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ABSTRACT Coronary artery disease (CAD) diagnosis remains a significant contributor to global mortality
rates, highlighting the need for novel approaches. Existing CAD diagnostic tools rely on costly and
complex biomarkers and scanners. In this paper, using only electrocardiogram (ECG) signals, we propose
a novel learning-based model for CAD diagnosis. The proposed method works based on a one-dimensional
convolutional neural network (1D-CNN), offering a cost-effective alternative for sophisticated cardiac health
monitoring. Furthermore, we introduce the concept of feature engineering to improve the quality of themodel
training process and mitigate the challenge of ill-conditioned ECG data. Unlike existing approaches, which
often overlook signal quality, our model applies a smart feature engineering, ensuring that only diagnostically
reliable signals are used. This design improves robustness, generalisability, and suitability for real-world
clinical settings. Utilising one of the most complex publicly available datasets, i.e., MIMIC III, sourced from
Physionet, the performance of the proposed model, along with existing ones in classifying potential cases
of CAD and non-CAD is investigated. Our findings confirm that the proposed model exhibits outstanding
performance, highlighting the effectiveness of our integrated feature engineering approach with the CNN
model.

INDEX TERMS Convolutional neural networks, Electrocardiogram, Coronary artery disease, Cardiovascu-
lar disease, Myocardial infarction.

I. INTRODUCTION
Coronary Artery Disease (CAD) remains the most prevalent
type of Cardiovascular Disease (CVD) and is the leading
cause of death worldwide, contributing to millions of deaths
annually [1]. A study indicated that CVD is anticipated to
maintain its position as the foremost cause of mortality world-
wide by the year 2030, with notable prevalence expected
across both high and low-income nations [2]. CAD develops
when cholesterol progressively accumulates, narrowing the
walls of the coronary arteries. This condition gives rise to
two severe manifestations: myocardial infarction and angina.
Studies indicate that advanced symptoms of CAD typically
display during middle age, highlighting the correlation be-
tween aging and the likelihood of CAD development [3], [4].
Hence, it is imperative to implement preventive measures and
establish pre-screening protocols for high-risk patients.

CAD is typically diagnosed through various diagnostic
tests, including electrocardiography (ECG), treadmill ECG,
echocardiography (ECHO), and angiography. ECG is most

commonly used for all CVD initial screening in general prac-
tices due to being a cost-effective and widely accessible tool,
capable of facilitating continuous monitoring, portability, and
ability to provide real-time data. However, the current diag-
nosis using ECG is conducted manually, is time-consuming,
and is subject to human error, posing significant challenges
in clinical practices. Hence, to address this issue, we propose
an intelligent learning-based approach to improve diagnostic
efficiency. The proposed model serves as a cost-effective
and user-friendly pre-screening tool for patients, requiring
minimal specialised medical expertise.
With the development of state-of-the-art technologies, dif-

ferent classical machine learning architectures are used for
predicting ECG-related issues, such as Support Vector Ma-
chine (SVM) [5, 6], K-nearest neighbour (kNN) [7], K-
means [8]. Furthermore, numerous deep learning techniques
are employed on ECG signals to classify heart diseases.
Among these, Convolutional Neural Networks (CNNs) [9],
Long Short-TermMemory (LSTM) networks [10], Recurrent
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Neural Networks (RNNs) [11], Residual Neural Network
(ResNet) [12, 13, 14], and Autoencoders [15] have been
applied to ECG signals for heart disease classification. The
primary advantage of deep learning techniques is the ability
to eliminate the need for feature extraction processes, unlike
classical machine learning techniques that often necessitate
explicit feature extraction. On the contrary, deep learning
models carry out feature extraction automatically and implic-
itly, leveraging a robust pattern learning ability and adaptable
processing architectures.

Recent studies have shown that CNN architecture is ef-
fective in various medical diagnostic tasks, such as detect-
ing COVID-19 lesions in CT scans, diagnosing Alzheimer’s
disease from hippocampal MRI, classifying skin lesions in
dermoscopy images, and identifying breast abnormalities in
mammograms [16, 17, 18, 19]. These examples demonstrate
that CNN can successfully learn important medical features
from complex data, supporting disease detection, localisation,
and analysis across different types of medical images. CNN
has also been applied to non-imaging biomedical signals,
most notably the ECG, which is widely used in the diagnosis
of cardiovascular diseases [20].

A hybrid CNN-LSTM architecture is introduced for the
detection of CAD, utilising anomalous ECGmorphology and
irregular heart rate variability (HRV) to discern CADand non-
CAD cases [9]. Additionally, the CNN-LSTM architecture is
applied for CAD identification [10]. However, the diagnostic
accuracy of CAD is impeded by constraints in the available
data, as public resources provide only limited datasets and
lack certain definitive biomarkers. Several studies have im-
plemented 1D-CNN for the automated detection of CAD,
aiming to enhance diagnostic accuracy and improve patient
outcomes. In [21], an automated CAD diagnosis system util-
ising 1D-CNN is presented, showcasing notable outcomes
in accuracy and computational efficiency. The 1D-CNN ap-
proach effectively distinguished between CAD and non-CAD
subjects. The integration of feature extraction techniques into
their proposedmodel yielded promising accuracy levels. Nev-
ertheless, the training process of the model proved to be time-
intensive and demanded a substantial volume of data.

A deep neural network, with its layered structure and vari-
ous activation functions, learns to recognise patterns at differ-
ent levels of complexity within the ECG signals. Specifically,
the CNN stands out for its ability to extract and identify fea-
tures within ECG signals, making it highly effective for tasks
such as diagnosing cardiac conditions and predicting patient
outcomes based on ECG data. The CNN architecture has been
devised to diagnose various CVD applications, including ar-
rhythmia conditions [22, 23, 24, 25], atrial fibrillation (AF)
[26], and CAD [9, 10, 21, 27]. The performance evaluation
of the CNN model relies on its capacity to accurately pro-
cess input signals and produce the intended prediction. This
evaluation focuses on how effectively the CNN interprets
and manages the provided ECG signals to classify potential
classes. An 11-layer CNN model, combined with Discrete
Wavelet Transform (DWT), achieved an accuracy of 94.95%

in 2-second segments and 95.11% in 5-second segments.
The DWT with the Daubechies 6 (db6) mother wavelet was
employed on the ECG signals to mitigate noise and baseline
wander [21]. The CNN model possesses the capability to
extract features from ECG signals, but its efficacy depends on
the quality of the ECG data. When data is corrupted by noise
and artefacts, it compromises the model’s learning capacity.
Thus, preprocessing methodologies, including DWT [21, 28],
various entropy computations [29], and the Fourier transform
[30], are applied to enhance the quality of the signal before
its incorporation into the CNN model.
Due to a significant shortage of available CAD data, a

relatively small group of researchers have conducted their
work on CAD diagnosis [10, 21, 31]. Even among these
works, many studies have focused on detecting arrhythmia
[24, 25], congestive heart failure [32], AF [26] and MI [33].
A recent study proposed a CNN–LSTM–SE architecture

for classifying heart failure severity using lead II ECG sig-
nals from the MIMIC III database [34]. While the focus
was on heart failure, it demonstrates the effectiveness of
applying deep learning methods to ECG data from MIMIC
III. Other recent studies have also explored classification
tasks using MIMIC III, including a multimodal contrastive
learning approach that combines ECG signals with clinical
text for arrhythmia detection [35], and a traditional k-NN
method using handcrafted ECG features for atrial fibrilla-
tion identification [36]. These studies highlight the potential
of MIMIC III for ECG-based classification. Yet, despite its
widespread prevalence, very limited attention has been given
to CAD [37]. The main focus of many existing studies relies
on these heart diseases, primarily due to the availability of
datasets as previouslymentioned. Furthermore, these diseases
are easily distinguishable into potential classes due to their
specific and distinctive biomarkers. On the contrary, CAD,
which lacks certain biomarkers, presents more formidable
challenges. Recent deep learning approaches to CAD detec-
tion have primarily focused on deeper CNN architectures,
often overlooking critical factors such as signal quality issues
and real-time applicability [38]. This paper addresses these
limitations by proposing a streamlined 1D-CNN architecture,
designed for CAD detection. By targeting this underexplored
area, the study contributes to closing a notable gap in the
current literature.
In this study, we aim to design a specific deep learning-

based model for accurate coronary artery disease classifica-
tion. The summary of the contributions is as follows:

• A smart feature engineering is proposed to remove un-
wanted and noisy ECG segments prior to model training,
improving data quality and overall model reliability.

• A novel and streamlined 1D-CNN architecture is devel-
oped, integrated with the FE module for CAD diagno-
sis. This integration enhances noise tolerance, improves
generalisability to unseen data, and supports efficient
deployment in real-time settings.

• The MIMIC III dataset is prioritised for CAD diagnosis,
with extensive preprocessing conducted to address the
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complexity and noise inherent in its ECG signals.
• To verify the effectiveness of our proposed model, we

conduct a comparative analysis of classical machine
learning models alongside existing CNN-based models
on well-established datasets.

• A one-class evaluation is conducted to assess the
model’s ability to distinguish CAD from non-CAD
cases, reflecting realistic screening scenarios in clinical
practice.

• A cost-effective and time-efficient diagnostic pipeline
is designed to support scalable CAD screening, partic-
ularly in clinical and resource-constrained settings.

Moreover, while much of the existing literature focuses
on arrhythmia classification using ECG signals, the proposed
model is specifically developed for CAD detection, which is a
clinically significant yet relatively underexplored application.
Our primary aim is to develop a cost-effective and time-
efficient diagnostic tool suitable for use in real-world health-
care environments. To facilitate clinical use, the proposed
model is designed for fully automated operation, enabling
rapid and accurate CAD diagnosis to support improved the
standard of patient care. Additionally, the model’s robust-
ness is evaluated under varying conditions by comparing its
performance on data with and without feature engineering
techniques.

II. MATERIALS AND METHODS
The proposedmethod comprises three key phases: data prepa-
ration, feature engineering, and developing a deep learning
model. We aim to design and implement a model to classify
CAD using ECG signals, based on a comprehensive series
of experiments. Subsequent sections will provide detailed
explanations of each step.

A. DATA PREPARATION
The primary source for training and testing ECG data is de-
rived from the MIMIC III and Fantasia databases, accessible
on the Physionet website [39, 40]. Around 2,840 patients,
comprising roughly 7.1% of the total hospital admissions,
have been identified within the MIMIC database as individ-
uals diagnosed with coronary atherosclerosis in the native
coronary artery. On the other hand, the Fantasia database is
characterised by a cohort consisting of 40 individuals, with
an equal distribution of 20 young and 20 adult patients. The
acquisition of ECG signals is facilitated by employing ECG
sensors. The ECG electrodes are strategically positioned on
the patient’s body, enabling the sensors to accurately capture
the activity of the heart. The ECG signal consists of the P
wave, representing atrial depolarisation; the QRS complex,
indicating ventricular depolarisation and contraction; and the
T wave, demonstrating ventricular repolarisation and relax-
ation. ST depression indicates significant coronary artery
lesions, highlighting a critical need for an early invasive
treatment. Moreover, ST elevation displays a complete block-
age of the artery, indicating CAD, MI, or a heart attack.
To create a balanced dataset for each class, forty patients

weremeticulously selected from each respective database and
partitioned into 1-second segments of ECG data, resulting in
approximately 500,000 seconds. Maintaining class balance
is crucial for minimising model bias and ensuring reliable
detection of minority class instances. In the presence of class
imbalance, the model may exhibit reduced sensitivity to CAD
cases, potentially compromising diagnostic performance. The
segmentation process facilitates a thorough analysis of the
dynamic changes and patterns within ECG signals over short
time frames. This approach has been widely employed in
most of the previous works to ensure consistency in the ECG
signal [10, 41, 42]. Hence, in our study, the ECG data was
segmented into small segments to maintain consistency. The
aim is to guarantee that each segment contains a complete
ECG cycle, without relying on QRS detection [42]. These
segments will be employed to apply FE techniques, which
include Sample Entropy and Standard Normalisation, to sys-
tematically eliminate irrelevant and noisy ECG data that may
potentially affect the predictive accuracy of the model (see
next section).

B. FEATURE ENGINEERING
ECG signals are fundamental clinical tools for diagnosing
cardiac diseases. However, the integrity of these signals is
frequently compromised by prevailing challenges, including
baseline drift, muscular interferences, powerline artifacts, and
electrodemotion disruptions. These challenges have a signifi-
cant negative impact on the quality of ECG signals, rendering
specific segments of the data inadequate for precise diagnosis
[21, 43]. Furthermore, they impede individuals’ awareness of
their health status.
FE plays a significant role as it assists in removing missing

or inconsistent ECG data resulting from human and equip-
ment errors. It aids in transforming raw ECG data into infor-
mative features, which enable the model to better capture un-
derlying patterns and improve its predictive accuracy. Sample
entropy serves as a metric utilised to assess the quality of time
series data. Its efficacy in mitigating noisy ECG channels has
been demonstrated in previous research [44]. Furthermore,
standard normalisation is employed to eliminate flat time
series data and tomitigate any potential data that could impact
accuracy. The computation of sample entropy is presented as
follows in equation (1).

SampEn = − ln

( ∑N−m
i=1 Qm

i (r)∑N−m+1
i=1 Pm+1

i (r)

)
(1)

where SampEn indicates the quality of the ECG signals.
N represents the number of samples within each 1-second
ECG segment. m refers to the embedded dimension, which
represents the length of consecutive samples or data points
analysed together. Qm

i (r) quantifies the instances of vector
pairs of dimension m whose mutual distance falls below a
predefined threshold r , suggesting a degree of similarity or
regularity within the signal. Pm+1

i (r) quantifies the number
of vector pairs of dimension m + 1 that are similar within

VOLUME 11, 2023 3



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

a predefined threshold level r , thereby extending the com-
parison to sequences of increased length. A value of r =0.1
was employed in this study, consistent with prior literature
suggesting that values within the range of 0.1 to 0.25 are
effective for preserving the quality of ECG signals [45].

Standardisation is then applied to minimise flat regions and
noisy artifacts in the ECG signals, thereby improving the rep-
resentation of key morphological features. The computation
of standard normalisation is detailed in equation (2).

σ =

√√√√ 1

N − 1

N∑
i=1

(xi − x)2 (2)

where σ also indicates the quality of the ECG signals, N is
the number of signals, x is the average of a given signal, and
xi is the signal value at the ith position.

To summarise, FE using SampEn and standard normali-
sation was employed to remove ECG segments that exhib-
ited flat lines or an absence of clear clinical features. These
artefacts were caused by baseline wander, motion noise or
poor electrode contact during signal acquisition. Although
DL-based models perform automatic feature extraction, FE
was applied to improve signal quality by removing low-
information ECG segments. This step ensures that the input
retains clinically meaningful waveform components, thereby
enhancing model robustness and generalisability.

Importantly, FE is applied during both training and pre-
diction to ensure that only clinically relevant and high-
quality ECG segments are used. This consistency improves
the model’s robustness and generalisability in real-world clin-
ical applications. In clinical use, it also enables the system
to focus on meaningful ECG input and reduces the risk of
misclassification caused by noise or incomplete signals.

Figure 1 presents a comparison of exemplary ECG signals,
showcasing examples of both high-quality and poor-quality
signals. FE is applied to the 1-second ECG segments gener-
ated in the previous step. The threshold r is set at 0.1, which
is used to determine the quality of the signal. Signals with a
value less than r are classified as high-quality signals. The
segments in which ECG signals fail to meet the specified
threshold r are excluded. In Figure 1(a), an exemplary ECG
signal demonstrating high quality is depicted. This signal
displays distinct ECG features, such as well-defined cycles
containingQRS complexes and other waveforms. Conversely,
Figure 1(b) illustrates an exemplary ECG signal demonstrat-
ing poor quality. This signal is characterised by the absence of
clear ECG features, and it contains noise patterns indicative
of potential recording or signal acquisition issues. Therefore,
it is crucial to ensure the reliability of ECG signals in sub-
sequent processes, as it helps mitigate the risk of generating
inaccurate predictive outcomes.

Figure 2 illustrates a comparison of the quality of ECG
signals after applying standard normalisation to remove re-
maining noise and flatness. A signal is retained as high quality
if its standard deviation exceeds the threshold r . Conversely,
signals with the standard deviation below the threshold r are

((a)) Exemplary ECG Signal Demonstrating High Quality

((b)) Exemplary ECG Signal Demonstrating Poor Quality

FIGURE 1: Signal Quality Evaluation: ECG Signals with
sample entropy below threshold (r = 0.1) retained for further
processing

((a)) Poor-Quality ECG Signal with flat line

((b)) Good-Quality ECG Signal without flat line

FIGURE 2: Signal Quality Evaluation: ECG Signals with
standard normalisation above threshold (r = 0.1) retained for
further processing
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excluded. This FE technique is employed to eliminate any
flatness present in the signal, thereby reducing the risk of
low predictive accuracy. It serves as an optional approach
to ensure signal cleanliness, aimed at preserving signal in-
tegrity and thereby enhancing themodel’s capacity for pattern
recognition. After applying the FE techniques, the retained
ECG signal is then inputted into the proposed model for the
classification of CAD and non-CAD cases.

C. CNN MODEL
ACNNmodel consisting of four convolutional layers, a max-
pooling layer, four dropout layers, a flattened layer, and a
fully connected dense layer was designed. ECG signals are
taken as input to the first layer of the convolutional layer. The
convolutional layer was used to learn and extract patterns of
two possible classes (CAD and non-CAD). The output of the
convolutional layer is calculated as:

y(n) =

{∑k
i=0 x(n+ i)h(i), if n = 0∑k
i=0 x(n+ i+ (s− 1))h(i), otherwise

(3)

where y(n) represents the output signal at position nwithin
the convolutional layer, x(n) denotes the ECG input signal,
and h(i) signifies the convolutional kernel—a collection of
learnable weights that the CNN acquires during training for
feature extraction from the input signal x(n). The parameter
k corresponds to the size of the convolutional kernel, deter-
mining the receptive field, which defines the spatial area over
which the filter operates on the input signal. s represents the
stride length, indicating how the convolutional kernel moves
through the ECG signal. s is set to 1 by default, indicating that
the kernel progresses through the input signal with each step
equivalent to the size of one ECG sample.

Figure 3 illustrates that the initial convolutional layer con-
sists of 512 filters with a kernel size of 32, while the subse-
quent layers consist of 256 filters, each with the same kernel
size. The Rectified Linear Unit (ReLU) activation function
was used in the convolutional layers to introduce non-linearity
into the model, thereby aiding in the comprehension of in-
tricate patterns within the ECG signal. Three dropout layers
with a rate of 0.2 were added after the convolutional layers
to prevent overfitting. The max pooling layer with a pool
size of 128 was then applied to reduce the spatial size of
the feature maps and improve generalisation by selecting the
maximum value within a window size. The flattened output
was then passed to a fully connected layer, consisting of
128 neurons and employing the ReLU activation function. To
further prevent overfitting, an additional dropout layer with
a rate of 0.5 was incorporated before the final output layer.
The final layer comprises two neurons and utilises softmax
activation, enabling the model to classify input data into one
of two potential classes, thereby representing the probabilities
of the input belonging to each class.

A binary cross-entropy loss function is used for CAD and
non-CAD classification due to its ability to handle binary
classification tasks as shown in (4).

TABLE 1: Hyperparameters used for model training

Hyperparameter Value

Learning Rate 0.0001
Batch Size 32
Number of Epochs 50
Optimiser Adam
Loss Function Binary Cross-Entropy
Hidden Layer Activation ReLu
Output Layer Activation Softmax

BinaryCrossEn = − 1

N

N∑
i=1

(yi log(pi) + (1− yi) log(1− pi))

(4)
where N is the number of samples in the corresponding
ECG segment. yi is the true label for ECG signals i, where
yi ∈ {0, 1}. yi = 0 represents a non-CAD case, indicating the
absence of CAD features in the ECG signal i. Conversely, yi =
1 exhibits a CAD case, representing the existence of relevant
CAD features in the ECG signal i. pi is a predicted probability
that ECG signal i belong to class 1. It facilitates the model
in determining its predictive certainty, thereby refining its
prediction to achieve better alignment with the true labels.
The hyperparameters used during model training, includ-

ing learning rate, batch size, and number of epochs, are
summarised in Table 1.

III. EXPERIMENTAL RESULTS
In this section, the performance of the proposed model is
evaluated, including classification accuracy and comparative
analysis with other models.

A. EXPERIMENTS
As outlined in Section II-A, forty patients were deliberately
sampled from both the MIMIC and Fantasia databases in
identical proportions. Subsequently, the data was partitioned
into 1-second segments (each with N = 250 samples) to
enhance accuracy and focus on temporal aspects. After seg-
menting the ECG data into 1-second segments and imple-
menting feature engineering techniques, two distinct subsets
of data are generated for the experiments: D1 and D2. The
first subset (D1) comprises 100 CAD samples and 100 NON-
CAD samples, with each sample having a length of 1 second.
To assess the model’s performance robustly, we employed k-
fold cross-validation on D1 by partitioning it into 10 folds. In
each iteration, 70% of the folds were used for training, and
the remaining 30% for validation. The partitioning method
is extensively utilised due to its dual capacity to provide
substantial training data and allocate sufficient resources for
assessing the model’s ability to generalise. Moreover, subset
D2, containing an equivalent number of samples as D1, was
used exclusively for testing to assess the model’s ability to
generalise to unseen data.
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FIGURE 3: The proposed model architecture.

To evaluate the model, performance metrics including Ac-
curacy, Error Rate, Precision (Ppr), Sensitivity (Sen), Speci-
ficity (Spr), and F1 Score (F1) were used to measure the
performance of the classification model as shown in (5)-(10).

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Errorrate = 1−Accuracy (6)

Ppr =
TP

TP + FP
(7)

Sen =
TP

TP + FN
(8)

Spr =
TN

TN + FP
(9)

F1 =
2× Sen× Ppr

Sen + Ppr
(10)

where true positives (TP) are the CAD cases that the model
correctly identifies as CAD, true negatives (TN) are the non-
CAD cases correctly identified as non-CAD, false positives
(FP) are the non-CAD cases mistakenly identified as CAD,
and false negatives (FN) are the CAD cases mistakenly iden-
tified as non-CAD.

B. RESULTS AND DISCUSSION
To assess the impact of FE, we conducted ablation experi-
ments. Models trained without FE exhibited lower accuracy
and generalisation, particularly on unseen data (D2), confirm-
ing the role of FE in reducing irrelevant and noisy compo-
nents. Table 2 demonstrates the investigation of the model’s
performance with and without FE, aimed at studying its im-
pact on the proposedmodel. The effectiveness of the proposed
model is notably high, achieving an accuracy of 99.3% on
the training set and 98.5% on the testing (D1). Moreover,
it showcased robust performance on unseen data from D2,
achieving a noteworthy accuracy of 99.0%. In contrast, the
proposed model yielded lower accuracy when feature engi-
neering was not applied to both datasets, with D2 exhibiting
an accuracy of 87.0%. To summarise this investigation, it
proves that applying FE significantly improves the model’s
ability to accurately classify instances of CAD and non-CAD
cases. Particularly, FE facilitates the model in eliminating

TABLE 2: Accuracy Comparison with and without FE on
Datasets D1 and D2.

Model D1 D2

Train (%) Test (%) Unseen (%)

Without FE 85.1 87.9 87.0
With FE 99.3 98.5 99.0

* FE is a Feature Engineering

irrelevant data, thereby mitigating model potential issues,
leading to higher accuracy rates.
Table 3(a) presents the performance of classical machine

learning models, while Table 3(b) presents the performance
results for deep learning models on D1 and D2, with and
without FE applied. In the absence of FE implementation,
the proposed model performed admirably on D1, achieving
85.1% accuracy on the training set and 87.9% on the testing
set. It also achieved the highest accuracy on previously unseen
data from D2, reaching 87.0%. Although kNN reported a
higher training accuracy of 96.3% on D1, it demonstrated
poor generalisability, with its accuracy dropping to 49.0%
on D2. SVM and K-means also showed reduced accuracy
without FE; SVM achieved 65.2% on the D1 test set and
63.0% on D2, while K-means attained 59.1% and 60.0%,
respectively. The application of FE notably improved the per-
formance of all classical models, underscoring their reliance
on engineered features for effective classification.

In comparison to the classical machine learning methods,
deep learningmodels exhibited stronger generalisation across
both datasets. Without FE, the LSTM model achieved a test
accuracy of 78.3% on D1 and 77.5% on D2, while the CNN-
LSTM model yielded a comparable accuracy of 79.0% on
D2. With FE, these results improved further, with the LSTM
reaching 90.0% and CNN-LSTM achieving 89.0% on D2,
demonstrating the ability of temporal models to learn sequen-
tial dependencies directly from raw ECG signals.

Among all classical machine learning and deep learning
models, the proposed model demonstrates exceptional per-
formance in binary classification on both datasets when FE is
applied, achieving accuracy rates of 99.3% on the training set
and 98.5% on the testing set of D1. Additionally, the trained
model demonstrated strong performance by achieving a clas-
sification accuracy of 98.5% on unseen data from D2. SVM
and kNN demonstrated strong performance on D1, obtaining
accuracy rates of 95.5% and 96.9%, respectively. However,
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TABLE 3: Performance comparison of classical machine learning and deep learning algorithms onD1 andD2, with and without
FE applied.

(a) Classical Machine Learning Models

Model Without FE With FE

D1 D2 D1 D2

Train (%) Test (%) Unseen (%) Train (%) Test (%) Unseen (%)

SVM 64.2 65.2 63.0 95.5 96.1 96.4
K-means 60.4 59.1 60.0 86.6 93.9 89.0
kNN 96.3 82.5 43.5 96.9 97.5 49.0

(b) Deep Learning Models

Model Without FE With FE

D1 D2 D1 D2

Train (%) Test (%) Unseen (%) Train (%) Test (%) Unseen (%)

LSTM [46] 76.2 78.3 77.5 92.6 86.7 90.0
CNN-LSTM [46] 79.3 78.3 79.0 92.9 86.7 89.0
Proposed Model 85.1 87.9 87.0 99.3 98.5 99.0

kNN struggled to generalise to unseen data from D2, while
SVM maintained its effectiveness, achieving an accuracy of
96.4%. The performance of K-means is noteworthy that its
performance appears relatively subpar when evaluated on the
training data D1. However, it displays a notable improvement
in classifying unseen data D2, surpassing the performance
of the kNN. The investigation reveals that the proposed
model outperformed in the application of CAD, particularly
in cases where no certain biomarker represented its signal.
This underscores a significant aspect of classical machine
learning models, as it heavily relies on the extraction of
precise features for the model to effectively capture and learn
patterns. Moreover, machine learning is adept at handling
small datasets effectively. Nevertheless, as our dataset scales
up considerably, deep learning emerges as a more appropriate
approach owing to its capability to manage intricate and
expansive data structures proficiently. As evidenced by the
outcomes of this investigation, it validates and clarifies our
reasoning for selecting deep learning over classical machine
learning algorithms in our application.

Figure 4(a) illustrates the performancemetrics for CADde-
tection in D1 and provides valuable insights into the model’s
effectiveness. With an accuracy of 99.3%, the model demon-
strates its capability to correctly classify all CAD and non-
CAD instances, indicating solid overall performance with an
error rate of 0.7%. The Ppr is 98.5%, indicating that nearly all
positive predictions were correct. Similarly, Senwas observed
to be 98.5%, suggesting that the model accurately identified
themajority of actual CAD cases. Additionally, a Spr of 100%

highlights the model’s proficiency in accurately identifying
negative cases, implying a satisfactory ability to distinguish
non-CAD instances. Moreover, the F1 score, a metric that
balances precision and recall, was calculated at 99.01%, indi-
cating a strong overall performance of the model in accurately
classifying both CAD and non-CAD cases on the training
data.
Figure 4(b) shows an overall accuracy of about 98.5%

on testing data. The model correctly predicted 34 instances
of Class 1. This indicates a strong ability of the model to
identify CAD cases. Similarly, the model correctly predicted
31 instances of class 0, which demonstrates the model’s effec-
tiveness in identifying non-CAD cases. There was 1 instance
where the model incorrectly predicted class 1 as class 0. This
error indicates a slight issue with the model’s sensitivity to
identifying CAD cases.
Figure 4(c) illustrates that the model has a high degree

of proficiency, achieving an exceptional accuracy rate of
99.0%. The model accurately predicted CAD for 98 instances
and non-CAD for 100 instances. Additionally, there were 2
instances where the model incorrectly predicted non-CAD
as CAD cases, but there were no instances where CAD was
incorrectly predicted as non-CAD. Notably, the Ppr for class
1 demonstrates a commendable figure of 98%, indicating the
model’s accuracy in identifying CAD cases. Additionally, the
Sen for class 1 is outstanding, signifying that the model suc-
cessfully captures all instances of class 1 present in the dataset
D2. Furthermore, the F1 score, which combines precision
and recall into a single metric, is approximately 98.99% for
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(a) on Training Data D1 (b) on Test Data D1

(c) on Test Data D2

FIGURE 4: Confusion Matrix Analysis on D1 and D2

class 1, suggesting a well-balanced performance in this binary
classification.

Figure 5 demonstrates the confusion matrices used to
evaluate the accuracy of our proposed model in a one-class
classification case. The model was trained on a balanced
dataset comprising both CAD and NON-CAD samples. For
evaluation purposes, we tested the classifier on two distinct
datasets: one containing only CAD samples, with no NON-
CAD samples, and the other containing only NON-CAD
samples. This approach allows for a clear assessment of the
model’s capability to accurately identify each class in isola-
tion. Figure 5(a) demonstrates that the classifier accurately
is 99%, with only one sample misclassified as NON-CAD.
Similarly, Figure 5(b) illustrates that the classifier correctly
identified 98% of NON-CAD samples correctly. With a true
positive rate of 99% for CAD samples and a true negative rate

of 98% for NON-CAD samples, the model exhibits robust
performance metrics. The notably low false negative rate in
CAD detection is especially crucial, as it ensures that nearly
all patients with CAD are accurately identified. Similarly, the
low false positive rate in NON-CAD detection helps prevent
misdiagnoses.

Figure 6 exhibits the performance comparison of classical
machine learning algorithms and our proposed model, evalu-
ated on CAD classification. The k-means model, depicted in
blue, has an Area Under the Curve (AUC) of 0.10, showing
weak performance due to its proximity to the random guess
line, suggesting that the model’s performance is not much
better than random chance. The SVM, depicted in orange, and
the kNN, shown in green, both exhibit a high level of discrim-
inative ability with an AUC of 0.98. The Proposed model is
represented by the red line and has the highest AUC of 0.99,
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(a) on 100 CAD ECG samples (b) on 100 NON-CAD ECG samples

FIGURE 5: Confusion Matrix: One-Class Testing Performance

FIGURE 6: Analysis of Classifier Efficacy Through ROC
Curve Metrics

which suggests that it has the best performance among the
models presented. The SVM and kNN models exhibit strong
performance, as evidenced by their high AUC values, indi-
cating their proficiency in effectively discriminating between
CAD and non-CAD cases. On the contrary, the proposed
model exhibits slight enhancements when compared to SVM
and kNN. This improvement stems from the CNN’s ability to
automatically extract relevant features from the dataset, iden-
tifying complex patterns and relationships that SVMand kNN
may overlook. Consequently, the proposed model achieves a

slightly higher level of discrimination, resulting in its slightly
improved performance. This outcome is anticipated, as k-
means clustering operates by grouping data points according
to their similarity, rather than assigning them to predeter-
mined categories, which is essential in classification tasks. As
a result, among the other models, k-means exhibits the lowest
performance in classifying CAD and non-CAD cases.

FIGURE 7: Comparison among Existing CNN Models with
Feature Engineering Module

Figure 7 illustrates the application of existing CNNmodels
to our datasets. Following the findings presented by [47],
which demonstrated a 93.33% accuracy rate for AF diagnosis
using a 12-layer 1D-CNN architecture, our study aimed to ex-
pand upon this research. Employing the 12-layer CNNmodel
on our datasets resulted in an accuracy of 89.4%. Further-
more, a baseline 1D-CNN model is employed for diagnosing
cases of CAD, achieving an accuracy of 87% as reported

VOLUME 11, 2023 9



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

in [9]. In our study, upon implementing this model to our
datasets, we achieved an accuracy of 86.4%. The proposed
model exhibits strong predictive capabilities, achieving the
highest accuracy of 99.3% compared to the other models.
It also boasts a precision of 98.5%, sensitivity of 98.5%,
specificity of 98.4%, and an F1 score of 98.5%. Impressively,
it maintains a notably low error rate of 0.7%. Comparatively,
the 12-layer 1D-CNN model also demonstrates strong per-
formance, although with a significantly higher error rate of
10.6% compared to the proposed model. Furthermore, the
12-layer 1D-CNN appears to perform better compared to
the baseline model. The baseline 1D-CNN model, on the
other hand, falls short with a higher error rate of 13.6%,
suggesting its inferior performance in comparison to the other
two models. Therefore, the observed results indicate that FE
has a notable influence on the model’s capacity to accurately
distinguish between features associated with CAD and non-
CAD cases. The FE appears to improve the model’s ability
and its overall performance in CAD diagnosis.

Several recent studies have applied machine learning and
deep learning techniques to the detection of CAD [21, 28, 37].
For instance, hybrid CNN-LSTM models have been used to
classify ECG signals, while traditional approaches based on
handcrafted features have also shown promise in early di-
agnosis [9]. These benchmarking studies reflect the growing
interest in automated CAD detection. In contrast to existing
methods, the proposed model combines feature engineering
with a compact CNN architecture, achieving strong classi-
fication performance alongside improved computational ef-
ficiency. This design enables practical deployment in both
clinical and portable settings. By filtering low-quality ECG
segments prior to classification, the method enhances signal
relevance while preserving key diagnostic features. Further-
more, the reducedmodel complexity supports real-time appli-
cation, representing a meaningful advancement over previous
CNN-based CAD approaches.

TABLE 4: Model inference time comparison for CAD classi-
fication

Model Avg. Inference Time per Subject (ms)

SVM 0.051
K-Means 0.132
KNN 1.142
LSTM 28.746
CNN-LSTM 22.194
Proposed model 18.731

Alongside classification accuracy, computational effi-
ciency is an important factor in ensuring a model is suitable
for real-world use, particularly in clinical environments where
time and resources may be limited. As shown in Table 4,
we compared the average inference time per subject across
a range of traditional and deep learning models. While tradi-
tional methods offer very fast inference times, they typically
underperform in classification accuracy compared to deep
learning approaches, as highlighted in Table 3. The proposed
model completes inference in 18.731 ms, which is faster than

more complex models such as LSTM at 28.746 ms and CNN-
LSTM at 22.194 ms. These results suggest that the model is
not only accurate but also efficient enough for real-time use,
including applications in bedsidemonitoring or portable ECG
devices where quick and reliable decisions are essential.

IV. DISCUSSION AND FUTURE DIRECTIONS
Table 5 presents a comparison of recent ECG-based classi-
fication models evaluated on the MIMIC III dataset. While
previous studies have addressed various cardiovascular con-
ditions such as arrhythmia [35], heart failure [34, ?], and
atrial fibrillation [36], there is a notable absence of research
focusing specifically on the detection of CAD using MIMIC
III ECG signals. This gap highlights the limited exploration of
CAD in large publicly available clinical ECGdatasets, despite
its high prevalence and clinical importance. To address this,
the proposed 1D-CNN model is developed and evaluated for
CAD detection, achieving a competitive accuracy of 99.0%
and demonstrating the potential for automated CAD classifi-
cation using MIMIC III ECG data.
Future studies should consider evaluating model perfor-

mance across diverse patient subgroups, including those de-
fined by age, sex, and ethnicity, to enhance both representa-
tiveness and clinical applicability of the proposed approach.
Although this study focuses on binary classification of CAD,
examining the model’s performance across different CAD
subtypes could provide deeper insight into its ability to distin-
guish between them. Extending the model to support multi-
class classification of these CAD subtypes would be a valu-
able step towards enhancing its clinical usefulness. In future
work, the approach could also be adapted to detect other
forms of heart disease, such as arrhythmias or heart fail-
ure. Further studies could investigate alternative segmenta-
tion techniques that offer significant insights into ECG CAD
signals. Furthermore, focusing on reducing complexity while
maintaining accuracy could enhance real-time health moni-
toring capabilities for practical settings. As a result, the model
will be optimised and implemented on a practical sensing-
and-processing device such as STM32F469I-DISCO. With
its compact structure and ability to handle noisy signals, the
proposed model is well-suited for use as a pre-screening tool
in clinical settings, where it can assist with the review of ECG
signals before cardiologist assessment.

V. CONCLUSION
Our study developed a CNN model to classify potential cases
of CAD using ECG signals. By utilising data sourced from
PhysioNet, it was revealed that the CNN model could in-
dependently classify binary classes. However, we observed
a significant improvement in its performance when it was
preceded by feature engineering and pre-processing of the
ECG data. The performance of the proposed model exceeded
that of other CNNmodels investigated in our study, highlight-
ing the importance of feature engineering in increasing the
model’s ability to learn and make accurate predictions. Fur-
thermore, our examination of three distinct classical machine
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TABLE 5: Comparison of ECG-Based Classification Methods on MIMIC-III Dataset
Paper (Year) Disease/Task Methods Data Split Accuracy (%)

Vanitha et al., 2025 [35] Arrhythmia Multi modal Contrastive Learning Not specified 97.8
Zhang et al., 2024 [34] Heart Failure CNN-LSTM-SE 70% train, 10% val, 20% test 99.1
Bashar et al., 2020 [36] Atrial Fibrillation k-NN 10-fold + 2 independent test sets 99.3
Proposed Model CAD 1D-CNN 10-fold + 2 independent test sets 99.0

learning algorithms revealed that the CNN model surpassed
these methods in predicting CAD. These findings indicate
the significance of feature engineering in enhancing the CNN
model performance, highlighting the CNN model’s superior-
ity over conventional methods in CAD diagnosis.
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