 2022). 

 

In recent decades, the role of SES in health disparities has become widely recognized, whether 

in chronic diseases (Phelan et al., 2010) or infectious diseases (Clouston and Link, 2021). By 

limiting individuals' access to resources, lower SES groups are more likely to be exposed to 

higher-risk environments and have fewer means to prevent and manage diseases. The recent 

COVID-19 pandemic has starkly highlighted these inequalities, from national to individual 

levels (McGowan and Bambra, 2022). Furthermore, health disparities are likely rooted in 

individuals' life histories (Jones et al., 2019; Kuh et al., 2003). Therefore, expanding the 

research perspective on SES and chronic diseases through life course theory can identify 

critical intervention periods, enhancing the ability of public health systems and individuals to 

intervene effectively. This approach can also reduce unnecessary public spending by avoiding 

redundant interventions during less critical periods. 
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In addition, identifying early risk factors for CP and examining how SES influences CP risk 

provides additional insights into pain management for underserved populations. CP is 

considered a condition closely linked to chronic stress (Borsook et al., 2012). Prolonged 

exposure to chronic stressors can lead to systemic physiological dysregulation, starting with 

the HPA axis and extending to various downstream physiological systems (Juster et al., 2010; 

Woda et al., 2016). Social stress theory suggests that individuals with low SES often face 

persistent environmental challenges and constraints on coping and adaptation, which serve 

as long-term stressors (Aneshensel, 1992; Baum et al., 1999). Consequently, there may be a 

higher likelihood of observing systematic chronic stress response dysregulation in low SES 

populations. Clinical literature and some population-based studies indicate that CP appears 

to be a product of physiological dysregulation of the stress response system. However, 

research gaps still exist (Liang and Booker, 2024). 

 

The first and second aims of our study are to explore whether chronic stress-related biological 

dysregulations, such as HPA axis dysregulation and systemic physiological dysregulation, are 

prospectively associated with CP. Our study separately examines HPA axis dysfunction, 

measured by the diurnal pattern of salivary cortisol, and systemic chronic stress dysregulation 

through AL. Studying both HPA axis dysregulation and AL is essential for a comprehensive 

understanding of the physiological impacts of chronic stress. The HPA axis provides specific 

insights into hormonal responses and regulatory mechanisms directly related to stress. In 

contrast, AL encompasses the broader, cumulative effects of chronic stress across various 

bodily systems, capturing the long-term wear and tear that can lead to significant health 

consequences. By examining both, researchers can gain a detailed and nuanced picture of 
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how chronic stress-related biological responses are associated with CP, thereby enabling 

more effective interventions and preventive measures for stress-related disorders. 

 

We find that the diurnal cortisol rhythms from early to mid post-wake periods are related to 

the development of CP in 3 or more body sites. AL, particularly metabolic dysregulation, is 

associated with higher odds of chronic high interference and multisite pain in the future. Our 

findings carry significant public health implications. Diurnal cortisol rhythms may indicate 

early-stage outcomes of chronic stress dysregulation, while AL may reflect a long-term 

outcomes of chronic stress dysregulation. Identifying individuals exhibiting both a flattened 

diurnal cortisol slope and metabolic dysregulation phenotypes within AL can help selectively 

target high-risk populations at different stages of CP. For instance, a flattened diurnal cortisol 

slope may signal mid-to-late stages in the progression of CP with 3 or more sites, whereas the 

metabolic phenotype of AL is associated with altered odds of future CP interference and CP 

with 3 or more sites. Moreover, our results inform precision intervention targets at various 

stages (e.g., interventions aiming at glucocorticoid receptor downregulation, metabolic 

health optimization). Secondly, these findings provide prospective power estimates and 

insights into intervention effects, thereby guiding the design of future public health research. 

 

Our third and fourth aims are to explore the mediating role of HPA axis dysregulation and 

systemic chronic stress dysregulation in the association between life course SES and CP, 

aiming to address the unresolved question of how current SES influences CP. Specifically, we 

found chain of risk models regarding SES and mid post-wake DCS and CDR, suggesting that 

proximal adult socioeconomic disadvantage mediates the adverse effects of early life and 

directly impacts these cortisol indicators. Our findings highlight the importance of addressing 
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proximal socioeconomic inequalities to prevent HPA axis dysregulation, thereby averting a 

wider range of adverse health outcomes linked to it. Additionally, by applying a 

comprehensive measure of chronic stress dysregulation, we identified a risk model chain for 

AL metabolic dysregulation phenotypes, where both childhood SES and recent SES are directly 

associated with these phenotypes. These findings underscore the critical role of alleviating 

socioeconomic disadvantages not only in adulthood but also during childhood to prevent 

systemic dysregulation related to chronic stress in later life. 

 

Moreover, our findings confirm the chain of risk model linking life course SES with CP 

interference, emphasizing the mediating role of recent SES. Regarding the widespreadness of 

CP, we found that the relationship between lifecourse SES and the number of pain sites may 

depend on the degree of multimorbidity development. Early onset of chronic conditions 

associated with pain may lead to a broader extent of pain in the future. Our findings suggest 

that CP is both a symptom of underlying disease and a condition in its own right. Low SES may 

limit individuals’ access to and utilization of various resources, thereby increasing exposure 

to health risks and reducing their capacity to manage disease risks. Our results highlight the 

importance of meeting the long-term healthcare needs of low-SES populations suffering from 

multiple chronic conditions in multisite pain management. 

 

These findings highlight that interventions aimed at alleviating socioeconomic disadvantage 

at specific life stages may help improve chronic stress dysregulation and CP, underscoring the 

importance of relevant social policies. However, we did not find evidence that stress-related 

biological dysregulation mediated the association between SES and CP. This highlights not 

only the importance of biological mechanisms beyond chronic stress but also suggests that in 



 198 

addressing SES inequalities in CP, efforts to reduce CP disparities solely through alleviating 

biological wear and tear from individual stress may have limited benefits. Structural 

inequalities embedded in individuals’ everyday pain management practices may require 

broader public health interventions, such as inclusive pain treatment access, widespread 

dissemination of pain management knowledge, and more equitable healthcare services. 

5.2 Future Directions 

Firstly, improving the participation rate in biomarker collections within population surveys is 

crucial. An increasing number of population-based surveys have either started or plan to 

collect biological samples. However, there is still a significant lack of research on how to 

enhance participation rates in sample collection and follow-up retention rates in in biomarker 

collections. This issue is particularly important for surveys that aim to represent the general 

population through complex probability sampling. The MIDUS study collects comprehensive 

biological data through a rigorous protocol. Although participants are similar to the baseline 

population in terms of sociodemographic characteristics, the participation rates for biological 

sample collection and diary data remain a challenge for research. This is especially 

problematic in longitudinal studies, where it poses difficulties for the generalizability of the 

data. Future research on strategies to incentivize participation in biomarker collection and 

improve follow-up retention under strict protocols will provide valuable insights for the 

implementation of large-scale population surveys with biomarker collections. 

  

Secondly, due to the current stage of the MIDUS survey, we can only explore the association 

between stress-related biomarkers and CP through a single follow-up with a long interval. 

However, the state of biomarkers is likely to change with the progression of pain. Although 
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future cohort studies with higher frequency and shorter collection intervals of biological 

information would help explore the relationship between biological changes and the 

development of CP, such studies are extremely costly. We propose a compromise approach: 

collecting biological information only at baseline and CP information at baseline and multiple 

follow-ups. By examining the relative timing of baseline biomarkers and the development of 

CP, we can determine the stages of pain progression. Additionally, collecting multiple 

instances of pain information helps reduce misclassification, thereby providing more accurate 

estimates. Despite the high costs, it is essential to conduct multiple collections not only of 

pain status but also of stress-related biomarkers, particularly cortisol, from community-

dwelling adults. Ideally, these collections could utilize probability sampling cohort to reveal 

the complex association between pain development, pain chronicity, and the dysregulation 

of stress response systems for better generalizability. The related research will facilitate a 

better understanding of CP pathology, improve biopsychosocial pain management, and 

support population-level prevention efforts, ultimately alleviating the population's pain 

burden and reducing medical costs for both individuals and the healthcare system. 

  

Thirdly, although self-reports remain the "gold standard" for measuring CP, incorporating 

validated pain scales or physician diagnoses, through linked data, into large-scale 

epidemiological studies will undoubtedly enhance the reliability and validity of pain 

measurement. Currently, only limited data include CP indicators that meet the defined criteria. 

Measuring the duration of pain in population-based surveys may also provide more detailed 

insights. In addition, CP measures in MIDUS capture a general CP condition, limiting the ability 

to conduct a more detailed investigation into different pain syndromes. In MIDUS, the 

question 'Do you have CP, that is, do you have pain that persists beyond the time of normal 
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healing and has lasted anywhere from a few months to many years?' is used to measure CP. 

This question implies the presence of previous injuries and, therefore, includes secondary 

pain syndromes, where various mechanisms, besides chronic stress, may exist. Future 

epidemiological research on specific pain syndromes may offer extra information. 

  

Fourth, we encourage further exploration of structural-level research. While individualized 

prevention strategies that target biological and behavioral mediations are often emphasized 

in policy discussions, these approaches alone are insufficient to address the adverse effects 

brought by broader determinants of health. Our findings suggest that merely improving the 

biological conditions associated with chronic stress may not reduce socioeconomic 

inequalities in CP. A focus on the structural conditions tied to SES is essential. In addition, 

individual CP disparities may be rooted in structural plight such as daily medical practice for 

CP, geographic location and industrial structure. We look forward to significant future 

research outcomes in these areas. Additional measures are needed to address the social 

determinants of health. 
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Supplementary Materials to Chapter: Allostatic Load and Chronic Pain 

Supplementary Table 1-1 Fit statistics for latent classes of AL 

Model - 
Class k 

llik (maximum value of the log-
likelihood) 

AIC BIC Entropy Class 1 % Class 2 % Class 3 % Class 4 % Class 5 % Class 6 % Class 7 % 

1 -11670.67 23395.33 23521.17 NaN 1.00         
2 -11067.14 22244.28 22500.61 0.85 0.62 0.38      

3 -10813.98 21793.96 22180.79 0.86 0.24 0.51 0.25     

4 -10706.04 21634.09 22151.41 0.85 0.23 0.18 0.49 0.10    

5 -10606.58 21491.16 22138.98 0.84 0.17 0.14 0.43 0.11 0.15   

6 -10539.69 21413.38 22191.70 NaN 0.18 0.31 0.10 0.18 0.05 0.19  

7 -10463.27 21316.53 22225.35 NaN 0.11 0.12 0.17 0.11 0.25 0.13 0.12 
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Supplementary Table 1-2 Biomarkers levels stratified by AL phenotype 

AL driven pattern Class 1 Class 2 Class 3  

Biomarkers Mean Median Mean Median Mean Median Test 

Hypothalamic Pituitary Adrenal Axis        

DHEA-s (ug/dL) 110 94 106 86 115 90 F=0.688 

Urine cortisol (μg/g) 17 15 15 11 13 10 F=5.782*** 

Sympathetic Nervous System        

Urine epinephrine (μg/g) 2.1 1.8 2 1.8 1.7 1.4 F=6.251*** 

Urine norepinephrine (μg/g) 26 24 28 27 28 24 F=2.785* 

Urine Dopamine (μg/g) 151 142 144 136 146 133 F=1.37 

Parasympathetic Nervous System        

High-frequency HRV 348 176 31 30 371 141 F=15.035*** 

Low-frequency HRV 562 339 112 90 457 258 F=36.218*** 

RMSSD 26 21 8.5 8.6 25 19 F=88.199*** 

SDRR (m s) 41 36 21 20 37 34 F=115.491*** 

Cardiovascular        

Resting SBP (mmHg) 126 126 133 131 136 137 F=30.225*** 

Resting DBP (mmHg) 74 73 76 76 77 77 F=9.386*** 

Resting heart rate (bpm) 70 70 80 80 71 71 F=74.174*** 

Inflammation        

CRP (mg/L) 1.8 0.89 3.1 1.6 3.2 2.2 F=13.511*** 

IL6 (pg/mL) 0.76 0.63 1.1 0.92 1.2 1 F=26.438*** 

TNF-α (pg/mL) 1.9 1.9 2.5 2.3 2.4 2.3 F=47.766*** 

Fibrinogen (mg/dL) 322 319 356 356 349 345 F=14.897*** 

ICAM-1 (ng/mL) 264 244 297 276 297 289 F=12.488*** 

E-Selectin (ng/mL) 37 34 41 38 49 45 F=23.056*** 



 203 

Blood Fasting IGF1 (Insulin-like Growth Factor 1) ng/mL) 133 126 123 115 119 113 F=6.492*** 

Metabolic-glucose        

Fasting glucose 93 93 102 98 113 103 F=51.566*** 

Hemoglobin A1c% 5.7 5.7 6.1 5.9 6.3 6 F=37.938*** 

HOMA-IR 1.9 1.7 3.8 2.7 5.8 4.7 F=107.247*** 

Metabolic-lipids        

Triglycerides (mg/dL) 100 92 148 121 181 162 F=80.591*** 

WHR 0.85 0.85 0.92 0.91 0.95 0.96 F=89.071*** 

BMI 26 26 30 30 33 32 F=119.981*** 

LDL cholesterol (mg/dL) 105 103 110 104 109 102 F=1.358 

HDL cholesterol (mg/dL) 62 59 53 51 43 41 F=85.106*** 
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Supplementary Table 1-3 Full results from the main logistic regression for the 
association between AL at MIDUS 2 Biomarker Project and CP status at MIDUS 3 

 OR (95% CI) P-value  

AL pattern   

    Baseline Ref  

    Parasympathetic dysregulation  0.97 (0.64, 1.48) 0.889 

    Metabolic dysregulation  1.18 (0.76, 1.81) 0.464 

Year gap between data collections   

MIDUS 2 Biomarker Project to MIDUS 3 1.13 (0.99, 1.3) 0.069 

Education   

    high school or less Ref  

    bachelor's degree 0.87 (0.59, 1.29) 0.497 

    Master's degree and above 0.97 (0.61, 1.53) 0.899 

Age 0.99 (0.97, 1.01) 0.190 

Marital Status   

    Married Ref  

    Divorced & Separated 0.83 (0.51, 1.35) 0.450 

    Never married & Widowed 0.61 (0.36, 1.04) 0.071 

Income-to-needs ratio   

    Affluent Ref  

    Adequate-income 1.25 (0.85, 1.85) 0.262 

    Low-income or below 2.30 (1.42, 3.74) 0.001 

Race/ethnicity   

    White Ref  

    Non-white 1.53 (0.79, 2.97) 0.203 

Gender   

    Male Ref  

    Female 1.37 (0.96, 1.95) 0.085 

Total number of Metabolic Equivalent of Task 
(MET) minutes per week 

  

    500-1000 Ref  

    Greater than 1000 1.64 (1.03, 2.6) 0.036 

    Less than 500 1.06 (0.67, 1.69) 0.797 

Smoking behavior   

    Current Smoker Ref  

    Ex-Smoker 0.87 (0.49, 1.54) 0.640 

    non-Smoker 0.67 (0.39, 1.15) 0.145 

Drinking behavior   

    Moderate + drinker Ref  

    Light drinker 1.19 (0.79, 1.79) 0.408 

    Non-drinker or rarely drink 1.14 (0.75, 1.72) 0.543 
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Childhood parent emotional abuse   

    1 (Never) Ref  

    1.5 1.58 (0.93, 2.71) 0.093 

    2 1.05 (0.69, 1.60) 0.826 

    2.5 0.85 (0.55, 1.31) 0.461 

    3 (Most frequent) 1.15 (0.79, 1.68) 0.469 

Childhood parent physical abuse   

    1 (Never) Ref  

    1.5 0.95 (0.51, 1.76) 0.863 

    2 0.75 (0.46, 1.20) 0.230 

    2.5 1.01 (0.63, 1.62) 0.955 

    3 (Most frequent) 0.69 (0.47, 1.03) 0.068 

Medication intake   

    No Ref  

    Yes 2.10 (1.37, 3.24) 0.001 

Multimorbidity   

    <2 Ref  

    2+ 1.57 (0.98, 2.53) 0.062 
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Supplementary Table 1-4 Full results from the main multinomial logistic regression for the association between AL at MIDUS 2 
Biomarker Project and CP interference and the number of CP sites at MIDUS 3 

 CP interference The number of pain locations 

No pain vs Low interference pain High interference pain 1-2 pain locations 3+ pain locations 
 RRR (95% CI) P-value  RRR (95% CI) P-value  RRR (95% CI) P-value  RRR (95% CI) P-value  

AL pattern         

    Baseline Ref  Ref  Ref  Ref  

    Parasympathetic 
dysregulation  

0.87 (0.54, 1.39) 0.552 1.24 (0.65, 2.39) 0.512 0.84 (0.51, 1.36) 0.474 1.30 (0.69, 2.44) 0.411 

    Metabolic dysregulation  0.92 (0.56, 1.52) 0.742 2.00 (1.06, 3.79) 0.033 0.89 (0.54, 1.47) 0.654 2.03 (1.08, 3.83) 0.029 

Year gap between data 
collections 

        

MIDUS 2 Biomarker Project to 
MIDUS 3 

1.13 (0.97, 1.32) 0.107 1.13 (0.92, 1.39) 0.239 1.14 (0.98, 1.33) 0.094 1.13 (0.93, 1.39) 0.224 

Education         

    high school or less Ref  Ref  Ref  Ref  

    bachelor's degree 0.86 (0.56, 1.34) 0.518 0.87 (0.47, 1.61) 0.653 1.04 (0.67, 1.62) 0.858 0.6 (0.32, 1.12) 0.108 

    Master's degree and above 0.82 (0.48, 1.39) 0.464 1.31 (0.66, 2.59) 0.436 1.03 (0.61, 1.73) 0.911 0.9 (0.45, 1.81) 0.770 

Age 0.99 (0.97, 1.01) 0.466 0.98 (0.96, 1.01) 0.158 0.98 (0.97, 1) 0.114 1 (0.97, 1.02) 0.842 

Marital Status         

    Married Ref  Ref  Ref  Ref  

    Divorced & Separated 0.92 (0.53, 1.6) 0.768 0.65 (0.3, 1.39) 0.267 0.83 (0.47, 1.47) 0.519 0.75 (0.37, 1.54) 0.440 

    Never married & Widowed 0.74 (0.41, 1.33) 0.319 0.37 (0.15, 0.94) 0.037 0.59 (0.32, 1.1) 0.099 0.58 (0.26, 1.3) 0.189 

Income-to-needs ratio         

    Affluent Ref  Ref  Ref  Ref  
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    Adequate-income 1.28 (0.82, 1.99) 0.281 1.17 (0.65, 2.11) 0.602 1.26 (0.8, 1.96) 0.319 1.24 (0.69, 2.22) 0.466 

    Low-income or below 2.55 (1.5, 4.34) 0.001 1.82 (0.87, 3.83) 0.114 2.1 (1.21, 3.66) 0.009 2.63 (1.32, 5.25) 0.006 

Race/ethnicity         

    White Ref  Ref  Ref  Ref  

    Non-white 1.6 (0.78, 3.31) 0.203 1.41 (0.52, 3.8) 0.495 1.24 (0.57, 2.71) 0.583 2.47 (1.02, 5.99) 0.046 

Gender         

    Male Ref  Ref  Ref  Ref  

    Female 1.06 (0.71, 1.58) 0.780 2.46 (1.39, 4.36) 0.002 0.93 (0.62, 1.39) 0.720 3.34 (1.86, 5.98) 0.000 

Total number of Metabolic 
Equivalent of Task (MET) 
minutes per week 

        

    500-1000 Ref  Ref  Ref  Ref  

    Greater than 1000 1.58 (0.94, 2.65) 0.084 1.83 (0.88, 3.77) 0.104 1.54 (0.9, 2.61) 0.114 1.82 (0.91, 3.6) 0.088 

    Less than 500 1.05 (0.61, 1.78) 0.869 1.14 (0.56, 2.34) 0.722 1.17 (0.68, 2.01) 0.561 0.86 (0.43, 1.72) 0.662 

Smoking behavior         

    Current Smoker Ref  Ref  Ref  Ref  

    Ex-Smoker 1.11 (0.57, 2.17) 0.759 0.57 (0.26, 1.24) 0.154 1.1 (0.55, 2.18) 0.788 0.61 (0.29, 1.3) 0.202 

    non-Smoker 1 (0.53, 1.87) 0.994 0.31 (0.15, 0.65) 0.002 0.98 (0.51, 1.87) 0.945 0.34 (0.16, 0.71) 0.004 

Drinking behavior         

    Moderate + drinker Ref  Ref  Ref  Ref  

    Light drinker 1.17 (0.75, 1.85) 0.490 1.27 (0.66, 2.44) 0.473 1.21 (0.76, 1.95) 0.418 1.13 (0.62, 2.08) 0.683 

    Non-drinker or rarely drink 0.9 (0.56, 1.44) 0.649 1.81 (0.97, 3.37) 0.061 1.23 (0.77, 1.97) 0.382 0.97 (0.52, 1.8) 0.913 

Childhood parent emotional 
abuse 

        

    1 (Never) Ref  Ref  Ref  Ref  

    1.5 1.45 (0.79, 2.66) 0.236 1.9 (0.85, 4.24) 0.116 1.65 (0.9, 3.03) 0.106 1.29 (0.57, 2.91) 0.539 

    2 0.95 (0.59, 1.55) 0.851 1.35 (0.72, 2.55) 0.348 0.96 (0.59, 1.57) 0.877 1.23 (0.67, 2.26) 0.504 

    2.5 1.1 (0.67, 1.79) 0.716 0.44 (0.21, 0.92) 0.029 0.82 (0.51, 1.32) 0.406 0.92 (0.45, 1.86) 0.811 
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    3 (Most frequent) 1.2 (0.78, 1.83) 0.407 1.26 (0.66, 2.4) 0.489 0.97 (0.64, 1.48) 0.898 1.73 (0.93, 3.2) 0.082 

Childhood parent physical 
abuse 

        

    1 (Never) Ref  Ref  Ref  Ref  

    1.5 0.83 (0.41, 1.7) 0.616 1.25 (0.51, 3.09) 0.629 0.66 (0.31, 1.39) 0.272 1.73 (0.72, 4.21) 0.223 

    2 0.83 (0.48, 1.44) 0.509 0.67 (0.33, 1.34) 0.252 0.64 (0.35, 1.15) 0.134 0.9 (0.47, 1.73) 0.757 

    2.5 1.25 (0.73, 2.16) 0.414 0.66 (0.33, 1.31) 0.235 1.01 (0.59, 1.75) 0.962 0.86 (0.44, 1.69) 0.656 

    3 (Most frequent) 0.73 (0.46, 1.16) 0.184 0.71 (0.4, 1.26) 0.238 0.65 (0.42, 1.02) 0.064 0.8 (0.45, 1.43) 0.451 

Medication intake         

    Yes Ref  Ref  Ref  Ref  

    No 2.01 (1.24, 3.26) 0.005 2.42 (1.18, 4.99) 0.016 2.01 (1.23, 3.29) 0.005 2.53 (1.25, 5.11) 0.010 

Multimorbidity         

    <2 Ref  Ref  Ref  Ref  

    2+ 1.51 (0.89, 2.56) 0.131 1.8 (0.79, 4.1) 0.162 1.48 (0.87, 2.51) 0.151 1.97 (0.87, 4.47) 0.105 
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Supplementary materials to Chapter: Association of Diurnal Cortisol Rhythm 
with Chronic Pain 

Supplementary Table 2-1 Sample characteristics of NSDE 

Variable N (day-observations) Mean Median 

Cortisol: awakening (nmol/L) 3841 15.31 8.31 

Cortisol: 30 mins after awakening (nmol/L) 3841 21.75 10.78 

Cortisol: lunchtime (nmol/L) 3841 6.74 4.36 

Cortisol: bedtime (nmol/L) 3841 2.78 3.83 

Cortisol collection time (hours): awakening 3841 6.72 1.25 

Cortisol collection time (hours): 30 mins after awakening 3841 7.25 1.25 

Cortisol collection time (hours): lunchtime 3836 12.65 1.38 

Cortisol collection time (hours): bedtime 3841 22.50 1.27 

Collection day 3841   

    Day 1 1246 32.44%  

    Day 2 1120 29.16%  

    Day 3 904 23.54%  

    Day 4 571 14.87%  

Average wake-day length (individual-level) 3841 6.72 1.25 

Waking hours 3841 16.75 0.86 

Weekend vs. workday status  3841   

    Weekday 2879 74.95%  

    Weekend 962 25.05%  

Length of sleep the previous night 3701   

    6-8 2776 75.01%  

    <6 320 8.65%  

    >8 605 16.35%  
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Supplementary Table 2-2 Parameters of the mean log-cortisol trajectory 

Fixed effects: Estimate P-value  

(Intercept) 3.48 (0.25) <0.001 

CAR (0-30 mins) 0.50 (0.11) <0.001 

Early post-wake DCS (30 mins-4.5 hours) -0.13 (0.01) <0.001 

Mid post-wake DCS (4.5 hours-15 hours) -0.16 (0.00) <0.001 

Late post-wake DCS (after 15 hours) -0.13 (0.00) <0.001 

Waking time -0.04 (0.01) <0.001 

Average wake-day length (individual-level) -0.03 (0.01) 0.078 

Length of sleep the previous night   

6-8 hours Ref  

<6 hours -0.06 (0.01) 0.112 

>8 hours -0.04 (0.02) 0.042 

Weekend vs. workday status    

Weekday Ref  

Weekend -0.04 (0.02) <0.001 

Random effects: Variance SD 

Between persons SD   

(Intercept) 0.146 0.383 

CAR (0-30 mins) 0.211 0.459 

Early post-wake DCS (30 mins-4.5 hours) 0.009 0.095 

Mid post-wake DCS (4.5 hours-15 hours) 0.003 0.050 

Late post-wake DCS (after 15 hours) 0.002 0.046 

Between days SD   

(Intercept) 0.000 0.000 

Early post-wake DCS (30 mins-4.5 hours) 0.000 0.000 

Between family SD   

(Intercept) 0.032 0.180 

Residual SD  0.336 0.580 

R2 0.761  

†Adjusted for waking time on day of measurement, weekend vs. workday status, length 
of sleep the previous night, average wake-day length (individual-level). 
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Supplementary Figure 2-1 Sample-based cortisol diurnal pattern 

 
 

 

Time with respect to waking 



 212 

Supplementary Figure 2-2 Model-based cortisol diurnal pattern 

 
 

Time with respect to waking 
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Supplementary Figure 2-3 Correlation matrix of cortisol parameters 
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Supplementary Table 2-3 Principal Component Analysis of Cortisol Parameters 

  Loadings 
Variance explained by the 

factors 
 Factor 1 Factor 2  

Early post-wake DCS 0.97   0.88 

Mid post-wake DCS 1.00  1.00 

Late post-wake DCS 0.80  0.67 

CAR  1.00 1.00 

CDR -0.36 0.68 0.75 

AUC  0.90 0.73 

According to Kaiser’s Rule, components with eigenvalues greater than 1 were 
retained. The eigenvalue for Dimension 1 is 3.41, for Dimension 2 is 1.87, for 
Dimension 3 is 0.46, for Dimension 4 is 0.19, for Dimension 5 is 0.04, and for 
Dimension 6 is 0.02. Therefore, two factors were retained. 
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Supplementary Table 2-4 Baseline characteristics of the analytic sample 

 Attrition (n=222) Analytic sample (n=1,246)  

Variable Mean (SD) / % Mean (SD) / % P-value 

Steroid inhaler   0.614 

    No 96.50% 97.00%  

    Yes 3.50% 3.00%  

Oral steroid meds   0.903 

    No 97.60% 97.40%  

    Yes 2.40% 2.60%  

Other hormonal meds   <0.001 

    No 96.50% 89%  

    Yes 3.50% 11%  

Anti-depressant or anti-anxiety meds  0.277 

    No 88.10% 86.40%  

    Yes 11.90% 13.60%  

Birth control pills   0.005 

    No 99.40% 97.50%  

    Yes 0.60% 2.50%  

Income-to-needs scale 0.43 (0.70) 0.26 (0.59) <0.001 

Education 0.80 (0.55) 0.59 (0.56) <0.001 

Age 62.40 (14.60) 55.50 (11.30) <0.001 

Ethnicity   0.013 

    White 93.50% 95.80%  

    Non-white 6.50% 4.20%  

Sex assigned at birth   0.694 

    Male 45.00% 44.10%  

    Female 55.00% 55.90%  

Marital status   <0.001 

    Divorced/separated/widowed/never 
married 

33.40% 24.50%  

    Married 66.60% 75.50%  

Physical activity 27.40 (12.40) 29.40 (10.70) <0.001 

Smoking status   <0.001 

    Current smoker 15.40% 10.20%  

    Ex-smoker 61.80% 60.60%  

    Non-Smoker 22.80% 29.30%  

Drinking status   0.007 

    Moderate + Drinker 30.70% 31.50%  

    Light Drinker 24.10% 29.30%  

    Non-Drinker or Rarely Drink 45.20% 39.30%  

Multimorbidity   <0.001 

    No 32.90% 44.50%  
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    Yes 67.10% 55.50%  

Baseline chronic pain   <0.001 

    No 49.70% 64.30%  

    Yes 50.30% 35.70%  

BMI 29.10 (6.11) 27.70 (5.46) <0.001 

Childhood emotional abuse   0.062 

    1 (Never) 35.30% 34.20%  

    1.5 18.00% 14.20%  

    2 23.90% 27.50%  

    2.5 10.20% 12.10%  

    3 (Most frequent) 12.70% 12.10%  

Childhood physical abuse   <0.001 

    1 (Never) 42.20% 43.00%  

    1.5 13.70% 15.60%  

    2 26.40% 25.40%  

    2.5 5.30% 8.90%  

    3 (Most frequent) 12.50% 7.10%  
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Supplementary Table 2-5 Robustness checks for the associations between cortisol parameters and presence of chronic pain at 
MIDUS 3 among respondents who did not report chronic pain at baseline† 

 Late post-wake DCS (after 15 hours) 

No pain vs presence of chronic pain at MIDUS 3 OR (95% CI) 

Main analysis† 1.26 (1.03, 1.55)* 

Multiple imputation for all 1.20 (0.99, 1.45) 

Inverse probability of attrition weighting 1.29 (1.02, 1.62)* 

Bonferroni correction 1.26 (1.03, 1.55) 

Excluding respondents with anxiety, depression in the past 12 months  1.32 (1.04, 1.67)* 

Excluding steroid inhaler, oral steroid, other hormonal, anti-depressant or anxiety, and 
birth control medication user 

1.27 (0.99, 1.63) 

Additionally controlling for daily stressor severity 1.14 (0.88, 1.47) 

Statistical significance markers: * p<0.05; ** p<0.01; *** p<0.001 

† Adjusted for age, race, sex assigned at birth, income-to-needs ratio, education, marital status, physical activity index, smoking and drinking 
status, multimorbidity, BMI, childhood experiences of parental emotional and physical abuse, and medication intakes (e.g., steroid inhalers, 
oral steroids, antidepressants, anti-anxiety medications, birth control pills, and other hormonal medications). A random intercept at the family 
level was included, to allow for correlations between individuals from the same family. 
Note that cortisol parameters were standardized. An increase of one standard deviation in CAR indicates a steeper CAR, whereas an increase 
of one standard deviation in DCSs indicates flatter DCSs. One standard deviation increase in CDR indicates a wider CDR, while one standard 
deviation increase in AUC indicates a larger AUC. 
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Supplementary Table 2-6 Robustness checks for the associations between cortisol parameters and high interference pain at MIDUS 
3 among respondents who did not report chronic pain at baseline† 

 Early post-wake DCS (30 mins-4.5 hours) Mid post-wake DCS (4.5 hours-15 hours) 

No pain vs high interference pain at MIDUS 3 OR (95% CI) OR (95% CI) 

Main analysis‡ 1.85 (1.09, 3.16)* 1.82 (1.09, 3.02)* 

Multiple imputation for all 1.40 (1.02, 1.92)* 1.47 (1.08, 2.01)* 

Inverse probability of attrition weighting 2.88 (1.23, 6.74)* 2.58 (1.17, 5.67)* 

Bonferroni correction 1.85 (1.09, 3.16) 1.82 (1.09, 3.02) 

Excluding respondents with anxiety, depression 
in the past 12 months  

2.66 (0.99, 7.13) 2.44 (1.32, 4.51)** 

Excluding steroid inhaler, oral steroid, other 
hormonal, anti-depressant or anxiety, and birth 
control medication user  

2.59 (1.12, 5.61)* 2.09 (1.03, 4.24)* 

Additionally controlling for daily stressor severity 1.84 (0.93, 3.64) 2.12 (1.04, 4.33)* 

Statistical significance markers: * p<0.05; ** p<0.01; *** p<0.001 

† Adjusted for age, race, sex assigned at birth, income-to-needs ratio, education, marital status, physical activity index, smoking and drinking 
status, multimorbidity, BMI, childhood experiences of parental emotional and physical abuse, and medication intakes (e.g., steroid inhalers, 
oral steroids, antidepressants, anti-anxiety medications, birth control pills, and other hormonal medications). A random intercept at the family 
level was included, to allow for correlations between individuals from the same family. 
‡ The proportional odds assumption was violated for early and mid post-wake DCSs. 
Note that cortisol parameters were standardized. An increase of one standard deviation in CAR indicates a steeper CAR, whereas an increase 
of one standard deviation in DCSs indicates flatter DCSs. One standard deviation increase in CDR indicates a wider CDR, while one standard 
deviation increase in AUC indicates a larger AUC. 
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Supplementary Table 2-7 Robustness checks for the associations between cortisol parameters and pain at 3 or more regions at 
MIDUS 3 among respondents who did not report chronic pain at baseline† 

 Early post-wake DCS (30 mins-
4.5 hours) 

Mid post-wake DCS (4.5 hours-
15 hours) 

Late post-wake DCS (after 15 
hours) 

No pain vs chronic pain with 3 or more sites 
at MIDUS 3 

OR (95% CI) OR (95% CI) OR (95% CI) 

Main analysis‡ 2.16 (1.41, 3.32)*** 1.93 (1.28, 2.90)** 1.58 (1.03, 2.43)* 

Multiple imputation for all 1.52 (1.10, 2.10)* 1.52 (1.11, 2.10)* 1.39 (0.98, 1.97) 

Inverse probability of attrition weighting 2.26 (1.37, 3.71)** 2.04 (1.25, 3.32)** 1.62 (0.97, 2.71) 

Bonferroni correction 2.16 (1.41, 3.32)* 1.93 (1.28, 2.90)* 1.58 (1.03, 2.43) 

Excluding respondents with anxiety, 
depression in the past 12 months 

2.36 (1.40, 3.97)** 2.20 (1.33, 3.64)** 1.52 (0.91, 2.56) 

Excluding steroid inhaler, oral steroid, other 
hormonal, anti-depressant or anxiety, and 
birth control medication user  

2.14 (1.28, 3.59)** 1.80 (1.13, 2.86)* 1.41 (0.87, 2.30) 

Additionally controlling for daily stressor 
severity 

2.07 (1.20, 3.57)* 1.90 (1.11, 3.23)** 1.50 (0.85, 2.62) 

Statistical significance markers: * p<0.05; ** p<0.01; *** p<0.001    

† Adjusted for age, race, sex assigned at birth, income-to-needs ratio, education, marital status, physical activity index, smoking and drinking status, 
multimorbidity, BMI, childhood experiences of parental emotional and physical abuse, and medication intakes (e.g., steroid inhalers, oral steroids, 
antidepressants, anti-anxiety medications, birth control pills, and other hormonal medications). A random intercept at the family level was included, 
to allow for correlations between individuals from the same family. 
‡ The proportional odds assumption was violated for early and mid post-wake DCSs, and CDR. The assumption was not violated for late post-wake 
DCS, but it was not significant in the ordinal logistic regression. 
Note that cortisol parameters were standardized. An increase of one standard deviation in CAR indicates a steeper CAR, whereas an increase of one 
standard deviation in DCSs indicates flatter DCSs. One standard deviation increase in CDR indicates a wider CDR, while one standard deviation 
increase in AUC indicates a larger AUC. 
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Supplementary Table 2-8 Robustness checks for associations of cortisol parameters with pain interference (low vs. high) and pain 
multisite status (chronic non-multisite vs. chronic multisite) at MIDUS 3† 

  No baseline chronic pain Adjusting for chronic pain at baseline   

 
Low interference pain 
vs high interference 

pain at MIDUS 3 

Chronic pain with 1-2 sites vs Chronic pain 
with 3 or more sites at MIDUS 3 

Low interference 
pain vs high 

interference pain 
at MIDUS 3 

Chronic pain with 1-2 sites vs Chronic 
pain with 3 or more sites at MIDUS 3 

 Early post-wake DCS 
(30 mins-4.5 hours) 

Early post-wake DCS 
(30 mins-4.5 hours) 

Mid post-wake DCS 
(4.5 hours-15 hours) 

Early post-wake 
DCS (30 mins-4.5 

hours) 

Early post-wake 
DCS (30 mins-4.5 

hours) 
AUC 

  OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) 

Main analysis‡ 2.60 (1.44, 4.70)** 2.73 (1.49, 4.99)** 2.21 (1.24, 3.91)** 1.37 (1.04, 1.81)* 1.33 (1.01, 1.75)* 0.76 (0.58, 0.98)* 

Multiple imputation for all 1.68 (1.12, 2.53)* 2.02 (1.24, 3.28)** 1.92 (1.20, 3.06)** 1.17 (0.94, 1.45) 1.12 (0.87, 1.43) 0.78 (0.61, 1.00)* 

Inverse probability of attrition 
weighting 

4.36 (1.32, 14.44)* 5.84 (1.69, 20.19)** 5.76 (0.96, 34.41) 2.10 (1.18, 3.74)* 1.77 (0.98, 3.21) 0.53 (0.29, 0.96)* 

Bonferroni correction 2.60 (1.44, 4.70)* 2.73 (1.49, 4.99)* 2.21 (1.24, 3.91) 1.37 (1.04, 1.81) 1.33 (1.01, 1.75) 0.76 (0.58, 0.98) 

Excluding respondents with 
anxiety, depression in the past 
12 months  

4.37 (0.95, 20.15) 3.08 (1.46, 6.50)** 2.67 (1.30, 5.47)** 1.40 (1.01, 1.96)* 1.51 (1.08, 2.11)* 0.65 (0.47, 0.89)** 

Excluding steroid inhaler, oral 
steroid, other hormonal, anti-
depressant or anxiety, and 
birth control medication user  

3.02 (0.15, 61.85) 2.62 (1.27, 5.42)** 2.12 (1.06, 4.21)* 1.47 (1.03, 2.10)* 1.45 (1.00, 2.09)* 0.88 (0.63, 1.24) 

Additionally controlling for 
daily stressor severity 

2.70 (0.87, 8.32) 2.66 (1.15, 6.15)* 2.74 (1.10, 6.86)* 1.45 (0.91, 2.29) 1.32 (0.95, 1.84) 0.89 (0.67, 1.19) 

Statistical significance markers: * p<0.05; ** p<0.01; *** p<0.001 
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† Adjusted for age, race, sex assigned at birth, income-to-needs ratio, education, marital status, physical activity index, smoking and drinking status, multimorbidity, 
BMI, childhood experiences of parental emotional and physical abuse, and medication intakes (e.g., steroid inhalers, oral steroids, antidepressants, anti-anxiety 
medications, birth control pills, and other hormonal medications). A random intercept at the family level was included, to allow for correlations between individuals 
from the same family. 

‡ The proportional odds assumption was violated for early and mid post-wake DCSs. 

Note that cortisol parameters were standardized. An increase of one standard deviation in DCSs indicates flatter DCSs.  
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Supplementary Table 2-9 Interacting chronic pain at baseline and diurnal cortisol rhythms as robustness checks for the subgroup 
analyses 

 Interaction (cortisol * pain at baseline) 

No pain vs presence of chronic pain at MIDUS 3 N Cortisol * no pain Cortisol * pain P-value for interaction 

CAR (0-30 mins) 920 0.92 (0.75, 1.14) 1.00 (0.81, 1.23) 0.585 

Early post-wake DCS (30 mins-4.5 hours) 920 0.98 (0.81, 1.19) 1.12 (0.88, 1.42) 0.411 

Mid post-wake DCS (4.5 hours-15 hours) 920 1.04 (0.85, 1.26) 1.14 (0.89, 1.45) 0.565 

Late post-wake DCS (after 15 hours) 920 1.21 (0.99, 1.48) 1.06 (0.83, 1.37) 0.423 

CDR 920 0.91 (0.74, 1.12) 0.87 (0.69, 1.10) 0.779 

AUC 920 1.08 (0.87, 1.34) 0.98 (0.79, 1.21) 0.508 

No pain vs low interference pain at MIDUS 3 N Cortisol * no pain Cortisol * pain P-value for interaction 

CAR (0-30 mins) 792 1.12 (0.89, 1.40) 0.98 (0.77, 1.24) 0.336 

Early post-wake DCS (30 mins-4.5 hours) 792 1.20 (0.96, 1.50) 0.91 (0.69, 1.21) 0.103 

Mid post-wake DCS (4.5 hours-15 hours) 792 1.12 (0.90, 1.39) 0.89 (0.68, 1.18) 0.326 

Late post-wake DCS (after 15 hours) 792 0.86 (0.69, 1.07) 0.93 (0.70, 1.23) 0.170 

CDR 792 1.05 (0.84, 1.31) 1.13 (0.88, 1.46) 0.666 

AUC 792 0.91 (0.72, 1.16) 1.00 (0.78, 1.27) 0.605 

No pain vs high interference pain at MIDUS 3 N Cortisol * no pain Cortisol * pain P-value for interaction 

CAR (0-30 mins) 680 1.03 (0.70, 1.52) 0.92 (0.66, 1.29) 0.884 

Early post-wake DCS (30 mins-4.5 hours) 680 1.59 (1.08, 2.34)* 1.06 (0.75, 1.48) 0.020 

Mid post-wake DCS (4.5 hours-15 hours) 680 1.55 (1.07, 2.26)* 1.02 (0.72, 1.44) 0.022 

Late post-wake DCS (after 15 hours) 680 1.35 (0.91, 2.00) 0.89 (0.62, 1.28) 0.130 

CDR 680 0.84 (0.59, 1.20) 0.78 (0.54, 1.11) 0.762 

AUC 680 1.07 (0.72, 1.60) 0.85 (0.60, 1.20) 0.376 
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Low interference pain vs high interference pain at MIDUS 3 N Cortisol * no pain Cortisol * pain P-value for interaction 

CAR (0-30 mins) 328 1.18 (0.7, 1.97) 0.87 (0.66, 1.16) 0.312 

Early post-wake DCS (30 mins-4.5 hours) 328 2.15 (1.35, 3.42)* 1.04 (0.74, 1.46) 0.013 

Mid post-wake DCS (4.5 hours-15 hours) 328 2.06 (1.30, 3.27)** 0.95 (0.68, 1.32) 0.008 

Late post-wake DCS (after 15 hours) 328 1.23 (0.81, 1.85) 0.82 (0.59, 1.16) 0.145 

CDR 328 0.82 (0.51, 1.33) 0.91 (0.68, 1.22) 0.716 

AUC 328 0.96 (0.58, 1.57) 0.82 (0.61, 1.11) 0.606 

No pain vs chronic pain with 1-2 sites at MIDUS 3 N Cortisol * no pain Cortisol * pain P-value for interaction 

CAR (0-30 mins) 784 1.12 (0.89, 1.40) 0.86 (0.65, 1.14) 0.331 

Early post-wake DCS (30 mins-4.5 hours) 784 1.19 (0.96, 1.47) 0.92 (0.69, 1.23) 0.116 

Mid post-wake DCS (4.5 hours-15 hours) 784 1.08 (0.88, 1.34) 0.91 (0.67, 1.22) 0.463 

Late post-wake DCS (after 15 hours) 784  0.84 (0.68, 1.05)  0.93 (0.70, 1.24) 0.125 

CDR 784 1.09 (0.88, 1.36) 1.00 (0.75, 1.34) 0.641 

AUC 784 0.90 (0.71, 1.14) 0.86 (0.65, 1.13) 0.807 

No pain vs chronic pain with 3 or more sites at MIDUS 3 N Cortisol * no pain Cortisol * pain P-value for interaction 

CAR (0-30 mins) 703 0.98 (0.68, 1.41) 0.83 (0.63, 1.10) 0.914 

Early post-wake DCS (30 mins-4.5 hours) 703 1.74 (1.18, 2.55)*** 1.02 (0.75, 1.38) 0.005 

Mid post-wake DCS (4.5 hours-15 hours) 703 1.56 (1.08, 2.24)* 1.03 (0.76, 1.40) 0.018 

Late post-wake DCS (after 15 hours) 703 1.33 (0.91, 1.93) 0.97 (0.70, 1.35) 0.140 

CDR 703 0.89 (0.63, 1.26) 0.76 (0.56, 1.01) 0.463 

AUC 703 0.95 (0.66, 1.36) 0.76 (0.56, 1.02) 0.330 

Chronic pain with 1-2 sites vs Chronic pain with 3 or more sites 
at MIDUS 3 

N Cortisol * no pain Cortisol * pain P-value for interaction 

CAR (0-30 mins) 343 1.33 (0.79, 2.23) 0.77 (0.57, 1.04) 0.070 

Early post-wake DCS (30 mins-4.5 hours) 343 2.21 (1.37, 3.56)** 1.00 (0.72, 1.40) 0.008 
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Mid post-wake DCS (4.5 hours-15 hours) 343 1.77 (1.13, 2.78)* 0.98 (0.72, 1.35) 0.038 

Late post-wake DCS (after 15 hours) 343 1.10 (0.73, 1.64) 0.92 (0.66, 1.27) 0.504 

CDR 343 1.05 (0.64, 1.71) 0.79 (0.59, 1.06) 0.329 

AUC 343 0.92 (0.56, 1.52) 0.70 (0.51, 0.96) 0.350 

Statistical significance markers: * p<0.05; ** p<0.01; *** p <0.001 

† Adjusted for age, race, sex assigned at birth, income-to-needs ratio, education, marital status, physical activity index, smoking and drinking status, 
multimorbidity, BMI, childhood experiences of parental emotional and physical abuse, and medication intakes (e.g., steroid inhalers, oral steroids, 
antidepressants, anti-anxiety medications, birth control pills, and other hormonal medications). A random intercept at the family level was included, 
to allow for correlations between individuals from the same family. 

Note that an increase of one standard deviation in CAR indicates a steeper CAR, whereas an increase of one standard deviation in DCSs indicates 
flatter DCSs. 
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Supplementary Table 2-10 Supplementary analysis of the cross-sectional associations between cortisol parameters and 3 or more 
regions at baseline† 

Pain status at baseline (No pain VS.) Chronic pain with 3 or more sites 

Cortisol parameters OR (95% CI)  

CAR (0-30 mins) 0.80 (0.65, 0.99)* 

Early post-wake DCS (30 mins-4.5 hours) 0.92 (0.74, 1.16) 

Mid post-wake DCS (4.5 hours-15 hours) 0.92 (0.73, 1.16) 

Late post-wake DCS (after 15 hours) 0.95 (0.75, 1.20) 

CDR 0.85 (0.69, 1.04) 

AUC 0.77 (0.62, 0.96)* 

Statistical significance markers: * p<0.05; ** p<0.01; *** p<0.001 

† Adjusted for age, race, sex assigned at birth, income-to-needs ratio, education, marital status, physical activity index, 
smoking and drinking status, multimorbidity, BMI, childhood experiences of parental emotional and physical abuse, and 
medication intakes (e.g., steroid inhalers, oral steroids, antidepressants, anti-anxiety medications, birth control pills, and 
other hormonal medications). A random intercept at the family level was included, to allow for correlations between 
individuals from the same family. 
Note that cortisol parameters were standardized. An increase of one standard deviation in CAR indicates a steeper CAR, 
whereas an increase of one standard deviation in DCSs indicates flatter DCSs. One standard deviation increase in CDR 
indicates a wider CDR, while one standard deviation increase in AUC indicates a larger AUC. 
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Supplementary Table 2-11 Characteristics of non-standardized baseline cortisol parameters by chronic pain interference and by 
widespreadness of pain in follow-up period, stratified by chronic pain outcomes at baseline 

 Subgroup A.1: respondents with low interference chronic 
pain at baseline 

Subgroup A.2: respondents with chronic pain with 
1-2 sites at baseline 

Pain status at follow-up No Pain 
Low interference 

pain 
High interference 

pain 
No Pain 

Low interference 
pain 

High 
interference 

pain 

Cortisol parameters N=118 N=111 N=43 N=111 N=75 N=41 

CAR (0-30 mins) 0.49 (0.34) 0.51 (0.41) 0.49 (0.34) 0.50 (0.33) 0.48 (0.45) 0.53 (0.25) 

Early post-wake DCS (30 mins-
4.5 hours) 

-0.13 (0.05) -0.13 (0.04) -0.13 (0.05) -0.13 (0.05) -0.13 (0.05) -0.13 (0.05) 

Mid post-wake DCS (4.5 
hours-15 hours) 

-0.16 (0.04) -0.15 (0.03) -0.15 (0.04) -0.16 (0.04) -0.15 (0.03) -0.15 (0.03) 

Late post-wake DCS (after 15 
hours) 

-0.13 (0.04) -0.13 (0.03) -0.13 (0.03) -0.13 (0.04) -0.13 (0.03) -0.13 (0.03) 

CDR 2.46 (0.44) 2.40 (0.59) 2.37 (0.61) 2.47 (0.46) 2.35 (0.64) 2.40 (0.48) 

AUC 4.83 (0.38) 4.84 (0.43) 4.82 (0.43) 4.85 (0.35) 4.84 (0.45) 4.85 (0.28) 

Pain status at follow-up No Pain 
Chronic pain with 1-

2 sites 
Chronic pain with 3 

or more sites 
No Pain 

Chronic pain with 
1-2 sites 

Chronic pain 
with 3 or more 

sites 

Cortisol parameters N=118 N=94 N=75 N=111 N=86 N=41 

CAR (0-30 mins) 0.49 (0.34) 0.55 (0.33) 0.46 (0.42) 0.50 (0.33) 0.51 (0.36) 0.49 (0.43) 

Early post-wake DCS (30 mins-
4.5 hours) 

-0.13 (0.05) -0.13 (0.04) -0.13 (0.05) -0.13 (0.05) -0.13 (0.05) -0.13 (0.05) 
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Mid post-wake DCS (4.5 
hours-15 hours) 

-0.16 (0.04) -0.15 (0.03) -0.15 (0.03) -0.16 (0.04) -0.15 (0.03) -0.15 (0.04) 

Late post-wake DCS (after 15 
hours) 

-0.13 (0.04) -0.13 (0.03) -0.13 (0.03) -0.13 (0.04) -0.13 (0.03) -0.13 (0.03) 

CDR 2.46 (0.44) 2.45 (0.51) 2.34 (0.67) 2.47 (0.46) 2.40 (0.57) 2.33 (0.60) 

AUC 4.83 (0.38) 4.89 (0.37) 4.78 (0.46) 4.85 (0.35) 4.85 (0.38) 4.84 (0.41) 

 Subgroup B.1: respondents with high interference chronic 
pain at baseline 

Subgroup B.2: respondents with chronic pain with 
3 or more sites at baseline 

Pain status at follow-up No Pain 
Low interference 

pain 
High interference 

pain 
No Pain 

Low interference 
pain 

High 
interference 

pain 

Cortisol parameters N=24 N=19 N=55 N=34 N=58 N=58 

CAR (0-30 mins) 0.36 (0.45) 0.47 (0.31) 0.35 (0.45) 0.35 (0.45) 0.53 (0.29)*/** 0.32 (0.47) 

Early post-wake DCS (30 mins-
4.5 hours) 

-0.13 (0.05) -0.14 (0.08) -0.14 (0.06) -0.13 (0.05) -0.14 (0.05) -0.14 (0.06) 

Mid post-wake DCS (4.5 
hours-15 hours) 

-0.15 (0.04) -0.16 (0.06) -0.16 (0.05) -0.16 (0.04) -0.16 (0.04) -0.16 (0.05) 

Late post-wake DCS (after 15 
hours) 

-0.12 (0.03) -0.14 (0.06) -0.13 (0.04) -0.14 (0.04) -0.14 (0.04) -0.13 (0.04) 

CDR 2.36 (0.70) 2.26 (0.75) 2.19 (0.66) 2.32 (0.56) 2.42 (0.58)/* 2.16 (0.72) 

AUC 4.73 (0.40) 4.76 (0.27) 4.68 (0.43) 4.64 (0.46) 4.82 (0.34) 4.66 (0.50) 

Pain status at follow-up No Pain 
Chronic pain with 1-

2 sites 
Chronic pain with 3 

or more sites 
No Pain 

Chronic pain with 
1-2 sites 

Chronic pain 
with 3 or more 

sites 

Cortisol parameters N=24 N=25 N=51 N=34 N=36 N=86 

CAR (0-30 mins) 0.36 (0.45) 0.43 (0.35) 0.36 (0.44) 0.35 (0.45) 0.56 (0.29)*/** 0.38 (0.42) 

Early post-wake DCS (30 mins-
4.5 hours) 

-0.13 (0.05) -0.13 (0.06) -0.14 (0.07) -0.13 (0.05) -0.14 (0.04) -0.14 (0.06) 
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Mid post-wake DCS (4.5 
hours-15 hours) 

-0.15 (0.04) -0.16 (0.05) -0.16 (0.05) -0.16 (0.04) -0.16 (0.04) -0.16 (0.04) 

Late post-wake DCS (after 15 
hours) 

-0.12 (0.03) -0.13 (0.06) -0.13 (0.04) -0.14 (0.04) -0.13 (0.04) -0.13 (0.04) 

CDR 2.36 (0.70) 2.30 (0.63) 2.18 (0.69) 2.32 (0.56) 2.48 (0.44)/* 2.25 (0.72) 

AUC 4.73 (0.40) 4.77 (0.31) 4.67 (0.42) 4.64 (0.46) 4.92 (0.30)*/** 4.68 (0.45) 

Statistical significance markers: * p<0.05; ** p<0.01; *** p<0.001 (ANOVA; before the '/', columns "No pain" and "Low interference pain" or 
"Chronic pain with 1-2 sites" were compared; after the '/', the columns "Low interference pain" or "Chronic pain with 1-2 sites" and "High 
interference pain" or "Chronic pain with 3 or more sites" were compared) 
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Supplementary Materials for the Biomarker Project Stream Sample in the Mediation Analysis Chapter  

Supplementary Table 3-1 High-risk values for AL biomarkers 

Biomarker Simple High Risk Quartile 

Hypothalamic Pituitary Adrenal 
Axis 

 

DHEA-s (ug/dL) ≤54 or ≥146 

Urine cortisol (μg/g) ≤7.3 or ≥21 

Sympathetic Nervous System  

Urine epinephrine (μg/g) ≥2.5 

Urine norepinephrine (μg/g) ≥33 

Urine Dopamine (μg/g) ≥175 

Parasympathetic Nervous System  

High-frequency HRV ≤54 

Low-frequency HRV ≤111 

RMSSD ≤12 

SDRR (m s) ≤24 

Cardiovascular  

Resting heart rate (bpm) ≥80 

Resting SBP (mmHg) ≥142 

Resting DBP (mmHg) ≥82 

Metabolic-glucose  
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Fasting glucose ≥104 

Hemoglobin A1c% ≥6.1 

HOMA-IR ≥4 

Metabolic-lipids  

Triglycerides (mg/dL) ≥159 

WHR ≥0.96 

BMI ≥32 

LDL cholesterol (mg/dL) ≥129 

HDL cholesterol (mg/dL) ≤42 

Inflammation  

CRP (mg/L) ≥3.1 

IL6 (pg/mL) ≥1.1 

TNF-α (pg/mL) ≥2.5 

Fibrinogen (mg/dL) ≥386 

E-Selectin (ng/mL) ≥326 

ICAM-1 (ng/mL) ≥50 

Blood Fasting IGF1 (Insulin-like 
Growth Factor 1) ng/mL) 

≥159 
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Supplementary Table 3-2 Fit statistics for latent class analysis of AL 

Model LogLikelihood AIC BIC Gsq SABIC Entropy %       

1 -12602.86 25259.72 25387.68 13975.38 25205.72 NaN 1.000       

2 -11963.06 24036.11 24296.77 12695.77 23926.11 85.1% 0.626 0.374      

3 -11688.87 23543.74 23937.10 12147.40 23377.74 85.2% 0.246 0.497 0.257     

4 -11571.45 23364.90 23890.96 11912.56 23142.90 84.4% 0.462 0.226 0.179 0.132    

5 -11467.10 23212.20 23870.96 11703.86 22934.20 84.1% 0.157 0.134 0.099 0.429 0.181   

6 -11386.33 23106.66 23898.13 11542.32 22772.66 81.9% 0.265 0.102 0.202 0.180 0.128 0.123  

7 -11319.70 23029.41 23953.58 11409.07 22639.41 NaN 0.255 0.137 0.106 0.050 0.176 0.188 0.088 
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Supplementary Figure 3-1 Identified phenotypes of AL 
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Supplementary Table 3-3 Fit indices of test for measurement invariance 

Model Degree of freedom AIC BIC Chisq Chisq diff RMSEA diff Df diff Pr(>Chisq) 

Configural invariance model 65 18759 19157 158.22     

Metric invariance model 70 18762 19137 171.17 12.95 0.047255 5 0.024  

Scalar invariance model 75 18819 19171 238.44 67.27 0.132255 5 0.000  

Strict invariance model 81 18924 19248 354.72 116.28 0.160673 6 0.000  
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Supplementary Table 3-4 Analytic sample characteristics of Covariates, stratified by CP conditions 

Pain interference No pain Low interference pain High interference pain   

Variable N Mean SD N Mean SD N Mean SD Test 

Childhood covariates           

Live with biological parents until 16 548   208   113   X2=5.677 

     No 99 18%  46 22%  31 27%   

     Yes 449 82%  162 78%  82 73%   

Parental emotional abuse 509 2.5 1.3 103 3 1.5 193 2.7 1.4 F=5.067*** 

Parental physical abuse 512 2.2 1.3 105 2.6 1.4 196 2.3 1.3 F=6.541*** 

Sociodemographics - time invariant          

Sex 548   208   113   X2=9.516*** 

     Male 261 48%  91 44%  36 32%   

     Female 287 52%  117 56%  77 68%   

Ethnicity 540   204   109   X2=0.037 

     White 507 94%  192 94%  102 94%   

     non-White 33 6%  12 6%  7 6%   

MIDUS 1 covariates           

Age in MIDUS 1 548 45 11 208 46 11 113 44 10 F=1.235 

Marital status in MIDUS 1 548   208   113   X2=0.739 

     Not married 160 29%  55 26%  30 27%   

     Married 388 71%  153 74%  83 73%   

Multimorbidity in MIDUS 1 540   204   109   X2=35.997*** 

     No 293 54%  95 47%  25 23%   

     Yes 247 46%  109 53%  84 77%   
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Marital status in MIDUS 2 547   208   113   X2=1.835 

     Not married 151 28%  51 25%  25 22%   

     Married 396 72%  157 75%  88 78%   

MIDUS 2 covariates           

Age in MIDUS 2 548 54 11 208 55 11 113 53 10 F=1.099 

Multimorbidity in MIDUS 2 548   208   113   X2=44.861*** 

     No 295 54%  79 38%  25 22%   

     Yes 253 46%  129 62%  88 78%   

Chronic pain in MIDUS 2 540   205   113   X2=110.082*** 

     No 421 78%  110 54%  35 31%   

     Yes 119 22%  95 46%  78 69%   

Health insurance in MIDUS 2 543   208   112   X2=5.431* 

     Yes 516 95%  195 94%  100 89%   

     No 27 5%  13 6%  12 11%   

Physical activity in MIDUS 2 520 30 10 193 30 10 102 30 11 F=0.004 

Smoking status in MIDUS 2 548   208   113   X2=5.99 

     Current smoker 50 9%  20 10%  18 16%   

     Ex-smoker 331 60%  130 62%  68 60%   

     non-Smoker 167 30%  58 28%  27 24%   

Drinking status in MIDUS 2 548   208   113   X2=7.862* 

     Moderate + Drinker 180 33%  83 40%  34 30%   

     Light Drinker 172 31%  55 26%  28 25%   

     non-Drinker or Rarley Drink 196 36%  70 34%  51 45%   

Medications           

Antihyperlipidemic agents 547   113   208   X2=0.968 

     No 380 69%  83 73%  142 68%   

     Yes 167 31%  30 27%  66 32%   



 236 

Beta adrenergic blocking agents 547   113   208   X2=7.943* 

     No 489 89%  92 81%  174 84%   

     Yes 58 11%  21 19%  34 16%   

Antihypertensive combinations 547   113   208   X2=0.796 

     No 505 92%  103 91%  188 90%   

     Yes 42 8%  10 9%  20 10%   

Analgesics 547   113   208   X2=22.966*** 

     No 287 52%  35 31%  82 39%   

     Yes 260 48%  78 69%  126 61%   

Anxiolytics sedatives and hypnotics 547   113   208   X2=18.987*** 

     No 493 90%  85 75%  179 86%   

     Yes 54 10%  28 25%  29 14%   

Antidiabetic agents 547   113   208   X2=3.214 

     No 507 93%  99 88%  191 92%   

     Yes 40 7%  14 12%  17 8%   

Sex hormones 547   113   208   X2=1.851 

     No 490 90%  100 88%  179 86%   

     Yes 57 10%  13 12%  29 14%   

Thyroid hormones 547   113   208   X2=1.871 

     No 493 90%  104 92%  182 88%   

     Yes 54 10%  9 8%  26 12%   

Antidepressants 547   113   208   X2=18.813*** 

     No 481 88%  82 73%  182 88%   

     Yes 66 12%  31 27%  26 12%   

Pain locations 0 1-2 3+  

Variable N Mean SD N Mean SD N Mean SD Test 

Live with biological parents until 16 548   208   127   X2=4.385 
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     No 99 18%  49 24%  31 24%   

     Yes 449 82%  159 76%  96 76%   

Parental emotional abuse 509 2.5 1.3 193 2.7 1.3 115 2.8 1.5 F=3.482** 

Parental physical abuse 512 2.2 1.3 197 2.3 1.3 117 2.6 1.4 F=6.488*** 

Sex 548   208   127   X2=19.124*** 

     Male 261 48%  99 48%  34 27%   

     Female 287 52%  109 52%  93 73%   

Ethnicity 540   203   124   X2=0.454 

     White 507 94%  192 95%  115 93%   

     non-White 33 6%  11 5%  9 7%   

Age in MIDUS 1 548 45 11 208 45 11 127 47 11 F=2.054 

Marital status in MIDUS 1 548   208   127   X2=1.714 

     Not married 160 29%  51 25%  37 29%   

     Married 388 71%  157 75%  90 71%   

Multimorbidity in MIDUS 1 540   203   124   X2=27.731*** 

     No 293 54%  89 44%  36 29%   

     Yes 247 46%  114 56%  88 71%   

Marital status in MIDUS 2 547   208   127   X2=2.62 

     Not married 151 28%  46 22%  36 28%   

     Married 396 72%  162 78%  91 72%   

Age in MIDUS 2 548 54 11 208 54 11 127 56 11 F=2.192 

Multimorbidity in MIDUS 2 548   208   127   X2=42.763*** 

     No 295 54%  79 38%  31 24%   

     Yes 253 46%  129 62%  96 76%   
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Chronic pain in MIDUS 2 540   204   127   X2=107.868*** 

     No 421 78%  108 53%  43 34%   

     Yes 119 22%  96 47%  84 66%   

Health insurance in MIDUS 2 543   207   127   X2=15.78*** 

     Yes 516 95%  197 95%  109 86%   

     No 27 5%  10 5%  18 14%   

Physical activity in MIDUS 2 520 30 10 190 31 10 113 29 11 F=1.881 

Smoking status in MIDUS 2 548   208   127   X2=12.558** 

     Current smoker 50 9%  17 8%  23 18%   

     Ex-smoker 331 60%  132 63%  77 61%   

     non-Smoker 167 30%  59 28%  27 21%   

Drinking status in MIDUS 2 548   208   127   X2=3.941 

     Moderate + Drinker 180 33%  73 35%  47 37%   

     Light Drinker 172 31%  58 28%  29 23%   

     non-Drinker or Rarley Drink 196 36%  77 37%  51 40%   

Antihyperlipidemic agents 547   208   127   X2=0.059 

     No 380 69%  145 70%  87 69%   

     Yes 167 31%  63 30%  40 31%   

Beta adrenergic blocking agents 547   208   127   X2=8.172** 

     No 489 89%  175 84%  103 81%   

     Yes 58 11%  33 16%  24 19%   

Antihypertensive combinations 547   208   127   X2=3.693 

     No 505 92%  193 93%  111 87%   
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     Yes 42 8%  15 7%  16 13%   

Analgesics 547   208   127   X2=23.791*** 

     No 287 52%  78 38%  42 33%   

     Yes 260 48%  130 62%  85 67%   

Anxiolytics sedatives and hypnotics 547   208   127   X2=13.251*** 

     No 493 90%  177 85%  100 79%   

     Yes 54 10%  31 15%  27 21%   

Antidiabetic agents 547   208   127   X2=1.607 

     No 507 93%  187 90%  116 91%   

     Yes 40 7%  21 10%  11 9%   

Sex hormones 547   208   127   X2=1.043 

     No 490 90%  181 87%  112 88%   

     Yes 57 10%  27 13%  15 12%   

Thyroid hormones 547   208   127   X2=0.086 

     No 493 90%  186 89%  114 90%   

     Yes 54 10%  22 11%  13 10%   

Antidepressants 547   208   127   X2=8.198** 

     No 481 88%  173 83%  100 79%   

     Yes 66 12%  35 17%  27 21%   

Statistical significance markers: * p<0.05; ** p<0.01; *** p<0.001         
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Supplementary Table 3-5 Baseline sample characteristics 

 Attrtition Retention  

Variables in MIDUS 1 N Mean SD N Mean SD Test 

Sex 6161   945   X2=6.68*** 

     Male 3020 49%  420 44%   

     Female 3141 51%  525 56%   

Ethnicity 5331   923   X2=15.757*** 

     White 4781 90%  867 94%   

     non-White 550 10%  56 6%   

Age 6104 47 13 945 45 11 F=8.056*** 

Marital status in MIDUS 1 5353   831   X2=19.132*** 

     Married 3988 75%  678 82%   

     Not married 1365 25%  153 18%   

Parental emotional abuse 4847 2.6 1.4 868 2.6 1.4 F=0.062 

Parental physical abuse 4921 2.4 1.3 878 2.3 1.3 F=3.647* 

Live with biological parents until 16 6158   945   X2=2.452 

     No 1402 23%  193 20%   

     Yes 4756 77%  752 80%   

Multimorbidity 5386   922   X2=3.696* 

     <2 2395 44%  442 48%   

     2+ 2991 56%  480 52%   
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Fathers education 5227   874   X2=10.87*** 

     less than high school 2123 41%  308 35%   

     high school/GED/some college 2186 42%  383 44%   

     bachelor's degree or more 918 18%  183 21%   

Mother education 5698   920   X2=29.904*** 

     less than high school 1994 35%  246 27%   

     high school/GED/some college 3066 54%  533 58%   

     bachelor's degree or more 638 11%  141 15%   

Financial level growing up 5365   922   X2=13.704** 

     A lot better off 189 4%  23 2%   

     Somewhat better off 631 12%  120 13%   

     A little better off 709 13%  148 16%   

     Same as average family 2287 43%  362 39%   

     A little worse off 941 18%  176 19%   

     Somewhat worse off 421 8%  70 8%   

     A lot worse off 187 3%  23 2%   

Father's occupation 5387   870   X2=30.695*** 

     Managerial And Professional Specialty Occupations 1298 24%  258 30%   

     Technical, Sales, And Administrative Support Occupations 765 14%  146 17%   

     Service Occupations 250 5%  35 4%   

     Farming, Forestry, And Fishing Occupations 681 13%  123 14%   

     Precision Production, Craft, And Repair Occupations 1292 24%  157 18%   
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     Operators, Fabricators, And Laborers 981 18%  130 15%   

     Experienced Unemployed Not Classified By Occupations 120 2%  21 2%   

Rate current financial situation 5317 6.1 2.2 914 6.3 2.2 F=3.89** 

Money to meet needs 5331   921   X2=21.442*** 

     More than enough money 825 15%  192 21%   

     Just enough money 3019 57%  519 56%   

     Not enough money 1487 28%  210 23%   

How difficult to pay monthly bills 5328   921   X2=9.011** 

     Not at all difficult 1455 27%  288 31%   

     Not very difficult 2016 38%  351 38%   

     Somewhat difficult 1540 29%  229 25%   

     Very difficult 317 6%  53 6%   

Education 6151   944   X2=121.443*** 

     less than high school 647 11%  34 4%   

     high school/GED/some college 3745 61%  488 52%   

     bachelor's degree or more 1759 29%  422 45%   

Income-to-needs ratio 5199   911   X2=56.353*** 

     Affluent 3152 61%  666 73%   

     Adequate-income 1207 23%  164 18%   

     Low-income 447 9%  47 5%   

     Poor 128 2%  12 1%   

     Extreme poverty 265 5%  22 2%   



 243 

Occupation 5902   919   X2=54.144*** 

     Managerial And Professional Specialty Occupations 2057 35%  422 46%   

     Technical, Sales, And Administrative Support Occupations 1629 28%  239 26%   

     Service Occupations 528 9%  77 8%   

     Farming, Forestry, And Fishing Occupations 117 2%  20 2%   

     Precision Production, Craft, And Repair Occupations 664 11%  70 8%   

     Operators, Fabricators, And Laborers 584 10%  61 7%   

     Experienced Unemployed Not Classified By Occupations 323 5%  30 3%   

Statistical significance markers: * p<0.05; ** p<0.05; *** p<0.01     
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Supplementary Table 3-6 Sensitivity analyses for the significant associations between lifecourse SES and CP conditions in the main 
analyses  

AL Stream Main results Complete-case analysis Estimator = "MLR" 

High pain interference vs no pain P-value P-value P-value 

Childhood SES -> MIDUS 1 SES 0.000 0.000 0.000 

Childhood SES -> MIDUS 2 SES 0.000 0.000 0.000 

MIDUS1 SES -> MIDUS 2 SES 0.000 0.000 0.000 

Childhood SES -> CP 0.485 0.648 0.519 

MIDUS 1 SES -> CP 0.552 0.892 0.613 

MIDUS 2 SES -> CP 0.001 0.003 0.003 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES 0.000 0.000 0.000 

Childhood SES -> MIDUS 1 SES -> CP 0.554 0.892 0.618 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES -> CP 0.013 0.026 0.020 

Childhood SES -> MIDUS 2 SES -> CP 0.005 0.009 0.009 

MIDUS1 SES -> MIDUS 2 SES -> CP 0.002 0.005 0.005 
 Main results Complete-case analysis Estimator = "MLR" 

Pain with 3 or more locations vs no pain P-value P-value P-value 

Childhood SES -> MIDUS 1 SES 0.000 0.000 0.000 

Childhood SES -> MIDUS 2 SES 0.000 0.000 0.000 

MIDUS1 SES -> MIDUS 2 SES 0.000 0.000 0.000 

Childhood SES -> CP 0.528 0.694 0.540 

MIDUS 1 SES -> CP 0.064 0.227 0.124 

MIDUS 2 SES -> CP 0.040 0.064 0.069 
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Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES 0.000 0.000 0.000 

Childhood SES -> MIDUS 1 SES -> CP 0.087 0.248 0.143 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES -> CP 0.076 0.110 0.098 

Childhood SES -> MIDUS 2 SES -> CP 0.057 0.080 0.079 

MIDUS1 SES -> MIDUS 2 SES -> CP 0.044 0.069 0.074 
 Main results Complete-case analysis Estimator = "MLR" 

Pain with 1-2 locations vs no pain P-value P-value P-value 

Childhood SES -> MIDUS 1 SES 0.000 0.000 0.000 

Childhood SES -> MIDUS 2 SES 0.000 0.000 0.000 

MIDUS1 SES -> MIDUS 2 SES 0.000 0.000 0.000 

Childhood SES -> CP 0.176 0.135 0.187 

MIDUS 1 SES -> CP 0.221 0.202 0.208 

MIDUS 2 SES -> CP 0.028 0.018 0.028 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES 0.000 0.000 0.000 

Childhood SES -> MIDUS 1 SES -> CP 0.231 0.217 0.204 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES -> CP 0.056 0.045 0.052 

Childhood SES -> MIDUS 2 SES -> CP 0.043 0.027 0.040 

MIDUS1 SES -> MIDUS 2 SES -> CP 0.033 0.021 0.031 

Note: MLR denotes maximum likelihood with robust standard errors   
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Supplementary Table 3-7 Sensitivity analyses for the associations between lifecourse SES and AL 

  Main results Complete-case analysis Estimator = "MLR" 

Metabolic dysregulation vs baseline phenotype of AL P-value P-value P-value 

Childhood SES -> MIDUS 1 SES 0.000 0.000 0.000 

Childhood SES -> MIDUS 2 SES 0.000 0.000 0.000 

MIDUS1 SES -> MIDUS 2 SES 0.000 0.000 0.000 

Childhood SES -> AL 0.028 0.010 0.025 

MIDUS 1 SES -> AL 0.905 0.597 0.904 

MIDUS 2 SES -> AL 0.049 0.007 0.046 

Childhood SES -> MIDUS1 SES -> MIDUS 2 SES 0.000 0.000 0.000 

Childhood SES -> MIDUS1 SES -> AL 0.905 0.601 0.349 

Childhood SES -> MIDUS1 SES -> MIDUS 2 SES -> AL 0.092 0.043 0.069 

Childhood SES -> MIDUS 2 SES -> AL 0.070 0.018 0.051 

MIDUS1 SES -> MIDUS 2 SES -> AL 0.053 0.009 0.057 

Note: MLR denotes maximum likelihood with robust standard errors 
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Supplementary Table 3-8 Sensitivity analyses for the associations between metabolic dysregulation of AL and high interference CP 

  Main results Complete-case analysis Estimator = "MLR" 

High pain interference vs no pain P-value P-value P-value 

AL - metabolic dysregulation 0.022 0.038 0.028 

Note: MLR denotes maximum likelihood with robust standard errors 
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Supplementary Table 3-9 Covariate associations within the main associations between lifecourse SES and key outcomes, which 
remained robust following sequential sensitivity analyses 

 High interference pain 1-2 pain locations Metabolic dysregulation of AL 

Covariates in MIDUS 1 Estimate (SE) Estimate (SE) Estimate (SE) 

Sex (Ref: male) 0.060 (0.027)* -0.004 (0.033) -0.255 (0.037)*** 

Ethnicity (Ref: white) -0.072 (0.057) -0.039 (0.070) -0.013 (0.075) 

Emotional abuse 0.000 (0.013) 0.010 (0.016) 0.002 (0.018) 

Physical abuse 0.025 (0.013) 0.005 (0.017) 0.002 (0.019) 

Live with biological parents until 16 (Ref: no) -0.025 (0.034) -0.054 (0.042) -0.011 (0.045) 

Age in MIDUS 1 -0.043 (0.025) -0.016 (0.031) 0.029 (0.033) 

Marital status in MIDUS 1 (Ref: married) 0.041 (0.037) 0.058 (0.045) 0.056 (0.048) 

Multimorbidity in MIDUS 1 (Ref: no) 0.086 (0.028)* 0.031 (0.034) 0.053 (0.038) 

Covariates in MIDUS 2    

Age in MIDUS 2 0.042 (0.025) 0.013 (0.031) -0.027 (0.033) 

Marital status in MIDUS 2 (Ref: married) 0.081 (0.037)* 0.044 (0.045) 0.029 (0.049) 

Multimorbidity in MIDUS 2 (Ref: no) 0.065 (0.029)* 0.090 (0.034)** 0.118 (0.039)** 

Chronic pain in MIDUS 2 (Ref: no) 0.245 (0.030)*** 0.209 (0.036)*** -0.019 (0.040) 

Health insurance in MIDUS 2 (ref: yes) 0.032 (0.060) -0.028 (0.079) 0.088 (0.078) 

Statistical significance markers: * p<0.05; ** p<0.01; *** p<0.001   
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Supplementary Materials for the NSDE Stream Sample in the Mediation Analysis Chapter  

Supplementary Table 4-1 Day level characteristics of cortisol collection 

 Day-level characteristics 

Variable N Mean Sd 

Cortisol: awakening 3841 15 8.3 

Cortisol: 30 mins after awakening 3841 22 11 

Cortisol: lunchtime 3841 6.7 4.4 

Cortisol: bedtime 3841 2.8 3.8 

Collection time for awakening 
cortisol 

3841 6.7 1.3 

Collection time for 30 mins after 
awakening 

3841 7.3 1.3 

Collection time for lunch 3836 12.7 1.4 

Collection time for bedtime 3841 22.5 1.3 

Average waking hours 3841 17 0.86 

Weekday 3841   

... Weekday 2879 75%  

... Weekend 962 25%  

Average sleeping hours 3701   

... 6-8 2776 75%  

... <6 320 9%  

... >8 605 16%  
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Supplementary Table 4-2 Computation for cortisol diurnal trajectory and its parameters 

Fixed effects: Estimate P-value  

(Intercept) 3.48 (0.25) 0.000 

CAR (0-30mins) 0.50 (0.11) 0.000 

Early post-wake DCS (30mins-4.5hours) -0.13 (0.01) 0.000 

Mid post-wake DCS (4.5mins-15hours) -0.16 (0.00) 0.000 

Evening DCS (after 15hours) -0.13 (0.00) 0.000 

Waking time -0.04 (0.01) 0.000 

Average wake-day length (individual-level) -0.03 (0.01) 0.078 

Length of sleep the previous night   

    6-8 hours Ref  

    <6 hours -0.06 (0.01) 0.000 

    >8 hours -0.04 (0.02) 0.113 

Weekend vs. workday status    

    Weekday Ref  

    Weekend -0.04 (0.02) 0.042 

Random effects: Variance Std.Dev. 

Between persons SD   

(Intercept) 0.146 0.383 

CAR (0-30mins) 0.211 0.459 

Early post-wake DCS (30mins-4.5hours) 0.009 0.095 

Mid post-wake DCS (4.5mins-15hours) 0.003 0.050 

Evening DCS (after 15hours) 0.002 0.046 

Between days SD   

(Intercept) 0.000 0.000 
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Early post-wake DCS (30mins-4.5hours) 0.000 0.000 

Between family SD   

(Intercept) 0.0323 0.1799 

Residual SD  0.336 0.580 

R2 0.761  

†Adjusted for waking time on day of measurement, weekend vs. workday 
status, length of sleep the previous night, average wake-day length 
(individual-level). 
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Supplementary Figure 4-1 Correlation matrix of cortisol parameters 
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Supplementary Table 4-3 Fit indices of test for measurement invariance 

Model Degree of freedom AIC BIC Chisq Chisq diff RMSEA diff Df diff Pr(>Chisq) 

Configural invariance model 65 23414 23833 178.27     

Metric invariance model 70 23429 23823 202.93 24.658 0.065766 5 0.000 

Scalar invariance model 75 23502 23873 286.7 83.767 0.131646 5 0.000 

Strict invariance model 81 23603 23945 399.39 112.690 0.139863 6 0.000 
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Supplementary Table 4-4 Analytic sample characteristics of Covariates, stratified by CP conditions 

CP inteference No pain Low interference pain High interference pain  

Variable N Mean Sd N Mean Sd N Mean Sd Test 

Childhood covariates           

Live with biological parents until 16 700   276   152   X2=3.182 

... No 124 18%  56 20%  36 24%   

... Yes 576 82%  220 80%  116 76%   

Parental emotional abuse 655 2.4 1.3 138 2.9 1.4 253 2.7 1.4 F=6.31*** 

Parental physical abuse 655 2.1 1.3 139 2.5 1.3 259 2.2 1.3 F=3.39* 

Sociodemographics - time invariant           

Sex 700   276   152   X2=9.12* 

     Male 336 48%  113 41%  55 36%   

     Female 364 52%  163 59%  97 64%   

Ethnicity 693   272   147   X2=0.328 

     White 659 95%  261 96%  140 95%   

     non-White 34 5%  11 4%  7 5%   

MIDUS 1 covariates           

Age in MIDUS 1 700 46 11 276 47 12 152 47 11 F=1.472 

Marital status in MIDUS 1 700   276   152   X2=0.862 
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... Not married 179 26%  78 28%  38 25%   

... Married 521 74%  198 72%  114 75%   

Multimorbidity in MIDUS 1 693   272   147   X2=63.552*** 

... No 399 58%  117 43%  34 23%   

... Yes 294 42%  155 57%  113 77%   

MIDUS 2 covariates           

Marital status in MIDUS 2 700 55 11 276 56 12 152 56 11 F=1.565 

... Not married 699   276   152   X2=0.03 

... Married 178 25%  69 25%  38 25%   

Age in MIDUS 2 521 75%  207 75%  114 75%   

Multimorbidity in MIDUS 2 691   273   150   X2=46.653*** 

... No 356 52%  102 37%  35 23%   

... Yes 335 48%  171 63%  115 77%   

BMI in MIDUS 2 668 27 5.1 262 28 5.4 143 30 6.3 F=11.179** 

Chronic pain in MIDUS 2 672   270   150   X2=141.492*** 

... No 525 78%  137 51%  50 33%   

... Yes 147 22%  133 49%  100 67%   

Health insurance in MIDUS 2 687   272   148   X2=8.398* 

... Yes 657 96%  253 93%  133 90%   

... No 30 4%  19 7%  15 10%   

Physical activity (high scores=high levels) 659 30 11 249 29 10 131 28 11 F=1.593 
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Smoking status in MIDUS 2 700   276   152   X2=13.856*** 

... Current smoker 66 9%  26 9%  26 17%   

... Ex-smoker 413 59%  177 64%  94 62%   

... non-Smoker 221 32%  73 26%  32 21%   

Drinking status in MIDUS 2 700   276   152   X2=10.248** 

... Moderate + Drinker 225 32%  92 33%  40 26%   

... Light Drinker 215 31%  76 28%  35 23%   

... non-Drinker or Rarley Drink 260 37%  108 39%  77 51%   

NSDE covariates           

Steroid inhaler in NSDE 700   276   152   X2=1.597 

... No 677 97%  271 98%  147 97%   

... Yes 23 3%  5 2%  5 3%   

Oral steroid meds in NSDE 700   276   152   X2=1.35 

... No 685 98%  267 97%  147 97%   

... Yes 15 2%  9 3%  5 3%   

Other hormonal meds in NSDE 700   276   152   X2=0.94 

... No 685 98%  268 97%  147 97%   

... Yes 15 2%  8 3%  5 3%   

Anti-depressant or anti- anxiety meds in NSDE 700   276   152   X2=4.897* 

... No 629 90%  236 86%  139 91%   

... Yes 71 10%  40 14%  13 9%   
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Birth control pills in NSDE 700   276   152   X2=28.06*** 

... No 631 90%  235 85%  113 74%   

... Yes 69 10%  41 15%  39 26%   

CP locations 0 1-2 3 or more  

Variable N Mean Sd N Mean Sd N Mean Sd Test 

Childhood covariates           

Live with biological parents until 16 700   275   178   X2=1.903 

... No 124 18%  58 21%  37 21%   

... Yes 576 82%  217 79%  141 79%   

Parental emotional abuse 655 2.4 1.3 256 2.6 1.3 158 2.9 1.5 F=6.489** 

Parental physical abuse 655 2.1 1.3 261 2.2 1.3 161 2.5 1.4 F=5.208** 

Sociodemographics - time invariant           

Sex 700   275   178   X2=8.915** 

     Male 336 48%  118 43%  64 36%   

     Female 364 52%  157 57%  114 64%   

Ethnicity 693   270   174   X2=0.644 

     White 659 95%  260 96%  166 95%   

     Non-White 34 5%  10 4%  8 5%   

MIDUS 1 covariates           

Age in MIDUS 1 700 46 11 275 47 12 178 49 11 F=6.316*** 

Marital status in MIDUS 1 700   275   178   X2=0.144 

... Not married 179 26%  71 26%  48 27%   
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... Married 521 74%  204 74%  130 73%   

Multimorbidity in MIDUS 1 693   270   174   X2=66.982*** 

... <2 399 58%  113 42%  43 25%   

... 2+ 294 42%  157 58%  131 75%   

MIDUS 2 covariates           

Age in MIDUS 2 700 55 11 275 56 12 178 58 11 F=6.819*** 

Marital status in MIDUS 2 699   275   178   X2=2.009 

... Not married 178 25%  64 23%  52 29%   

... Married 521 75%  211 77%  126 71%   

Multimorbidity in MIDUS 2 691   271   177   X2=54.03*** 

... <2 356 52%  104 38%  39 22%   

... 2+ 335 48%  167 62%  138 78%   

BMI in MIDUS 2 668 27 5.1 261 28 5.2 168 30 6.4 F=12.846*** 

Chronic pain in MIDUS 2 672   267   177   X2=168.93*** 

... No 525 78%  144 54%  50 28%   

... Yes 147 22%  123 46%  127 72%   

Health insurance in MIDUS 2 687   269   175   X2=33.706*** 

... Yes 657 96%  259 96%  148 85%   

... No 30 4%  10 4%  27 15%   

Physical activity (high scores=high levels) 659 30 11 237 31 10 160 26 11 F=10.377*** 

Smoking status in MIDUS 2 700   275   178   X2=11.161** 
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... Current smoker 66 9%  29 11%  26 15%   

... Ex-smoker 413 59%  176 64%  114 64%   

... Non-Smoker 221 32%  70 25%  38 21%   

Drinking status in MIDUS 2 700   275   178   X2=11.759** 

... Moderate+ Drinker 225 32%  84 31%  53 30%   

... Light Drinker 215 31%  82 30%  36 20%   

... Non-Drinker or Rarley Drink 260 37%  109 40%  89 50%   

NSDE covariates           

Steroid inhaler in NSDE 700   275   178   X2=1.152 

... No 677 97%  269 98%  174 98%   

... Yes 23 3%  6 2%  4 2%   

Oral steroid meds in NSDE 700   275   178   X2=1.101 

... No 685 98%  267 97%  172 97%   

... Yes 15 2%  8 3%  6 3%   

Other hormonal meds in NSDE 700   275   178   X2=2.349 

... No 685 98%  265 96%  175 98%   

... Yes 15 2%  10 4%  3 2%   

Anti-depressant or anti- anxiety meds in NSDE 700   275   178   X2=0.904 

... No 629 90%  242 88%  157 88%   

... Yes 71 10%  33 12%  21 12%   

Birth control pills in NSDE 700   275   178   X2=21.361*** 

... No 631 90%  229 83%  139 78%   



 260 

... Yes 69 10%  46 17%  39 22%   

Statistical significance markers: * p<0.05; ** p<0.01; *** p<0.001 
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Supplementary Table 4-5 Baseline sample characteristics 

 Attrtition Retention  

Variables in MIDUS 1 N Mean SD N Mean SD Test 

Sex 5860   1246   X2=9.62*** 

     Male 2887 49%  553 44%   

     Female 2973 51%  693 56%   

Ethnicity 5029   1225   X2=44.882*** 

     White 4479 89%  1169 95%   

     Non-White 550 11%  56 5%   

Age 5803 46 13 1246 47 11 F=0.149 

Marital status 5069   1115   X2=38.951*** 

... Married 3743 74%  923 83%   

... Not married 1326 26%  192 17%   

Parental emotional abuse 4563 2.6 1.4 1152 2.5 1.4 F=0.983 

Parental physical abuse 4638 2.4 1.3 1161 2.2 1.3 F=12.32*** 

Live with biological parents until 16 5857   1246   X2=10.476*** 

... No 1359 23%  236 19%   

... Yes 4498 77%  1010 81%   

Multimorbidity 5084   1224   X2=6.889** 

... <2 2245 44%  592 48%   
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... 2+ 2839 56%  632 52%   

Fathers education 4968   1133   X2=3.65 

     Less than high school 2007 40%  424 37%   

     High school/GED/some college 2078 42%  491 43%   

     Bachelor's degree or more 883 18%  218 19%   

Mother education 5407   1211   X2=18.477*** 

     Less than high school 1890 35%  350 29%   

     High school/GED/some college 2906 54%  693 57%   

     Bachelor's degree or more 611 11%  168 14%   

Financial level growing up 5065   1222   X2=14.788** 

     A lot better off 183 4%  29 2%   

     Somewhat better off 597 12%  154 13%   

     A little better off 676 13%  181 15%   

     Same as average family 2158 43%  491 40%   

     A little worse off 876 17%  241 20%   

     Somewhat worse off 395 8%  96 8%   

     A lot worse off 180 4%  30 2%   

Father's occupation 5118   1139   X2=24.789*** 

     Managerial And Professional Specialty Occupations 1250 24%  306 27%   

     Technical, Sales, And Administrative Support 
Occupations 

711 14%  200 18%   

     Service Occupations 236 5%  49 4%   
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     Farming, Forestry, And Fishing Occupations 643 13%  161 14%   

     Precision Production, Craft, And Repair Occupations 1221 24%  228 20%   

     Operators, Fabricators, And Laborers 940 18%  171 15%   

     Experienced Unemployed Not Classified By 
Occupations 

117 2%  24 2%   

Rate current financial situation 5015 6.1 2.2 1216 6.4 2.1 F=22.804*** 

Money to meet needs 5031   1221   X2=43.06*** 

     More than enough money 750 15%  267 22%   

     Just enough money 2855 57%  683 56%   

     Not enough money 1426 28%  271 22%   

How difficult to pay monthly bills 5028   1221   X2=22.108*** 

     Not at all difficult 1355 27%  388 32%   

     Not very difficult 1887 38%  480 39%   

     Somewhat difficult 1472 29%  297 24%   

     Very difficult 314 6%  56 5%   

Education 5852   1243   X2=104.747*** 

     Less than high school 627 11%  54 4%   

     High school/GED/some college 3557 61%  676 54%   

     Bachelor's degree or more 1668 29%  513 41%   

Income-to-needs ratio 4899   1211   X2=64.393*** 

     Affluent 2954 60%  864 71%   

     Adequate-income 1129 23%  242 20%   
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     Low-income 438 9%  56 5%   

     Poor 126 3%  14 1%   

     Extreme poverty 252 5%  35 3%   

Occupation 5615   1206   X2=59.823*** 

     Managerial And Professional Specialty Occupations 1938 35%  541 45%   

     Technical, Sales, And Administrative Support 
Occupations 

1544 27%  324 27%   

     Service Occupations 519 9%  86 7%   

     Farming, Forestry, And Fishing Occupations 113 2%  24 2%   

     Precision Production, Craft, And Repair Occupations 630 11%  104 9%   

     Operators, Fabricators, And Laborers 554 10%  91 8%   

     Experienced Unemployed Not Classified By 
Occupations 

317 6%  36 3%   

Statistical significance markers: * p<0.05; ** p<0.01; *** p<0.001     
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Supplementary Table 4-6 Sensitivity analyses for the significant associations between lifecourse SES and CP conditions in the main 
analyses  

NSDE Stream Main results Complete-case analysis Estimator = "MLR" 

High pain interference vs no pain P-value P-value P-value 

Childhood SES -> MIDUS 1 SES 0.000 0.000 0.000 

Childhood SES -> MIDUS 2 SES 0.000 0.000 0.000 

MIDUS1 SES -> MIDUS 2 SES 0.000 0.000 0.000 

Childhood SES -> CP 0.395 0.604 0.408 

MIDUS 1 SES -> CP 0.131 0.302 0.182 

MIDUS 2 SES -> CP 0.001 0.000 0.002 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES 0.000 0.000 0.000 

Childhood SES -> MIDUS 1 SES -> CP 0.146 0.311 0.194 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES -> CP 0.005 0.005 0.016 

Childhood SES -> MIDUS 2 SES -> CP 0.003 0.001 0.006 

MIDUS1 SES -> MIDUS 2 SES -> CP 0.001 0.000 0.002 

  Main results Complete-case analysis Estimator = "MLR" 

Pain with 3 or more locations vs no pain P-value P-value P-value 

Childhood SES -> MIDUS 1 SES 0.000 0.000 0.000 

Childhood SES -> MIDUS 2 SES 0.000 0.000 0.000 

MIDUS1 SES -> MIDUS 2 SES 0.000 0.000 0.000 

Childhood SES -> CP 0.367 0.280 0.375 

MIDUS 1 SES -> CP 0.026 0.199 0.054 

MIDUS 2 SES -> CP 0.028 0.005 0.043 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES 0.000 0.000 0.000 

Childhood SES -> MIDUS 1 SES -> CP 0.043 0.217 0.067 
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Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES -> CP 0.048 0.026 0.069 

Childhood SES -> MIDUS 2 SES -> CP 0.039 0.010 0.048 

MIDUS1 SES -> MIDUS 2 SES -> CP 0.031 0.006 0.044 

Note: MLR denotes maximum likelihood with robust standard errors 
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Supplementary Table 4-7 Sensitivity analyses for the associations between lifecourse SES and cortisol parameters 

  Main results Complete-case analysis With robust SEs 

Outcome: Early post-wake DCS P-value P-value P-value 

Childhood SES -> MIDUS 1 SES 0.000 0.000 0.000 

Childhood SES -> MIDUS 2 SES 0.000 0.000 0.000 

MIDUS1 SES -> MIDUS 2 SES 0.000 0.000 0.000 

Childhood SES -> Outcome 0.610 0.702 0.375 

MIDUS 1 SES -> Outcome 0.947 0.736 0.054 

MIDUS 2 SES -> Outcome 0.015 0.066 0.043 

Childhood SES -> MIDUS1 SES -> MIDUS 2 SES 0.000 0.000 0.000 

Childhood SES -> MIDUS1 SES -> Outcome 0.926 0.737 0.067 

Childhood SES -> MIDUS1 SES -> MIDUS 2 SES -> Outcome 0.030 0.095 0.069 

Childhood SES -> MIDUS 2 SES -> Outcome 0.023 0.074 0.048 

MIDUS1 SES -> MIDUS 2 SES -> Outcome 0.016 0.068 0.044 

  Main results Complete-case analysis With robust SEs 

Outcome: Mid post-wake DCS P-value P-value P-value 

Childhood SES -> MIDUS 1 SES 0.000 0.000 0.000 

Childhood SES -> MIDUS 2 SES 0.000 0.000 0.000 

MIDUS1 SES -> MIDUS 2 SES 0.000 0.000 0.000 

Childhood SES -> Outcome 0.359 0.540 0.358 

MIDUS 1 SES -> Outcome 0.947 0.742 0.947 

MIDUS 2 SES -> Outcome 0.010 0.040 0.015 

Childhood SES -> MIDUS1 SES -> MIDUS 2 SES 0.000 0.000 0.000 

Childhood SES -> MIDUS1 SES -> Outcome 0.947 0.742 0.947 

Childhood SES -> MIDUS1 SES -> MIDUS 2 SES -> Outcome 0.023 0.069 0.038 
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Childhood SES -> MIDUS 2 SES -> Outcome 0.017 0.048 0.024 

MIDUS1 SES -> MIDUS 2 SES -> Outcome 0.011 0.042 0.015 

  Main results Complete-case analysis With robust SEs 

Outcome: CDR P-value P-value P-value 

Childhood SES -> MIDUS 1 SES 0.000 0.000 0.000 

Childhood SES -> MIDUS 2 SES 0.000 0.000 0.000 

MIDUS1 SES -> MIDUS 2 SES 0.000 0.000 0.000 

Childhood SES -> Outcome 0.472 0.857 0.580 

MIDUS 1 SES -> Outcome 0.608 0.637 0.645 

MIDUS 2 SES -> Outcome 0.003 0.015 0.013 

Childhood SES -> MIDUS1 SES -> MIDUS 2 SES 0.000 0.000 0.000 

Childhood SES -> MIDUS1 SES -> Outcome 0.610 0.639 0.642 

Childhood SES -> MIDUS1 SES -> MIDUS 2 SES -> Outcome 0.011 0.038 0.040 

Childhood SES -> MIDUS 2 SES -> Outcome 0.007 0.021 0.023 

MIDUS1 SES -> MIDUS 2 SES -> Outcome 0.003 0.016 0.015 

  Main results Complete-case analysis With robust SEs 

Outcome: AUC P-value P-value P-value 

Childhood SES -> MIDUS 1 SES 0.000 0.000 0.000 

Childhood SES -> MIDUS 2 SES 0.000 0.000 0.000 

MIDUS1 SES -> MIDUS 2 SES 0.000 0.000 0.000 

Childhood SES -> Outcome 0.834 0.911 0.837 

MIDUS 1 SES -> Outcome 0.528 0.441 0.578 

MIDUS 2 SES -> Outcome 0.045 0.102 0.090 

Childhood SES -> MIDUS1 SES -> MIDUS 2 SES 0.000 0.000 0.000 

Childhood SES -> MIDUS1 SES -> Outcome 0.531 0.447 0.573 
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Childhood SES -> MIDUS1 SES -> MIDUS 2 SES -> Outcome 0.063 0.131 0.131 

Childhood SES -> MIDUS 2 SES -> Outcome 0.054 0.111 0.109 

MIDUS1 SES -> MIDUS 2 SES -> Outcome 0.046 0.104 0.092 

Note: MLR denotes maximum likelihood with robust standard errors 
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Supplementary Table 4-8 Sensitivity analyses for the associations between CDR, AUC and pain with 3 or more locations 

  Main results Complete-case analysis Estimator = "MLR" 

Pain with 3 or more locations vs no pain P-value P-value P-value 

CDR 0.014 0.023 0.015 

AUC 0.015 0.011 0.019 

Note: MLR denotes maximum likelihood with robust standard errors 
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Supplementary Table 4-9 Covariate associations within the main associations between lifecourse SES and key outcomes, which 
remained robust following sequential sensitivity analyses 

 High interference pain 3 or more pain locations Mid post-wake DCS CDR 

Covariates in MIDUS 1 Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) 

Sex (Ref: male) 0.026 (0.025) 0.029 (0.025) -0.126 (0.059)* -0.098 (0.031)** 

Ethnicity (Ref: White) -0.040 (0.061) -0.062 (0.059) 0.405 (0.147)** -0.077 (0.076) 

Emotional abuse 0.016 (0.012) 0.008 (0.012) 0.022 (0.028) -0.011 (0.015) 

Physical abuse 0.008 (0.013) 0.018 (0.013) -0.022 (0.030) 0.025 (0.016) 

Live with biological parents until 16 (Ref: no) -0.001 (0.031) 0.006 (0.032) -0.013 (0.075) -0.044 (0.039) 

Age in MIDUS 1 -0.029 (0.021) -0.033 (0.021) -0.106 (0.050)* 0.046 (0.026) 

Marital status in MIDUS 1 (Ref: married) 0.048 (0.035) 0.023 (0.035) 0.125 (0.083) -0.044 (0.043) 

Multimorbidity in MIDUS 1 (Ref: no) 0.110 (0.026)*** 0.096 (0.026)*** -0.013 (0.063) -0.040 (0.032) 

Covariates in MIDUS 2     

Age in MIDUS 2 0.029 (0.021) 0.036 (0.021) 0.116 (0.050)* -0.044 (0.026) 

Marital status in MIDUS 2 (Ref: married) 0.048 (0.035) 0.042 (0.035) -0.181 (0.084)* 0.035 (0.043) 

Multimorbidity in MIDUS 2 (Ref: no) 0.047 (0.027) 0.044 (0.027) 0.065 (0.064) -0.076 (0.033)* 

CP in MIDUS 2 (Ref: no) 0.043 (0.057) 0.137 (0.053)** -0.004 (0.134) 0.109 (0.069) 

Health insurance in MIDUS 2 (ref: yes) 0.242 (0.028)*** 0.294 (0.027)*** 0.050 (0.064) -0.060 (0.033) 

Statistical significance markers: * p<0.05; ** p<0.01; *** p<0.001    
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Supplementary Table 4-10 The mediating role of cortisol parameters in the association between life course SES and 3 or more pain 
locations among respondents without baseline CP 

 3 or more pain locations 

Mediator (M): CAR Estimate SE P-value 

Childhood SES -> MIDUS 1 SES 0.190 0.041 0.000 

Childhood SES -> MIDUS 2 SES 0.170 0.038 0.000 

MIDUS 1 SES -> MIDUS 2 SES 0.466 0.042 0.000 

Childhood SES -> CP 0.000 0.014 0.975 

MIDUS 1 SES -> CP 0.019 0.016 0.249 

MIDUS 2 SES -> CP 0.023 0.016 0.150 

Childhood SES -> M -0.002 0.044 0.959 

MIDUS 1 SES -> M 0.060 0.052 0.249 

MIDUS 2 SES -> M -0.066 0.052 0.204 

M -> CP -0.020 0.013 0.126 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES 0.088 0.021 0.000 

Childhood SES -> MIDUS 1 SES -> M 0.011 0.010 0.263 

Childhood SES -> MIDUS 2 SES -> M -0.011 0.009 0.221 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES -> M -0.006 0.005 0.224 

MIDUS 1 SES -> MIDUS 2 SES -> M -0.001 0.020 0.959 

Childhood SES -> MIDUS 1 SES -> CP 0.004 0.003 0.265 

Childhood SES -> MIDUS 1 SES -> M -> CP 0.000 0.000 0.363 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES -> CP 0.001 0.001 0.190 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES -> M -> CP 0.000 0.000 0.339 

Childhood SES -> MIDUS 2 SES -> CP 0.004 0.003 0.172 

Childhood SES -> MIDUS 2 SES -> M -> CP 0.001 0.001 0.329 

Childhood SES -> M -> CP 0.000 0.001 0.959 
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MIDUS 1 SES -> MIDUS 2 SES -> M -> CP 0.001 0.001 0.329 

MIDUS 1 SES -> MIDUS 2 SES  -> CP 0.011 0.008 0.154 

MIDUS 1 SES -> M -> CP -0.001 0.001 0.353 

MIDUS 2 SES -> M -> CP 0.001 0.001 0.327 

Chi-square (df)=430.668 (167); CFI=0.941; TLI=0.910; RMSEA=0.054     

Mediator (M): Early post-wake DCS Estimate SE P-value 

Childhood SES -> MIDUS 1 SES 0.190 0.041 0.000 

Childhood SES -> MIDUS 2 SES 0.171 0.038 0.000 

MIDUS 1 SES -> MIDUS 2 SES 0.464 0.042 0.000 

Childhood SES -> CP 0.001 0.014 0.921 

MIDUS 1 SES -> CP 0.018 0.016 0.256 

MIDUS 2 SES -> CP 0.022 0.016 0.177 

Childhood SES -> M -0.021 0.047 0.661 

MIDUS 1 SES -> M -0.023 0.056 0.673 

MIDUS 2 SES -> M 0.084 0.056 0.135 

M -> CP 0.036 0.012 0.004 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES 0.088 0.021 0.000 

Childhood SES -> MIDUS 1 SES -> M -0.004 0.011 0.674 

Childhood SES -> MIDUS 2 SES -> M 0.014 0.010 0.158 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES -> M 0.007 0.005 0.157 

MIDUS 1 SES -> MIDUS 2 SES -> M -0.010 0.022 0.661 

Childhood SES -> MIDUS 1 SES -> CP 0.003 0.003 0.271 

Childhood SES -> MIDUS 1 SES -> M -> CP 0.000 0.000 0.677 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES -> CP 0.001 0.001 0.213 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES -> M -> CP 0.000 0.000 0.202 

Childhood SES -> MIDUS 2 SES -> CP 0.004 0.003 0.197 

Childhood SES -> MIDUS 2 SES -> M -> CP 0.001 0.001 0.184 
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Childhood SES -> M -> CP -0.001 0.002 0.664 

MIDUS 1 SES -> MIDUS 2 SES -> M -> CP 0.001 0.001 0.184 

MIDUS 1 SES -> MIDUS 2 SES  -> CP 0.010 0.008 0.181 

MIDUS 1 SES -> M -> CP -0.001 0.002 0.675 

MIDUS 2 SES -> M -> CP 0.003 0.002 0.182 

Chi-square (df)=432.051 (167); CFI=0.940; TLI=0.910; RMSEA=0.054     

Mediator (M): Mid post-wake DCS Estimate SE P-value 

Childhood SES -> MIDUS 1 SES 0.190 0.041 0.000 

Childhood SES -> MIDUS 2 SES 0.170 0.038 0.000 

MIDUS 1 SES -> MIDUS 2 SES 0.464 0.042 0.000 

Childhood SES -> CP 0.002 0.014 0.899 

MIDUS 1 SES -> CP 0.019 0.016 0.237 

MIDUS 2 SES -> CP 0.022 0.016 0.174 

Childhood SES -> M -0.033 0.047 0.489 

MIDUS 1 SES -> M -0.043 0.055 0.435 

MIDUS 2 SES -> M 0.080 0.056 0.154 

M -> CP 0.036 0.012 0.003 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES 0.088 0.021 0.000 

Childhood SES -> MIDUS 1 SES -> M -0.008 0.011 0.441 

Childhood SES -> MIDUS 2 SES -> M 0.014 0.010 0.175 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES -> M 0.007 0.005 0.176 

MIDUS 1 SES -> MIDUS 2 SES -> M -0.015 0.022 0.489 

Childhood SES -> MIDUS 1 SES -> CP 0.004 0.003 0.253 

Childhood SES -> MIDUS 1 SES -> M -> CP 0.000 0.000 0.454 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES -> CP 0.001 0.001 0.211 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES -> M -> CP 0.000 0.000 0.217 

Childhood SES -> MIDUS 2 SES -> CP 0.004 0.003 0.194 
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Childhood SES -> MIDUS 2 SES -> M -> CP 0.001 0.001 0.200 

Childhood SES -> M -> CP -0.001 0.002 0.499 

MIDUS 1 SES -> MIDUS 2 SES -> M -> CP 0.001 0.001 0.200 

MIDUS 1 SES -> MIDUS 2 SES  -> CP 0.010 0.008 0.178 

MIDUS 1 SES -> M -> CP -0.002 0.002 0.448 

MIDUS 2 SES -> M -> CP 0.003 0.002 0.198 

Chi-square (df)=432.032 (167); CFI=0.941; TLI=0.910; RMSEA=0.054     

Mediator (M): Evening DCS Estimate SE P-value 

Childhood SES -> MIDUS 1 SES 0.190 0.041 0.000 

Childhood SES -> MIDUS 2 SES 0.170 0.038 0.000 

MIDUS 1 SES -> MIDUS 2 SES 0.465 0.042 0.000 

Childhood SES -> CP 0.001 0.014 0.943 

MIDUS 1 SES -> CP 0.018 0.016 0.272 

MIDUS 2 SES -> CP 0.025 0.016 0.128 

Childhood SES -> M -0.029 0.049 0.549 

MIDUS 1 SES -> M -0.017 0.058 0.773 

MIDUS 2 SES -> M 0.016 0.059 0.781 

M -> CP 0.023 0.012 0.050 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES 0.088 0.021 0.000 

Childhood SES -> MIDUS 1 SES -> M -0.003 0.011 0.773 

Childhood SES -> MIDUS 2 SES -> M 0.003 0.010 0.781 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES -> M 0.001 0.005 0.781 

MIDUS 1 SES -> MIDUS 2 SES -> M -0.014 0.023 0.549 

Childhood SES -> MIDUS 1 SES -> CP 0.003 0.003 0.287 

Childhood SES -> MIDUS 1 SES -> M -> CP 0.000 0.000 0.775 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES -> CP 0.001 0.001 0.170 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES -> M -> CP 0.000 0.000 0.783 
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Childhood SES -> MIDUS 2 SES -> CP 0.004 0.003 0.151 

Childhood SES -> MIDUS 2 SES -> M -> CP 0.000 0.001 0.783 

Childhood SES -> M -> CP -0.001 0.001 0.565 

MIDUS 1 SES -> MIDUS 2 SES -> M -> CP 0.000 0.001 0.783 

MIDUS 1 SES -> MIDUS 2 SES  -> CP 0.011 0.008 0.133 

MIDUS 1 SES -> M -> CP 0.000 0.001 0.775 

MIDUS 2 SES -> M -> CP 0.000 0.001 0.783 

Chi-square (df)=433.305 (167); CFI=0.941; TLI=0.910; RMSEA=0.054     

Mediator (M): CDR Estimate SE P-value 

Childhood SES -> MIDUS 1 SES 0.190 0.041 0.000 

Childhood SES -> MIDUS 2 SES 0.170 0.038 0.000 

MIDUS 1 SES -> MIDUS 2 SES 0.465 0.042 0.000 

Childhood SES -> CP 0.001 0.014 0.950 

MIDUS 1 SES -> CP 0.019 0.016 0.239 

MIDUS 2 SES -> CP 0.022 0.016 0.173 

Childhood SES -> M 0.021 0.044 0.639 

MIDUS 1 SES -> M 0.071 0.052 0.172 

MIDUS 2 SES -> M -0.117 0.052 0.025 

M -> CP -0.023 0.013 0.085 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES 0.088 0.021 0.000 

Childhood SES -> MIDUS 1 SES -> M 0.014 0.010 0.190 

Childhood SES -> MIDUS 2 SES -> M -0.020 0.010 0.046 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES -> M -0.010 0.005 0.047 

MIDUS 1 SES -> MIDUS 2 SES -> M 0.010 0.020 0.639 

Childhood SES -> MIDUS 1 SES -> CP 0.004 0.003 0.256 

Childhood SES -> MIDUS 1 SES -> M -> CP 0.000 0.000 0.294 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES -> CP 0.001 0.001 0.210 
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Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES -> M -> CP 0.000 0.000 0.192 

Childhood SES -> MIDUS 2 SES -> CP 0.004 0.003 0.193 

Childhood SES -> MIDUS 2 SES -> M -> CP 0.001 0.001 0.174 

Childhood SES -> M -> CP 0.000 0.001 0.650 

MIDUS 1 SES -> MIDUS 2 SES -> M -> CP 0.001 0.001 0.174 

MIDUS 1 SES -> MIDUS 2 SES  -> CP 0.010 0.008 0.177 

MIDUS 1 SES -> M -> CP -0.002 0.002 0.281 

MIDUS 2 SES -> M -> CP 0.003 0.002 0.171 

Chi-square (df)=430.499 (167); CFI=0.941; TLI=0.910; RMSEA=0.054     

Mediator (M): AUC Estimate SE P-value 

Childhood SES -> MIDUS 1 SES 0.190 0.041 0.000 

Childhood SES -> MIDUS 2 SES 0.170 0.038 0.000 

MIDUS 1 SES -> MIDUS 2 SES 0.465 0.041 0.000 

Childhood SES -> CP 0.001 0.014 0.953 

MIDUS 1 SES -> CP 0.019 0.016 0.246 

MIDUS 2 SES -> CP 0.023 0.016 0.163 

Childhood SES -> M 0.017 0.044 0.701 

MIDUS 1 SES -> M 0.070 0.053 0.184 

MIDUS 2 SES -> M -0.093 0.053 0.081 

M -> CP -0.018 0.013 0.181 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES 0.088 0.021 0.000 

Childhood SES -> MIDUS 1 SES -> M 0.013 0.010 0.202 

Childhood SES -> MIDUS 2 SES -> M -0.016 0.010 0.105 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES -> M -0.008 0.005 0.106 

MIDUS 1 SES -> MIDUS 2 SES -> M 0.008 0.020 0.701 

Childhood SES -> MIDUS 1 SES -> CP 0.004 0.003 0.263 

Childhood SES -> MIDUS 1 SES -> M -> CP 0.000 0.000 0.353 
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Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES -> CP 0.001 0.001 0.201 

Childhood SES -> MIDUS 1 SES -> MIDUS 2 SES -> M -> CP 0.000 0.000 0.302 

Childhood SES -> MIDUS 2 SES -> CP 0.004 0.003 0.184 

Childhood SES -> MIDUS 2 SES -> M -> CP 0.001 0.001 0.289 

Childhood SES -> M -> CP 0.000 0.001 0.711 

MIDUS 1 SES -> MIDUS 2 SES -> M -> CP 0.001 0.001 0.289 

MIDUS 1 SES -> MIDUS 2 SES  -> CP 0.011 0.008 0.167 

MIDUS 1 SES -> M -> CP -0.001 0.001 0.343 

MIDUS 2 SES -> M -> CP 0.002 0.002 0.287 

Chi-square (df)=431.116 (167); CFI=0.941; TLI=0.910; RMSEA=0.054     
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