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A B S T R A C T

The Lotka–Volterra predator–prey system for dynamic sea turtle population is solved using
r-PINN-Adam method, a novel approach which combines Physics-Informed Neural Network
(PINN) with restarting strategy. This method allows us to monitor the loss function values of
PINN such that when there is no progress made, we stop the process and pick a good value
to be used in the next process. Subsequently, the training time decreases and the accuracy
increases. The numerical solutions are compared to the popular Runge–Kutta method in terms of
correctness which presented graphically. Simulation results also displayed in terms of trainable
parameters and optimal loss function performance. The research highlights the robustness and
superiority of the proposed method, positioning it as a valuable tool for sea turtle conservation
efforts.

. Introduction

Sea turtles are a group of reptiles that have adapted to life in the ocean. There are seven species of sea turtles, all of which are
lassified as endangered or critically endangered. They can be found in all of the world’s oceans, from the warm tropical waters of
he Caribbean to the cold waters of the Arctic. Sea turtles are known for their distinctive shells, which are composed of two parts:
he carapace (upper shell) and the plastron (lower shell). The shell provides protection from predators and helps regulate the turtle’s
ody temperature. Sea turtles are also known for their long migrations, which can take them thousands of miles across the ocean.
hey use the Earth’s magnetic field to navigate and can return to the same beach where they were born to lay their eggs.

Sea turtles face several natural predators during their life cycle [1,2]. The specific predators can vary depending on the species
nd the location, but some common ones include:

1. Predatory birds such as seagulls and frigate birds that prey on hatchlings as they emerge from their nests on the beach.
2. Crabs and other small predators that can dig into nests and consume eggs.
3. Sharks, particularly tiger sharks and great white sharks, are known to attack adult sea turtles. They often target the turtles

as they swim near the surface of the water.
4. Saltwater crocodiles in some areas can also prey on sea turtles.
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5. In some places, large fish such as groupers and barracudas can also prey on sea turtles.
6. In addition, some species of sea turtles, such as the green sea turtle, are also preyed upon by large mammals such as jaguars

and coyotes when they come to shore to lay their eggs.

Sea turtles have a complex life cycle that involves distinct stages of development. The stage structure of sea turtles can be divided
nto two main stages: the pelagic stage and the benthic stage. During the pelagic stage, sea turtle hatchlings emerge from their nests
n the beach and enter the open ocean. They spend several years swimming in the ocean, often traveling thousands of miles and
acing many hazards such as predators and ocean currents. As they grow and mature, sea turtles undergo a metamorphosis and
ransition to the benthic stage. This is when they return to coastal waters and habitats such as seagrass beds and coral reefs. During
his stage, sea turtles continue to grow and mature, and eventually reach sexual maturity. Within the benthic stage, there are also
ifferent life stages that sea turtles go through. For example, juvenile sea turtles are different from adults in terms of their habitat and
eeding preferences. Green sea turtles, for example, undergo an herbivorous shift as they grow and become adults, while hawksbill
urtles remain carnivorous throughout their life. The stage structure of sea turtles is important to consider in conservation efforts,
s threats and impacts to sea turtles can vary depending on the life stage. For example, hatchlings are vulnerable to predation on
esting beaches, while adult turtles face threats such as bycatch in fishing gear and habitat destruction. Understanding the different
ife stages of sea turtles is crucial for developing effective conservation strategies to protect them throughout their life cycle [3,4].

The mathematical model of the prey–predator system provides a useful tool for studying the population dynamics of sea turtles.
ts solutions can provide valuable insights into the mechanisms that govern the growth and decline of sea turtle populations. The
nteraction between predators and prey in any environment was first introduced by Lotka and Volterra in 1926 [5]. The Lotka–
olterra equations can describe how the populations of predators and sea turtles change over time, based on a set of parameters
uch as the growth rate of the sea turtles, the efficiency of the predator in catching sea turtles, and the death rates of both predators
nd sea turtles. Several researchers have proposed a prey–predator system that incorporates the stage-structured life of sea turtles,
ecognizing the significance of studying their various life phases. Khairuddin et al. [6], for instance, included the eggs laid in a nest
nd the hatchlings or baby sea turtles in their model, and also accounted for natural predation by marine predators. On the other
and, Wei et al. [7] considered both the egg and adult stages, and also determined the sex of the embryo.

The dynamics of predator–prey systems can be quite complex, and analytical solutions are often difficult or even impossible to
btain either because of not yet able to find or because it cannot be expressed by means of elementary functions [8,9]. In such cases,
umerical methods provide an effective alternative for solving these systems. One common approach is to use classical numerical
ethods, such as the Euler or Runge–Kutta methods, to approximate the solutions to the differential equations governing the system.
he Euler method is used in [10] to explore the use of stochastic processes in the extinction behavior of the interacting populations
f the Lotka–Volterra model. Paul et al. [11] used the Runge–Kutta–Fehlberg method (RKF) in predator–prey systems with complex
ynamic characteristics and compared it with the Laplace Adomian Decomposition method (LADM), resulting in the finding that
KF is a more accurate and reliable numerical technique than LADM in the models. In another approach, Du et al. [12] used the
ine function interpolation collocation method for solving a class of predator–prey systems with complex dynamic characteristics.
owever, classical methods often rely on the discretization of the domain, which can be computationally expensive, especially when
ealing with high-dimensional problems or problems with complex geometries [13,14]. Furthermore, these classical methods are
ot suitable for real-time applications and can be time-consuming to adapt to new applications, particularly for those who are not
xperts in numerical mathematics and computational modeling [15].

Recently, Artificial Neural Networks (ANNs) have emerged as an alternative approach to problem-solving, demonstrating
emarkable success in various fields, including differential equations (DEs). ANNs have been utilized to solve both ordinary (ODEs)
nd partial differential equations (PDEs), taking into account trial solutions that satisfy the initial and boundary conditions [16].
urthermore, ANNs can be integrated with any optimization method to enhance the results. For instance, Malek and Beidokhti [17]
ombined ANNs with the Nelder–Mead simplex method to find solutions for high-order PDEs. Lastly, an investigation of a three-
pecies food chain via the Lotka–Volterra model using Gudermannian neural networks (GNNs) combined with a Genetic Algorithm
nd Active-Set Approach (GA-ASA) was conducted and compared with the Runge–Kutta method [18]. The results showed good
erformance across different performance metrics.

In this paper, we investigate numerical solutions for the population dynamics of sea turtles using a method known as the Physics-
nformed Neural Network (PINN) [19]. PINN is an ANN-based method that incorporates the physical laws of the model into the loss
unction as a regularization term, thereby enhancing the performance of the ANN. Currently, PINN is attracting great attention from
esearchers and is being applied in various fields of research. Several modifications to the original PINN method have been proposed
o enhance its performance. Jagtap et al. introduced both globally [20] and locally [21] adaptive activation functions in PINN.
hese functions have demonstrated better learning capabilities compared to the traditional fixed activation function. McClenny and
raga-Neto modified the loss function by adding adaptive weight, resulting in the self-adaptive PINN [22]. This method was further

mproved by Pratama et al. who used a hybrid of the Genetic Algorithm (GA) and the L-BFGS method as an optimizer instead of
dam. This resulted in improved accuracy for nine different Partial Differential Equations (PDE) [23].

Moreover, we have modified PINN by introducing a restarting process. This approach monitors the loss value during the training
rocess and automatically stops the iteration if there is no further improvement in the loss function. It then restarts the iteration
rom the beginning, using the best trainable parameters from the previous cycle in the next cycle. We combined this approach with
he Adam optimizer to form r-PINN-Adam. The effectiveness of this technique has been demonstrated by applying it to solve the PDE
or thermal analysis, studying the temperature behavior surrounding breast cancer [24]. This technique can increase the model’s
ccuracy and significantly reduce wasted time compared to the original PINN, which employs a fixed iteration. The salient features
2

f the paper are summarized as follows:
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Fig. 1. The flow diagram for the relationship between eggs, hatchlings, and marine predator.

1. A mathematical model for the population dynamics of sea turtles has been formulated and analyzed. This model studies the
influence of variations in the rate of eggs laid by a mother turtle (𝑟), the conversion rate from eggs to hatchlings (𝑔), the
predation rate by marine predators (𝑏), and the successful rate of eggs that hatch (𝑤).

2. A novel r-PINN is used to construct a model of approximate solutions for the population dynamics system of the sea turtle
model. A loss function, based on mean square errors (MSE), is designed and monitored to update the trainable parameters
(weights and biases) with the help of the optimization mechanism of the Adam optimizer. Additionally, to evaluate the
performance of our proposed algorithm, we have also designed another loss function based on mean absolute errors (MAE)
and root mean squared errors (RMSE).

3. The numerical results obtained from the proposed r-PINN-Adam method have been compared with the fourth-order of
Runge–Kutta method (RK4) to validate the accuracy of the designed approach.

4. We aim to design several proposed actions related to our findings and the impact of variations in the parameters 𝑟, 𝑔, 𝑏, and
𝑤.

5. The approximate solutions, trainable parameters, computational time, and performance of the loss function obtained by the
r-PINN-Adam algorithm for the population dynamics system of sea turtles are demonstrated through various graphs and
tables. These visualizations highlight the dominance and robustness of the proposed method in solving real-world problems.

Overall, this study is organized as follows. Section 2 presents the mathematical modeling of the population dynamics of sea
turtles, using the Lotka–Volterra equation. Section 3 outlines the numerical implementation of the r-PINN-Adam approach for solving
the population dynamics of sea turtles. Section 4 discusses the results of variations in the rate of eggs laid by a mother turtle (𝑟), the
conversion rate from eggs to hatchlings (𝑔), the predation rate by marine predators (𝑏), and the successful rate of eggs that hatch
(𝑤). Finally, Section 5 concludes by summarizing the findings.

2. Derivation of mathematical model of population dynamics

In this research, we consider a mathematical model proposed by Khairuddin et al. [6]. To study the dynamics of the sea turtle
population, a prey–predator model has been constructed with three compartments: (1) the number of eggs laid in the nest (denoted
by 𝑥), (2) the number of hatchlings (denoted by 𝑦), and (3) the number of marine predators (denoted by 𝑧). Before constructing the
model, the following assumptions were considered:

1. The population of sea turtle eggs increases by its natural growth rate 𝑟. It is assumed that the number of eggs evolved follows
the logistic growth, i.e., 𝑟𝑥(1− 𝑥

𝐾 ) since this is more biologically reasonable compared to the exponential growth curve. These
numbers are limited by the maximum carrying capacity 𝐾.

2. It is assumed that the number of eggs may decrease due to a hatch failure rate (𝑎). The eggs that successfully hatch were
then transformed into hatchlings at a rate 𝑤.

3. The hatchling population (𝑦) grows as a result of eggs successfully hatching. The transition from eggs to hatchlings involves
an energy conversion process with a rate 𝑔.

4. The number of hatchlings may decrease due to the predation rate 𝑏. On the other hand, the hatchlings that managed to escape
from the predator are converted into adult stage with rate 𝑐.

5. The marine predator increases due to its consumption on the hatchlings. This is because by consuming the hatchlings, energy
will be transferred from the hatchlings to the predator (with rate 𝑓 ). Additionally, the marine predator population may
decrease due to its natural death rate 𝑠.

Therefore, with the above assumptions, the relationship between eggs, hatchlings, and the marine predator can be sketched as in
Fig. 1.
3
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Table 1
The definition of all parameters in model Eq. (1).
Parameters Description Values References

𝑟 Rate of eggs laid by a mother turtle 1.3 [25]
𝐾 Carrying capacity for eggs in the nest 700 [25]
𝑎 Failing rate of eggs to hatch 0.2 [26]
𝑤 Successful rate of eggs that hatched 0.53 [27]
𝑐 Survival rate of hatchlingsthat managed to escape from predator 0.001 [28]
𝑏 Predation rate for hatchlings by marine predator 0.015 [29]
𝑔 Conversion rate from eggs to hatchlings 1 [29]
𝑠 Natural death rate for marine predator 0.7 Assumed
𝑓 Energy conversion rate from hatchlingsto marine predator 1 Assumed

Fig. 2. Initial and ODE points in system ODE population dynamic model.

From Fig. 1, a system of ordinary differential equations can be formulated as follows:

𝑑𝑥
𝑑𝑡

= 𝑟𝑥
(

1 − 𝑥
𝐾

)

− 𝑎𝑥 −𝑤𝑥,

𝑑𝑦
𝑑𝑡

= 𝑔𝑤𝑥 − 𝑐𝑦 − 𝑏𝑦𝑧,

𝑑𝑧
𝑑𝑡

= 𝑓𝑏𝑦𝑧 − 𝑠𝑧.

(1)

The description of all parameters is provided in Table 1. The initial conditions are 𝑥(0) ≤ 0, 𝑦(0) ≤ 0, and 𝑧(0) ≤ 0. For the system
to be biologically meaningful, the solutions must always be positive and bounded. We compared our solution with the solutions
obtained by fourth-order Runge–Kutta method (RK4) to validate the correctness and effectiveness of our proposed method.

3. Restarting PINN-Adam for solving population dynamic model

We propose a solution to the prey–predator model defined in Eq. (1), based on the restarting PINN-Adam (r-PINN-Adam) method,
which modifies PINN-Adam with a restarting strategy. This method allows us to find better solutions in a shorter time compared
to the original PINN. Technically, we run the PINN-Adam algorithm for a certain number of iterations, then monitor the loss value
for a few more iterations using earlystopping by Tensorflow. If there is no improvement made during the monitoring, we stop and
select the weights that result in a smaller value of the loss function. These new weights are used for the next cycle. The process is
repeated until it meets the maximum number of cycles. The details of this process are explained in the next section. The procedure
of r-PINN-Adam to solve the model of the dynamical system is also explained in the next section.

3.1. Define the ODE and initial points

The ODE system of population dynamics is based on Eq. (1). To solve it numerically, we divide the domain into some points, 𝑡𝑖,
𝑖 = 0, 1,… , 𝑛, as illustrated in Fig. 2. These points are later divided into training and testing points for the Artificial Neural Network
(ANN) input. The number of training points is usually between 60% and 80% of the total available points.
4
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Fig. 3. ANN with single input (𝑡𝑖), one hidden layer with 𝑚 neurons, and three outputs �̂�(𝑡𝑖; 𝜃), �̂�(𝑡𝑖; 𝜃) and �̂�(𝑡𝑖; 𝜃).

3.2. Define the ANN architecture

As an illustration, suppose we have a three-layered perceptron that takes (𝑡𝑖) as input, has one hidden layer with 𝑚 neurons, and
produces three outputs �̂�(𝑡𝑖; 𝜃), �̂�(𝑡𝑖; 𝜃) and �̂�(𝑡𝑖; 𝜃), which serve as an approximate system for the ODE function. Fig. 3 visualizes this
architecture.

To obtain the numerical solutions of 𝑥(𝑡𝑖), 𝑦(𝑡𝑖) and 𝑧(𝑡𝑖) using the approximate functions �̂�(𝑡𝑖; 𝜃), �̂�(𝑡𝑖; 𝜃) and �̂�(𝑡𝑖; 𝜃), the parameter
𝜃, which consists of weights and biases must be updated to minimize the loss function. In this study, Adam optimizer will be used
to update 𝜃.

3.3. Basic PINN in solving differential equation problem

Generally, the process of using PINN to solve a differential equation model begins by initializing the parameter 𝜃, which forms
a linear combination with the inputs 𝑡𝑖, where 𝑖 = 0,… , 𝑁 . In this case, we employ a random uniform distribution to initiate the 𝜃
from the hidden layer to the output layer. This outcome is subsequently utilized to facilitate the learning process, [30]. The inputs
are then processed in the hidden layer by formula (2) provided below,

ℎ𝑗 = 𝑡𝑖𝑤𝑡,𝑗 + 𝑏𝑗 , 𝑤𝑖𝑡ℎ 𝑗 = 1,… , 𝑚. (2)

where ℎ𝑗 is the 𝑗th neuron from the hidden layer, 𝑤𝑡,𝑗 is the weight that connects the input layer to the hidden layer, and 𝑏𝑗 is the bias.
The activation function used in the hidden layer is crucial in an ANN. In this architecture, the hyperbolic tangent (𝑡𝑎𝑛ℎ) activation
function is employed, as it has been empirically shown to offer a superior approximation compared to alternative functions [31],

𝑓 (ℎ𝑗 ) =
𝑒ℎ𝑗 − 𝑒ℎ𝑗

𝑒ℎ𝑗 + 𝑒ℎ𝑗
. (3)

The next step involves obtaining �̂�(𝑡𝑖; 𝜃), �̂�(𝑡𝑖; 𝜃) and �̂�(𝑡𝑖; 𝜃) through the output layer using the following formula:

�̂�(𝑡𝑖; 𝜃) = 𝛴𝑚
𝑗=1𝑓 (ℎ𝑗 )𝑤ℎ𝑗 ,1,

�̂�(𝑡𝑖; 𝜃) = 𝛴𝑚
𝑗=1𝑓 (ℎ𝑗 )𝑤ℎ𝑗 ,2,

�̂�(𝑡𝑖; 𝜃) = 𝛴𝑚
𝑗=1𝑓 (ℎ𝑗 )𝑤ℎ𝑗 ,3.

(4)

The 𝑘th derivatives of �̂�(𝑡𝑖; 𝜃), �̂�(𝑡𝑖; 𝜃) and �̂�(𝑡𝑖; 𝜃) can be computed using automatic differentiation (AD) as shown in Eq. (5). This
computation is implemented using the open-source deep learning framework, TensorFlow [32].

𝜕𝑘

𝜕𝑡𝑘𝑖
�̂�(𝑡𝑖; 𝜃) = 𝛴𝑚

𝑗=1
𝜕𝑘

𝜕𝑡𝑘𝑖
𝑓 (ℎ𝑗 )𝑤ℎ𝑗 ,1,

𝜕𝑘

𝜕𝑡𝑘𝑖
�̂�(𝑡𝑖; 𝜃) = 𝛴𝑚

𝑗=1
𝜕𝑘

𝜕𝑡𝑘𝑖
𝑓 (ℎ𝑗 )𝑤ℎ𝑗 ,2,

𝜕𝑘
𝑘 �̂�(𝑡𝑖; 𝜃) = 𝛴𝑚

𝑗=1
𝜕𝑘
𝑘 𝑓 (ℎ𝑗 )𝑤ℎ𝑗 ,3.

(5)
5
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The loss function of the basic PINN is expressed as follows:

(𝜃) = 𝑀𝑆𝐸𝑥0 +𝑀𝑆𝐸𝑦0 +𝑀𝑆𝐸𝑧0 +𝑀𝑆𝐸𝑥 +𝑀𝑆𝐸𝑦 +𝑀𝑆𝐸𝑧, (6)

where 𝑀𝑆𝐸𝑥0, 𝑀𝑆𝐸𝑦0, 𝑀𝑆𝐸𝑧0, 𝑀𝑆𝐸𝑥, 𝑀𝑆𝐸𝑦, and 𝑀𝑆𝐸𝑧 are the MSE-based loss function associated with the initial conditions,
as given in Eq. (7).

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑀𝑆𝐸𝑥0 =
[

�̂�(𝑡0; 𝜃) − 𝑥(𝑡0)
]2 ,

𝑀𝑆𝐸𝑦0 =
[

�̂�(𝑡0; 𝜃) − 𝑦(𝑡0)
]2 ,

𝑀𝑆𝐸𝑧0 =
[

�̂�(𝑡0; 𝜃) − 𝑧(𝑡0)
]2 ,

𝑀𝑆𝐸𝑥 = 1
𝑁

∑𝑁
𝑖=1

[

𝜕
𝜕𝑡𝑖

�̂�(𝑡𝑖; 𝜃) − 𝑟�̂�(𝑡𝑖; 𝜃)
(

1 − �̂�(𝑡𝑖;𝜃)
𝐾

)

+ 𝑎�̂�(𝑡𝑖; 𝜃) +𝑤�̂�(𝑡𝑖; 𝜃)
]2

,

𝑀𝑆𝐸𝑦 =
1
𝑁

∑𝑁
𝑖=1

[

𝜕
𝜕𝑡𝑖

�̂�(𝑡𝑖; 𝜃) − 𝑔𝑤�̂�(𝑡𝑖; 𝜃) + 𝑐�̂�(𝑡𝑖; 𝜃) + 𝑏�̂�(𝑡𝑖; 𝜃)�̂�(𝑡𝑖; 𝜃)
]2

,

𝑀𝑆𝐸𝑧 =
1
𝑁

∑𝑁
𝑖=1

[

𝜕
𝜕𝑡𝑖

�̂�(𝑡𝑖; 𝜃) − 𝑓𝑏�̂�(𝑡𝑖; 𝜃)�̂�(𝑡𝑖; 𝜃) + 𝑠�̂�(𝑡𝑖; 𝜃)
]2

,

(7)

where 𝑁 is the total number of sample data points. Moreover, 𝑡0 and 𝑡𝑖 are the initial and ODE points, respectively, which are
randomly distributed in the domain.

The most effective approach to achieving an optimal value for the loss function involves minimizing it towards zero. This is
accomplished by employing the Adam optimizer, which iteratively adjusts the 𝜃 values to converge towards the optimal solution.

3.4. Adam optimizer

In the next stage, the trainable parameter 𝜃 is updated in such a way that it minimizes the loss function by using the Adam
optimizer. The process of updating trainable parameters using this method can be explained using the following equation proposed
by [33].

𝜃𝑙+1 = 𝜃𝑙 −
𝛼𝑙+1𝑚𝑙+1
√

𝑣𝑙+1 + 𝜖
, (8)

where 𝛼𝑙 is the adaptive learning rate, where the default initial value is 𝛼𝑙 = 0.001 and described as follows:

𝛼𝑙+1 = 𝛼𝑙

√

1 − 𝛽1𝑙
1 − 𝛽2𝑙

, (9)

and
𝑚𝑙+1 = 𝛽1𝑚𝑙 + (1 − 𝛽1)∇𝜃(𝜃𝑙),

𝑣𝑙+1 = 𝛽2𝑣𝑙 + (1 − 𝛽2)[∇𝜃(𝜃𝑙)]2.
(10)

Both 𝑚𝑙 and 𝑣𝑙 are initialized by 0, and other parameters are described by the following:
𝑙: iteration (0, 1, 2,…),
𝜃𝑙: vector of trainable parameters in the current iteration.
𝜃 = [𝑤𝑙

𝑡,1,… , 𝑤𝑙
𝑡,𝑚, 𝑏

𝑙
1,… , 𝑏𝑙𝑚, 𝑤

𝑙
ℎ1,1,… , 𝑤𝑙

ℎ𝑚,3],
𝛽1, 𝛽2 ∈ [0, 1): exponential decay rates for moment estimates,
𝜖: very small number to prevent divided by zero,
∇𝜃(𝜃𝑙): the gradient of the loss function regarding the trainable parameters.
The ANN architecture is iteratively refined by employing the Adam optimizer to generate a new 𝜃𝑙+1. The process, defined by

qs. (2)–(10), is repeated until a termination condition is met. This termination condition could be based on reaching a specific
umber of iterations or satisfying a predetermined error threshold between consecutive solutions obtained.

.5. Restarting strategy in algorithm PINN-Adam

Typically, when we execute the PINN-Adam algorithm to solve differential equations (DE), we employ certain stopping criteria
uch as the number of iterations or a specific error value. Unfortunately, these schemes cannot guarantee that the optimal solution
ill be achieved. Moreover, a significant amount of computational time is expended to achieve a small value of the loss function.
restarting strategy is designed to address this issue. Adopt the scheme from [34], we run PINN-Adam for a certain number of

terations, say 100 iterations, and then monitor the movement of the loss function value of the Adam optimizer by early-stopping
echnique by Tensorflow. If the loss value does not decrease in several subsequent iterations, the process will stop and the algorithm
ill automatically restart. This is what we refer to as one cycle of running. In one cycle, we can find the best 𝜃. We use these as the

nput for the next cycle. The cycle process stops once a certain maximum number of cycles is met. We describe the entire process
n the following Fig. 4, and the algorithm of restarting PINN-Adam, or r-PINN-Adam, is presented in Algorithm 1.
6
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Fig. 4. Restarting process of PINN-Adam.

Algorithm 1 r-PINN with Adam optimizer
1: Define a mathematical model system of ODE population dynamic;
2: Define the ODE points (𝑡𝑖), and initial points (𝑡0);
3: Determine the number of training points from 𝑡𝑖;
4: Designing ANN architecture by specifying the number of layers and neurons;
5: while 𝑐 = 0 ≤ max cycle do
6: while 𝑙 = 0 ≤ max iteration do
7: Set 𝜃 with normal distribution in input and hidden layer, and random uniform in output layer.;
8: Obtain output �̂�(𝑡𝑖; 𝜃), �̂�(𝑡𝑖; 𝜃) and �̂�(𝑡𝑖; 𝜃) using Equation (2)–(4);
9: Compute the derivative of �̂�(𝑡𝑖; 𝜃), �̂�(𝑡𝑖; 𝜃) and �̂�(𝑡𝑖; 𝜃) using AD as in Equation (5);

10: Compute the loss function by using current 𝜃𝑙

(𝜃𝑙) = 𝑀𝑆𝐸𝑥0 +𝑀𝑆𝐸𝑦0 +𝑀𝑆𝐸𝑧0 +𝑀𝑆𝐸𝑥 +𝑀𝑆𝐸𝑦 +𝑀𝑆𝐸𝑧;

11: Update 𝜃𝑙 using Adam optimizer as in Equation (8)–(10);
12: Set 𝑡 number of subsequent iteration to monitor;
13: Monitor last 𝑡 iteration;
14: if min[(𝜃𝑙),(𝜃𝑙−1,… ,(𝜃𝑙−𝑡)) = (𝜃𝑙−𝑡)] then
15: Save 𝜃𝑙−𝑡 as 𝜃𝑏

16: break;
17: else
18: Save 𝜃𝑙 as 𝜃𝑏;
19: end if
20: 𝑙 = 𝑙 + 1;
21: end while
22: Load 𝜃𝑏 and set as initiation of ANN trainable parameter;

𝜃𝑛𝑒𝑤 = 𝜃𝑏 = [𝑤𝑏
𝑡,1,… , 𝑤𝑏

𝑡,𝑚, 𝑏
𝑏
1,… , 𝑏𝑏𝑚, 𝑤

𝑏
ℎ1,1,… , 𝑤𝑏

ℎ𝑚,3];

23: Restart from step 8 where �̂�(𝑡𝑖; 𝜃𝑛𝑒𝑤), �̂�(𝑡𝑖; 𝜃𝑛𝑒𝑤), and �̂�(𝑡𝑖; 𝜃𝑛𝑒𝑤);
24: 𝑐 = 𝑐 + 1;
25: end while
26: Obtained 𝜃𝑏 as the best 𝜃 based on the minimum loss function value;
27: Load 𝜃𝑏 to applied in the testing points;
28: Obtained approximate solution for the entire domain;

4. Results and discussion

The r-PINN algorithm with the Adam optimizer is applied to predict the population dynamics system of sea turtles, as described
in Eq. (1). We validate our method using the solution obtained by RK4 method for these nonlinear models. The code for this method
was written in Python and executed on a Windows 11 laptop equipped with 8 GB RAM, an Intel Core i7-8565U processor, and an
Intel UHD 620 graphics card. The total number of ODE points is set to 2000, with 80% of these points designated as training points.
7
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Fig. 5. Graphical illustration of this study.

Table 2
Population dynamic of sea turtles parameters values for all problems.
Parameters Problem I (𝑟) Problem II (𝑔) Problem III (𝑏) Problem IV (𝑤)

𝑟 Simulated 1.3 1.3 1.3
𝐾 700 700 700 700
𝑎 0.2 0.2 0.2 0.2
𝑤 0.53 0.53 0.53 Simulated
𝑐 0.001 0.001 0.001 0.001
𝑏 0.015 0.015 Simulated 0.015
𝑔 1 Simulated 1 1
𝑠 0.7 0.7 0.7 0.7
𝑓 1 1 1 1

Furthermore, these training points are further divided, with 15% set aside for validation. The ANN architecture is constructed with 5
hidden layers, each containing 100 neurons. The maximum number of iterations is set to 100, and this process is repeated within 30
cycles. The initial values applied for 𝑥(0), 𝑦(0), and 𝑧(0) are 1000, 100, and 10, respectively. We consider four problems for different
cases, depending on the values of the parameters, i.e., 𝑟, 𝑔, 𝑏, and 𝑤. All of the problems, as well as their cases, are illustrated in
Fig. 5, while the values of all parameters are presented in Table 2.

In addition to MSE, the performance metrics for the proposed method are also evaluated in terms of Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE). The mathematical formulation for the approximation model of the population dynamics,
8
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4.1. Problem I: Analyzing the impact of variations in 𝑟 on the population dynamic model

In this study, we discuss the impact of variations in the rate of eggs laid in the nest by adult sea turtle (𝑟). As depicted in Fig. 5,
we consider five different cases for the parameter 𝑟. A comparison between the approximate solutions derived from the r-PINN-Adam
algorithm and the RK4 method is illustrated in Fig. 6.

In Fig. 7, the range of values for weights and biases from the input layer to hidden layer 4 is set between −4 and 4. For hidden
layer 5, however, we set the range of values for weights and biases between 0 and 50 for cases 1, 2, and 3 respectively, from 0 to 75
for case 4, and from 0 to 100 for case 5. We treat the hidden layers differently due to the requirements of the output. Consequently,
after the training process, we obtain the optimal weights and biases within these ranges.

On the left side of Fig. 8 shows the loss function value history which includes MSE, RMSE, and MAE of training and validation
points. Meanwhile, the right side shows the smallest loss function value obtained in each cycle for all cases. It should be noted that
r-PINN only monitors the validation MSE, if the validation MSE does not improve in the next few iterations, the process will be
stopped and restart to the next cycle.

We also simulated the value of each initial condition shown in Fig. 9. We used values ranged from 1000 to 5000 for 𝑥(0), from
100 to 1000 for 𝑦(0), and from 10 to 100 for 𝑧(0).

Fig. 10 presents a comparison of (𝑟), which indicates the rate of eggs laid in the nest. We used the initial conditions 1000, 100,
and 10 for 𝑥(0), 𝑦(0), and 𝑧(0), respectively. As can be observed from Fig. 10(a), a larger value of 𝑟 corresponds to a greater number
of eggs that can survive predation (𝑥(𝑡)). Similarly, as shown in Fig. 10(b), an increase in 𝑟 also increases the number of hatchling
eggs (𝑦(𝑡)), although the improvement is not substantial. Lastly, a larger rate of 𝑟 also leads to an increase in the number of predators
(𝑧(𝑡)), as seen in Fig. 10(c).

Based on the results obtained from the various values of 𝑟 in Problem I, it can be deduced that a positive correlation exists between
(𝑡) and 𝑧(𝑡) with respect to 𝑟. Moreover, while an increase in the number of 𝑦(𝑡) is observed, its direct relationship with 𝑟 is not
ignificantly evident. Consequently, the conservation of the sea turtle population depends on the increase of 𝑟. This objective can
e achieved through the implementation of strategies such as protecting nesting sites from predators, regulating human activities
ear sea turtle nesting areas, and closely monitoring the predator population density. Furthermore, efforts can be made to raise
ublic awareness about the importance of sea turtle conservation and promote sustainable tourism practices that minimize negative
mpacts on sea turtle habitats.

Additionally, Table 3 offers a comprehensive overview of the results illustrated in Figs. 7 through 10. These overview include key
etrics such as the total number of iterations, cycles, time, as well as specific values of the loss functions MSE, RMSE, and MAE. It

s noteworthy that the cumulative count of training iterations for 30 cycles varies due to the fluctuating number of iterations within
ach case across cycles.

.2. Problem II: Analyzing the impact of variations in 𝑔 on the population dynamic model

In this problem, we discuss the impact of variations in the conversion rate from eggs to hatchlings (𝑔). Four distinct cases are
9

xamined, as depicted in Fig. 5. The results of the approximate solutions across all cases are presented in Fig. 11. Additional findings
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Fig. 6. Comparison of RK4 solutions and approximate solutions based on r-PINN-Adam for all cases of 𝑟.

are illustrated in Figs. 12 and 13, which respectively portray the distribution of trainable parameters, consisting of weights and
biases, and a history of the loss function value and minimum loss values in each cycle of r-PINN-Adam for all 𝑔 variants. Further
insights are derived from trajectory simulations for initial conditions: 𝑥(0) ranging from 1000 to 5000, 𝑦(0) ranging from 100 to
1000, and 𝑧(0) ranging from 10 to 100, as displayed in Fig. 14. Moreover, Fig. 15 exhibits the behavioral patterns of 𝑥(𝑡), 𝑦(𝑡), and
𝑧(𝑡) within the population dynamics, influenced by all 𝑔 cases.

Fig. 15 presents the findings of Problem II on the population dynamics system of sea turtles. Initially, the variations in the
conversion rate from eggs to hatchlings (𝑔) have no impact on the population density of sea turtle eggs (𝑥(𝑡)). This can be observed
in Fig. 15(a), which shows no change in 𝑥(𝑡) for any value of 𝑔. Additionally, Fig. 15(b) demonstrates a strong positive relationship
between 𝑔 and the population density of hatchling eggs (𝑦(𝑡)), as the number of hatchlings increases significantly. However, due to
10
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Fig. 7. The best weights and biases range distribution in each layer for all case variations of 𝑟.

the rapid increase in the number of predators (𝑧(𝑡)) depicted in Fig. 15(c), the number of 𝑦(𝑡) poses a threat to the sustainability of
the population.

In conclusion, to maintain the population of sea turtle hatchlings, efforts should be directed towards reducing the number of
predators. This can be accomplished by implementing measures such as increasing the number of nest protectors, regulating fishing
11
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Fig. 8. Performance of r-PINN-Adam: loss function (left) and the minimum loss function values for each cycle (right) for all case variations of 𝑟.

activities in proximity to sea turtle nesting areas, and mitigating light pollution near beaches. Lastly, Table 4 provides a summary
of the results, displaying the total iterations, cycles, time, and specific values of the loss functions MSE, RMSE, and MAE.

4.3. Problem III: Analyzing the impact of variations of 𝑏 on the population dynamic model

Five cases are considered to investigate the effect of variations in the predation rate for hatchlings by marine predators (𝑏). Fig. 16
illustrates the comparison between the RK4 solutions and the approximate solutions obtained by the r-PINN-Adam algorithm for
12



Results in Applied Mathematics 22 (2024) 100457D.A. Pratama et al.
Fig. 8. (continued).

Table 3
Results summary of r-PINN-Adam performance in the variations of 𝑟.
Case Iteration Cycle Time/iter Total time Data type MSE RMSE MAE

I 1043 30 2.72 s 2839.223 s
Training 1.137e−3 3.369e−2 4.633e−2
Validation 1.101e−3 3.318e−2 4.314e−2
Testing 1.101e−3 3.317e−2 4.313e−2

II 1163 30 2.64 s 3075.047 s
Training 2.489e−2 1.472e−1 2.1073-1
Validation 4.355e−3 6.599e−2 6.511e−1
Testing 4.354e−3 6.601e−2 6.515e−1

III 1129 30 2.71 s 3335.617 s
Training 2.349e−3 4.847e−2 3.462e−2
Validation 2.370e−3 4.868e−2 3.764e−2
Testing 2.372e−3 4.868e−2 3.763e−2

IV 1093 30 2.62 s 2858.568 s
Training 8.920e−3 9.441e−2 8.707e−2
Validation 8.763e−3 9.362e−2 8.622e−2
Testing 8.763e−3 9.361e−2 8.623e−2

V 1430 30 2.63 s 3764.288 s
Training 4.074e−3 6.382e−2 4.075e−2
Validation 4.071e−3 6.380e−2 4.249e−2
Testing 4.081e−3 6.388e−2 4.248e−2

all five cases. The minimum and maximum values of 𝜃 that yield the best solution for each layer across all cases are depicted in
Fig. 17. The history of the loss function value and the smallest loss function value obtained in each cycle for all cases are visualized
in Fig. 18. The initial condition simulation values range from 1000 to 5000 for 𝑥(0), from 100 to 1000 for 𝑦(0), and from 10 to 100
13
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Fig. 9. The trajectory of 𝑥(0) (left), 𝑦(0) (mid), and 𝑧(0) (right) for all variations of 𝑟.
14
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Fig. 10. Approximate solutions of 𝑥(𝑡), 𝑦(𝑡) and 𝑧(𝑡) using r-PINN-Adam algorithm with the variation values of 𝑟 on the population dynamic model of sea turtles.

for 𝑧(0), as shown in Fig. 19. Fig. 20 displays the behavior of each 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) for the population dynamic model under the
influence of all 𝑏 cases.

Fig. 20 illustrates the relationship between the variation in the predation rate for hatchlings by marine predators (𝑏) and the
three variables: the population density of sea turtle eggs (𝑥(𝑡)), the population density of hatchling eggs (𝑦(𝑡)), and the population
density of turtle predators (𝑧(𝑡)). In Fig. 20(a), it is observed that an increase in the value of 𝑏 has no effect on 𝑥(𝑡). However, the
change in 𝑏 significantly affects 𝑦(𝑡). As depicted in Fig. 20(b), a substantial increase in 𝑦(𝑡) can be seen at the early stages of 𝑡,
especially when 𝑏 = 0.005. In other hand, this also causes an increase in 𝑧(𝑡), as seen in Fig. 20(c), leading to a significant decrease
15
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Fig. 11. Comparison of RK4 solutions and approximate solutions using r-PINN-Adam for all case variations of 𝑔.

Table 4
Results summary of r-PINN-Adam performance in the variations of 𝑔.
Case Iteration Cycle Time/iter Total time Data type MSE RMSE MAE

I 1025 30 2.55 s 2622.844 s
Training 6.371e−3 7.966e−2 9.579e−2
Validation 5.955e−3 7.716e−2 7.635e−2
Testing 5.955e−3 7.717e−2 7.638e−2

II 1104 30 2.51 s 2771.132 s
Training 2.247e−3 4.739e−2 4.730e−2
Validation 2.223e−3 4.715e−2 4.571e−2
Testing 2.225e−3 4.717e−2 4.572e−2

III 1323 30 2.62 s 3475.254 s
Training 2.579e−2 1.605e−1 1.269e−1
Validation 2.570e−2 1.601e−1 1.253e−1
Testing 2.569e−2 1.603e−1 1.254e−1

IV 1242 30 2.66 s 3305.809 s
Training 5.174e−2 2.227e−1 1.749e−1
Validation 5.101e−2 2.260e−1 1.670e−1
Testing 5.100e−2 2.258e−1 1.668e−1

in the number of 𝑦(𝑡) shortly thereafter. Furthermore, this relationship results in the population densities of 𝑦(𝑡) and 𝑧(𝑡) stabilizing
at 𝑡 = 10 and beyond.

In conclusion, it is crucial to maintain a low predation rate for hatchlings by marine predators to ensure the survival of sea
turtles. Efforts can be made to enhance public awareness and education about the importance of sea turtle conservation and the
16
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Fig. 12. The best weights and biases range distribution in each layer for all case variations of 𝑔.

role that predators play in their survival. These measures can contribute to ensuring that future generations can enjoy the beauty
and ecological significance of these remarkable creatures. Table 5 summarizes the results and presents the total iterations, cycles,
time, and specific values of the loss functions MSE, RMSE, and MAE.

4.4. Problem IV: Analyzing the impact of variations in 𝑤 on the population dynamic model

In this problem, we discuss four cases that depend on the variations in the successful rate of eggs to hatch (𝑤). The proposed
method is applied to the system of sea turtles, and the results are compared with the RK4 method as illustrated in Fig. 21. The
trainable parameters obtained for all variants of 𝑤 are presented in Fig. 22. The loss function value obtained for each iteration
and in each cycle for all cases are shown in Fig. 23. The initial condition simulation values for 𝑥(0), 𝑦(0), and 𝑧(0) are displayed in
Fig. 24. Lastly, the behavior of each 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) for all variants of 𝑤 is visualized in Fig. 25.

The results from varying successful rate of eggs hatching (𝑤) in Problem IV are shown in Fig. 25. In Fig. 25(a), it is observed
that an increase in the value of 𝑤 leads to a decrease in the population density of eggs laid in the nest (𝑥(𝑡)). This, in turn, causes an
increase in the population density of hatchling eggs (𝑦(𝑡)) at early value of 𝑡, as shown in Fig. 25(b). However, this number decreases
steeply shortly thereafter due to an increase in the number of predators (𝑧(𝑡)), as depicted in Fig. 25(c).

In conclusion, it is essential to protect nesting sites from predators and monitor predator population density. These efforts are
crucial in ensuring that future generations can see the beauty and ecological significance of these remarkable creatures. Lastly,
Table 6 provides a summary of all the results, including the total iterations, cycles, time, and the values of the loss functions MSE,
RMSE, and MAE.
17
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Fig. 13. Performance of r-PINN-Adam: loss function (left) and the minimum loss function values for each cycle (right) for all case variations of 𝑔.
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Fig. 14. The trajectory of 𝑥(0) (left), 𝑦(0) (mid), and 𝑧(0) (right) for all case variations of 𝑔.

5. Conclusion

This study aims to investigated the Physic-Informed Neural Network (PINN) with restarting strategy combined with Adam
optimizer (r-PINN-Adam) to solve the mathematical model of population dynamic system of sea turtles. The mathematical model is
formulated with three compartments: the population density of eggs laid in the nest (𝑥), the population density of hatchling eggs (𝑦),
and the population density of predators (𝑧) as shown as in Eq. (1). Series of approximate solution is produced using the proposed
r-PINN-Adam based on variations of parameters, including the eggs rate laid by a mother turtle (𝑟), conversion rate from eggs to
hatchlings (𝑔), predation rate by a marine predator (𝑏), and successful rate of eggs that hatched (𝑤). Based on our analyze in the
result, we summarize our findings as follows:
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Fig. 15. Approximate solutions of 𝑥(𝑡), 𝑦(𝑡) and 𝑧(𝑡) using r-PINN-Adam algorithm with the variation values of 𝑔 on the population dynamic model of sea turtles.

1. Variations in the parameters 𝑟, 𝑔, 𝑏, and 𝑤 were investigated for their impact on the output 𝑥(𝑡). The results showed a positive
impact by the parameter 𝑟, while no significant impact was observed by 𝑔 and 𝑏, and a detrimental effect was observed by
𝑤.

2. The impact of variations in the parameters 𝑟, 𝑔, 𝑏, and 𝑤 on the outputs 𝑦(𝑡) and 𝑧(𝑡) was examined. Results indicated that
variations in 𝑟, 𝑔, and 𝑤 had a positive impact on both outputs, whereas 𝑏 had an inverse impact on 𝑦(𝑡) and 𝑧(𝑡). These
findings have implications for optimizing the system’s performance.
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Fig. 16. Comparison of RK4 solutions and approximate solutions using r-PINN-Adam for all case variations of 𝑏.
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Fig. 17. The best weights and biases range distribution in each layer for all case variations of 𝑏.

3. The loss function has been design as in Eq. (7) for MSE, and Eqs. (11), (12) for both RMSE and MAE, respectively. The results
shows a good agreements for these loss function and can be seen in Figs. 8, 13, 18, and 23, and all summarize Tables 3, 4,
5, and 6.

4. The results obtained through r-PINN-Adam approximate solutions were found to be accurate compared to the solution
obtained by RK4 method. The results can be seen in Figs. 6, 11, 16, and 21.
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Fig. 18. Loss function value history (left) and loss function value minimum obtained in each cycle (right) for all case variations of 𝑏.

5. Based on our findings and the impact of variations in the 𝑟, 𝑔, 𝑏, and 𝑤 parameters, we suggest several actions that should
be taken to preserve the sea turtle population. These actions include but are not limited to implementing measures to reduce
pollution near beaches by regulating human activities near sea turtle nesting areas, protecting nesting and feeding habitats,
monitoring the population density of predators, and raising public awareness about the importance of sea turtle conservation.

6. The proposed method also demonstrated excellent performance, as evidenced by its computation time and low values of
performance metrics such as MSE, RMSE, and MAE, which are presented in summarize Tables 3, 4, 5, and 6. These findings
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Fig. 18. (continued).

Table 5
Summarize results table in the variations of 𝑏.
Case Iteration Cycle Time/iter Total time Data type MSE RMSE MAE

I 960 30 2.71 s 2597.407 s
Training 2.607e−2 1.607e−1 2.231e−1
Validation 2.279e−2 1.509e−1 2.014e−1
Testing 2.279e−2 1.510e−1 2.013e−1

II 1212 30 2.74 s 3324.189 s
Training 9.519e−3 9.753e−2 8.695e−2
Validation 9.475e−3 9.734e−2 8.820e−2
Testing 9.480e−3 9.731e−2 8.819e−2

III 1131 30 2.77 s 3132.804 s
Training 2.888e−2 1.697e−1 1.695e−1
Validation 2.861e−2 1.691e−1 1.532e−1
Testing 2.860e−2 1.690e−1 1.520e−1

IV 1260 30 2.66 s 3356.458 s
Training 1.052e−2 1.025e−1 1.068e−1
Validation 1.039e−2 1.019e−1 1.051e−1
Testing 1.041e−2 1.020e−1 1.060e−1

IV 1064 30 2.63 s 2796.618 s
Training 3.843e−2 1.953e−1 2.14e−1
Validation 3.646e−2 1.861e−1 1.862e−1
Testing 3.651e−2 1.861e−1 1.863e−1

suggest that r-PINN-Adam is a promising approach for solving the problem at hand and may have broader implications for
24
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Fig. 19. The trajectory of 𝑥(0) (left), 𝑦(0) (mid), and 𝑧(0) (right) for all case variations of 𝑏.
25



Results in Applied Mathematics 22 (2024) 100457D.A. Pratama et al.
Fig. 20. Approximate solutions of 𝑥(𝑡), 𝑦(𝑡) and 𝑧(𝑡) using r-PINN-Adam algorithm with the variation values of 𝑏 on population dynamic system of sea turtles.

Here are some recommendations for future work to enhance the performance of the r-PINN-Adam algorithm in solving DE
problems. As the accuracy of the ANN model improves, there is a need to increase its architectural complexity, which results in a
large number of weight parameters that can affect the training performance. Therefore, weight parameter compression is crucial for
reducing model storage while maintaining accuracy. The low-rank matrix factorization method could also be employed in future
research. By decomposing 𝜃 into two or more smaller matrices, this technique may accelerate the training process.
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Fig. 21. Comparison of RK4 solutions and approximate solutions using r-PINN-Adam for all case variations of 𝑤.

Table 6
Results summaryof r-PINN-Adam performance in the variations of 𝑤.
Case Iteration Cycle Time/iter Total time Data type MSE RMSE MAE

I 1233 30 2.70 s 3333.570 s
Training 8.882e−3 9.415e−2 7.811e−2
Validation 8.788e−3 9.374e−2 7.384e−2
Testing 8.738e−3 9.347e−2 7.384e−2

II 1212 30 2.71 s 3335.617 s
Training 2.349e−3 4.847e−2 3.462e−2
Validation 2.370e−3 4.868e−2 3.764e−2
Testing 2.372e−3 4.868e−2 3.763e−2

III 1131 30 2.76 s 3020.667 s
Training 4.066e−3 6.361e−2 6.481e−2
Validation 3.870e−3 6.237e−2 6.340e−2
Testing 3.891e−3 6.238e−2 6.341e−2

IV 979 30 2.52 s 2470.895 s
Training 1.707e−2 1.305e−1 1.315e−1
Validation 1.701e−2 1.292e−1 1.360e−1
Testing 1.669e−2 1.291e−1 1.358e−1
27
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Fig. 22. The best weights and biases range distribution in each layer for all case variations of 𝑤.

Indeed, the activation function in the ANN plays a important role in influencing accuracy and effectiveness. Investigating
the utilization of mathematical functions such as Fourier, Euler, or other new activation functions could potentially enhance the
performance of the r-PINN-Adam training process. Lastly, in the future, this approach could be applicable to solve another DE
problems, including real-world applications of PDE.
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Fig. 23. Performance of r-PINN-Adam: loss function (left) and the minimum loss function for each cycle (right) for all case variations of 𝑤.
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Fig. 24. The trajectory of 𝑥(0) (left), 𝑦(0) (mid), and 𝑧(0) (right) for all case variations of 𝑤.
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Fig. 25. Approximate solutions of 𝑥(𝑡), 𝑦(𝑡) and 𝑧(𝑡) obtained by the r-PINN-Adam algorithm under the influence of variations of 𝑤 on population dynamic system
of sea turtles.
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