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Coronary Artery Disease Classification Using

Electrocardiogram Signals
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Abstract— Coronary Artery Disease (CAD) is charac-
terised by a diminished capacity of the coronary arteries to
supply sufficient blood, oxygen and nutrients to the heart.
It primarily develops due to the presence of fat deposits
and arterial plaques, and it is a leading cause of global
mortality. Given the limited accessibility, high cost, and
inconvenience of invasive diagnostic tools, we propose a
lightweight one-dimensional convolutional neural network
for CAD classification using non-invasive electrocardiogra-
phy (ECG) signals. The proposed model, CADNet, consists
of two key components: Feature Encoding and Compact
Pooling. The feature encoding block extracts key temporal
characteristics from ECG data using a convolutional layer,
while the compact pooling block reduces temporal resolu-
tion, preserving essential ECG features for CAD diagnosis.
CADNet comes with a novel data purification process to op-
timise computational efficiency and maintain high diagnos-
tic accuracy. This approach aids convergence, significantly
reduces the model parameters, and improves the model’s
ability to detect CAD patterns. Our extensive experiments
with four diverse datasets show that CADNet achieves an
average 99.3% accuracy, with 2,586 trainable parameters,
surpassing state-of-the-art models performance.

Index Terms— Cardiovascular diseases, Coronary Artery
Disease, Convolutional Neural Network, Electrocardiogram.

I. INTRODUCTION

A. Overview

Coronary Artery Disease (CAD), involving the left anterior
descending artery, is increasingly observed in young adults,
driven by factors such as elevated cholesterol levels, hyper-
tension, and tobacco use [1]. This condition typically presents
as single-vessel disease rather than multi-vessel involvement.
CAD continues to be a leading cause of mortality among
individuals aged 35 and older across both developed and
developing nations [2]. CAD develops when the supply of
oxygen-rich blood to the heart muscle is restricted or impeded,
placing increased strain on the heart. This condition can
lead to various clinical outcomes, such as angina—chest pain
resulting from restricted blood flow to the heart muscle, heart
attacks, which occur when blood flow to the heart muscle
is suddenly blocked, and heart failure, where the heart is
unable to pump blood throughout the body effectively. CAD
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represents one subtype of cardiovascular diseases (CVDs),
which remains the leading cause of mortality globally. The
World Health Organisation (WHO) report highlights that in
2023, CVDs were responsible for approximately 17.9 million
deaths globally, representing 32% of all worldwide fatalities
[3]. Of these deaths, 85% were attributed to heart attacks and
strokes, with a primary occurrence in low- and middle-income
countries, which accounted for over three-quarters of such
deaths. Therefore, early diagnosis is imperative in preventing
many CVDs and addressing behavioural risk factors. This
proactive approach aids in reducing both mortality rates and
the prevalence of individuals unaware of their medical con-
ditions [4]. Moreover, implementing cost-effective diagnostic
tools is necessary for achieving early diagnosis and raising
awareness of medical conditions among patients.

B. Related works
Currently, Angiography is a popular tool for CVDs screen-

ing; however, its use in patient follow-up and treatment is
restricted due to its invasive nature, high cost, and the need for
substantial technical expertise. With the advancement of state-
of-the-art technologies, low-cost diagnostic tools are being in-
troduced through research by leveraging artificial intelligence
(AI). Electrocardiography (ECG) is the primary method used
for initial screening of CVDs in general medical practices.
General practitioners rely on recorded ECGs as essential
diagnostic tools in their evaluation process. In diagnosing
CVDs, a comprehensive understanding of risk factors and
sound medical expertise is crucial to enhance diagnostic accu-
racy. Additionally, it is frequently employed as a preliminary
screening tool in general medical practices due to its capability
for continuous non-invasive monitoring and real-time data
provision [5].

Although ECG proves to be an effective diagnostic tool by
recording the heart’s electrical activity, the current diagnostic
procedures involving ECG are dominantly performed manu-
ally by practitioners and doctors, which is time-consuming
and prone to errors. The development of state-of-the-art tech-
nologies has led to the introduction of various automated
systems for diagnosing CVDs, aiming to tackle these identified
difficulties [6]–[8]. However, such explorations have been
underrepresented in CAD diagnosis. Hence, developing auto-
mated ECG-based diagnosis is becoming increasingly crucial
in modern healthcare, primarily due to the limitations of man-
ual diagnosis methods. Automated diagnosis can be facilitated
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by applying AI algorithms to learn from large amounts of data
and provide accurate diagnostic results without the need for
expertise. Furthermore, automated diagnostic systems could
offer convenience to both patients and practitioners.

Traditional machine learning (ML) techniques, such as
Support Vector Machine (SVM), K-nearest Neighbours (kNN),
K-means, and Decision trees, have been extensively utilised
in ECG analysis for diagnosing various cardiac conditions.
SVM is applied in ECG analysis not only for diagnosing CAD
[9] but also for detecting various other cardiac conditions,
including atrial fibrillation (AF) [10]–[12], arrhythmia [13]–
[15], and myocardial infarction (MI) [16]. Furthermore, kNN
algorithm has attracted considerable attention from researchers
for its efficacy in classifying ECG data, particularly in diagnos-
ing arrhythmia, AF and CAD [17]–[20]. ML-based algorithms
heavily depend on efficient feature extraction processes, given
that the quality of the ECG data can profoundly influence the
performance of the model. The effectiveness of hand-crafted
feature extraction methods in capturing relevant ECG features
may vary depending on the complexity and variability of the
data, potentially leading to decreased model performance and
diagnostic accuracy. As a result, the application of ML-based
models may require considerable time due to the necessity of
feature extraction, in contrast to deep learning (DL) method-
ologies.

The limitations of feature extraction methods in traditional
ML prompt exploration into alternative methodologies for
ECG diagnosis. DL-based algorithms, including Convolutional
Neural Networks (CNN) [7], [8], [21], Recurrent Neural Net-
works (RNN) [22], [23] , Long-short term memory (LSTM)
[24], have been introduced for CAD diagnosis. The primary
advantage of DL-based methods is their ability to eliminate the
need for feature extraction, as these models can learn directly
from large amounts of data and effectively diagnose ECG-
related issues. In recent years, CNN-based models have been
applied not only to image data but have also been introduced
by researchers to analyse time-domain data such as ECG.
It offers the capability to automatically learn discriminative
features directly from raw ECG signals, thus, eliminating
the need for hand-crafted feature extraction and enabling the
capture of complex temporal patterns inherent in ECG data.
This focus on automated feature extraction aligns with recent
advancements in other biomedical domains [25], where a Vari-
ational Gated Autoencoder (VGAE) has been utilised to extract
latent features from multiview biomedical data. This approach
illustrates the potential of deep learning-based architectures
to effectively manage complex, high-dimensional datasets,
offering insights that may be applied to ECG analysis. In [26],
CNN-based models have significantly advanced ECG signal
processing by enabling automatic and hierarchical feature
extraction. In contrast to traditional approaches, which rely
on handcrafted features, CNN learns complex patterns directly
from raw ECG data. This capability not only reduces reliance
on manual feature engineering but also enhances robustness
to noise and variability.

Deep learning models typically require significant com-
putational power and resources, making them unsuitable for
devices with limited capabilities. This limitation motivates

the development of lightweight models designed to minimise
computational and memory requirements. The application of
lightweight CNNs for ECG signal classification has gained
significant attention in recent years, primarily in the context
of arrhythmia detection. These models enable efficient op-
eration on resource-constrained devices, offering advantages
such as faster inference times and lower energy consumption,
which are crucial for real-time diagnosis. A study by Mewada
[27], proposed a 2D-wavelet encoded deep CNN for ECG
classification, transforming one-dimensional ECG signals into
two-dimensional representations to incorporate spatial feature
extraction capabilities. The author demonstrated that their
approach improved arrhythmia detection accuracy without the
need for extensive preprocessing. Similarly, another work
examined lightweight CNN models applied to ECG datasets,
emphasising the reduction of computational complexity while
maintaining high classification performance for arrhythmias
[28]. These approaches focus primarily on detecting abnormal
heart rhythms, which are largely associated with electrical
malfunctions in cardiac activity. Further, a study investigating
lightweight CNN architectures specifically for ECG signal
classification showcased the effectiveness of optimised deep
learning models in diagnosing arrhythmic events [29]. Addi-
tionally, researchers explored efficient CNN architectures to
enhance real-time arrhythmia classification, optimising neural
network layers to improve model interpretability and deploy-
ment in clinical environments [30]. In [31], a lightweight
CNN for MI diagnosis was introduced, aiming to minimise
computational and storage demands to facilitate deployment
on portable devices. Utilising the Physikalisch Technische
Bundesanstalt (PTB) diagnostic database, various baseline
CNN configurations were evaluated and compared to their
proposed lightweight model. Results indicated that the pro-
posed model maintained high accuracy while reducing model
complexity. Several lightweight networks have been utilised
for ECG analysis, including SqueezeNet [32], EfficientNet
[33], MobileNet [34], and ShuffleNet [35]. These widely well-
established models are specifically designed for deployment on
resource-constrained devices, enabling efficient applications
in such environments. In a notable advancement in novel
technology, an ultra-lightweight end-to-end electrocardiogram
classification neural network has been developed. The research
employed advanced techniques aimed at reducing computa-
tional complexity while maintaining high-performance stan-
dards, making it suitable for integration into portable and
wearable medical devices [36].

While these studies contribute valuable insights into the
detection of arrhythmias, they do not directly address the
challenges associated with coronary artery disease diagnosis.
Unlike arrhythmias, which often present distinct electrical
anomalies, CAD is characterised by subtle ischemic patterns
and morphological changes in ECG signals. The detection of
CAD requires domain-specific adaptations that extend beyond
the capabilities of conventional arrhythmia-focused CNN mod-
els. In this study, we propose a lightweight one-dimensional
convolutional neural network (CADNet) for automated CAD
diagnosis. Our research distinguishes itself by targeting CAD
classification, which presents unique challenges in early de-
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tection due to the absence of overt electrical abnormalities.
We propose an advanced lightweight CNN framework that
integrates specialised feature extraction techniques to identify
ischemic patterns in ECG signals. By tailoring the model
architecture to CAD-specific markers, we aim to improve
diagnostic accuracy while ensuring computational efficiency
for real-time deployment.

Compared with other existing lightweight models, deep
learning-based models and traditional machine learning algo-
rithms, our model demonstrates advantages in terms of reduced
model size while maintaining high accuracy. This important
capability facilitates the deployment of CADNet in clinical set-
tings. This is particularly significant because traditional deep
learning models require substantial computational resources,
making them unsuitable and costly for real-time diagnosis and
deployment on portable devices.

C. Our contributions

CADNet introduces several key innovations specifically tai-
lored for coronary artery disease (CAD) detection, addressing
challenges that conventional arrhythmia-focused CNN models
often overlook.

1) Innovative Data Purification Module: We introduce a
novel data refinement process that combines sample
entropy and standard normalisation, improving signal
quality and computational efficiency before classifica-
tion. This significantly enhances the reliability of CAD
diagnosis.

2) Specialised for CAD Detection: Unlike arrhythmia clas-
sification, which often relies on clear electrical anoma-
lies, CAD detection requires identifying subtle is-
chemic patterns in ECG signals. Our model incorporates
domain-specific adaptations to improve sensitivity to
these patterns, which are often overlooked by traditional
CNN models.

3) Lightweight Yet High-Performing Architecture: CAD-
Net achieves 99.3% accuracy with only 2,586 train-
able parameters, significantly reducing computational
overhead. This ensures its feasibility for real-time de-
ployment in resource-constrained environments, an area
where many existing deep learning models struggle due
to high computational demands.

4) Novel Architectural Enhancements: Feature Encoding
Block: Optimised convolutional layers to capture tem-
poral characteristics relevant to CAD.

5) Compact Pooling Block: A new pooling strategy de-
signed to retain essential ECG features while improving
computational efficiency.

6) Comprehensive Benchmarking and Generalisation: We
rigorously evaluated CADNet across four diverse
datasets (PTB-XL, MIMIC-III, St. Petersburg, Fantasia),
demonstrating superior accuracy and robustness. Addi-
tionally, we assessed its performance across different age
groups to confirm its generalisability.

D. Outline
The remainder of this paper is structured as follows. Section

II details the proposed methodology, including data prepara-
tion, purification, model architecture and optimisation. Section
III describes the experimental setup, performance metrics,
datasets, and results and discussions. Section IV is devoted
to drawing limitations and future directions of this research.
Finally, Section V concludes the paper.

II. MATERIALS AND METHODS

This section outlines different steps for comprehensive CAD
classification using our proposed CADNet model. Figure 1
illustrates the process of classifying binary classes, i.e. CAD
and non-CAD, from ECG data. The process initiates with
raw ECG signals, obtained from the MIMIC III, Fantasia,
St Petersburg and PTB-XL databases. For training, the ECG
signals are meticulously chosen from MIMIC III and Fantasia
databases, partitioned into 1-second segments and categorised
into subsets, as outlined in Section ??. For testing, the same
procedure is followed but using St Peterburg and PTB-XL
databases. A novel data purification technique is then applied
to the subsets to eliminate noise and irrelevant data (Section
II-B). The proposed CADNet model (described in Sections
II-D and II-C) is subsequently employed to classify the ECG
signals as either indicative of CAD or non-CAD.

A. Data preparation

1) Data source: The ECG data used in this study are
sourced from four publicly available databases accessible
through PhysioNet: MIMIC-III [37], St. Petersburg [38], PTB-
XL [39] and Fantasia [40]. The details of each dataset are
outlined below:

a) MIMIC-III: The MIMIC-III dataset includes a total of
2,840 patients diagnosed with coronary atherosclerosis in the
native coronary artery, accounting for approximately 7.1% of
total hospital admissions. ECG recordings from these patients
were extracted and utilised for analysis.

b) St. Petersburg: This dataset consists of 30-minute ECG
recordings from 75 subjects, among whom 7 patients have
been diagnosed with CAD. The ECG signals from these
patients were selected for this study.

c) PTB-XL: PTB-XL is a large-scale ECG dataset con-
taining over 20,000 10-second recordings from approximately
18,000 patients. This dataset includes a variety of cardiac
conditions, providing essential subclasses that support CAD
diagnosis.

d) Fantasia: The Fantasia dataset consists of ECG record-
ings from a cohort of 40 individuals, evenly distributed be-
tween 20 young and 20 adult subjects. This dataset was used
to represent non-CAD patients in our study.

2) Data preprocessing and segmentation: ECG recordings
from CAD and non-CAD patients were selected from each
database and segmented into one-second ECG data segments,
each comprising N = 250 samples. A similar data selection
strategy was used in [24], where ECG recordings from the
Fantasia and St. Petersburg databases were used to represent
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Fig. 1: Flowchart outlining the operational framework of the proposed model

normal and CAD subjects, respectively. This segmentation
method enables detailed analysis of the dynamic variations and
patterns in ECG signals within short temporal windows. Such
an approach has been widely used to maintain consistency
in ECG signal analysis [24], [41], [42], as it captures the
ECG cycle without relying on waveform detection methods.
Following segmentation, a data purification process (explained
in the next subsection) was applied to remove irrelevant noise
within the ECG segments. To facilitate classification, a binary
label was assigned to each sample:

• Label 0: Non-CAD subjects from the Fantasia database.
• Label 1: CAD-diagnosed subjects from the MIMIC-III,

St. Petersburg, and PTB-XL datasets.
3) Dataset composition for training and evaluation: A pri-

mary subset comprising 200 ECG signals was created for
training and testing. The dataset maintains an equal distribu-
tion of CAD and non-CAD subjects, with 100 ECG signals
sourced from the MIMIC-III and Fantasia databases. To ensure
robust evaluation, we employed ten-fold cross-validation, a
widely used technique in both traditional machine learning
and deep learning. For each fold, the dataset was split 70% for
training and 30% for testing. To mitigate overfitting, dropout
and early stopping strategies were implemented. Training was
terminated if no improvement in validation loss was observed
over eight consecutive epochs.

B. Data purification
Since biomedical data are normally recorded with many

unwanted noises and artifacts, proper data purification would
play a pivotal role in ensuring the quality and consistency of
input data (ECG here). And, the signal quality notably influ-
ences the model’s performance [43], [44]. Consequently, re-
searchers consider implementing various pre-processing tech-
niques to ensure optimal accuracy.

Sample entropy emerges as a prominent method within
temporal data applied in previous studies to enhance signal
quality [45], [46]. Unlike standard entropy or approximate
entropy, sample entropy provides a more consistent and robust
estimate of signal complexity, especially in shorter and noisier
time-series signals, which are common in real-world ECG
recordings. Here, we propose a data purification technique,
based on sample entropy, to facilitate CAD classification,

combining the sample entropy concept and a standard nor-
malisation step. In CADNet, this combination is applied to
the raw ECG data to mitigate artifacts present in the signal.
Sample entropy functions as a metric to evaluate the time
series data quality. Additionally, standard normalisation is
applied to eliminate flat time series data and mitigate any
potential influences that could affect the model’s accuracy.
Sample entropy is mathematically defined as:

SampEn = − ln

( ∑N−m
i=1 Qm

i (r)∑N−m+1
i=1 Pm+1

i (r)

)
(1)

where SampEn indicates the quality of the ECG signals. N
signifies the quantity of samples within each 1-second segment
of the ECG. m denotes the embedded dimension, which
indicates the length of consecutive samples or data points
analysed jointly, with m = 2. r denotes the tolerance threshold,
which defines the acceptable range of similarity between
points, enabling the identification of meaningful patterns in the
ECG data while maintaining robustness to noise. In our study,
we set r = 0.1, a value supported by previous research, where
r values between 0.1 and 0.25 are effective in maintaining
signal quality in ECG data [47]. Qm

i (r) quantifies the instances
of vector pairs of dimension m whose mutual distance falls
below r, suggesting a degree of similarity or regularity within
the signal. Pm+1

i (r) measures the quantity of vector pairs
with dimension m + 1 demonstrating similarity within the
predetermined threshold r, thereby expanding the comparison
to sequences of extended length.

Following applying the SampEn, the retained ECG signals
undergo standard normalisation to remove any remaining flat
and noisy artifacts:

σ =

√√√√ 1

N − 1

N∑
i=1

(xi − x)2. (2)

In (2), σ represents the quality of the ECG signals, N denotes
the quantity of signals, x signifies the average of a given signal,
and xi denotes the signal value at the ith position.

Fig. 3 illustrates examples of ECG signals evaluated during
the data purification process. Fig. 3(a) shows a high-quality
signal exhibiting appropriate morphological complexity and
variance, with a SampEn below 0.1 and a standard deviation
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(a) ECG Signal demonstrating a patient with CAD from MIMIC III (b) ECG Signal demonstrating a patient with CAD from St Peterburg

(c) ECG Signal demonstrating a patient with CAD from PTB-XL (d) ECG Signal demonstrating healthy patient from MIMICIII

Fig. 2: Example of ECG signals from different databases used (MIMIC III, St Petersburg and PTB-XL)

(a) Signal with SampEn < 0.1 and σ > 0.1

(b) Signal with SampEn > 0.1

(c) Signal with σ < 0.1

Fig. 3: Examples of ECG signals during the data purification
process. Signals with SampEn < 0.1 were considered to
exhibit appropriate complexity, while a standard normalisation
threshold of σ > 0.1 was used to exclude flat signals. Only
ECG signals satisfying both criteria were retained for further
analysis.

σ above 0.1. Fig. 3(b) presents a signal with SampEn > 0.1,
likely due to noise or random fluctuations. Fig. 3(c) shows a
signal exhibiting flatness, with a σ < 0.1. Only signals that
met both criteria were used for further analysis.

To further quantitatively evaluate the impact of data pu-
rification, the average Root Mean Squared Error (RMSE) was
calculated between the original ECG signals and the processed
ECG signals after the data purification process, for both CAD
and non-CAD cases. The RMSE was 3.66 for CAD and 4.26
for non-CAD signals. These relatively low values suggest that
the data purification step effectively removed inappropriate
ECG segments while preserving the overall ECG waveform
structure. The slightly higher RMSE in the non-CAD cases
may be due to the more regular and stable patterns typically
found in healthy ECG signals, which can be more easily
removed during the data purification. However, this does not
compromise the model’s ability to learn from the ECG signals.
Visual inspection confirmed that key clinical components, such
as the P-wave, QRS complex, and T-wave, remained clearly
visible.

C. Lightweight deep learning architecture

Figure 4 illustrates the operational framework of our CAD-
Net model. It is a lightweight 1D-CNN designed for efficient
and effective CAD detection and optimises computational
resources while delivering robust performance in a CAD
classification task. The proposed CADNet model consists of
two main blocks: Feature Encoding and Compact Pooling
layers. These components enhance the model’s robustness to
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Fig. 4: Detailed architecture of the proposed CADNet including feature encoding, compact pooling and classification blocks.

noise and fluctuations in ECG signals, thereby improving its
ability to classify CAD with precision and efficiency. The fully
connected layer comprises two neurons and utilises Softmax
activation, facilitating the classification of the input ECG sig-
nal into one of two potential classes, thereby representing the
probabilities of the input belonging to each class. Furthermore,
a dropout layer is incorporated between the primary blocks to
augment the model’s capacity for generalisation.

Feature Encoding block plays a crucial role in transforming
raw ECG input data into a higher-dimensional feature space,
efficiently capturing critical temporal patterns while minimis-
ing dimensionality. This layer preserves essential diagnostic
characteristics, including P waves, QRS complexes, and T
waves, facilitating the efficient extraction of significant ECG
features with minimal computational cost. This block is a
convolutional layer consisting of 16 filters. Each filter is
responsible for identifying specific patterns or features within
ECG data. The kernel size for each filter is set to 28.
Consequently, during each convolution operation, the filter
examines a window of 28 consecutive ECG samples from
the ECG signal. This approach enables the filter to capture
local patterns or features within the ECG signal that may
indicate particular cardiac events or abnormalities of CAD.
ReLU activation functions are employed within the block for
their simplicity and computational efficiency. These functions
introduce non-linearity to the model, facilitating the learning
of complex patterns in the data while managing computational
capacity effectively. The output of the feature encoding layer
is calculated as:

yi =

K∑
k=1

xi+h−1 · wh + b (3)

where yi represents the output signal at position i-th position
within the feature encoding layer. K denotes the number of
weights within the filter, determining the size of the window
that slides the input ECG signal. xi+h−1 represents each
element of the ECG input aligned with a specific weight
in the filter, denoted by wh, during the computation of the
output signal at i position. The bias term, represented by b,
is initialised to zero. This initialisation enables the model to
achieve greater flexibility in fitting the ECG data by adjusting
the activation function.

The compact pooling layer is employed to reduce the

temporal resolution of the ECG signals, refine the extracted
features, and ensure that only the most relevant information
for classification is passed to subsequent layers. This layer
comprises max pooling, convolutional, and layer normalisation
layers. The max pooling layer is introduced to operate within
sliding windows of size 3, effectively reducing the temporal
resolution of the signal while preserving essential temporal
ECG features. Subsequently, a one-dimensional convolutional
layer with a filter size and kernel size of 8 each is employed.
The Rectified Linear Unit (ReLU) activation function is then
applied to facilitate the detection of complex patterns indica-
tive of CAD. Finally, layer normalisation is used to ensure
promoting convergence and enhancing the model’s ability to
discern relevant CAD patterns in the ECG data. The layer
normalisation can be computed via:

yi = γ

(
xi − µ√
σ2 + ϵ

)
+ β (4)

where yi represents the output signal of the normalisation layer
for the i-th position. Learnable parameters denoted by γ and
β, respectively. xi indicates the input signal at i-th position.
µ represents the average of the input signal. σ2 denotes the
variability or dispersion of ECG features, where ϵ would
be a small constant added to the denominator for numerical
stability, ensuring that the denominator is never zero or too
close to zero during computations.

D. Optimisation

The model is trained using binary cross-entropy loss, the
Adam optimiser, ReLU and Softmax activation functions. The
hyperparameters employed during model training, including
learning rate, batch size, and number of epochs, are provided
in Table I. A binary cross-entropy (BCE) loss function is
employed for CAD and non-CAD classification purposes due
to its effectiveness in handling binary classification tasks:

BCE = − 1

N

N∑
i=1

(yi log(pi) + (1− yi) log(1− pi)) (5)

where N represents the total number of samples contained
within the respective ECG segment. yi denotes the actual
label assigned to ECG signals i, where yi ∈ {0, 1}. yi =
0 corresponds to a non-CAD case, indicating the absence
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TABLE I: Hyperparameters used for model training

Hyperparameter Value

Learning Rate 0.0001
Batch Size 32
Number of Epochs 50
Optimiser Adam
Loss Function Binary Cross-Entropy
Hidden Layer Activation ReLu
Output Layer Activation Softmax

of CAD features within ECG signal i. Conversely, yi = 1
indicates a CAD case, signifying the presence of relevant CAD
characteristics in ECG signal i. pi denotes the anticipated
probability that ECG signal i is associated with class 1. It
assists the model in determining the accuracy of its predic-
tions, thereby facilitating adjustments to enhance its predictive
capability to align more closely with the actual labels.

Adam optimiser was utilised to enhance the efficacy of
training our CADNet, employing a learning rate of 0.0001. Its
capability to dynamically adjust learning rates for individual
parameters ensures proficient optimisation, accommodating
the nuanced gradients inherent within ECG data.

ReLu activation function, a key component of convolutional
layers due to its simplicity and effectiveness, is presented via:

ReLU(x) = max(0, x) (6)

where an ECG input signal represented by a vector x =
[x1, x2, . . . , xn]. ReLU transforms negative inputs to zero
while preserving positive inputs, rendering it computationally
efficient and ensuring differentiability across its domain, ex-
cept at zero. This capability facilitates the network in capturing
intricate patterns and features inherent in ECG data.

III. EXPERIMENTAL RESULTS

Extensive experiments were conducted to evaluate the per-
formance of the proposed model. A machine equipped with
an Apple M2 Max processor and 32 GB of unified memory
was used to run all the experiments. The implementation was
carried out using Python 3.9.6. We also provide comparative
analyses with classical machine learning algorithms, existing
DL-based models, and well-known lightweight models. Table
I summarises the hyperparameters used in our experiments.

A. Performance metrics

In this study, standard classification metrics were employed,
namely accuracy (Acc), precision (Ppr), Sensitivity (Sen),
Specificity (Spr), and F1 Score (F1) for evaluating the clas-
sification performance. These metrics were explicitly defined
as follows:

Acc =
TP + TN

TP + TN + FP + FN
(7)

Ppr =
TP

TP + FP
(8)

Sen =
TP

TP + FN
(9)

Spr =
TN

TN + FP
(10)

F1 =
2 × Sen × Ppr

Sen + Ppr
(11)

where True Positives (TP) are the CAD cases that the model
correctly identifies as CAD, True Negatives (TN), are the non-
CAD cases correctly identified as non-CAD, False Positives
(FP) are the non-CAD cases mistakenly identified as CAD, and
False Negatives (FN) are the CAD cases mistakenly identified
as non-CAD.

Furthermore, Area Under Curve (AUC) was utilised to
quantify the model’s ability to differentiate between CAD and
non-CAD cases as shown in (12).

AUC =

n−1∑
i=1

1

2
· (FPRi+1 − FPRi) · (TPRi + TPRi+1) (12)

where:
FPR =

FP
FP + TN

(13)

and FPRi signifies the percentage of cases without CAD that
are inaccurately classified as having CAD at the ith threshold.
TPRi (Sen) represents the proportion of cases with CAD that
are correctly identified as having CAD at the ith threshold.
n is the total number of thresholds. FPRi+1 − FPRi is the
difference in the proportion of cases without CAD that are
incorrectly identified as having CAD between two consecutive
thresholds. TPRi+1 − TPRi demonstrates the total proportion
of individuals with CAD correctly identified as having CAD
at the two consecutive thresholds.

Additionally, t-distributed Stochastic Neighbour Embedding
(t-SNE) analysis is carried out to visualise high-dimensional
feature representations in a two-dimensional space, offering
insights into the ability of each key module within the CADNet
model to differentiate between classes. The t-SNE equation is
defined as follows:

KL(P ∥ Q) =
∑
i

∑
j ̸=i

pij log
pij
qij

(14)

where pij and qij denote the joint probabilities of a pair of
ECG data points, i and j, in the high-dimensional feature space
and the corresponding low-dimensional space, respectively.

B. Ablation study
Table II provides an ablation study to systematically evalu-

ate the effectiveness of different developments we applied to
the baseline 1D-CNN to finally propose the CADNet model.
As found from Table II, the baseline 1D-CNN model achieved
a high accuracy of 99.3%, requiring approximately 8 million
trainable parameters, a size of 32,190 KB, and a runtime of
854.8449 seconds. This highlights its substantial complexity,
runtime demands, and storage and computational require-
ments, making it computationally intensive and unsuitable for
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TABLE II: Ablation analysis among the baseline 1D-CNN model and different layers of the proposed CADNet.

Model Architecture Trainable params Size Acc (%) Run time (s)

Baseline 1D-CNN 8,439,426 32.19 MB 99.3 854.8449
Feature Encoding layer 8,552 33.41 KB 97.8 5.0911
Feature Encoding layer + Compact Pooling layer 2,586 10.10 KB 98.5 8.3467
CADNet: Feature Encoding layer + Compact Pooling layer + Dropout 2,586 10.10 KB 99.3 10.0856

resource-constrained environments, such as wearable devices
or real-time monitoring systems. To address this limitation,
we developed a lightweight model through a feature encoding
layer. This new architecture reduces the trainable parameters
to 8,552, with a size of 33.41 KB, while reducing the accuracy
to 97.8% (Table II). This suggests that the feature encoding
layer could significantly lower parameters at a price of a
slight reduction in accuracy compared to the baseline 1D-
CNN. To further improve the model performance, the feature
encoding layer and compact pooling were integrated to attempt
a further reduction in the number of trainable parameters
while maintaining accuracy. The integration of these two
layers successfully reduced the number of trainable parameters
and size (Table II). We have implemented several robust
regularisation techniques in our proposed CADNet architecture
to avoid overfitting. Specifically, we have employed:

• Dropout tuning: We have incorporated dropout layers
within our model architecture. By randomly deactivating
neurons during training, these layers reduce the model’s
dependency on any single feature, thereby enhancing its
ability to generalise to unseen data.

• Early stopping: To further mitigate overfitting, we applied
an early stopping mechanism. Training is terminated if
no improvement in the validation loss is observed over
eight consecutive epochs. This prevents the model from
training excessively on the training data and helps in
avoiding overfitting.

• Model efficiency: As detailed in Table II, CADNet fea-
tures a minimal number of trainable parameters and a
compact storage size, which naturally limits the model’s
capacity to overfit. Despite these constraints, our model
achieved an accuracy of 99.3% and maintained a runtime
of 10.0856 seconds, making it highly suitable for real-
time CAD diagnosis in devices with limited computa-
tional resources.

As a result, the model becomes less sensitive to noise in
the training set, enabling it to better generalise to unseen
samples. The proposed CADNet (Table II) ultimately featured
a minimal number of trainable parameters and compact storage
size, while maintaining a high level of accuracy at 99.3%
with a shortest runtime of 10.0856 seconds, making it suitable
for real-time CAD diagnosis. This significant improvement
ensures its feasibility for devices with limited computational
resources, bridging the gap between high performance and
practical applicability.

C. Computational analysis

Figure 5 indicates the impact of each proposed architecture
in reducing the number of trainable parameters. The baseline

model was able to achieve an overall classification accuracy of
99.3%. However, the number of trainable parameters remains
notably high, indicating significant computational demands.
It can be observed that as the proposed feature encoding,
compact pooling, and dropout layers are successively added,
the number of trainable parameters decreases from approx-
imately 8 million to 8,552, 2,586, and 2,586, respectively.
Remarkably, even as the model becomes more streamlined
with fewer parameters, its performance remains consistently
high, maintaining high accuracy. This observation underscores
the effectiveness of the proposed techniques in optimising
the model’s complexity without compromising its predictive
capability.

Fig. 5: Comparison of parameter meter analysis between the
established CNN model and our proposed lightweight model.
The chart illustrates the key metrics derived from the analysis,
showcasing the efficiency and effectiveness of our proposed
model in terms of parameter utilisation.

D. Comparative study

Table III illustrates a comparison among different traditional
ML-based, DL-based network and lightweight network archi-
tectures. Additionally, it highlights differences in model size
and runtime across various architectures, providing insights
into their computational efficiency and potential suitability
for resource-constrained environments. The models are eval-
uated based on trainable parameters, file size, runtime and
performance metrics including Acc, AUC, and F1 score.
The classical ML-based methods applied to our subset in-
clude SVM, Gaussian Naive Bayes, K-Means, KNN, and
Logistic Regression. The various DL-based models we com-
pared include LSTM, CNN-LSTM, RNN, and a baseline 1D-
CNN. Moreover, well-known lightweight networks, including
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TABLE III: Comparative analysis of traditional ML-based, DL-based and lightweight networks utilising ten-fold cross-validation.

Model Architecture Trainable params Size (KB) Acc (%) AUC (%) F1 score (%) Runtime (s) Inference time(ms)

SVM 0 38.72 83.5 82.5 83.1 0.7087 0.0527
Gaussian Naive Bayes 0 8.41 92.4 98.7 92.4 0.0039 0.0419
KNN 0 353.66 93.9 95.7 93.9 0.0030 1.0548
K-Means 0 5.24 75.0 79.1 74.5 1.1976 0.1046
Logistic Regression 251 2.68 84.8 82.1 84.7 0.0085 0.0272
LSTM [48] 51,102 199.62 95.5 96.0 95.4 85.7291 0.2998
CNN-LSTM [48] 63,630 248.55 97.0 97.0 96.9 49.6258 3.7010
RNN [49] 232,658 908.82 96.9 96.3 96.0 226.0266 31.4683
Baseline 1D CNN [50] 8,439,426 32,190 99.3 99.0 98.5 854.8449 12.8933
SqueezeNet 354,370 1,401.85 54.5 55.0 39.7 191.7461 0.6807
EfficientNetB0 7,003,266 27,636.79 97.0 99.1 96.6 2,081.4195 186.4941
1D-MobileNetV1 3,167,554 12,392.10 49.0 51.9 32.8 1,475.6756 23.7306
ShuffleNetV1 753,578 3,062.25 48.5 44.8 44.5 106.2833 2.1184
CADNet 2,586 10.10 99.3 99.0 99.0 10.0856 0.3250

SqueezeNet, MobileNet, EfficientNet and ShuffleNet, are em-
ployed to evaluate performance on our subset, alongside our
CADNet model. MobileNetV1 was modified to process one-
dimensional ECG signals by replacing its two-dimensional
convolutional layers with one-dimensional operations. Among
the classical ML-based models, Gaussian Naive Bayes and
Logistic Regression are highly efficient, with small sizes of
8.41 KB and 2.68 KB, minimal or no trainable parameters,
and very low runtimes of 0.0039 and 0.0085 seconds, making
them suitable for resource-constrained environments. Although
KNN is relatively large at 353.66 KB and has no trainable
parameters, it achieves a quick runtime of 0.0030 seconds. In
contrast, K-Means, the smallest model at 5.24 KB, has a longer
runtime of 1.1976 seconds, reflecting trade-offs between mem-
ory efficiency and computational speed across ML-based ar-
chitectures. The KNN and LSTM models achieve the highest
accuracy, at 93.9% and 95.5%, respectively. Gaussian Naive
Bayes at 92.4% and Logistic Regression at 84.8% provide a
favourable balance of accuracy and efficiency. Among the ML-
based models, K-Means, with the lowest accuracy at 75.0%,
demonstrates limited predictive capability. The baseline 1D-
CNN exhibits the highest number of trainable parameters
and the longest runtime among DL-based models, totalling
8,439,426 parameters and 854.844 seconds, which signifies the
complexity of this model. Conversely, our CADNet stands out
for its notably lighter parameter count, comprising only 2,586
parameters, thereby hinting at a more streamlined DL-based
architectural design. Furthermore, LSTM, CNN-LSTM, and
RNN also exhibit lower trainable parameter counts compared
to the baseline 1D-CNN model. The sizes of the models
display significant variability, with the baseline 1D-CNN being
the largest, totalling 32,190 KB. In contrast, the CADNet is
considerably smaller, occupying only 10.10 KB, while LSTM,
CNN-LSTM, and RNN contain 199.62, 248.55, and 908.82
KB, respectively. The corresponding runtimes for these models
are 85.7291 seconds for LSTM, 49.6258 seconds for CNN-
LSTM, 226.0266 seconds for RNN, and 10.0856 seconds for
the CADNet model, making our CADNet model particularly
suitable for deployment in resource-constrained environments
where memory limitations are a concern, as it is both signifi-
cantly smaller in size and faster than other DL-based models.
LSTM achieves an accuracy of 95.5%, which, while com-

mendable, represents the lowest performance within the group.
Conversely, the CNN-LSTM model, integrating convolutional
layers with LSTM layers, demonstrates a notable enhancement
in accuracy, achieving 97.0%. RNN showcases an accuracy
closely approximating that of the CNN-LSTM, at 96.9%. Both
the baseline 1D-CNN and the CADNet achieve the highest
accuracy at 99.3%, significantly surpassing the other DL-based
models. This heightened level of accuracy suggests that both
models excel in feature detection and classification, likely
attributed to the robust capability of CNN in extracting crucial
features indicative of CAD from ECG data. Additionally, this
suggests that despite its simplicity, the CADNet does not
compromise on predictive performance. To further demon-
strate the suitability of the CADNet model for deployment
in resource-limited environments, a well-known lightweight
model is evaluated. The CADNet model exhibits only 2,586
trainable parameters and a runtime of 10.0856 seconds, achiev-
ing the highest accuracy at 99.3%. In contrast, EfficientNetB0,
with over 7 million trainable parameters, achieves a high
accuracy of 97% but requires a considerably longer runtime
of 2,081.4195 seconds, highlighting its substantial demand
for computational resources. SqueezeNet, 1D-MobileNetV1,
and ShuffleNetV1, with 354,370, 3,167,554, and 753,578
trainable parameters, respectively, exhibit lower accuracy and
extended runtimes of 106.2833 seconds, 1,475.6756 seconds,
and 106.2833 seconds. These results highlight the CADNet
model’s advantage in achieving high performance with mini-
mal computational resources.

To further evaluate computational efficiency, inference time
is assessed to evaluate the suitability of each model for de-
ployment in real-time and resource-constrained environments.
The results indicate that traditional machine learning methods,
including SVM, Gaussian Naive Bayes, Logistic Regression,
and KNN, achieve the lowest inference times. Among ML-
based methods, Gaussian Naive Bayes is the most efficient, re-
quiring only 0.0419 ms per ECG signal. KNN is comparatively
slower, averaging 1.0548 ms per ECG signal. Among DL-
based models, the CNN-LSTM shows a good balance between
prediction accuracy and speed, with an average inference time
of 3.7010 ms per ECG signal. In comparison, the RNN takes
longer, averaging 31.4683 ms per ECG signal, due to the
extra processing required for handling sequences and its larger
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number of trainable parameters. Lightweight DL-based archi-
tectures, such as SqueezeNet and ShuffleNet, show relatively
fast inference times. In comparison, more complex models,
including EfficientNetB0 and 1D-MobileNetV1, require much
longer, with inference times of 186.4941 ms and 23.7306 ms
per ECG signal, respectively. The proposed CADNet model
achieves an inference time of only 0.3250 ms per ECG signal,
while using just 2,586 trainable parameters, and still maintains
a high level of classification accuracy. These results suggest
that CADNet is well-suited for use in real-time or resource-
constrained environments.

Figure 6 illustrates the comparative performance analysis
between ML-based, DL-based, lightweight algorithms and our
proposed lightweight model on CAD classification presented
in Table III, including the CADNet model. Gaussian Naive
Bayes, KNN, CNN-LSTM, RNN, and the CADNet model
achieve high AUC and F1 values, demonstrating strong class
separation and balanced precision-recall performance. With an
AUC and F1 score of 99%, the CADNet model emerges as
the top performer, making it highly suitable for CAD diagnosis
requiring exceptional reliability and accuracy. SVM, K-Means,
and Logistic Regression display moderate performance, with
slightly lower AUC and F1 values, suggesting fair but less
consistent precision-recall balance. In contrast, SqueezeNet,
EfficientNetB0, MobileNetB0, and ShuffleNetV1 exhibit low
AUC and F1 scores, indicating limited effectiveness in both
class distinction and classification balance.

E. Generalisation and interpretability

Table IV illustrates the CADNet model trained using the
PTB-XL database with a subset of 400 ECG signals: 200 CAD
and 200 non-CAD. The model demonstrates high classification
performance within the training dataset and robust generalis-
ability across unseen subsets. Achieving a training accuracy
of 95.90% and a test accuracy of 92.05% on the PTB-XL
dataset, the model exhibits reliable learning and validation
performance, as indicated by a precision of 96.35%, recall of
95.65%, and an F1 score of 96%. These results demonstrate
the model’s effectiveness in accurately identifying CAD and
non-CAD cases. To further assess the model’s generalisability,
we conducted an initial validation on a subset of 200 ECG
signals: 100 non-CAD signals from the Fantasia database and
100 CAD signals from the MIMIC III database. The model
achieved a test accuracy of 87%, with a perfect recall of 100%,
though with a slight reduction in precision to 74% on this
validation set. The resulting F1 score of 85.06% indicates
stable performance. Subsequently, we conducted a second
validation on a subset of 200 ECG signals: 100 non-CAD
ECG signals from the Fantasia database and 100 CAD ECG
signals from the St. Petersburg database. The model achieved
a test accuracy of 88%, recall of 100%, precision of 76%,
and an F1 score of 86.36%. While the model demonstrates
robust sensitivity for CAD detection across diverse datasets,
the observed reduction in precision on validation subsets
suggests a sensitivity-specificity trade-off that could benefit
from further optimisation to enhance specificity and reduce
false positives. This performance underscores the potential

of the CADNet model for CAD diagnosis, with scope for
refinement to improve adaptability across varied ECG data
sources.

Table V presents the CADNet model trained on ECG signals
from the PTB-XL, MIMIC-III, and Fantasia databases, using a
subset comprising 100 ECG signals from each database. The
model achieved a training accuracy of 99.5% and a testing
accuracy of 95.96%, demonstrating reliable performance in
classifying CAD and non-CAD cases. The high precision of
99.29%, together with a perfect recall of 100%, suggests that
the model accurately identifies CAD cases, with minimal risk
of overlooking true positives, as reflected in an F1 score of
99.64%. This level of performance indicates that the model
is highly proficient in distinguishing between CAD and non-
CAD ECG signals, ensuring a balanced approach between
sensitivity and specificity. The first validation subset consisted
of 100 non-CAD ECG signals from the Fantasia database and
100 non-CAD ECG signals from the MIMIC-III database.
The model’s robustness was demonstrated, achieving a test
accuracy of 99%. Precision slightly decreased to 98%, while
recall remained perfect at 100%, resulting in an F1 score of
98.99%. This slight reduction in precision, alongside perfect
recall, suggests occasional misclassification of non-CAD cases
as CAD but consistent identification of all true CAD cases.
Subsequently, the second validation subset was formed with
100 non-CAD ECG signals from the Fantasia database and
100 CAD ECG signals from the St. Petersburg database. The
model continued to demonstrate high performance, achieving
a test accuracy of 98.49%, with precision reaching 100% and
recall at 95.08%, resulting in an F1 score of 97.48%. This
level of precision indicates that all identified CAD cases are
true positives.

To enhance interpretability, t-SNE analysis was performed
to visualise high-dimensional data and examine the role of
two key modules: feature encoding and compact pooling
layers in distinguishing between the two classes as shown in
Figure 7. ECG signals exhibit significant overlap in Figure 7a,
indicating that the feature encoding layer is beginning to learn
distinguishing features between the two classes. Although
some overlap remains, a clearer boundary begins to emerge
between non-CAD and CAD ECG signals, suggesting that the
model is progressively capturing patterns that facilitate class
separation as shown in Figure 7b. The compact pooling layer
achieves near-complete separation of the two classes in the
feature space, as shown in Figure 7c. This indicates that the
model has effectively learned to differentiate between non-
CAD and CAD samples. The distinct separation in this layer
underscores that the features learned in this layer are highly
effective at distinguishing between classes.

To evaluate the classification accuracy of the proposed
model across diverse populations and assess its reliability for
real-world clinical use, we validated the model trained in Table
V across different age groups. ECG signals from the Fantasia
and PTB-XL databases were used for this assessment, as pre-
sented in Table VI. As seen from this table, CADNet achieves
the highest accuracy in the 40–50 age group at 98.83% and
the lowest in the over 60 age group at 97.54%. Although the
overall average accuracy is high at 98.23%, minor variations
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Fig. 6: Performance comparison of ML-based, DL-based, lightweight models, and our CADNet model using AUC and F1
metrics to assess class distinction and predictive effectiveness.

TABLE IV: Performance of the CADNet Model Trained with PTB-XL database.

Metric(s) Train Accuracy Test Accuracy Precision Recall F1 Score

Trained with PTB-XL 0.9590 0.9205 0.9635 0.9565 0.9600
Test on Fantasia and MIMIC III - 0.8700 0.7400 1.0000 0.8506
Test on Fantasia and St Peterburg - 0.8800 0.7600 1.0000 0.8636

TABLE V: Performance of the CADNet Model Trained with PTB-XL, MIMIC III and Fantasia databases.

Metric(s) Train Accuracy Test Accuracy Precision Recall F1 Score

Trained with Fantasia, MIMIC III and PTB-XL 0.9950 0.9596 0.9929 1.0000 0.9964
Test on Fantasia and MIMIC III - 0.9900 0.9800 1.0000 0.9899
Test on Fantasia and St Peterburg - 0.9849 1.0000 0.9508 0.9748

(a) T-SNE of original ECG signals (b) T-SNE of Feature Encoding Layer (c) T-SNE of Compact Pooling layer

Fig. 7: T-SNE visualisation of the feature space, with class labels: 0 (Normal) and 1 (CAD).

are evident across different age groups. Notably, performance
declines slightly in both the 10–20 and over 60 age groups,
suggesting that the model may be slightly less effective at
generalising to these demographics. This trend could reflect
underlying physiological variations in ECG signals associated
with age.

IV. LIMITATIONS AND FUTURE DIRECTIONS

One of the main limitations in CAD diagnosis using ECG
signals is the limited availability of datasets, primarily due to
the absence of clear medical indicators of CAD, such as single-
vessel or multi-vessel disease. After a thorough exploration of
publicly available datasets, we identified MIMIC-III, St. Pe-
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TABLE VI: Test Accuracy Across Age Groups (Fantasia and
PTB-XL Databases).

Age Group (Years) Accuracy (%)

10 – 20 97.87
20 – 30 98.35
30 – 40 98.49
40 – 50 98.83
50 – 60 98.27
Over 60 97.54

Average 98.23

tersburg, and PTB-XL as suitable and comprehensive sources
for evaluation. In future work, we aim to expand our research
by classifying different types of CAD within the PTB-XL
dataset. However, the results presented in this study, evaluated
across four distinct datasets, provide strong validation of the
model’s effectiveness and generalizability.

Although the CADNet achieved high accuracy on multiple
public datasets, these may not fully reflect real-world clinical
variability. Factors such as device differences, recording con-
ditions, and patient diversity can affect performance. While
we considered this by testing across different age groups,
further validation in real clinical settings is needed to confirm
generalisability. Future work should consider evaluation on
prospective datasets rather than relying solely on existing
public datasets.

A promising direction for future research is the integration
of explainable AI methods, such as ST-CNN-GAP-5 [51], to
enhance the interpretability of CADNet’s decisions. This ap-
proach would facilitate a deeper understanding of the model’s
reasoning and enable the generation of automated reports for
clinical follow-ups.

While we focused on the superclass-level diagnostic cat-
egories to be able to use all four datasets simultaneously,
analysing model performance at the subclass level could offer
deeper insights into the model’s discriminative ability across
various CAD subtypes. Hence, subclass-level evaluation is a
promising extension for future work to refine the model’s
clinical applicability further.

Additionally, further studies could explore the use of mul-
tiple ECG leads to gain deeper insights into CAD-related
ECG patterns. We also plan to deploy CADNet on resource-
constrained devices, such as the STM32F469I-DISCO, to
assess its performance in limited environments, focusing on
power consumption and real-time runtime efficiency.

V. CONCLUSION

Our study introduced the CADNet model to differentiate
between cases of CAD and non-CAD, to reduce the complex-
ity of the model and facilitate its deployment on resource-
constrained devices. Through the utilisation of data acquired
from PhysioNet, our findings demonstrated the model’s ca-
pability to independently classify these binary classes while
maintaining its simplicity. The performance of the CADNet

which averaged 99.3% accuracy with 2,586 trainable param-
eters, surpassed that of other classical machine learning, DL-
based and lightweight models, highlighting the reduction in
computational resources or complexity without compromising
predictive performance. The code used to implement the
proposed method is available from the corresponding author
upon reasonable request.
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