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Abstract

The upcoming era of Sixth-Generation technology brings about special op-
portunities and challenges with respect to cybersecurity, especially regard-
ing secure authentication mechanisms. This paper introduces TL2AB, a
trusted lightweight authentication framework using artificial intelligence and
blockchain technology. The proposed solution addresses critical security and
privacy issues related to 6G applications, particularly in sensitive sectors
such as healthcare and [oT. TL2AB enhances security in communication by
introducing a new three-factor authentication scheme while allowing users
to access rapidly and efficiently. TL2AB not only meets the high demands
of 6G networks but also creates a robust foundation for future research in
secure authentication frameworks.

Keywords: Security, Privacy, Authentication, Blockchain, 6G, Anomaly
Detection.

1. Introduction

The world is moving into one of the fastest-evolving times, from 5G to 6G
networks in wireless communications [1]. Compared to its predecessor, 6G
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is envisioned to offer unrivaled connectivity through ultra-low latency and
support massive IoT ecosystems that make transformative applications such
as smart cities, autonomous systems, and even next-generation AR and VR
possible [2]. Still, new security concerns come with new advancements. While
this trend is coupled with enhanced network complexity, the risks for cyber-
attacks increase dramatically, including data breaches and privacy violations
[3]. In this respect, lightweight and scalable authentication mechanisms that
are capable of securing communication within highly dynamic and resource-
constrained environments have to be developed to enhance trustworthiness
and security.

Most of the existing authentication protocols, which were designed mainly
for both 4G and 5G [4], cannot meet strict performance and security require-
ments for 6G [5]. They are either too resource-intensive to operate on the
small, low-power devices pervasive in IoT, or too rigid to be adaptive to
the dynamic nature of 6G wireless networks that require real-time decision-
making and context-awareness. Besides, the centralized nature of most cur-
rent security architectures creates bottlenecks and single points of failure,
which are vulnerable to attacks.

In this paper, we propose TL2AB, a novel authentication framework that
merges blockchain with the power of Artificial Intelligence (AI) to ensure
robustness, lightweight, and decentralized security for 6G networks. TL2AB
leverages the immutability provided by blockchain and its distributed trust
model in developing a decentralized and tamper-proof authentication archi-
tecture. Meanwhile, Al-powered continuous authentication is monitoring
the behavior of that device in real time-reacting to the emerging threats.
The decentralized nature of blockchain, combined with the adaptive learning
functions of Al, powers TL2AB with the following key advantages:

o Lightweight Architecture: computation-friendly lightweight architec-
ture is designed to work in perfect harmony with resource-constrained
[oT devices, constituting the major component of the 6G ecosystem.

e Decentralized Trust: The blockchain removes a single point of failure,
hence enhancing security, scalability, and resilience against cyberat-
tacks.

o Al-powered Adaptive Security: The Al continuously monitors for threats
and updates the risk assessment in real time to make changes to secu-
rity protocols without added overhead.



e Scalability: Such architecture would scale with the enormous size of 6G
toward relentless authentication of billions of interconnecting devices.

This paper introduces the TL2AB architecture, elucidating in detail its
components and interplay among Al, blockchain, and 6G edge nodes. The
proposed framework targets the support of not only device-to-network com-
munication but also device-to-device authentication, crucial in such a decen-
tralized environment as is 6G. We will go through the mathematical model,
the consensus mechanism, and the continuous Al-based risk profiling driving
the dynamic nature of authentication.
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Figure 1: TL2AB architecture

2. Related Works

Transitions to 6G technology have attracted a significant amount of re-
search into enhancing security and authentication mechanisms in the direc-
tion of wide-scale applications, including: healthcare, sea transportation,
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satellite networks, and blockchain-based systems [6, 7, 8]. The section below
undertakes a review of a selected related literature on the security challenges
pertaining to 6G networks and different proposed solutions, as provided in

Tab. 1.

portation Systems

Unauthorized Data
Access

thentication Proto-
col

Paper Application Do- | Security Mecha- | Authentication Technological
main nism Approach Focus
Le et al. [6] Healthcare Data Privacy, | Three-factor Healthcare Net-
System Cost Opti- | authentication works, Authentica-
mization (Smart Card, Pass- | tion Protocols
word, Biometric)
Chaudhry et al. [§] | Maritime  Trans- | GPS Spoofing, | Lightweight ~ Au- | Maritime Security,

GPS-based
tems

Sys-

Tao et al. [7]

Satellite Networks

Privacy Preser-
vation, Energy
Efficiency

Pairing-
based Group
Signature, Batch
Authentication

Bilinear

Satellite-ground In-
tegrated Networks

Asim et al. [9]

Blockchain

Multi-Factor
Authentication
(MFA), Cyber
Attack Prevention

MFA in Blockchain
Systems

Blockchain-based
Security, Cyberse-
curity

Fang et al. [10]

ToT Networks

Security Manage-
ment, Authentica-

Al-enabled
Lightweight
Authentication,
Holistic Access
Control

TIoT Networks, Al-
enhanced Security

Garabato et al. [11]

General (Authenti-
cation Systems)

tion Efficiency
Continuous Au-
thentication, Ac-

tivity Monitoring

Al-based Continu-
ous Authentication
(SVM, MLP, Deep

Al-driven Authen-
tication, Continu-
ous User Verifica-

tion

Learning)

Table 1: Summary of Related Works on Security and Authentication in 6G Networks

The authors in [6] proposed CL-UCSSO, which is an authentication proto-
col based on a three-factor authentication mechanism involving a smart card,
password, and biometric authentication. Further, it allows network commu-
nication between patients and healthcare providers efficiently. Accordingly,
it addresses issues and challenges over data privacy and system cost. The
proposed protocol has been tested with well-known verification tools, prov-
ing its superior performance and features compared to existing protocols.
Another work in [8] investigated the security and privacy vulnerabilities in
6G-enabled Maritime Transportation Systems. The authors therein propose
a lightweight authentication protocol to provide protection against security
threats by GPS spoofing and unauthorized data access. The formal methods
of security assessment allow the authors to prove that their protocol pro-
vides enhanced features of security compared to traditional authentication
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schemes. This research emphasizes the need for adaptable security mecha-
nisms tailored to each particular sector of the 6G ecosystem. The paper in [7]
introduced an authentication protocol for preserving privacy in a heteroge-
neous satellite-ground integrated network. The authors introduce a bilinear
pairing-based short group signature algorithm that shall offer unlinkable au-
thentication and a lightweight batch authentication protocol of low-energy
nodes, which is resistant to DoS attacks with efficiency. Their work also
illustrates one of the challenges when roaming across different operator net-
works and the needed implementations toward efficient cross-domain authen-
tication protocols, reducing latency. The work in [9] presented a review of
security issues in 6G networks, depicts high expectations regarding the use
of blockchain technology to increase both security and authentication. The
paper also articulates the use of MFA techniques within a blockchain system
to prevent different types of sophisticated cyberattacks. This work depicts
that addressing particular vulnerabilities associated with applications is in
demand, and blockchain is probably going to be one of the most promising
solutions for upcoming security demands.

Besides improving security in such environments with the leverage of Al,
two other solutions are developed that can be enabled by Al: a lightweight
authentication scheme and a holistic access control scheme. The most im-
portant conclusion was that Al can make security management simpler and
might adapt to the dynamic ecosystem of IoT, pointing out some future re-
search directions such as cooperative access control, advanced machine learn-
ing algorithms, and game theory-based defense mechanisms.

Various existing studies have explored applying Al techniques to improve
authentication and authorization in large-scale IoT networks. Omne intro-
duced the characteristics of IoT networks and the challenges with conven-
tional authentication approaches [10]. By identifying the advantages of us-
ing Al to improve security in these environments, the authors went on to
propose two new Al-enabled solutions: a lightweight authentication scheme
and a holistic access control scheme. The important conclusion derived was
that AI could make security management simpler and would adapt to the
dynamic IoT ecosystem. It also drew on future research directions, including
cooperative access control, advanced machine learning algorithms, and game
theory for defense mechanisms. Another work analyzed the feasibility of
Al-based continuous authentication in [11]. The authors prepared a custom
application to gather user activity data in a guided scenario and also used
a public dataset for benchmarking in a non-guided setting. They developed



key features from that data and trained three different AT models: Support
Vector Machines, Multi-Layer Perceptrons, and a Deep Learning approach.
These indeed proved to be effective Al-powered techniques for user verifica-
tion across both guided and non-guided environments. Then, they developed
a system for continuous authentication using weighted sliding windows to de-
tect impostor sessions in real-world situations.

In the past few years, various lightweight authentication protocols have
been proposed for IoT networks, most of which employed advanced technolo-
gies like blockchain, implicit certificates, PUFs, and Al-based systems. For
example, Siddhartha et al. [12] proposed an implicit certificate-based three-
factor authentication protocol for IoT applications in the healthcare industry
that provides robust multi-factor security at the expense of high computation
overheads and poor scalability. Similarly, Vipin Kumar et al. [13] designed
a light authentication protocol for IoT devices used in a smart home that
effectively resists replay, spoofing, and man-in-the-middle attacks.

Khalid et al. [14] proposed a decentralized blockchain-based authenti-
cation scheme for IoT networks, leveraging the inherent distributed trust
of blockchain for safe key management but at the cost of very high pro-
cessing overhead. Al Ahmed et al. [15] proposed a blockchain-inspired
Authentication-Chains protocol that uses cluster-based authentication with
a novel consensus algorithm with low computational overhead, but suffers
from heterogeneous network integration. In addition, Aman et al. [16] pre-
sented a PUF-based mutual authentication scheme designed for resource-
constrained IoT devices that is extremely secure against side-channel and
physical attacks. Lastly, Tahir et al. [17] proposed a blockchain-enabled
authentication and authorization protocol for IoT networks for health in-
formatics, which provides high mutual authenticity and access control while
reducing the communication and computation overhead.

For a general comparison, Tab. 2 summarizes the key security features,
authentication techniques, technical focus, and limitations of the cited works
and our TL2AB proposal. As can be seen from the comparison, the limi-
tations of the existing solutions — i.e., scalability problems, computational
costliness, or lack of complete continuous monitoring — are what TL2AB
aims to address by the integration of decentralized blockchain-based trust
with Al-driven dynamic risk assessment for 6G networks.



Table 2: Comparison of Security Features and Authentication Approaches in Related

Schemes
Reference App. Do- Security Mecha- Authentication Tech. Focus Key Security Fea-
main nism Approach tures and Limita-
tions

[12] Healthcare Implicit Three-factor 6G Healthcare Robust multi-factor se-

IoT Certificate-based (Smart Card, Pass- curity; high computa-
word, Biometric) tional cost and limited
scalability.

[13] Smart Home Implicit Lightweight Smart Home  Optimized for

IoT Certificate-based Device-to-Device IoT resource-constrained
Authentication devices; resists replay
and MITM attacks.

[14] General IoT  Blockchain-based Decentralized Au-  IoT Networks Leverages  decentral-

Systems thentication ized trust; may incur
processing overhead.

[15] IoT Networks  Blockchain- Cluster-based Au- IoT Networks Novel consensus al-

inspired thentication with gorithm  with  low
Consensus computational  over-
head; challenges with
heterogeneous integra-
tion.

[16] IoT Systems PUF-based Lightweight Mu- IoT High efficiency and
tual  Authentica- robust resilience
tion against physical and

side-channel  attacks;
tailored for constrained
environments.

[17] Health Infor-  Blockchain- Probabilistic Au-  Healthcare IoT  Robust mutual authen-

matics enabled thentication  and tication with enhanced
Authorization access control and
lower overhead; de-

signed specifically for
health informatics.

TL2AB (Pro-
posed)

6G Net-
works, IoT

Al-driven Con-
tinuous Authen-
tication with
Blockchain

Dynamic, Adap-
tive Multi-factor
Authentication

6G, IoT

Integrates decen-
tralized trust with
Al-driven risk
assessment for real-
time, scalable, and
resource-efficient

authentication; in-
troduces continuous
monitoring and dy-
namic adaptation to
emerging threats.




Variable

Description

IDg

A unique identifier assigned to each device in the
network.

Kq

The cryptographic key generated for each device, used
to sign authentication requests and secure
communications.

The authentication request message, which includes
IDy, T, N, and sign(Ky).

The timestamp indicating when the authentication
request is generated; used to prevent replay attacks.

A unique nonce included in each authentication request
to ensure its uniqueness and counter replay attacks.

sign(Kq)

The digital signature produced using the device’s key
K4, ensuring the authenticity and integrity of the
request.

RS

The risk score computed by the ATl Authentication
Server, normalized between 0 and 1 to reflect the
likelihood of a security threat.

,-Tthreshold

The predefined risk score threshold above which
additional authentication measures are required.

P(MITM)

The estimated probability of a successful
Man-in-the-Middle attack on the system.

P(Impersonation)

The estimated probability of a successful
impersonation attack on the system.

P(DoSTL2AB)

The estimated probability of a successful
Denial-of-Service attack against the TL2AB
framework.

P(DoScentralized)

The estimated probability of a successful
Denial-of-Service attack against a centralized
authentication system, provided for comparison.

P(E)

The estimated probability of a privacy breach event
occurring within the system.

Table 3: Symbols Definition




3. System and Network Model

This section presents the architecture and operational steps of TL2AB, as
illustrated in Fig. 1. The proposed framework integrates blockchain technol-
ogy and Al to create a secure, efficient, and adaptive authentication mecha-
nism suitable for 6G networks.

3.1. TL2AB Architecture

The architecture of TL2AB includes a few important components put to
operate in conjunction, enabling secure authentication in 6G environments:

3.1.1. User Devices

In other words, IoT devices, mobile phones, and sensors will be required
to get authentication before connecting to the network. Each user device
should have a unique cryptographic key at a secure element of the device.

3.1.2. 6G Edge Nodes

These are interfaces between the user devices and the rest of the network.
They work like middle entities between the device and the remaining network,
forwarding authentication requests as well as responses.

3.1.3. Al Authentication Server

This is an intelligent server driven by AI through machine learning algo-
rithms. It analyzes the authentication requests from the user-side device and
the behavioral pattern to generate a verdict on the device’s risk. It adjusts
its authentication requirements based on real-time threats.

3.1.4. Blockchain Network

The decentralized blockchain serves as the spine for the TL2AB Authen-
tication Framework. The network provides trust with immutability, hence
storing all authentication requests and their outcomes. Thus, it further car-
ries the properties of transparency and traceability.

3.1.5. Smart Contracts

Smart contracts deployed on the blockchain, automate this authentication
process by defining a set of rules or criteria for successful authentication.
They ensure that the terms of service are met before access is granted.



3.2. System Assumptions

The key assumptions underlying the TL2AB framework are as follows:

e The underlying blockchain network is secure against 51% attacks and
other consensus-related vulnerabilities, considering the fact that a ma-
jority of nodes comprising it are honest.

e In the user’s devices, use a secure element that securely store the unique
cryptographic keys used by users without compromising security.

e The AI Authentication Server can collect enough behavioral data to
model the activities of users with high accuracy and also spot anoma-
lies.

e There might be some adversaries that can intercept and manipulate the
messages of communication and might compromise individual devices
or nodes in the network.

e The Al models are trained using clean data that has not been compro-
mised in any way, making them quite reliable in the risk assessment
process.

Algorithm 1 TL2AB Authentication Algorithm (Part 1)

1:

9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

procedure REGISTERDEVICE(I Dy, Ky)
Generate cryptographic key K and store (IDgy, K4) in Blockchain.
return ”Device Registered”
end procedure
procedure AUTHENTICATIONREQUEST(IDg, Kg)
Generate timestamp 7" and nonce N.
R« {IDd> T,N, Slgn(Kd)}
return R
end procedure
procedure AsSESSRISK(R)
Analyze behavioral data associated with I Dg .
RS <+ f(IDg, T, N,BehavioralData)
return RS
end procedure
procedure EXECUTESMARTCONTRACT(R)
if Verify(IDg, K4) in Blockchain then
Record authentication attempt in Blockchain.
return ” Authentication Successful”
else
return ” Authentication Failed”
end if
end procedure
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Algorithm 2 TL2AB Authentication Algorithm (Part 2)

. procedure ADJUSTAUTHENTICATION(RS)
if RS > Tihreshold then
Require additional factors (Biometric, OTP).
if additional factors are provided then
return ” Authentication Successful”
else
return ” Authentication Failed”
end if
else
return ” Authentication Successful”
end if
end procedure
procedure ESTABLISHSESSION(ID,)
Encrypt Data and record session in Blockchain.
return ”Session Established”
end procedure
procedure MONITORSESSION(ID )
while session is active do
Check for anomalies in behavioral data.
if AnomalyDetected() then

[ e e e el W ST

21: TerminateSession(ID,4) and require re-authentication.
22: end if

23: end while

24: end procedure

25: procedure TERMINATESESSION(ID4)

26: Record session termination in Blockchain.

27: return ”Session Terminated”

28: end procedure

29: procedure MAIN

30: // Register Device

RegisterDevice(I Dy, H(K4))
// Authentication Process
R <+ AuthenticationRequest(IDg, KH(Kg))
RS + AssessRisk(R)
if RS < Tihreshold then
if ExecuteSmartContract(R) == ” Authentication Successful” then
AdjustAuthentication(RS)
EstablishSession(I D)
MonitorSession(IDg)
else
return ” Authentication Failed”
end if
else
Require additional authentication.
end if
end procedure

A S S S G0 00 GO 00 GO GO Lo Lo WO
A S R AR R bl S
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Figure 2: Execution Flowchart of the TL2AB Authentication Protocol

3.3. Operational Steps of TL2AB

The TL2AB authentication process consists of a sequential order of op-
erations designed to offer secure, efficient, and adaptive authentication. The
architecture integrates blockchain-based identity authentication, Al-based
risk assessment, and dynamic multi-factor authentication (MFA) to provide
robust security while guaranteeing usability. The complete execution process
of the TL2AB authentication protocol is illustrated in Fig. 2. It summarizes
the key messages exchanged and the interactions between the device, the
authentication server, the smart contract, and the blockchain ledger. The

following steps outline the entire authentication process.
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3.83.1. Step 1: Registration
A smart contract deployed on the blockchain handles the verification of
this request. The verification procedure includes:

e Uniqueness check: The smart contract ensures that the identifier
I D, is not already registered by querying the ledger state.

e Hash format validation: The format and length of H(K,) are vali-
dated against expected parameters (e.g., 256-bit SHA-256 output).

e Replay protection: A nonce or timestamp is included in the trans-
action to protect against replay attacks.

e Authenticity assurance (optional): If needed, an off-chain verifier
(e.g., PKI server or TEE attestation service) may confirm that K, was
generated inside a trusted module and is tied to the device I Dj.

If all checks pass, the pair {I D, H(K,)} is recorded immutably on the
blockchain, enabling only registered devices to initiate authentication re-
quests in future sessions.

The formal notation of the registration operation is:

RegisterDevice(I Dy, H(K4)) = Blockchain Entry

3.3.2. Authentication Request Generation

When a device attempts to authenticate, it generates an authentication
request containing its identity /Dy, a timestamp 7T, and a nonce N. To
ensure integrity and authenticity, the device signs a specific set of values
using its private key Ky stored in the TEE.

The digital signature is computed over the concatenation of the request
components as follows:

Sign(Ky, M) where M = {IDy || T || N}

This signature proves the origin and integrity of the message without
revealing K. The smart contract or authentication server then verifies the
signature using the stored H(Kj) or a public key (if asymmetric cryptography
is used).

The full authentication request sent to the system is:

R={IDy,T,N,Sign(Ky,IDy || T | N)}

13



3.83.8. Step 3: Al-Driven Risk Assessment

e Upon the attempt of a registered device to join the network, it issues an
authentication request R. This request identifies the device identifier
IDg, a timestamp 7', a nonce N (to prevent replay When the Al Au-
thentication Server receives an authentication request, it evaluates the
security risk of the request. A machine learning model processes var-
ious contextual factors, including previous user behavior, device type,
network type, and geolocation. The computed risk score RS deter-
mines the authentication level to be executed: attacks), and a digital
signature produced using K;. The authentication request is then trans-
mitted securely to the authentication server to be verified:

RS = f(ID4, T, N,Behavioral Data)

where f is a Random Forest trained on authentication logs. If the
computed risk score is below the predefined threshold Tinreshold, the
request proceeds to blockchain validation. Otherwise, additional au-
thentication steps are required. In our implementation, the function
f computes the risk score RS for an authentication attempt. This
function is realized using a Random Forest that is trained on histori-
cal authentication data. The inputs to f include the device identifier
(ID,), timestamp (T), nonce (N), and a set of behavioral features (X),
such as the number of login attempts and time since the last login. The
risk score RS is normalized to fall between 0 and 1, with higher values
indicating greater risk. This approach allows the AI Authentication
Server to quickly assess risk and adjust authentication measures in real
time.

3.8.4. Step 4: Smart Contract Execution
e The authentication request is cross-checked with blockchain data to
confirm that the requesting device is registered and that its credentials
have not been breached. The smart contract confirms the identity of
the device by verifying if 1D, and the saved hash of K; equals the
recorded values stored on the blockchain:

Verify (I Dy, H(K4)) = Blockchain Lookup

e If the verification is successful, the authentication request proceeds to
the next step. Otherwise, the authentication attempt is rejected.

14



3.3.5. Step 5: Adaptive Multi-Factor Authentication (MFA)
Based on the risk score evaluation, the system dynamically adjusts the
authentication requirements:

o If RS < Tinreshold, the request is considered low-risk, and authentication
proceeds without additional verification.

o If RS > Tinreshold, the system enforces an additional authentication
factor, such as biometric authentication or a one-time password (OTP):

Require(Biometric, OTP)

e If the user successfully completes MFA verification, authentication is
granted. Otherwise, access is denied.

3.3.6. Step 6: Secure Session Establishment
Once authentication is approved, the device establishes a secure session
using encryption protocols to protect subsequent communications. The au-

thentication event, along with the session details, is recorded immutably on
the blockchain:

Encrypt (Session Data) = Secure Session

Record (I Dy, T, N, Session Established) = Blockchain Entry

3.8.7. Step 7: Continuous Monitoring and Anomaly Detection

During the authenticated session, the ATl Authentication Server continu-
ously monitors user behavior to detect anomalies. If any suspicious activity
is detected, the system dynamically adjusts authentication requirements or
terminates the session. The anomaly detection function is defined as:

Anomaly Detection = g(Behavioral Data)

where ¢ is a machine learning-based anomaly detection model.

3.3.8. Step 8: Secure Session Termination
When the user completes their activities, the session is securely termi-
nated, and an entry is recorded on the blockchain:

TerminateSession(/Dy) =
Record (IDy, T, N, Session Terminated) = Blockchain Entry

15



This ensures a secure log of all authentication events, maintaining an im-
mutable audit trail.

In summary, the TL2AB framework integrates advanced technologies to
create a robust, lightweight authentication solution that addresses the unique
challenges posed by 6G networks. The following sections will provide more
details on the mathematical models that are used in the framework and
discuss their security and performance evaluations.

4. Experimental Evaluation

4.1. Dataset

The synthesized dataset that we have created is rich in key features rep-
resenting, at each authentication request, important information with regard
to device details, user behavior metrics, and network characteristics. These
features are crucial to construct a predictive model aimed at evaluating the
risk associated with each authentication attempt. Tab. 4 describes each
feature in the dataset, including its importance and relevance to the anal-
ysis conducted in this study. This complete dataset forms the basis of our
machine learning model, from which meaningful insight into authentication
patterns and possible security threats can be drawn.

4.1.1. Analysis of Authentication Dataset

Here, we provide a series of visualizations that develops the authentication
data against various dimensions, including, risk score distribution, network
types, device types, authentication methods, and relationships between login
attempts, time since last login, and the calculated risk score.

o Distribution of Risk Scores: Fig. 3 illustrates the risk score distribu-
tion of authentication attempts. The histogram reveals a right-skewed
distribution, indicating that there are many low-risk scores in most
authentication instances, and high-risk cases are relatively infrequent.
This distribution informs us that there would be majority of authen-
tication attempts that would fall into low-risk classes, with a small
percentage that would have to be examined in depth. The superim-
posed density curve over the histogram provides a smoothed estimate
of the probability distribution, in support of the observation that risk
scores are very dense in the lower range. This finding validates the ob-
jective of the research by revealing how the process of authentication

16
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effectively identifies and identifies low-risk and high-risk authentication
processes. The largely minor rate of high-risk incidents indicates that
the proposed technique saves unnecessary security steps without drop-
ping its guard about potential fraudulent access attempts. The risk
score, calculated based on factors such as login attempts, time since
last login, unusual activity, roaming, and VPN usage, has the distribu-
tion reported in Tab. 5

These statistics show that the risk scores are generally low, with a
mean value of 0.1769 and most values concentrated below 0.25. The
maximum value of 0.8794 indicates some high-risk users, although they
are a minority. A small fraction of the total dataset (5.03%) is flagged
for unusual activity. And Only 0.10% of the users are classified as high-
risk, with risk scores above 0.7. This indicates that while most users
have low risk scores, there is a very small group that exhibits behavior
potentially indicative of higher security concerns.

Network Type Distribution: Figure 4 shows the distribution of net-
work types used in authentication attempts. The 4G, 5G, and WiFi
networks are the three types considered. As seen from the results, au-
thentication attempts are evenly distributed among network types so
that the testing of the authentication framework accounts for different
network conditions. This diversity is required for studying the impact
of network variability on authentication performance, particularly for
6G networks. By adding network diversity to the evaluation, the study
ensures that the proposed model is robust to network-level variations.
This is consistent with the research objective of developing a flexible
authentication system that works efficiently under heterogeneous net-
work conditions, a key characteristic of 6G security.

Device Type Distribution: Fig. 5 shows the distribution of device types
in the dataset, which illustrates the relative frequency of authentication
attempts from various device categories, such as laptops, smartphones,
[oT sensors, and tablets. The findings show a relatively balanced dis-
tribution across device types, which implies that the dataset includes
varied device characteristics. This distribution is important for eval-
uating the flexibility of the proposed authentication framework across
different device ecosystems in a 6G network environment. These re-
sults validate the framework’s ability to generalize as it is tested and
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trained across a broad range of devices. The balanced device type rep-
resentation eliminates any single category from overwhelming the au-
thentication model, and hence making it more suitable for real-world
usage.

e Risk Score by Authentication Method Fig. 6 illustrates comparative
risk score analysis for different authentication mechanisms, including
biometric authentication, passwords, two-factor authentication (2FA),
and token-based authentication. The box plot illustrates the risk score
distribution for each authentication mechanism, with an indication of
outliers and risk level variation. Findings reveal that some authen-
tication mechanisms possess lower median risk scores, whereas other
authentication mechanisms possess greater risk variability. This con-
trast highlights the necessity for the selection of robust authentication
methods in order to secure 6G networks.
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o Login Attempts vs. Risk Score Fig. 7 displays the day-by-day variation
in the risk scores and login attempts. The two-axis plot traces the
trajectory of the average risk score (left y-axis) and the frequency of
login attempts (right y-axis) throughout the day over 24 hours. The
trends reflect periodic surges in login attempts, often after changes in
risk scores. These findings highlight the necessity of considering time in
authentication risk assessment. The trends suggest that authentication
requests at particular time intervals may be inherently riskier, thus,
dynamic security policies could be a requirement. This observation
clearly supports the objective of the research to create a risk-aware
authentication system. The possibility of identifying and bringing to
attention suspicious activity based on failed login attempts enhances
the system’s performance in barring unauthorized access with minimal
inconvenience to legitimate users.
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e Temporal Analysis of Risk Scores and Login Attempts Fig. 8 graphs
the temporal variation in risk scores and login attempts throughout the
day. The two-axis graph displays fluctuations in the mean risk score
(left y-axis) and the rate of login attempts (right y-axis) on a 24-hour
cycle. The periodic login attempt peaks are discovered to regularly
coincide with risk score oscillations. This temporal analysis casts criti-
cal light on authentication behaviors, and time-aware security controls
can be designed to react to the change in user activity patterns based
on this temporal analysis.such as the user profile or location of the
attempt. These results emphasize the significance of including tempo-
ral considerations in authentication risk assessment. The trends in the
observations imply that authentication requests within specific time
windows could be riskier in nature, which would require dynamic secu-
rity policies. This reinforces the study’s aim by indicating the necessity
of time-aware risk countermeasures in 6G authentication systems.

Some login attempt levels (like 3, 5, and 8) show a few instances of
higher risk scores (above 0.6), which might point to unusual behavior
patterns around these attempt counts. The average number of login
attempts by device type is as follows:

The average number of login attempts for each device type is close
to 5.5, as presented in Tab. 6, indicating that users across different
devices and locations tend to make a similar number of attempts.

4.2. Al Authentication Server Fvaluation

This part describes the AI model that, within the scope of TL2AB, as-
sesses the risk associated with authentication attempts. The model is based
on an ensemble learning technique known as Random Forest [18], which com-
bines the predictions of multiple decision trees to improve the accuracy and
robustness of the predictions. Unlike traditional models such as linear re-
gression, Random Forest does not rely on a single hypothesis but rather
aggregates multiple decision trees to make predictions. Our model uses a
Random Forest in order to predict a risk score based on several features ex-
tracted from the data of authentication requests. According to this, the Al
model loads the data, pre-processes it, trains the model, and does perfor-
mance evaluations.
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4.2.1. Data Preprocessing and Feature Engineering

Before training the Random Forest model, several preprocessing steps
are performed on the data to ensure that the model receives high-quality
input. The preprocessing pipeline includes timestamp conversion, feature
extraction, and one-hot encoding of categorical variables. The data prepro-
cessing pipeline consists of several steps aimed at preparing the authentica-
tion data for model training. Categorical features such as ‘Network Type',
‘Device_Type‘, ‘OS_Version‘, and ‘Authentication_Method* are transformed
using one-hot encoding to convert them into a numerical format appropri-
ate for machine learning algorithms. To mitigate the risk of overfitting and
preserve model generalizability, features such as ‘Timestamp‘, ‘Device_ID",
‘IP_Address‘, ‘Location‘, and ‘App_Version‘ are excluded from the dataset.
The remaining attributes are retained for model training.
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The model trained was a Random Forest (Tab. 7), accuracy and loss
metrics were used to measure its performance in both the training and testing
phases, as shown in Fig. 11, Fig. 9, and Fig. 10. The high training accuracy
of the fraud detection model is 97.51%, , as shown in Fig. 11, indicating it
acquires patterns from the training data very effectively. This trend is also
accompanied by a training loss of 0.0004 and a test loss of 0.0026. Although
the training loss is amazingly low, greater test loss assures that the model is
not generalizing completely but has scope for improvement.

With regard to accuracy in detecting fraud, precision 99% reflects no
false positive and no true transactions being flagged as fraud. The recall
0.965, however, reflects 3.5% true fraud cases that are not detected. The
0.997 AUC-ROC value guarantees that the model can effectively distinguish
between fraudulent and legitimate cases.

False Negative Rate (FNR) of 0.035, i.e., only 3.5% of fraudulent trans-
actions are missed. The False Positive Rate (FPR) is 0.000, which is good
as it avoids unnecessary disruptions for legitimate users.

These metrics indicate that the lightweight Random Forest inside the Al
authentication server can give accurate predictions and good performance
on the training dataset and very commendable accuracy on the test dataset.
The results are therefore suggestive of the model’s effectiveness in capturing
the underlying relationships in the data while making sure of a decent level
of generalization.
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5. Security Analysis

In this section, we provide a security analysis of the TL2AB authentica-
tion framework against all major attack vectors applicable in 6G networks.

6. Threat Model

In designing TL2AB, we assume a hostile environment characteristic of
large-scale 6G networks. Our threat model considers both external and in-
ternal adversaries and quantifies the risks by examining the multi-layered
defenses incorporated into our scheme. In particular, we address several
potential attack vectors as follows:

Insider Attacks: A legitimate insider, such as a network administrator
or user of a compromised device, may employ valid access to abuse privileges
or steal confidential data. To mitigate this threat, cryptographic keys (K)
are generated within and securely stored in a Trusted Execution Environ-
ment (TEE) or hardware security module (HSM), thereby minimizing expo-
sure of sensitive credentials. Apart from that, real-time Al-driven anomaly
detection monitors access patterns and sends alerts on the identification of
suspicious activity, and role-based and attribute-based access controls ensure
that insiders possess only the minimum privilege necessary for their roles.

Sybil Attacks: An attacker can create numerous pseudo-identities in
an attempt to breach the distributed blockchain consensus or spam the sys-
tem with fake authentication requests. Our protocol prevents this attack by
having a rigorous procedure of identity verification at the device registra-
tion point, which ties every device’s cryptographic key (Kj) to its physical
identifier. Furthermore, the enormous computational and operational cost
involved with registering large numbers of false identities, combined with a
verification procedure demanding supermajority consensus (typically > % of
the nodes), significantly reduces any impact from fake identities.

Collusion and Multi-Node Compromise: The risk of multiple com-
promised nodes or colluding attackers attempting to compromise the blockchain
or the AT Authentication Server is mitigated by the decentralized nature of
TL2AB, which spreads the authentication load across geographically and
logically distributed nodes. In addition, the robust consensus mechanism
prevents any block from being authenticated unless a majority (e.g., 67%
honesty) of nodes agree, thereby significantly reducing the likelihood of suc-
cessful collusion attacks.
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Replay Attacks: In a replay attack, an adversary intercepts a valid
authentication request and replays it to gain unauthorized access. TL2AB
defends against this threat by incorporating timestamps (7') and nonces (V)
into each authentication request. These elements are verified against a nar-
row acceptance window and a record of previously used values, ensuring
that stale or duplicated requests are promptly rejected. Dynamic session
management further invalidates replay attempts by continuously adjusting
authentication requirements in real time.

6.1. Security Requirements:

In pursuit of providing robust security against the threats above, TL2AB
is architected to satisfy rigorous security properties. Confidentiality is main-
tained through effective use of strong encryption and secure storage methods
that prevent leakage of sensitive data and keys. Integrity is provided by
digitally signing every authentication event and storing it on an unalterable
blockchain ledger so that any effort at tampering would be evident in real-
time. Multifactor authentication and behavior verification with the use of ar-
tificial intelligence verify that only registered devices have access and provide
non-repudiation, and a decentralized architecture and distributed consensus
mechanism provide high availability as well as Denial-of-Service (DoS) or
multi-node resistance. Forward secrecy is provided through independent and
dynamic session key generation, such that the compromise of any single key
does not pose a risk to previous sessions. Overall, persistent monitoring and
responsive countermeasures provide TL2AB with the robustness to detect
and mitigate new threats efficiently.

6.2. Security Analysis
6.2.1. Man-in-the-Middle (MITM) Attacks

Claim 1: We claim that the probability of success of an Man-in-the-
Middle (MITM) attack is negligible.

Proof: To prove that a successful MITM attack has a negligible prob-
ability, we look in detail at the steps that an attacker, A, would have to
go through. For this, it would intercept the message R, I D4, T, N, sign(Ky),
where 1D, is the identity, T is the timestamp, N is a nonce, and sign(Ky) is
the cryptographic signature. Having intercepted R, he would then need to
modify this message in such a way as to do it without modification be-
ing detected through the security mechanisms involved. After that, the
attacker would have to breach the Al-based risk assessment layer, which
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is a constant monitoring of the system for anomalies. Finally, this would
involve compromising the blockchain to change the stored authentication
record associated with R. The overall probability of a successful MITM at-
tack, denoted as P(MITM), can therefore be expressed as the product of
the probabilities of successfully completing each of these steps: P(MITM) =
P(Intercept) - P(Modify) - P(Bypass AI) - P(Compromise Blockchain).

Given the cryptographic protection afforded by the signing of R, the
on-going Al monitoring of the system, along with the immutability of the
blockchain, the probabilities of successfully completing each of these steps are
extremely small. Hence, we consider the overall probability of a successful
MITM attack, P(MITM), to be negligible.

6.2.2. Replay Attacks

TL2AB includes both timestamps (7') and nonces (N) in every authen-
tication request for resisting replay attacks.

Claim 2: TL2AB is secure against replay attacks.

Proof: An adversary intercepts a valid authentication request R =
{IDy, T, N,sign(K,;)} at time t;. For such a replay attack to be effective
at any later time t + At, two conditions have to be met by the adversary.

First, the timestamp 71" must still be accepted as current at time t +
At. This is already ameliorated in TL2AB, since the system uses a small
acceptance window over timestamps. If the time difference At is larger than
this acceptance window, the system will reject the request for being outdated,
which prevents the replay. Second, the nonce N shall not have been used
in any previous authentication request. TL2AB enforces that every nonce
is unique; so even if an adversary replays the captured message, the system
will find the duplication of the nonce value and discard the replay request.

As the window for accepting timestamps is decreasing while the unique-
ness of nonces is still strictly enforced, the success probability of a replay
attack decreases. Therefore, this implies security against that kind of attack.

6.2.3. Impersonation Attacks

TL2AB detects impersonation attacks through the device-specific cryp-
tographic keys, Ky, and the Al-driven behavior analysis approach.

Claim 3: In TL2AB, the success rate for an impersonation attack is close
to zero.

Proof: To conduct a successful impersonation attack, the adversary has
to successfully pass several conditions: First, it must acquire or forge a valid
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cryptographic key K, that uniquely maps to the respective device. This
would specifically entail an adversary creating an authentication request R.
In addition, the adversary has to be able to impersonate the legitimate user’s
behavioral patterns as analyzed by the Al-driven system, such that the Al-
based behavioral checks are bypassed.

The overall probability of a successful impersonation attack, denoted as
P(Impersonation), may be written as: P(Impersonation) = P(Obtaink,)
P(Pass Crypto) - P(Mimic Behavior).

Because the solution assumes the use of secure key generation and stor-
age within a TEE, an adversary’s chance of obtaining or forging the crypto-
graphic key K is minimized; therefore, P(Obtain K,) is considered negligi-
ble. This is further enforced by the fact that continuous Al-driven behavioral
analysis monitors the unique behavioral pattern of the legitimate user to
an extent that makes the likelihood of successfully mimicking the behavior,
P(Mimic Behavior), very low. In light of such formidable security measures,
we conclude that the overall probability of success in an impersonation attack
P(Impersonation) is negligible.

6.3. Formal Security Analysis using BAN Logic

To further assure the security guarantees of TL2AB, we provide a formal
analysis of the authentication protocol using BAN logic. The logic allows
us to reason about the beliefs that are established between communicating
principals after the execution of a cryptographic protocol. In our scenario,
we have two principals: the user device D and the authentication server or
smart contract S. The message of interest is the authentication request:

D — S :{IDg,T,N,Signg (IDq || T || N)}
We define the following BAN logic primitives:
e P believes X: Principal P believes statement X
e P sees X: Principal P receives message X

e P once-said X: Principal P said message X at some point in the past

fresh(X): Message X is fresh

pubkey (K, P): K is the public key of principal P
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The following assumptions are made: (1) the server S believes it knows
the authentic public key of the device D, i.e., S believes pubkey (K, D); (2)
the server believes that the nonce N is fresh, i.e., S believes fresh(/N); and
(3) the server receives the signed message, i.e., S sees Signg. (IDg || T || N).

Based on these assumptions and the rules of BAN logic, the server con-
cludes the following: from the digital signature and its belief in the key
binding, S believes D once-said (IDy || T || N). Given the freshness of
the nonce, it follows that S believes D believes (ID, || T || N), and there-
fore, S believes auth(D); that is, the server is convinced that the request
originated recently and authentically from device D. This formal reasoning
confirms that the authentication phase of TL2AB ensures origin authenticity
and freshness, and is resilient to replay attacks.

6.3.1. Denial of Service (DoS) Attacks

The decentralized nature of blockchain and the adaptive risk assessment
by Al provide inherent resistance to Denial of Service (DoS) attacks.

Claim 4: TL2AB significantly mitigates the impact of DoS attacks com-
pared to centralized authentication systems.

Proof: In a traditional centralized authentication system, a successful
DoS attack typically involves overwhelming the central server with an ex-
cessive amount of traffic, causing the system to become unavailable. The
probability of a successful DoS attack in a centralized system can be ex-
pressed as:

P(DoScentralizea) = P(Overwhelm_central server),

where P(Overwhelm_central_server) is the likelihood of overloading the single
point of failure in a centralized system — the central server.

In contrast, TL2AB employs a decentralized architecture based on blockchain,
which distributes authentication tasks across multiple nodes. For a DoS at-
tack to succeed against TL2AB, the adversary would first need to overwhelm
multiple blockchain nodes simultaneously. Additionally, the adversary must
bypass the Al’s adaptive risk assessment system, which detects unusual traf-
fic patterns and adjusts defenses dynamically. Thus, the probability of a
successful DoS attack in TL2AB is given by:

P(DoStr2a8) = P(Hit_multiple nodes) - P(Bypass_Al),
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where P(Hit_multiple nodes) represents the difficulty of attacking multiple
blockchain nodes concurrently, and P(Bypass_Al) accounts for the challenge
of evading the Al’s adaptive monitoring.

Due to the distributed nature of the blockchain network and the AI’s
ability to detect and respond to abnormal traffic patterns, the probabil-
ity of a successful DoS attack in TL2AB is significantly lower than that
in a centralized system. Therefore, we can conclude that P(DoStioap) <
P(DoScentralized), Which demonstrates TL2AB’s superior resistance to DoS
attacks.

6.4. Priwvacy Preservation

TL2AB ensures user privacy through several mechanisms. First, crypto-
graphic keys are managed within a Trusted Execution Environment (TEE),
which prevents unauthorized access and protects sensitive data. Second, the
AT component analyzes behavioral patterns without storing raw user data,
thereby minimizing privacy risks associated with data collection. Lastly,
the inherent pseudonymous nature of blockchain transactions provides an
additional layer of privacy, making it difficult to trace activities back to indi-
vidual users. The TL2AB framework incorporates multiple layers of privacy-
preserving mechanisms to protect sensitive information:

e Key Privacy: Cryptographic key K, is never transmitted. A cryp-
tographic hash H(K,) is stored on-chain, so it is computationally in-
feasible to derive the original key due to the one-way nature of hash
functions. The key itself is stored securely within the Trusted Execu-
tion Environment (TEE).

e Privacy of Behavioral Data: Locally or by a privacy-oblivious Al
model, the risk is assessed. Only the derived features, such as login fre-
quency or location region (and not raw behavioral logs), are employed
so that raw user activity and personal data do not leak.

e On-Chain Privacy: Information that is stored on-chain is limited
and minimal in scope and includes hashed or insensitive values only.
No personally identifiable information (PII) is ever stored on-chain.

These measures collectively ensure that TL2AB protects user privacy
across three fronts: device identity, behavioral context, and cryptographic
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material, even in an adversarial environment with partial visibility into the
network or blockchain.

Claim 5: TL2AB preserves user privacy with high probability.

Proof: Let E represent the event of a privacy breach. The probability
of event E occurring can be expressed as: P(F) = P(TEE_compromised) -
P(Al _data_leaked) - P(Blockchain_deanonymized). Given the strong security
properties of the TEE, the data minimization approach utilized in the Al
analysis, and the pseudonymous nature of blockchain transactions, each of
these probabilities is very low. Therefore, the overall probability of a privacy
breach, P(FE), is negligible.

6.5. Forward Secrecy

TL2AB ensures forward secrecy through dynamic session key generation
and continuous risk assessment.

Claim 6: TL2AB provides forward secrecy. Proof: Let S; and S; denote
two distinct sessions, where ¢ < j. The compromise of the session key K; does
not reveal any information about the session key K;. This is due to several
factors: First, session keys are generated independently for each session,
ensuring that the compromise of one does not affect the others. Second, the
AT component continuously updates the risk assessment, which influences the
key generation process, further enhancing security. Lastly, the blockchain
records each authentication event separately, making it more challenging for
an adversary to link compromised keys across sessions.

As a result, we can express the relationship between the probabilities
as: P(Compromise_S;|Compromise_S;) ~ P(Compromise_S;), demonstrat-
ing that the compromise of one session key does not compromise the security
of others, thereby ensuring forward secrecy.

In conclusion, this formal security analysis demonstrates that TL2AB
provides security guarantees against a wide range of attack vectors relevant
to 6G networks. The integration of Al and blockchain technologies creates a
synergistic effect, significantly enhancing the overall security posture of the
authentication framework.

6.6. Comprehensive Analysis of TL2AB Capabilities

In this part, we provide an in-depth evaluation of the benefits of TL2AB
by taking into account its security, privacy guarantee, dynamism in dy-
namic environments, and international scalability and responsiveness. We
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then compare these elements to the similar state-of-the-art authentication
paradigms.

6.6.1. Scalability and Performance

TL2AB is a lightweight architecture designed specifically for computation-
limited [oT devices in 6G networks. With the deployment of decentralized
blockchain technology, TL2AB divides authentication operations among var-
ious nodes, hence eliminating single points of failure as well as guaranteeing
high availability. Moreover, the integration of Al-driven ongoing risk anal-
ysis lessens computational overhead while maintaining low latency despite
dynamic network conditions.

6.6.2. Security Features

TL2AB achieves robust security by integrating multiple layers of defense.
The use of blockchain ensures tamper-proof logging and distributed trust,
while cryptographic signatures and secure key storage (within a Trusted
Execution Environment using salted hashes) protect sensitive credentials.
Additionally, the AT Authentication Server continuously monitors device be-
havior to assess risk and detect potential anomalies dynamically. This multi-
faceted approach provides strong resilience against attacks such as man-in-
the-middle, replay, impersonation, and denial-of-service.

6.6.53. Privacy-Preserving Mechanisms

To ensure the privacy of users, TL2AB employs various privacy-enhancing
practices. Privacy-sensitive information is protected by keeping salted hashes
of cryptographic keys rather than plaintext keys, and each blockchain trans-
action is pseudonymous to prevent direct linking with individual users. More-
over, the Al component processes the behavioral data in a minimized data
fashion without keeping plaintext personal data, thereby minimizing privacy
exposure.

6.6.4. Adaptability and Dynamic Response

One of the key strengths of TL2AB is that it is highly flexible. The
artificial intelligence-based risk assessment in the framework adapts continu-
ously in real time, allowing the system to dynamically change authentication
requirements based on current threat levels. This makes the system respon-
sive to changing network conditions and evolving threats, while maintaining a
balance between security and usability without overloading the computation.
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6.6.5. Comparative Analysis with Related Frameworks

Table 9 provides a qualitative comparison of TL2AB with several related
authentication schemes from the literature. The comparison is based on
four key criteria: security robustness, privacy preservation, adaptability, and
scalability /performance.

This comprehensive analysis demonstrates that TL2AB not only sur-
passes the security, privacy, and flexibility but also makes significant improve-
ments in scalability and performance over existing state-of-the-art frame-
works. The integration of blockchain technology with Al-based continuous
monitoring makes TL2AB a robust and flexible instrument for 6G networks.

7. Advantages of TL2AB

While the works reviewed above in the related works section contribute
to knowledge in one way or another, TL2AB differs in that it incorporates
Al-driven continuous monitoring with blockchain for developing a decentral-
ized authentication framework. The solution designs so far have been for
specific applications or technologies, while TL2AB is intended to be applied
holistically in various 6G environments. Including the following advantages:

e FEfficiency and Resource Utilization: Unlike the three-factor mecha-
nism proposed in the health sector [6], TL2AB is lightweight; hence,
more suitable for resource-constrained IoT devices prevalent in the 6G
networks.

o Decentralization: The fallback to a single, central system in the CL-
UCSSO mechanism and other proposals presents some concern due to
a single point of failure [6, 8]. TL2AB enhances a blockchain-based
platform that will support a distributed model of trust.

o Adaptability: The lightweight protocols put forward in maritime trans-
portation and satellite-ground networks rely mostly on specific con-
texts. TL2AB uses Al for continuous adaptation to emerging threats,
with a more robust security posture.

The comprehensive security framework TL2AB, combines multi-factor
authentication and blockchain into one platform that enables dynamic and
context-aware authentication in diversified applications in 6G. The proposed
TL2AB tends to fill those gaps identified in the literature review by providing
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a flexible and efficient, robust authentication solution that could be scaled
up with growing demands of the 6G network without compromising security
and privacy.

7.1. Scalability and Performance

Scalability and efficiency are crucial factors in 6G networks, especially
when handling billions of devices. Works like Tao et al. [7] and Fang et al.
[10] focus on optimizing protocols to handle large-scale networks by mini-
mizing overhead, reducing latency, and ensuring rapid authentication. This
focus aligns with TL2AB’s goal of providing a lightweight, scalable authenti-
cation mechanism that can adapt to large, dynamic 6G environments. Tab.
8 summarizes the key aspects of the related works and their comparison to
the TL2AB framework.

7.2. Computational and Communication Performance Comparison

In this part, we compare the computation and communication efficiency of
TL2AB with other authentication methods. Tab. 10 illustrates a comparison
of the reported computation and communication in various works.

Our model requires 1.7202 seconds for training and 0.000375 seconds per
sample for inference, which indicates efficient processing. The inference CPU
utilization is 21% measured, indicating a modest computation cost sufficient
for real-time authentication in 6G networks. TL2AB also has a tiny model
size of 0.15 MB, making it light-weight as opposed to deep-learning-based
authentication systems.

The whole length of the message transmitted via the authentication in
the TL2AB protocol is 334 bytes, which include the authentication request
(296 bytes), risk assessment response (5 bytes), smart contract verification
response (1 byte), and session confirmation (32 bytes). The message length
is still small in a step to decrease communication overhead without com-
promising security and scalability within high-speed networks. As regards
communication efficiency, TL2AB transmits 334 bytes while authenticating
with virtually negligible overhead. While Aman et al. [16] has a smaller mes-
sage length of 40 bytes, they are utilizing the classic cryptographic schemes
that do not necessarily have more flexibility while handling dynamic 6G en-
vironments. On the contrary, Al Ahmed et al. [15] have extremely high
encryption delay (0.077642 sec) and decryption time (3.537678 sec), which
would induce authentication delay in real-time systems.
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Compared to Siddhartha et al. [12], with a total computational energy
consumption of 102.059 mJ, TL2AB’s Al-based lightweight approach mini-
mizes computation without increasing communication overhead. Similarly,
Tahir et al. [17] obtained 5.2% reduction in computational overhead and
3.8% reduction in communication overhead, and TL2AB offers a compro-
mise among security, efficiency, and real-time flexibility. That is, TL2AB
is an efficient authentication scheme with low computational and commu-
nication overhead, efficient, secure, and fast authentication, and therefore
appropriate for future 6G networks.

8. Conclusion

In summary, the TL2AB authentication framework offers a fresh paradigm
for solving the challenging security issues caused by the emergence of 6G
technology. TL2AB merges artificial intelligence with blockchain, propos-
ing a lightweight, efficient, and robust authentication mechanism suitable for
high-demand applications from several fields. Compared to the various au-
thentication protocols that exist, TL2AB is way more efficient and secure.
Future work will consider network scalability for TL2AB and explore any
potential enhancements possible with emerging technologies like quantum
cryptography. Ultimately, TL2AB should serve as a way in establishing se-
cure and user-friendly authentication mechanisms in coming 6G networks
to further enable advanced applications that require enhanced security and
privacy.

Appendix A. Example Appendix Section
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Feature Description Type
Timestamp The timestamp when the authentica- | DateTime
tion event occurred, randomly gener-
ated within a month.
Device_ID Unique identifier for each device. String (ID)
IP_Address Randomly generated IP address (e.g., | String (IPv4)
192.168.1.1).
Location Geographical coordinates  (latitude, | String (Latitude, Lon-

longitude) of the device’s location,
randomly generated.

gitude)

Network_Type Type of network being used (WiFi, 4G, | Categorical (WiFi,
or 5G). 4G, 5G)

Device_Type Type of device used for authentication | Categorical — (smart-
(smartphone, IoT sensor, laptop, or | phone, IoT, laptop,
tablet). tablet)

OS_Version

The version of the operating system on
the device (e.g., 10515, Android_12).

Categorical (OS Ver-
sion)

App_Version

Version of the application used for au-
thentication (e.g., 1.2, 2.5).

String (Version)

Authentication_-Method

Authentication method used (pass-
word, biometric, token, 2FA).

Categorical (pass-
word, biometric,
token, 2FA)

Login_Attempts

The number of login attempts made
during this session (between 1 and 10).

Integer (1-10)

Time_Since_Last_Login

Time in hours since the last successful
login, ranging from 0 to 168 hours (7
days).

Numeric (Continuous)

Unusual_Activity Flag

Flag indicating whether unusual activ-
ity was detected during the session (1:
Yes, 0: No).

Binary (0, 1)

Is_Roaming

Flag indicating whether the user is
roaming (1: Yes, 0: No).

Binary (0, 1)

Is_VPN Flag indicating whether the user is us- | Binary (0, 1)
ing a VPN (1: Yes, 0: No).
Risk_Score A calculated risk score based on multi- | Numeric (0-1)

ple factors such as login attempts, time
since last login, etc.

Table 4: Feature Descriptions
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Statistic Value
Count 100,000
Mean 0.1769
Standard Deviation 0.1237
Minimum 0.0000
25th Percentile (Q1) 0.0863
50th Percentile (Median) | 0.1590
75th Percentile (Q3) 0.2431
Maximum 0.8794

Table 5: Risk Score Statistics

Device Type | Average Login Attempts

TIoT Sensor 5.50

Laptop 5.51
Smartphone 5.49
Tablet 5.45

Table 6: Login Attempts by Device Type

Parameter Value
Number of Trees (n_estimators) 100
Number of Features Used 23
Details of the first tree in the forest
Tree depth 30
Number of leaves 4974
Number of nodes 9947

Table 7: Model Architecture
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Paper & | Security Authentication | Technological | Scalability &
Appli- Mechanism Approach Focus Performance
cation
Domain
Le et | Data  Privacy, | 3-Factor Au- | Healthcare Net- | High cost, se-
al. [6] | System Cost | thentication works, Authenti- | cure but com-
(Health- Optimization (Smart  Card, | cation Protocols | putationally ex-
care) Password, Bio- pensive
metric)
Chaudhry | GPS Spoofing, | Lightweight GPS-based Sys- | Low  overhead,
et al. [8] | Unauthorized Authentication | tems, Maritime | lightweight,
(Maritime) | Data Access Protocol Security secure
Tao et | Privacy Preser- | Bilinear Pairing- | Satellite-ground | Energy-efficient,
al. [7] | vation, Energy | based Group | Integrated Net- | scalable,  low-
(Satellite Efficiency Signature, works latency
Networks) Batch Authenti-
cation
Asim MFA, Cyber At- | Multi-Factor Blockchain- Blockchain-
et al. [9] | tack Prevention | Authentication | based Security | enhanced secu-
(Blockchain (MFA) rity, scalable
Fang et al. | Security ~Man- | Al-Enabled IoT  Networks, | Scalable, adap-
[10] (IoT) | agement,  Au- | Lightweight Al-enhanced tive to dynamic
thentication Authentication | Security environments
Efficiency
Garabato | Continuous Al-based Con- | Al-driven  Au- | Scalable, adap-
et al. [11] | Authentication, | tinuous Authen- | thentication, tive, continuous
(General) | Activity Moni- | tication (SVM, | Continuous User | verification
toring MLP, Deep | Verification
Learning)
TL2AB Device Security, | Lightweight 6G  Networks, | Scalable,  low-
Frame- Risk Assessment | & Dynamic | Al-driven Secu- | latency, real-
work (6G Authentication | rity time  dynamic
Networks) (Cryptographic adjustments
Signatures,
Al-based  Risk
Assessment)

Table 8: Comparison of Authentication Approaches in 6G Networks
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Table 9: Comprehensive Comparison of Authentication Frameworks

Reference Security Privacy Adaptability Scalability
Robustness Preserva- &  Perfor-
tion mance
Siddhartha et High; robust Moderate; Low; static Low; high
al. [12] multi-factor  traditional authentica- computa-
security key manage- tion model tional  over-
ment head
Kumar et al. Moderate- Moderate; Low; limited Moderate;
[13] High; efficient limited to dynamic ad- optimized for
for smart specific  do- justment smart home
home IoT main devices
Khalid et al. High; de- Moderate; Moderate; Moderate;
[14] centralized standard fixed protocol blockchain
blockchain- blockchain parameters overhead may
based secu- privacy limit scalabil-
rity ity
Al Ahmed et High; in- Moderate; Moderate; Moderate;
al. [15] novative privacy not cluster-based efficient clus-
consensus extensively but less dy- tering  with
algorithm addressed namic integration
enhances challenges
security
Aman et al. High; PUF- High; intrin- Low- Low; opti-
[16] based mecha- sic hardware- Moderate; mized for
nism provides level privacy  less emphasis constrained
strong  secu- on dynamic devices only
rity adaptation
Tahir et al. High; robust High; de- Moderate; Moderate;
[17] for health in- signed for fixed policies  balanced per-
formatics sensitive data formance for
specialized
applications
TL2AB Very High; Very High; Very High; High;
(Proposed) combines employs real-time lightweight
blockchain salted Al-driven design en-
and AI for hashes and adaptation suring low
continuous, pseudony- latency and
dynamic mous trans- high scala-
threat as- acti#éns bility

sessment




Table 10: Comparison of Computational and Communication Performance with Related

Works

Scheme Reported Results | Reported Results
(Computation) (Communication)

Siddhartha et al. [12] | Total computational | Transmission  energy
energy: 102.059 mJ per bit: 0.72 nJ, Re-

ception: 0.81 nJ

0.000375 sec, CPU Us-
age: 21%, Model Size:
0.15 MB

Aman et al. [16] Hash operations: | Message length: 40
O(n), Modular ex- | bytes, Lower overhead
ponentiation: O(n + | than traditional meth-
M(D)k) ods

Tahir et al. [17] Computational over- | Communication over-
head reduced by 5.2% | head reduced by 3.8%

Kumar et al. [13] AES delay: 0.001975 | Reported security in-
ms, SHA-1 delay: | crease with minimal
0.001135 ms impact on communica-

tion

Al Ahmed et al. [15] RSA Encryption: | Average network de-
0.077642 sec, Decryp- | lay: 7 ms
tion: 3.537678 sec

Our Model | Training Time: 1.7202 | Message length: 334

(TL2AB) sec, Inference Time: | bytes (minimal over-

head)
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Highlights

TL2AB : Trusted Lightweight Authentication using AI and Blockchain
for 6G Networks

e TL2AB introduces a new authentication scheme uniquely combining
blockchain and AI technologies that is robust and lightweight for au-
thentication mechanisms in 6G networks.

e The framework leverages blockchain’s immutable and distributed ar-
chitecture to enable decentralized authentication while using Al for
real-time threat monitoring.

e Resource-efficient design specifically optimized for IoT devices makes
TL2AB highly suitable for large-scale 6G deployments.

e Al-driven continuous authentication enables adaptive security responses
without compromising the lightweight nature of the framework.
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