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Abstract

We address the sensitivity of asset return predictability tests to the initial conditions
of predictors. The IVX test of Kostakis et al. (2015, Review of Financial Studies)
assumes asymptotically negligible initial conditions, which we show can result in
large power losses for strongly persistent predictors. We propose a modified test that
initialises the instruments at estimates of the predictors’ initial conditions, enhancing
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1 Introduction and Motivation

Testing the predictability of asset returns is an area of research that has received an in-

creasing amount of attention in both the applied economics and finance literature. The

standard approach for determining whether returns are predictable is based on a simple

linear regression model with a constant and lagged (putative) predictor, which we denote

xt−1, with slope coefficient β. Numerous candidate predictors have been considered, with

an early contribution by Fama (1981) examining the predictability of stock returns using

macroeconomic variables including interest rates, industrial production, GNP and capital

stock and expenditure, with other early contributions examining predictability using a va-

riety of both macroeconomic and financial variables such as earnings and dividend price

ratios, see inter alia Keim and Stambaugh (1986), Campbell (1987), Campbell and Shiller

(1988a,b), Fama and French (1988,1989) and Fama (1990).

While early contributions, often based inference on standard regression t-statistics on

the significance of the lagged predictor, comparing to normal critical values, this approach

is only valid asymptotically if the predictor is weakly persistent, or if the predictor is

strongly persistent (by which we mean the predictor belongs to the local-to-unit root class

of autoregressive processes) but with a zero endogeneity correlation between returns and

the errors driving the predictors. Empirical evidence presented in, among others, Campbell

and Yogo (2006) and Welch and Goyal (2008) suggests, however, that many, though not

all, of the predictors commonly considered are highly persistent (with autoregressive roots

close to unity), with a strong negative endogeneity correlation. Nelson and Kim (1993) and

Stambaugh (1999) show that this causes a bias in standard ordinary least squares (OLS)

coefficient estimates from the predictive regressions, while Cavanagh et al. (1995) show

that the standard regression t-statistic does not follow a normal distribution under the null,

even asymptotically, so that the tests will suffer from severe size distortions under the null.

As a result, a number of predictability tests have been developed in the literature which

are designed to be asymptotically valid when the predictor is strongly persistent and endoge-
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nous. Cavanagh et al. (1995) suggest testing strategies that are valid for strongly persis-

tent and endogenous predictors with a local-to-unit root autoregressive parameter given by

ρ = 1+c/n, where n is the sample size and c a finite constant, including sup-bound, Bonfer-

roni and Scheffe-type confidence intervals for β that are shown to have controlled size under

the null. Extending this approach, Campbell and Yogo (2006) construct the (infeasible) Q

test for predictability which is an optimal test when the true value of the autoregressive pa-

rameter, ρ, is known, and subsequently propose feasible Bonferroni confidence intervals for

β based on an initial confidence interval for ρ obtained by inverting a unit root test statistic.

A serious drawback of the tests of Cavanagh et al. (1995) and Campbell and Yogo

(2006) is that although they overcome the issue of dealing with a strongly persistent and

endogenous predictor, they are not valid when the predictor is weakly or mildly persistent,

the latter being where the predictor belongs to the mildly integrated class of processes which

are such that ρn = 1 + d/nλ, λ ∈ (0, 1), where d is a negative constant. They, therefore,

suffer from the same issue as the standard t-test in that they can only be used for predictors

generated by a value of ρ from a subset of the parameter space of the autoregressive

parameter. One could consider pre-testing using a unit root test to determine the degree

of persistence of the predictor in order to choose which approach to use in practice, but

while most commonly employed unit root tests will consistently reject when ρ < 1, they

will also reject with non-zero probability when ρ = 1 + c/n, c < 0, making it impossible

to reliably distinguish between a weakly stationary predictor and a strongly persistent

predictor generated by a local-to-unit root autoregressive process.

An alternative strand of the literature circumvents these problems by basing predictabil-

ity tests on methods of estimating the predictive regression which are robust to the prop-

erties of the regressor. Various approaches have been considered, arguably the most suc-

cessful is Kostakis et al. (2015) [KMS] who estimate the predictive regression using the

extended instrumental variable [IVX] procedure of Phillips and Magdalinos (2009). In the

IVX approach each predictor in the predictive regression has an associated stochastic in-

strument formed by constructing a mildly integrated variable from the first differences of
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the predictor, initialising the instrument at zero. The IVX instrument, by construction,

has lower persistence than a near-integrated variable and, as a consequence, delivers pre-

dictability statistics with asymptotically pivotal standard limiting null distributions which

are valid across the entire parameter space for ρ.

The IVX test proposed by KMS is derived under the assumption that the (unobserved)

initial condition of the predictor, denoted X0, and defined as the deviation of the starting

value of (xt) from its unconditional mean, is asymptotically negligible in the case where

the predictor is either strongly or mildly persistent; that is, X0 = op(κ
1/2
n ) where κn = n

for strongly persistent predictors, and κn = nλ, λ ∈ (0, 1), for mildly persistent predictors.1

This is a strong assumption to make in practice, and it is arguably of considerably more em-

pirical relevance to allow the initial condition of the predictor to have the same asymptotic

order of magnitude as the rest of the sample data in this scenario; that is, X0 = Op(κ
1/2
n )

. The same assumption of an op(n
1/2) initial condition for strongly persistent predictors

is made by Campbell and Yogo (2006) in the construction of their Bonferroni Q test, and

it was shown by Astill et al. (2024) that when X0 = Op(n
1/2) the Bonferroni Q test suf-

fers from severe asymptotic undersize (oversize) when testing in the right (left) tail when

the innovations to the predictor and returns are negatively correlated. In contrast, we will

show that, for a strongly or mildly persistent predictor with an Op(κ
1/2
n ) initial condition,

the IVX test of KMS continues to admit a standard normal limiting null distribution. How-

ever, in this scenario we will show, using Monte Carlo simulations, that convergence to the

limiting distribution is very slow, with the IVX test displaying severe finite sample under-

size and consequent, potentially catastrophic, loss of power to detect a genuine predictor.

To better motivate this paper, and to demonstrate the impact of the magnitude of

the initial condition of the predictor on the IVX test, we now discuss part of the results

from our empirical study in Section 6 where we perform the IVX test recursively across

1For weakly persistent predictors, KMS argue that X0 can be allowed to be of op(n
1/2) but, as we will

show, this claim is incorrect and X0 must be of Op(1) when the IVX instrument is initialised at zero; cf.

Remark 2.7.
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sample start dates for one of the return/predictor pairings analysed by Campbell and

Yogo (2006). Specifically, we examine right-tailed tests for predictability of the returns of

the NYSE/AMEX value-weighted index from the Center for Research in Security Prices

(CRSP) using the earnings-price ratio as a predictor, for the same monthly data from

1926M12-1994M12 as used in Campbell and Yogo (2006) (n = 817) using a bootstrap

implementation of the IVX t-statistic that we outline in detail in Section 3. For the full

sample of data, such that the initial value of the predictor is its outcome at time 1926M12,

we perform a test for predictability using the IVX t-statistic and compute an estimate of the

magnitude of the initial condition, denoted |α̂| and defined in (25) below, which estimates

how many standard deviations the initial condition of the predictor lies from its mean. We

find that the p-value of the IVX test is 0.008, giving a strong rejection of the null hypothesis

of no predictability, while the value of |α̂| = 0.42 implies that the initial condition, when

using the full available sample of data, is relatively small. We then repeat this exercise, but

instead run the IV X test on data from t = ts, ..., n, such that ts is the time point associated

with the initial value of the predictor in the regression, sequentially across the start dates

ts =1927M1,...,1945M12. The results of this exercise are summarised in Figure 1. The

red/green highlighted line plots, for each start date ts, the p value of the IVX test, with a

p-value below 0.05 signalling a rejection of the null hypothesis of no predictability at the

5% significance level (green highlights) and a p-value above 0.05 signalling non-rejection of

the null (red highlights). The blue line plots the estimated value of the initial condition of

the predictor, |α̂| , and the grey shaded regions further highlight those start dates ts for

which the IVX test fails to reject the null of no predictability at the 5% level.

It is apparent from Figure 1 that while the IVX test rejects the null of no predictability in

favour of the alternative of positive predictability for a majority (72%) of sample start dates,

there are a substantial number of sample start dates for which the IVX test fails to find evi-

dence of predictability. Further examining Figure 1 we see that there is a clear relationship

between the p-value of the IVX test and the estimated magnitude of the initial condition,
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Figure 1: p-value of right-tailed IVX t-test and |α̂|.
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with the sample start dates for which the IVX test finds no evidence of predictability corre-

sponding to instances where the magnitude of the initial condition is estimated to be large.

This empirical example gives an indication that the magnitude of the initial condition of

the predictor has the potential to have a substantial impact on the outcome of the IVX test,

and we will demonstrate this further through Monte Carlo simulation later in the paper.

The sensitivity of the IVX test to the initial condition motivates us to develop a simple

modification to the IVX test that is designed to show greater robustness to the magnitude of

the initial condition. This modification simply entails changing the initialisation of the IVX

instrument used in the test. KMS initialise the instrument at zero. Our modification initial-

izes the instrument at an estimate of the (unobserved) initial condition of the predictor, ob-

tained as the observed starting value of the predictor minus its sample mean. The resulting

instrument is consequently initiated at an approximation to the initial condition of the un-

derlying predictor variable. We show that the resulting modified version of KMS’s IVX test

still retains a limiting standard normal null distribution. Crucially, however, numerical sim-

ulations show that its finite sample null distributions lie much closer to this limiting null dis-

5



tribution than do those of the original IVX test of KMS. As a result the test has finite sample

size which is much closer to the nominal level and does not suffer the potentially very large

power losses seen in the original IVX test of KMS when the initial condition is large. How-

ever, where the initial condition is small and the predictor is less persistent than a pure unit

root series, the modified IVX test is not as powerful as the original IVX test. We therefore

propose a simple hybrid test which combines information from both the original IVX statis-

tic and the modified IVX statistic to try and capture the superior power properties of the

better performing test across both large and asymptotically negligible initial conditions.

The remainder of the paper is organised as follows. The predictive regression model and

assumptions under which we will work are detailed in Section 2. In Section 3 we outline

the IVX test of KMS together with our modified version of this test and hybrid test which

combines information from the two. The asymptotic behaviour of these statistics for both

asymptotically negligible and non-negligible initial conditions are provided in Section 4.

Section 5 reports results from a Monte Carlo simulation study examining the finite sample

properties of the tests. Section 6 reports an empirical application of our proposed test

procedures to two of the key predictors contained in the Campbell and Yogo (2006) dataset.

Section 7 concludes. A supplementary appendix contains proofs of the large sample results

given in Section 4, together with additional material relating to the Monte Carlo simulation

exercise.

2 The Predictive Regression Model and Assumptions

Consider the following predictive regression model

yt = µy + βxt−1 + εt, t = 1, ..., n (1)

where yt denotes the (excess) return on a given asset in period t, and xt−1 denotes a putative

predictor observed at time t− 1. To aid exposition we focus attention on the case where xt

is a single (putative) predictor. The results in here generalise straightforwardly to the case

where xt is a vector of predictors; see the discussion in Remark 3.2 below. Our interest
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in is on testing the null hypothesis H0 : β = 0 in (1) such that xt−1 is not a predictor

for returns, against either one-sided (β > 0 or β < 0) or two-sided (β ̸= 0) alternatives,

whereby xt−1 is a significant predictor for returns.

The data generating process [DGP] for the candidate predictor variable, xt, is assumed

to satisfy

xt = µ+Xt (2)

Xt = ρnXt−1 + ut (3)

for t ≥ 1. Formal conditions will be placed on the initial condition of (xt)t∈N, defined as

X0 := X0 (n), in Assumption 2 below. Notice that the initial condition is defined to be

the deviation of x0 from µ, the unconditional mean of (xt)t∈N. The (possibly sample-size-

dependent) autoregressive root, ρn, and the innovation sequences, (εt)t∈N and (ut)t∈N, in

(1) and (3), respectively, are assumed to satisfy the following set of conditions:

Assumption 1. (a) ρn → ρ ∈ (−1, 1] and c := limn→∞ n (ρn − 1) exists in R ∪ {−∞}.

(b) The innovation sequence (ut)t∈N in (3) is a stationary linear process of the form

ut =
∞∑
j=0

cjet−j

where (cj)j≥0 is a sequence of constants satisfying
∑∞

j=0 |cj| <∞,
∑∞

j=0 jc
2
j <∞, c0 =

1 and C (1) :=
∑∞

j=0 cj ̸= 0 . Given a filtration (Ft)t∈Z, the sequence vt := (εt, et)
′ is

an Ft-martingale difference sequence satisfying one of the following assumptions:

(i) EFt−1 (vtv
′
t) = Σv > 0 a.s. for all t and

(
∥vt∥2

)
t∈Z is a uniformly integrable

sequence.

(ii) Denoting σ2
t := EFt−1ε

2
t ,
(
et,EFt−1e

2
t

)
t∈Z and (εt, σ

2
t )t∈N are strictly stationary

with Ee41 <∞, Eε41 <∞ and {σ2
t − Eε21 : t ≥ 1} is a mixingale sequence:

∥∥EFt−1−m

(
σ2
t − Eε21

)∥∥
L2

≤ bψm for all t,m ≥ 1 (4)

for some b > 0 and a non-negative sequence (ψm)m∈N satisfying ψm → 0.

7



Remark 2.1. The condition in Assumption 1(a) covers the family of autoregressive pro-

cesses considered in KMS with strong, mild and weak persistence all covered. The local-to-

unit root form of strong persistence occurs when c ∈ R, in which case ρn ∼ 1 + c/n, with

the case of an exact unit root corresponding to c = 0. Weak persistence and mild persis-

tence obtain when c = −∞: in the former case ρn → ρ ∈ (−1, 1), while in the latter case

ρn ∼ 1 + b/kn for some b < 0 and a sequence (kn)n∈N satisfying kn → ∞ and kn/n → 0.

Notice that c is allowed to take positive values in the local-to-unit root case, so conver-

gence of ρn to unity may obtain from both sides of unity under strong persistence. ♢

Remark 2.2. The regularity conditions placed on the innovation processes (εt) and (ut) in

(1) and (3), respectively, by Assumption 1(b) are standard in the predictive regression lit-

erature. In particular, the innovations (εt) of the model are required to have the martingale

difference property whereas the autoregressive innovations (ut) may exhibit autocorrelation

in the form of a short memory (weakly dependent) linear process driven by martingale differ-

ence primitive innovations, (et). The requirement that C(1) ̸= 0 rules out the possibility of a

moving average unit root at the long run frequency in (ut). The moment conditions imposed

on the martingale difference vt := (εt, et)
′, depend on the properties of its conditional vari-

ance. Under conditional homoskedasticity, only uniform integrability of
(
∥vt∥2

)
is required,

a minimal assumption for the validity of a central limit theorem on (vt). Under conditional

heteroskedasticity, (vt) is required to have finite fourth moments and the centred conditional

variance of the model’s innovations (εt) to satisfy the mixingale property. It is well known

(e.g. Example 1 of Arvanitis and Magdalinos, 2018) that the mixingale property (4) is satis-

fied by a stationary ARCH (∞) process: εt = ηtσt, where (ηt) is an IID (0, 1) sequence and

σ2
t = ϖ +

∑∞
i=1 αiu

2
t−i, αi ≥ 0, ϖ > 0,

∑∞
i=1 αi < 1 (5)

with Ft the natural filtration of ηt. As a result, (4) is also satisfied by any stationary finite

order GARCH process with an ARCH (∞) representation given by (5). Finally, notice that

Assumption 1(b) allows for a non-zero unconditional correlation (endogeneity) between εt

and et when Σv is non-diagonal. ♢
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Remark 2.3. Under Assumption 1(b), (ut) satisfies a functional central limit theorem

(FCLT), such that the weak convergence result

Bn (r) :=
1√
n

⌊nr⌋∑
j=1

uj ⇒ B (r) on D [0, 1] (6)

holds, where B (r) is a Brownian motion with variance ω2 := C (1)2 σ2
e, where σ2

e :=

EFj−1

(
e2j
)
. When c ∈ R in Assumption 1(a), denote by

Jc (t) :=

∫ t

0

ec(t−s)dB (s) (7)

the Ornstein-Uhlenbeck [OU] process associated with the Brownian motion B in (6). ♢

As we shall see in Section 3, the IVX approach of KMS is based on a filtration of xt, of

the following form:

Definition 1. Denote by z̃t a generalisation of the IVX instrument process of Phillips and

Magdalinos (2009) generated from filtering the observed series xt as follows

z̃t = φnz̃t−1 +∆xt, t ≥ 1 (8)

where ∆xt := xt − xt−1, with the recursion in (8) initialised at z̃0 := z̃0 (n), and where

φn, the user-chosen autoregressive parameter in the recursion, satisfies the condition that

n (φn − 1) → −∞.

Remark 2.4. The IVX instrument suggested by both Phillips and Magdalinos (2009) and

KMS is a special case of Definition 1 where the instrument is initialised at z̃0 = 0. KMS

suggest setting the recursion parameter in (8) to φn = 1 + aT−γ, for some a < 0 and

γ ∈ (0, 1). The IVX scale and exponent parameters, a and γ, respectively, are tuning

parameters set by the practitioner; KMS recommend setting a = −1 and γ = 0.95. ♢

In order to provide formal classes of permissible initial conditions, X0(n), and initial-

isations of the IVX instrument in Definition 1, z̃0(n), we first define the bivariate partial

sum process,

[Un (r) , ζn (r)] :=
(
1− φ2

n

)1/2  1√
n

⌊nr⌋∑
t=1

zt−1εt,

⌊nr⌋∑
t=1

φt−1
n εt

 r ∈ [0, 1] (9)
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where zt :=
∑t

j=1 φ
t−j
n uj denotes the (unobservable) series which obtains from a recursion

of the form given in (8), but with ∆xt replaced by ut, and initialised at zero. In Lemma

1 we next establish the joint convergence in distribution and the asymptotic independence

of the random elements in (9) and the partial sum process in (6).

Lemma 1. Under Assumption 1, [Un (r) , Bn (r) , ζn (r)] ⇒ [U (r) , B (r) , ζ] on D [0, 1]3,

where U (r) and B (r) are independent Brownian motions with EU (r)2 = ω2σ2
εr, and

ζ
d
= N (0, σ2

ε) is independent of [U (r) , B (r)].

Recalling the definition of the local-to-unit root parameter, c, from Assumption 1(a),

we next define the key parameter, κn, whose value is determined by the order of magnitude

of the unconditional variance of (xt) for the value of the autoregressive parameter, ρn in

(3), as follows:

κn :=
(
1− ρ2n

)−1
1 {c = −∞}+ n1 {c ∈ R} . (10)

Remark 2.5. Notice therefore that: κn = n when (xt) is a local-to-unit root process;

κn = O(nα) when (xt) is a mildly integrated process (i.e. such that ρn = 1+d/nα, α ∈ (0, 1),

with d a negative constant); and, κn = O(1) in the weakly persistent case. ♢

Assumption 2. Consider the random elements Bn (·), Un (·) and ζn (·) in (6) and (9).

(a) (i) When c = −∞, X0(n) = op(n
1/2).

(ii) When c ∈ R, n−1/2X0 (n)
d→ X0, where X0 is Gaussian and independent of

{[U (r) , ζ] : r ∈ [0, 1]}; convergence in distribution of
[
Un (r) , Bn (r) , ζn (r) , n

−1/2X0 (n)
]

holds on D [0, 1]4.

(b) (i) When c = −∞, z̃0 (n)= op(n
1/2).

(ii) When c ∈ R, n−1/2z̃0 (n) = Gc

(
Bn, n

−1/2X0 (n)
)
+ op (1) for some PB,X0-a.s.

continuous function Gc : D [0, 1]×R → R where PB,X0 is the distribution of (B,X0).

(c) n−1/2κ
−1/2
n (1− φn)

−1/2 |z̃0 (n)−X0 (n)| = op (1).
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Remark 2.6. In view of Lemma 1, the requirements of part (ii) of Assumption 2(a), relat-

ing to the strongly persistent case where c ∈ R, consist of joint convergence in distribution of

[Un (r) , Bn (r) , ζn (r)] and n
−1/2X0 (n) and independence of X0 and {[U (r) , ζ] : r ∈ [0, 1]}.

Both of these requirements hold trivially if the limit X0 is non-random. A random limit

X0 that satisfies Assumption 2(a) will typically be F0-measurable. We may construct such

a class of initial conditions from an innovation process (ut)t≤0 that satisfies Assumption

1(b). If (hn,t) is a deterministic triangular array, an initial condition

X0 (n) =
∞∑
t=0

hn,tu−t =
∞∑
t=0

h̃n,te−t, h̃n,t :=
t∑

k=0

hn,kct−k (11)

will satisfy n−1/2X0 (n)
d→ X0

d
= N

(
0, h̃2σ2

)
provided that

1

n

∞∑
t=0

h̃2n,t → h̃2 and
1

n
sup
t≥0

h̃2n,t → 0. (12)

By (S.1) in the Appendix, [Un (r) , Bn (r) , ζn (r)]
′ =

∑⌊nr⌋
t=1 ξn,t + op (1) where ξn,t is a Ft -

martingale difference array; since EFt−1

(
e−tξ

′
n,t

)
= e−tEFt−1

(
ξ′n,t
)
= 0, the FCLT employed

in Lemma 1 extends to
(∑⌊nr⌋

t=1 ξn,t, X0 (n)
)

⇒ (ξ,X0) and that X0 is independent of ξ.

Hence, when X0 (n) is given by (11), Assumption 2(a) will hold as long as Assumption

1(b) and (12) are satisfied. A leading case where this holds is where X0(n) =
∑⌊τn⌋

i=0 ρ
i
nu−i,

τ ≥ 0, for c < 0. Here it is seen that while the (Xt) process satisfies the recursion in (3)

starting at time t = −⌊τn⌋, it is only observed for t ≥ 0. When τ = 0, then X0(n) = u0,

so that the initial condition is assumed to be an Op(1) random variable. When τ > 0,

X0(n) is of Op(n
1/2); in particular, here n−1/2X0(n) ⇒ J̄c (τ), where J̄c (s) denotes the

OU process generated by dJ̄c(s) = cJ̄c(s) + dB̄(s), where B̄(s) is a Brownian motion with

variance ω2 and which is independent of B(s). As τ → ∞, X0(n) approaches a draw from

the unconditional distribution of (Xt). ♢

Remark 2.7. In view of part (i) of Assumptions 2(a) and 2(b), Assumption 2(c) is auto-

matically satisfied when the rate of persistence of the regressor is the same or higher than
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that of the IVX instrument: κ
−1/2
n (1− φn)

−1/2 = O (1). If φn > ρn, the IVX limit distribu-

tion theory may accommodate an initialisation X0(n) = op(n
1/2) only if an instrument ini-

tialisation z̃0 (n) is chosen that is not too distant from X0(n): the most restrictive scenario

arises under stationarity (κn = 1), where Assumption 2(c) postulates that the distance be-

tween X0(n) and z̃0 (n) may diverge at a rate slower than n1/2 (1− φn)
1/2. The regressor

and instrument initialisationsX0(n) and z̃0 (n) may only be chosen independently if the rate

of both is restricted to Op

(
κ
1/2
n

)
. This corrects an error in the initialisation assumption of

KMS under stationarity (α = 0 in the first paragraph of page 1510 of KMS): Assumption

2(c) above should be added to the maintained rate X0(n) = op(n
1/2), or the latter needs

to be restricted to X0(n) = Op (1). In particular, given they initialise the IVX instrument

at z̃0(n) = 0, the limiting results given in KMS for the weakly dependent case require that

X0(n) = Op (1), and not the claimed op(n
1/2) rate forX0(n) stated on page 1510 of KMS. ♢

Remark 2.8. Assumption 2(b) delimits the class of allowable initialisations of the IVX

instrument, z̃t, of Definition 1. In particular, it allows for the case where

z̃0 (n) = x0 − x̄n (13)

in which x̄n := n−1
∑n

j=1 xj, which initialises the instrument at an estimate of the initial

condition of xt. We will later base our modified version of the KMS test on this initialisation.

When c = −∞, X0 (n) = op
(
n1/2

)
and x̄n = Op

(
n−1/2κn

)
= op

(
n1/2

)
(since κn/n→ 0) so

part (i) of Assumption 2(b) is satisfied. When c ∈ R,
1√
n
x̄n =

∫ 1

0

x⌊nr⌋√
n
dr +

1√
n
X0 (n)

1− ρnn
n (1− ρn)

+ op (1)

=

∫ 1

0

(
Bn (r) + cecr

∫ r

0

e−csBn (s) ds

)
dr − 1√

n
X0 (n)

1− ec

c
+ op (1)

so Assumption 2(b) is satisfied with

Gc (x, y) =

∫ 1

0

(
x (r) + cecr

∫ r

0

e−csx (s) ds

)
dr + y (1− ec) /c.

Assumption 2(c) is satisfied by (13) since z̃0 (n)−X0 (n) = x̄n and

n−1/2κ−1/2
n (1− φn)

−1/2 |x̄n| = Op

(
n−1κ1/2n (1− φn)

−1/2
)
= op (1)

for c ∈ R ∪ {−∞}. ♢
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3 IVX Predictability Tests

In the context of the predictive regression model in (1)-(3), KMS develop the IVX-based

test for the null hypothesis that β = βn based on the instrumental variable t-statistic,

Tn (φn) = Nn(β
∗
n − βn) (14)

where

β∗
n :=

(∑n
t=1 ytz̃t−1

) (∑n
t=1 xt−1z̃t−1

)−1
(15)

Nn := σ̂−1
ε

(
n∑

t=1

z̃2t−1 − nz̄2n−1

(
1− ρ̂2εu

))−1/2 n∑
t=1

xt−1z̃t−1. (16)

in which y
t
:= yt − n−1

∑n
j=1 yj, xt−1 := xt−1 − n−1

∑n
j=1 xt−1, z̄n−1 = n−1

∑n
j=1 zt−1 and

where σ̂2
ε := n−1

∑n
t=1 ε̂

2
t is a consistent estimate of the short run variance of εt; as discussed

in KMS, a natural choice for ε̂t are the OLS residuals obtained from estimating (1), that is

from a OLS regression of yt on xt−1. The term ρ̂εu is an estimate of the long run correlation

between εt and ut; a discussion on the choice of estimator of this quantity in practice is

given on pages 1513 and 1524 of KMS. Crucially, in the context of the t-statistic Tn (φn)

in (14), KMS initialise the IVX instrument, z̃t, at z̃0 = 0.

Because our interest in this paper is on testing the null of no predictability from xt−1,

we will restrict attention to the null hypothesis of no predictability, H0 : β = 0, in what

follows, though the results we give apply equally to tests of the more general null hypothesis

that β = βn.

As discussed in Section 2, if xt is weakly, mildly, or strongly persistent with an initial

condition that is, at most, of Op(1), op(n
λ/2) with λ ∈ (0, 1), or op(n

1/2), respectively,

then KMS show that in large samples Tn (φn) converges to a standard normal distribution

under H0 : β = 0. In the empirically most relevant case of strongly or mildly persistent

predictors, this, however, rules out initial conditions generated according to Assumption 2

which permit the initial condition to be of Op(κ
1/2
n ), recalling that κn = n in the strongly
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persistent case and κn = nλ in the mildly persistent case. In Section 4 we will show

that Tn (φn) continues to admit a standard normal limiting null distribution when xt is

either strongly or mildly persistent with an Op(κ
1/2) initial condition. However, numerical

simulations presented in Section 5 will show that in this scenario tests for predictability

based on comparing Tn (φn) to standard normal asymptotic (or bootstrap) critical values

turn out to be severely undersized in finite samples, with this undersize more pronounced

the larger is the value of the initial condition. This behaviour is also exhibited by another

popular test for predictability, namely the Bonferroni Q test of Campbell and Yogo (2006);

see Astill et al. (2024).

We, therefore, propose a simple modification to the IVX-based test procedure of KMS

which, for various parametrisations of a strongly persistent predictor, has controlled size

regardless of the magnitude of the initial condition. This modification involves calculating

the Tn (φn) test statistic exactly as in (14)-(16) but where the instrument z̃t is initialised

not at zero but at z̃0 = x0−x̄n where x̄n := n−1
∑n

t=1 xt; that is, we initialise the instrument

at an estimate of the initial condition of (xt).
2 Henceforth we will denote our modified IVX

t-statistic where the instrument is initialised at z̃0 = x0 − x̄n as T †
n (φn).

Remark 3.1. The test statistics outlined above can be used to test against either one-sided

alternatives, H1 : β > 0 or H1 : β < 0, or against two-sided alternatives, H1 : β ̸= 0. For

the latter case, one can equivalently use upper-tailed tests based on Tn (φn)
2 and T †

n (φn)
2,

as noted by, inter alia, KMS. ♢

Remark 3.2. Although we have focussed attention on the case where the predictive re-

gression in (1) contains a single candidate lagged predictor, xt−1, the results we provide

in this paper extend straightforwardly to the case where the predictive regression contains

2Another possible approach to consider would be to initialise the instrument at x0 rather than x0 − x̄n

when computing the T †
n (φn) statistic. The instrument in this case would not, however, be invariant to the

mean of xt, µ, and so we will not use this initialisation.
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multiple putative lagged predictors; that is,

yt = µy +
K∑
k=1

βkxk,t−1 + εt, t = 1, ..., n (17)

where xk,t is a set of K series each of which satisfies both Assumptions 1 and 2, with

associated autoregressive coefficients ρk,n, k = 1, ..., K, which, as in KMS, are such that

all of the series belong to the same persistence class (be it strongly, mildly or weakly

persistent). In particular, it can be shown, along similar lines to the proof of Theorem 1

below, that the IV Wald statistic (where each of the K instruments is initialised at zero)

proposed in Equation (19) of KMS (page 1514), WIV X , for testing the joint null hypothesis

that none of the series is predictive for yt, H0 : β1 = · · · = βK = 0 in (17), admits a χ2
K

limiting null distribution provided the initial condition for each of the K series is of op(n
1/2)

in the strongly persistent case, of op(n
λ/2) with λ ∈ (0, 1) in the mildly persistent case, and

of Op(1) in the weakly persistent case. Moreover, the generalisation of this statistic, W †
IV X

say, which initialises the K instruments at z̃k,0 = xk,0 − x̄k, where x̄k := n−1
∑n

t=1 xk,t,

will have a χ2
K limiting null distribution under the much weaker conditions that the initial

conditions of the xk,t are of Op(n
1/2) in the strongly persistent case, and of op(n

1/2) in the

mildly or weakly persistent cases. ♢

Remark 3.3. As we will subsequently see in section Section 5, our Monte Carlo simulation

experiments reveal that the T †
n (φn) test, implemented with the residual wild bootstrap

algorithm of Demetrescu et al. (2023), is able to control size regardless of the degree

of persistence of the predictor or the magnitude of the initial condition, and avoids the

potentially catastrophic power losses that the bootstrap implementation of the standard

KMS test, Tn (φn) suffers when the magnitude of the initial condition is not close to zero.

Conversely, however, the standard KMS test is more powerful than the test based on T †
n (φn)

when the magnitude of the initial condition is close to zero and the predictor is close to being

a pure unit root process. In order to simultaneously exploit the superior power of the test

based on T †
n (φn) when the initial condition is large and that of the test based on Tn (φn)

when the initial condition is small, we also propose a union-of-rejections based testing
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strategy: (i) for tests against H1 : β > 0, this is equivalent to a test that rejects for large

positive values of the statistic UR := max{T †
n (φn) , Tn (φn)}; (ii) for testing againstH1 : β <

0, the test rejects for large negative values of UL := min{T †
n (φn) , Tn (φn)}; (iii) for testing

against H1 : β ̸= 0, the test rejects for large values of U2S := max{T †
n (φn)

2 , Tn (φn)
2}.

Details on how this union-of-rejections based testing strategy can be implemented in a

size-controlled manner are outlined in the supplementary appendix. ♢

4 Asymptotic Results

Denote by

x0,t :=
t∑

j=1

ρt−j
n uj and z̃0,t :=

t∑
j=1

φt−j
n ∆x0,j (18)

the restrictions of xt with X0(n) = 0 and of z̃t with X0(n) = z̃0 (n) = 0; recall the definition

of zt below (9). It is easy to see that (3) yields an autoregressive process

xt = µ (1− ρn) + ρnxt−1 + ut

and backward recursion gives the following decompositions:

xt = µ+X0 (n) ρ
t
n + x0,t (19)

and

z̃t = z̃0,t + φt
nz̃0 (n)−X0 (n) (1− ρn)

φt
n − ρtn

φn − ρn
. (20)

A proof of the results in (19) and (20) can be found in Magdalinos and Petrova (2025).

Defining xt−k := xt−k −n−1
∑n−k

t=1 xt, for k = 0, 1, and x̄0,n−1 = n−1
∑n−1

t=1 x0,t, we may then

state the following lemma:

Lemma 2. Under Assumptions 1 and 2, the following approximations hold as n→ ∞,

(i) n−1/2 (1− ρ2nφ
2
n)

1/2
(
∑n

t=1 z̃t−1εt −
∑n

t=1 z̃0,t−1εt) =
z̃0(n)√

n
ζn (1) + op (1)
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(ii) n−1 (1− ρ2nφ
2
n) (
∑n

t=1 xtz̃t −
∑n

t=1 x0,tz̃0,t) = −2 z̃0(n)√
n

x̄0,n−1√
n

+2X0(n)√
n
ψn (c)+op (1) where

ψn (c) = 0 when c = −∞ and

ψn (c) =
1√
n

∑n−1
j=1 ρ

j
nuj +

1− ec

c

1√
n

∑n
t=1 ut

− c

n3/2

∑n
t=1 ρ

t−1
n x0,t−1 + (1− ec)

1

n3/2

∑n
t=1 x0,t−1 +

z̃0 (n)√
n

(
1 +

1− ec

c

)
+
X0 (n)√

n
(1− ec)

(
1

2
(1 + ec) +

1

c
(1− ec)

)
(21)

when c ∈ R.

(iii) n−1 (1− ρ2nφ
2
n)
(∑n

t=1 z̃
2
t −

∑n
t=1 z̃

2
0,t

)
=
(
n−1/2z̃0 (n)

)2
+ op (1) .

Remark 4.1. Noting that ζn
d→ ζ and that n−1/2x̄0,n−1 = n−3/2

∑n−1
t=1 x0,t converges in

distribution to
∫ 1

0
Jc (t) dt when c ∈ R and to 0 when c = −∞, the approximations in parts

(i)-(iii) of Lemma 2 will be op (1) if n
−1/2z̃0 (n) = op (1); by Assumption 2.(b), n−1/2z̃0 (n) =

op (1) whenever xt is not a local to unity process (i.e. when c = −∞). Hence, z̃0 (n) will

have an asymptotically non-negligible effect on the IVX estimator only in the case where

the regressor xt is a local-to-unit root process. In the local-to-unit root case, while both the

initial condition of the regressor and the instrument initialisation contribute to the limiting

distribution of the IVX estimator when these are of the form given in Assumption 2, it

turns out that they do so in such a way that maintains the asymptotically mixed Gaussian

property for the IVX estimator (see Remark 4.2) and, consequently, the standard normal

asymptotic null distribution of the IVX t-statistic. ♢

The preservation of the standard normal asymptotic null distribution of the IVX-based

t-statistic, Tn (φn), under initial conditions that are not asymptotically negligible, and for

the corresponding t-statistic, T †
n (φn), based on initialisations of the IVX instrument other

than zero is the main result of this paper. We now formally state these large sample results

in Theorem 1, along with the limiting null distribution of the statistic formed from the

maximum of these two statistics; cf. Remark 3.3.

17



Theorem 1. Let data be generated according to (1)-(3). If Assumptions 1 and 2 hold, then

under H0 : β = 0 we have the joint convergence result,[
Tn (φn) , T

†
n (φn)

] d→
[
T, T †]

where T and T † are N (0, 1) random variables. Moreover, under weak persistence, c = −∞,

Tmax := max
{
T, T †} d

= N (0, 1). Under strong persistence, c ∈ R, Tmax has density function

fTmax (λ) = ϕ (λ)E
[
|Gc (B,X0)|+ |Gc (B,X0)|Φ

(
λ

|Gc (B,X0)|

((
ω2 +Gc (B,X0)

2)1/2 − ω
))]

where ϕ (·) and Φ (·) denote the N (0, 1) density and distribution functions, respectively, B

is Brownian motion with variance ω2 and Gc (B,X0) is the continuously distributed random

variable defined in Assumption 2.

Corollary 1. Let the conditions of Theorem 1 hold. Then under under H0 : β = 0, the

joint convergence result [
Tn (φn)

2 , T †
n (φn)

2] d→
[
T 2, T †2]

holds, where T 2 and T †2 are χ2(1) random variables.

Remark 4.2. As discussed in Remark 4.1, the property that underlies Theorem 1 is the

asymptotic mixed Gaussianity of the IVX estimator, so it is worth providing an insight as to

why this property is not distorted by the contributions of the autoregressive and instrument

initialisations in the local-to-unit root case. Firstly, note that both n−1/2z̃0 (n) and ψn (c)

in (21) are deterministic functionals of
(
Bn, n

−1/2X0 (n)
)
; hence part (ii) of Lemma 2 im-

plies that the denominator of the IVX estimator, n−1 (1− φ2
n)
∑n

t=1 xtz̃t, is asymptotically

equivalent to a deterministic functional, Ψc

(
Bn, n

−1/2X0 (n)
)
say, of

(
Bn, n

−1/2X0 (n)
)
. By

parts (i) and (ii) of Lemma 2, when c ∈ R, the IVX estimator can be written as

n1/2
(
1− φ2

n

)−1/2
(
β̃n − β

)
=

1

Ψc (Bn, n−1/2X0 (n))

[
1, n−1/2z̃0 (n)

]  Un (1)

ζn (1)

+ op (1) .

(22)

By virtue of Lemma 1 and Assumption 2, [Un (1) , ζn (1)] is asymptotically independent

of (Bn, n
−1/2X0 (n)) (and, hence, also of n−1/2z̃0 (n)) and converges in distribution to a
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Gaussian random vector. Consequently, the right side of (21) converges in distribution to

a zero mean mixed Gaussian random variable. ♢

Remark 4.3. An expression for the limiting null distribution of the UR union-of-rejections

statistic defined in Remark 3.3 can be obtained using the formulae for the density function

of Tmax = max
{
T, T †} (in the weak and strong persistence case) in Theorem 1. These

formulae can also be used to obtain an expression for the limiting null distribution of the

UL statistic, noting that min(a, b) = −max(−a,−b). ♢

5 Numerical Simulations

In this section we report the results from a Monte Carlo simulation exercise examining the

empirical performance of the tests discussed in this paper.

Data are generated according to (1)-(3), setting µy = µ = 0, without loss of generality,

for a sample of size n = 250; corresponding results for n = 1000 are qualitatively similar

and can be found in the supplementary appendix. The autoregressive coefficient was set

as ρn = 1 + c/n for c ∈ {0, 2, 5, 10, 30, 40, 50} (such that, for n = 250, ρn takes values

between 1.0 and 0.8), while the innovations are generated from an IID sequence of bivariate

standard normal variates; that is, εt

ut

 ∼ IID N(0,Σ), Σ =

 1 δ

δ 1

 (23)

with the (short run) endogeneity correlation in (23) set to δ = −0.95.3

3The value of δ = −0.95 is chosen because for many empirical datasets a large negative correlation

is found between the innovations to returns and the innovations to the predictor. Indeed, in the two

empirical examples we later report in Section 6 that use the earnings-price ratio and dividend-price ratio

as predictors the full sample estimates of δ found by Campbell and Yogo (2006) are given by −0.983 and

−0.948, respectively.
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We generate the initial condition of (xt) as
4

X0(n) = α

√
1

1− ρ2n
I(c < 0) (24)

with the magnitude of the initial condition, α, varied among α ∈ {0, 1, 3}. When c = 0, (24)

sets X0(n) = 0; this is without loss of generality, because all of the tests are exact invariant

to X0(n) when c = 0. When α = 0 and c > 0 the initialisation satisfies the conditions of,

inter alia, KMS which require the initial condition to be at most of op(n
1/2). However, when

α > 0 and c > 0 the initial condition is proportional to the standard deviation of the Xt

and is therefore of Op(n
1/2). In all cases we test the null of no predictability, and examine

both the size of the tests when β = 0 and under the local alternative β = b/n, b ∈ R.

We report results for both one-sided Tn (φn) and T
†
n (φn) and two-sided implementations

of the Tn (φn)
2 and T †

n (φn)
2 tests, together with the corresponding union-of-rejections tests

outlined in Remark 3.3, using critical values obtained using the residual wild bootstrap pro-

cedure of Demetrescu et al. (2023), outlined in Section S.2 of the supplementary appendix,

with the autoregressive lag order for xt determined using the Bayes Information Criterion

with maximum lag order pmax = ⌊4(T/100)0.25⌋+1. When constructing the IVX instrument

in (8) we follow KMS and set φn = 1−1/nγ and consider values of γ ∈ {0.95, 0.75, 0.50} for

the Tn (φn) and Tn (φn)
2 test statistics and γ ∈ {0.95, 0.75} for the T †

n (φn) and T
†
n (φn)

2 test

statistics. Henceforth, we will refer to tests based on Tn (φn) and Tn (φn)
2 where the IVX in-

strument is constructed using an exponent γ generically as IV Xγ and tests based on T †
n (φn)

and T †
n (φn)

2 where the IVX instrument is constructed using an exponent γ as IV X†
γ.

4Results are only reported for α = 0 and positive values of α, as the simulation results for α = −1,−3

were essentially identical to those for α = 1, 3, respectively. We also repeated the simulations for random

initial conditions generated according to X0(n) = Z × α
√

1
1−ρ2

n
I(c < 0), where Z ∼ N(0, 1) for α ∈ {1, 3}.

For a given value of α, these results were qualitatively similar, although not identical, to those for reported

for a fixed initial condition with the same α. We also performed simulations for the case where the DGP

was initialised at time t = −⌊τn⌋, but only observed from t = 0; cf. Remark 2.6. As expected, as the

value of τ was increased these results quickly began to closely mirror those for the random initial condition

defined above with α = 1, where X0(n) is a draw from the unconditional distribution of (Xt).

20



For the union-of-rejections test we always utilise an IVX exponent of γ = 0.95 for the

constituent Tn (φn) test statistic as recommended by KMS. We then consider two versions of

the union-of-rejections test, one where the T †
n (φn) test statistic is computed using γ = 0.95,

denoted U0.95, and one where the T †
n (φn) test statistic is computed using γ = 0.75, denoted

U0.75.

To compute ρ̂εu, the estimated long run correlation between εt and ut in (16), we follow

KMS and use long run variance and covariance estimators calculated using the Bartlett

kernel with truncation lag ⌊n1/3⌋.

All simulations are performed using the RNDN function of Gauss 22.2 for 5,000 Monte

Carlo replications, with the bootstrap critical values computed using B = 499 bootstrap

replications.

We first examine the performance of the tests when c = 0 for both right tailed and left

tailed alternatives using both one-sided and two sided tests. These results are reported in

Figure 2. We see that for both right-tailed and left-tailed alternatives, and for one-sided

and two-sided testing, that the best overall performance is given by the IV X†
0.95 and U0.95

tests, with the IV X†
0.75 and U0.75 tests close behind. For the tests proposed in KMS we see

that power is increasing in the value of the exponent used to construct the IV X instrument,

with the IV X0.95 test being the best performing of the tests proposed by KMS.

We next look at the performance of the tests when testing against right tailed alterna-

tives using both one-sided and two sided tests. Results are reported for c ∈ {2, 20, 50} in

Figures 3-5, with additional results for c ∈ {5, 10, 30, 40} reported in Section S.3 of the sup-

plementary appendix. We concentrate first on the one sided tests when α = 0. In this sce-

nario the best overall performance is displayed by the IV X0.95 test, with this test showing

controlled size and the best overall power profile across the values of c considered. Power

for the IV X0.75 test is lower than that of the IV X0.95 test, with the power of the IV X0.50

test lower still. This power ordering among the IV Xγ tests echoes the simulation results

in KMS. Turning to the IV X†
γ tests, we see that in general these display lower power than

the corresponding IV Xγ test, though for c = 2 their power functions cross in the region
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of b = 7 both for γ = 0.95 and γ = 0.75. The difference between the powers of the IV Xγ

and IV X†
γ, for a given value of γ, in general reduces as c increases, with essentially no dif-

ference between the tests’ power functions when c = 50.

Turning to the case where c > 0 and α > 0 a very different pattern emerges. We see

that the IV Xγ tests become, often quite severely, undersized, with this undersize increasing

in the values of c and α. We also see that this undersize is more severe the larger is the

value of γ. As a consequence, the power of the IV Xγ test is severely reduced relative to the

case where α = 0. The IV X†
γ tests, on the other hand, do not suffer from any noticeable

undersize, and consequently are much more powerful than the IV Xγ tests, with IV X†
0.95

in particular displaying excellent power properties.

The contrasting power orderings between the IV Xγ and IV X†
γ tests for α = 0 vis-à-vis

α > 0 suggest that a union-of-rejections type testing strategy should be useful, allowing

us to exploit the superior power of the IV X0.95 test where the magnitude of the initial

condition is small, and the superior power of the IV X†
0.95 test where the magnitude is large.

The results in Figures 3–5 confirm this with U0.95, the right-tailed union-of-rejections test

based on IV X0.95 and IV X†
0.95, being among the best performing tests for all values of c

and α. We therefore recommend the use of this test in practice when uncertainty exists

over the magnitude of the initial condition when testing in the right tail when δ < 0.

Results for two-sided variants of the tests against right-tailed alternatives are also reported

in Figures 3-5 and the relative performance of the tests is qualitatively similar to that for

the one-sided variants, with again the two-sided U0.95 test recommended.

We turn next to the performance of the tests when testing against left-tailed alternatives

using both one-sided and two-sided tests. These are reported in Figures 6-7 for c ∈ {2, 20},

with results for the additional values of c again reported in the supplementary appendix.

We again begin by examining the performance of the one-sided tests when α = 0. These

results are slightly different to those for the right-tailed testing scenario discussed above, as

now the best overall power performance is displayed by the Uγ tests. For α > 0, the IV Xγ

tests, again, become undersized and lacking in power, with this impact more pronounced
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the larger is the value of γ or α. For α > 0 the best power performance is again displayed

by the Uγ tests, although for c = 2 and α = 3 the U0.95 test displays significant oversize,

and so overall we recommend the use of the U0.75 test when testing in the left tail when

δ < 0. For two-sided testing, the U0.95 test has one of the strongest overall power profiles

for left-tail alternatives, and given that this test also has one of the strongest power profiles

against right-tail alternatives we recommend the use of the U0.95 test for two-tailed testing.

Overall, when δ < 0 and there is uncertainty over the magnitude of the initial condition

of the predictor, we recommend the use of U0.95 for right-tailed one-sided tests and two-

tailed tests, and U0.75 test for one-sided left-tailed tests.

All of our simulation experiments discussed above pertain to the case where δ is negative.

For predictive regressions generated according to (1)-(3), it is noted by, inter alia, Campbell

and Yogo (2006, p.30) that replacing xt with −xt in (1) flips the sign of both β and δ, such

that a right-tailed test with δ < 0 is asymptotically equivalent to a left-tailed test with

δ > 0. Therefore for δ > 0 we recommend using U0.95 for left-tailed one-sided tests and

two-tailed tests, and U0.75 test for one-sided right-tailed tests. Such a strategy is feasible in

practice, given that δ can be consistently estimated by, for example, the OLS estimate given

in Harvey et al. (2021, p.205). The possibility that the estimate of δ will have the wrong

sign should only occur in cases where δ is close to zero, and here unreported simulation

results show that there is little difference between the power of the U0.95 and U0.75 tests.

6 Empirical Illustration

In this section we apply the tests discussed in this paper to the dataset originally used

by Campbell and Yogo (2006) to illustrate how the magnitude of the initial condition

of the predictor can play a key role in determining whether a test signals a rejection.

Following the motivating example in Section 1, we examine the predictability of monthly

CRSP returns for sample data covering the period 1926M12–1994M12 when using either

the dividend-price or earnings-price ratio as a predictor. Full data descriptions are provided

in Campbell and Yogo (2006). The data were obtained from https://sites.google.
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com/site/motohiroyogo/research/asset-pricing. We focus on these two predictors as

they are arguably the most widely examined predictors for returns in the literature. The

estimate of the endogeneity correlation, δ, for the dividend-price ratio is equal to -0.948 and

for the earnings-price ratio it is -0.983, with these values close to the value of δ = −0.950

used in our Monte Carlo simulation experiments in Section 5.

For each predictor we apply right-sided bootstrap implementations of the IV X0.95,

IV X†
0.95 and U0.95 tests, performed using the exact same settings as in the Monte Carlo

simulation exercise in Section 5, except that B = 1, 999 bootstrap replications were used.

We calculate bootstrap p-values for the IV X0.95, IV X
†
0.95 and U0.95 tests, sequentially

increasing the start date of the sample data used by one period. In particular, we first

calculate the test statistics and associated bootstrap p-values over the full sample of data

available, 1926M12–1994M12 so that 1926M12 is the date of initial value of the predictor,

then for data over the sample period 1927M1–1994M12 where the initial value of the

predictor is 1927M1, and so on, finishing at the sample period 1945M12–1994M12. For

all of the tests, the bootstrap p-values are calculated as outlined in Section S.2 of the

supplementary appendix.

For each start date we also compute an estimate of the magnitude of the initial condition

proposed by Harvey and Leybourne (2005) given by

|α̂| := |x0 − µ̂|/σ̂w (25)

where µ̂ := T−1
∑T

t=1 xt and σ̂
2
w := T−1

∑T
t=1(xt− µ̂)2. Harvey and Leybourne (2005) show

that while |α̂| is not a consistent estimate of α, a monotonic relationship holds between |α̂|

and the true magnitude of the initial condition. The estimates of |α̂| give an indication of

how the relative magnitude of the initial condition is changing across start dates.

Figure 8 reports these results for the case were the lagged dividend-price ratio is used as a

candidate predictor. In each subfigure the red dots indicate p-values that are greater than or

equal to 0.05, signalling non-rejection of the null of no predictability at the 5% significance

level, and green dots indicate p-values that are less than 0.05, signalling rejection of the
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null of no predictability at the 5% level. Additionally, the grey shaded areas highlight

start dates for which a test fails to reject the null of no predictability. We see that the

IV X0.95 test rejects the null at the 5% level for 55.0% of the start dates considered, but

with a long string of non-rejections between 1931-1933 and 1941-1942, as well as some

dates in 1937-1938, that coincide with large estimated values of the initial condition of

the predictor. This is in accord with the simulation results reported in Section 5 where

we saw that this test is undersized and lacking in power when the initial condition of the

predictor is large. The IV X†
0.95 test rejects the null less often than the IV X†

0.95 test for

only 44.5% of start dates, but importantly this test is seen to reject for the start dates

1932M4-1932M6, 1937M12-1938M5 and 1941M2-1942M10, all of which are associated with

large estimated initial conditions and, with the exception of 1938M2, are all start dates for

which the IV X0.95 test does not reject. Our preferred U0.95 test rejects the null for 67.7%

of start dates, which is a significantly higher proportion of start dates than either of the

constituent tests used in its construction. Indeed, with the exception of 1937M11, the U0.95

test rejects for each and every start date where either the IV X0.95 or IV X†
0.95 tests reject,

and for this lone start date p(U0.95) = 0.055 so the non-rejection is marginal. These results

clearly highlight the advantage of the union-of-rejections approach as the U0.95 test is able

to reject much more consistently across various initial condition magnitudes than either

IV X0.95 or IV X†
0.95 are able to do in isolation.

Figure 9 reports results when using the lagged earnings-price ratio as a predictor. For

this predictor the IV X0.95 test rejects the null of no predictability at the 5% significance

level for 72.1% of the start dates considered, with clusters of non-rejections for start dates

between 1931-1935 and 1941-1943 for which the estimated magnitude of the initial condition

is again seen to be large. The IV X†
0.95 test, on the other hand, rejects for 85.6% of the

start dates considered, including the periods between 1931-1935 and 1941-1943 where the

IV X0.95 test fails to reject. As with the results for the dividend-price ratio, there are again

instances where the estimated initial condition is small and the IV X†
0.95 test fails to reject

while the IV X0.95 tests rejects. The U0.95 union-of-rejections test again has the highest
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rejection frequency of the tests, rejecting the null of no predictability at the 5% significance

level for 90.8% of the start dates considered.

Finally, Figure 10 plots, for each predictor, the estimated magnitude of the initial

condition across start dates as well as the p-value of all three tests. This figure re-enforces

the fact, for the earnings-price ratio in particular, that the p-value of the U0.95 test is far less

sensitive to the magnitude of the initial condition than the other two tests which explains

the greater rejection frequency found for this test. Overall, the findings of this empirical

study accord with the findings from our simulation exercise in Section 5 and give further

weight to our recommendation that practitioners use the U0.95 test in practice.

7 Conclusions

We have shown that the IVX predictability test of KMS can be very sensitive in practice

to the magnitude of the initial condition (defined as the deviation of the starting value of a

process from its unconditional mean) of the candidate predictor(s) under test. In particu-

lar, it can suffer from very substantial finite sample power losses for strongly persistent pre-

dictors which have an initial condition whose magnitude is large. To address this issue we

have proposed a simple modification to the IVX test in which the instrument used to con-

struct the IVX test is initialised not as in KMS at zero, but at the difference between the

initial value and sample mean of the predictor. We have shown that this modified test re-

tains the same limiting null distribution as the original IVX statistic but allows for a much

wider class of initial conditions than is allowed for validity of the original KMS test. How-

ever, the modified test can have power below that of the original IVX test when the initial

condition is small. We therefore proposed a union-of-rejections test, formed from these two

tests, that was demonstrated to show the best overall power profile across a range of sim-

ulation DGPs. Finally, an empirical application to data originally used by Campbell and

Yogo (2006) demonstrated the value of our preferred union-of-rejections based approach.
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Figure 2: Finite Sample Power, n = 250, δ = −0.95, c = 0
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Figure 3: Finite Sample Power, Right Tail, n = 250, δ = −0.95, c = 2
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Figure 4: Finite Sample Power, Right Tail, n = 250, δ = −0.95, c = 20
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Figure 5: Finite Sample Power, Right Tail, n = 250, δ = −0.95, c = 50
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Figure 6: Finite Sample Power, Left Tail, n = 250, δ = −0.95, c = 2
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Figure 7: Finite Sample Power, Left Tail, n = 250, δ = −0.95, c = 20
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Figure 8: Test p-values and Estimated Magnitude of Initial Condition - Monthly CRSP

1926-1994 (Predictor = d− p)
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Figure 9: Test p-values and Estimated Magnitude of Initial Condition - Monthly CRSP

1926-1994 (Predictor = e− p)

(a)IV X0.95 (Rejection Rate 72.1%)
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Figure 10: Test p-values and Estimated Magnitude of Initial Condition - Monthly CRSP

1926-1994
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Abstract

This supplementary appendix contains three sections. Section S.1 provides

proofs of the technical results stated in the main paper. Section S.2 details

the implementation of the bootstrap algorithm from Demetrescu et al. (2022)

to generate bootstrap p-values and critical values for the tests detailed in the

main paper. Finally, Section S.3, provides the additional Monte Carlo results

referred to in Section 5 of the main paper.
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S.1 Mathematical Proofs

S.1.1 Proof of Lemma 1

The proof of convergence in distribution of [Un (r) , Bn (r) , ζn] ⇒ [U (r) , B (r) , ζ] onD [0, 1]

is similar to that of [Un (r) , Bn (r) , Yn (r)] in Lemma 5 of Magdalinos and Petrova (2025);

here the random element Yn (r) in Magdalinos and Petrova (2025) associated with a mildly

explosive instrument is replaced by ζn associated with a (near-stationary) IVX instrument.

A standard martingale approximation gives Bn (r) = C (1)n−1/2
∑⌊nr⌋

t=1 et + op (1) under

Assumption 1(ii), so we may write

[Un (r) , Bn (r) , ζn (r)]
′ =
∑⌊nr⌋

t=1 ξn,t + op (1) (S.1)

where ξn,t =
[
n−1/2 (1− φ2

n)
1/2
zt−1εt, C (1)n−1/2et, (1− φ2

n)
1/2
φt−1
n εt

]′
is a Ft-martingale

difference array and we may apply a Lindeberg-type functional CLT for vector-valued

martingale difference arrays to (S.1): see Theorem 3.33 (pp. 478) of Jacod and Shiryaev

(2003). The conditional Lindeberg condition on
∥∥ξn,t∥∥2 (3.31 in Jacod and Shiryaev (2003))

is implied by the stronger unconditional Lindeberg condition (LC) on
∥∥ξn,t∥∥2 which, in

turn, is implied by establishing the LC on each of the components of ξn,t; this is done in the

proof of Lemma 5 of Magdalinos and Petrova (2025) (the argument for ζn (r) is identical to

that for Yn (r) in that paper by replacing φ−1
2n by φn). The conditional variance matrix of

the array in (S.1) is given by V (n) :=
∑⌊ns⌋

t=1 EFt−1

(
ξn,tξ

′
n,t

)
; denoting the typical elements

of V (n) by
[
V

(n)
ij

]3
i,j=1

: V
(n)
11 →p σ

2ω2r, V
(n)
22 →p ω

2r; V
(n)
12 →p 0 by the proof of Lemma 5

in MP (2023); V
(n)
33 = σ2 (1− φ2

n)
∑⌊nr⌋

t=1 φ
2t
n → σ2 for all r > 0;

V
(n)
23 = ω2n−1/2

(
1− φ2

n

)1/2 ⌊nr⌋∑
t=1

φt
n = O

(
[n (1− φn)]

−1/2
)
= o (1) .

Finally, V
(n)
13 = ω2 (1− φ2

n)n
−1/2

∑⌊nr⌋
t=1 φ

t−1
n zt−1 satisfies∥∥∥V (n)

13

∥∥∥
L1

≤ σ2max
t≤n

∥∥∥(1− φ2
n

)1/2
zt

∥∥∥
L2

(
1− φ2

n

)1/2
n−1/2

∑n
t=1 φ

t
n = O

(
(n (1− φn))

−1/2
)
.

We conclude that V (n) →p diag (σ
2ω2r, ω2r, σ2) for r ∈ [0, 1], and applying Theorem 3.33 of

Jacod and Shiryaev (2003) to (S.1),
∑⌊nr⌋

t=1 ξn,t ⇒ ξ (s) where ξ (r) is a continuous Gaussian
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martingale with quadratic variation ⟨ξ⟩r = diag (σ2ω2r, ω2r, σ2). By Levy’s characterisation

(e.g. Theorem 4.4 II of Jacod and Shiryaev (2003), ξ (r) is characterised by its quadratic

variation process, ξ (r)
d
= [U (r) , B (r) , ζ]′ with the right side defined in the statement of

the lemma and independence between the components of ξ (r) implied by the diagonality

of the quadratic variation matrix ⟨ξ⟩s.

S.1.2 Proof of Lemma 2

Using (20) we obtain

n∑
t=1

(z̃t−1 − z̃0,t−1) εt = z̃0 (n)
n∑

t=1

φt−1
n εt −

X0 (n) (1− ρn)

φn − ρn

n∑
t=1

(
φt−1
n − ρt−1

n

)
εt. (S.2)

When (1− ρn) / (1− φn) = O (1) and n |φn − ρn| → ∞, the second term on the right of

(S.2) is asymptotically equivalent to

X0 (n)
1− ρn
1− φn

n∑
t=1

ρt−1
n εt = X0 (n)Op

(
(1− ρn)

1/2

1− φn

)
= op

(
n1/2

(
1− φ2

n

)−1/2
)

because X0 (n)Op

(
(1− ρn)

1/2 (1− φn)
−1
)
is Op

(
n1/2

)
op

(
(1− φn)

−1/2
)
when c ∈ R and

op
(
n1/2

)
Op

(
(1− φn)

−1/2
)
when c = −∞. Since n−1/2 (1− ρ2nφ

2
n)

1/2 ∼ n−1/2 (1− φ2
n)

1/2

when (1− ρn) / (1− φn) = O (1), this proves part (i) in this case. When n |φn − ρn| =

O (1), the mean value theorem implies that there exists ϕn satisfying |φn − ϕn| < |φn − ρn|

and

n∑
t=1

φt−1
n − ρt−1

n

φn − ρn
εt =

n∑
t=1

(t− 1)ϕt−1
n εt = Op

(
n∑

t=1

t2ϕ2t
n

)1/2

= Op

(
(1− ϕn)

−3/2
)
= Op

(
κ3/2n

)
from the asymptotic equivalence

n∑
t=1

tpφ2t
n ∼ (1− φn)

−1−p Γ (p+ 1)

2p+1
as n→ ∞. (S.3)

We conclude that the second term on the right of (S.2) is of order

X0 (n)Op

(
(ρn − 1)κ3/2n

)
= op

(
n1/2

)
Op

(
κ1/2n

)
= op

(
n1/2

(
1− ρ2nφ

2
n

)−1/2
)

since (1− ρ2nφ
2
n)

−1 ∼ κn when n |φn − ρn| = O (1). We conclude that the second term

on the right of (S.2) is op

(
n1/2 (1− ρ2nφ

2
n)

−1/2
)

when (1− ρn) / (1− φn) = O (1); when

S2



c = −∞, the same holds for the first term:

z̃0 (n)
n∑

t=1

φt−1
n εt = op

(
n1/2

)
Op

((
1− φ2

n

)−1/2
)
= op

(
n1/2

(
1− ρ2nφ

2
n

)−1/2
)
.

Next, we show that the right of (S.2) is op

(
n1/2 (1− ρ2nφ

2
n)

−1/2
)
when (1− φn) / (1− ρn) →

0. Since

X0 (n) (ρn − 1)

φn − ρn

n∑
t=1

(
φt−1
n − ρt−1

n

)
εt = −X0 (n)

[
1 +O

(
1− φn

1− ρn

)] n∑
t=1

(
φt−1
n − ρt−1

n

)
εt

= −X0 (n)
n∑

t=1

φt−1
n εt +X0 (n)Op

(
κ1/2n

)
(S.2) implies that
n∑

t=1

(z̃t−1 − z̃0,t−1) εt = (z̃0 (n)−X0 (n))
n∑

t=1

φt−1
n εt +X0 (n)Op

(
κ1/2n

)
= (z̃0 (n)−X0 (n))Op

[(
1− φ2

n

)−1/2
]
+ op

(
n1/2κ1/2n

)
= op

(
n1/2κ1/2n

)
by Assumption 2(c), thereby completing the proof of part (i) of the lemma.

For part (ii), (19) gives

xt−1 = xt−1 − x̄n−1 = x0,t−1 − x̄0,n−1 +X0 (n)

(
ρt−1
n − 1

n

1− ρnn
1− ρn

)
.

Combining the above with (20), we obtain

R1n =
n∑

t=1

(xt−1 − x̄n−1) z̃t−1 −
n∑

t=1

(x0,t−1 − x̄0,n−1) z̃0,t−1

= z̃0 (n)
n∑

t=1

φt−1
n (x0,t−1 − x̄0,n−1)

+X0 (n)

{
(1− ρn)

n∑
t=1

(x0,t−1 − x̄0,n−1)
φt−1
n − ρt−1

n

φn − ρn
+

n∑
t=1

(
ρt−1
n − 1

n

1− ρnn
1− ρn

)
z̃t−1

}

= z̃0 (n)
n∑

t=1

φt−1
n x0,t−1 − x̄0,n−1z̃0 (n)

n∑
t=1

φt−1
n

+X0 (n) (1− ρn)
n∑

t=1

(x0,t−1 − x̄0,n−1)
φt−1
n − ρt−1

n

φn − ρn

+X0 (n)
n∑

t=1

(
ρt−1
n − 1

n

1− ρnn
1− ρn

)
z̃0,t−1 +X0 (n) z̃0 (n)

n∑
t=1

(
ρt−1
n − 1

n

1− ρnn
1− ρn

)
φt−1
n

+X0 (n)
2 (1− ρn)

n∑
t=1

(
ρt−1
n − 1

n

1− ρnn
1− ρn

)
φt−1
n − ρt−1

n

φn − ρn
. (S.4)
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Since
n−1∑
t=1

φt
nx0,t = Op

((
1− φ2

n

)−1/2
(1− ρnφn)

−1
)
,

the first term of (S.4) is Op

(
n1/2 (1− φ2

n)
−1/2

(1− ρnφn)
−1
)
= op

(
n (1− ρnφn)

−1). The

remaining terms of (S.4) will be op
(
n (1− ρnφn)

−1) only if κn/n → 0: the second term of

(S.4) satisfies x̄0,n−1z̃0 (n) (1− φn)
−1 = z̃0 (n)Op

(
n−1/2κn (1− φn)

−1) = op
(
κn (1− φn)

−1)
when κn/n→ 0; the third term has order X0 (n)Op

(
(1− φnρn)

−1
[
κ
1/2
n ∨ (1− φn)

−1/2
])

=

op
(
n (1− ρnφn)

−1) when κn/n→ 0; since
∑n−1

t=1 ρ
t
nz̃t = Op

(
κ
1/2
n (1− φnρn)

−1
)
, the fourth

term has order op

(
n1/2κ

1/2
n (1− φnρn)

−1
)
; the fifth and sixth terms have order op

(
n (1− φnρn)

−1)
when X0 (n) = op

(
n1/2

)
(since κn/n→ 0). We conclude that, when κn/n→ 0,

(
1− φ2

nρ
2
n

) 1
n
R1n = op (1) .

In the local-to-unit root case, all but the first term of (S.4) contribute asymptotically and

we obtain (
1− φ2

nρ
2
n

) 1
n
R1n = 2 (1 + o (1)) (1− φn)

1

n
R1n

where

(1− φn)
1

n
R1n = − x̄0,n−1√

n

z̃0 (n)√
n

(1− φn)
n∑

t=1

φt−1
n

+X0 (n) (1− ρn)
1

n

(
n∑

t=1

ρt−1
n x0,t−1 − x̄0,n−1

n∑
t=1

ρt−1
n

)

+
X0 (n)√

n
(1− φn)

1√
n

(
n∑

t=1

ρt−1
n z0,t−1 +

1− ec

c

n∑
t=1

z0,t−1

)

+
1

n
X0 (n) z̃0 (n)

(
1 +

1− ec

c

)
(1− φn)

n∑
t=1

φt−1
n

+
1

n
X0 (n)

2 (1− ρn)

(
n∑

t=1

ρ2(t−1)
n +

1− ec

c

n∑
t=1

ρt−1
n

)
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with the convention 1−ec

c
:= limc→0

1−ec

c
= 0 when c = 0. Since

(1− φn)
1√
n

n∑
t=1

ρt−1
n z0,t−1 = (1− φn)

1√
n

n∑
t=1

ρt−1
n

t−1∑
j=1

φt−1−j
n uj

= (1− φn)
1√
n

n−1∑
j=1

φ−j
n uj

n∑
t=j+1

(ρnφn)
t−1

= (1− φn)
1√
n

n−1∑
j=1

ρjnuj
1− (ρnφn)

n−j

1− ρnφn

=
1− φn

1− ρnφn

1√
n

[
n−1∑
j=1

ρjnuj − ρnn

n−1∑
j=1

φn−j
n uj

]

= [1 + op (1)]
1√
n

n−1∑
j=1

ρjnuj

because
∥∥∥n−1/2

∑n−1
j=1 φ

n−j
n uj

∥∥∥
L2

= O
(
n−1 (1− φn)

−1) and n−1/2 (1− φn)
∑n

t=1 z0,t−1 =

n−1/2
∑n

t=1 ut +op (1), we conclude that

(
1− φ2

nρ
2
n

) 1
n
R1n = −2

z̃0 (n)√
n

1

n3/2

n∑
t=1

x0,t−1 + 2
X0 (n)√

n
ψn (c) + op (1)

where ψn (c) is given in (21).

For part (iii), (20) gives

n∑
t=1

z̃2t =
n∑

t=1

(
z̃0,t + φt

nz̃0 (n)
)2

+X0 (n)
2 (1− ρn)

2
n∑

t=1

(
φt
n − ρtn

φn − ρn

)2

−2X0 (n) (1− ρn)
n∑

t=1

(
z̃0,t + φt

nz̃0 (n)
) φt

n − ρtn
φn − ρn

. (S.5)

When (1− ρn) / (1− φn) = O (1), the second term of (S.5) of has order

X0 (n)
2Op

(
κ−1
n (1− ρnφn)

−2) = X0 (n)
2Op

(
κ−1
n (1− ρnφn)

−2) = op
(
n (1− ρnφn)

−1)
by direct estimation when n |φn − ρn| → ∞ and by applying the mean value theorem

to (φt
n − ρtn) / (φn − ρn) when n |φn − ρn| = O (1); the order op

(
n (1− ρnφn)

−1) applies

both when κn/n → 0 (since κ−1
n (1− ρnφn)

−2 = O
(
(1− ρnφn)

−1) and X0 (n)
2 = op (n))

and when κn = n (since κ−1
n (1− ρnφn)

−2 = o
(
(1− ρnφn)

−1)). Similarly,
∑n−1

t=1 ρ
t
nz̃0,t =
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Op

(
κ
1/2
n (1− φnρn)

−1
)

implies that when (1− ρn) / (1− φn) = O (1), the third term of

(S.5) of has order

X0 (n)Op

(
κ−1/2
n (1− φnρn)

−2)+X0 (n) z̃0 (n)Op

(
κ−1
n (1− ρnφn)

−2) = op
(
n (1− φnρn)

−1)
because X0 (n) = op

(
n1/2

)
when κn/n → 0 and κ−1

n (1− φnρn)
−1 → 0 when κn = n. We

conclude that, when (1− ρn) / (1− φn) = O (1),

1

n
(1− ρnφn)

n∑
t=1

(
z̃2t − z̃20,t

)
= z̃0 (n)

2 1

n
(1− ρnφn)

n∑
t=1

φ2t
n + 2z̃0 (n)

1

n
(1− ρnφn)

n∑
t=1

z̃0,tφ
t
n

=
1

2

z̃0 (n)
2

n

[
1 +O

(
κ−1
n (1− φn)

−1)]+ op (1) (S.6)

because n−1/2 (1− ρnφn)
∑n

t=1 z̃0,tφ
t
n = Op

(
n−1/2 (1− ρnφn)

−1/2
)
. Note that by Assump-

tion 2, the right side of (S.6) is op (1) when κn/n→ 0.

It remains to show that, when (1− φn) / (1− ρn) → 0,

1

nκn

n∑
t=1

z̃2t −
1

nκn

n∑
t=1

z̃20,t = op (1) , (S.7)

since in this case, 1− ρnφn ∼ κ−1
n . Rearranging (S.5), we obtain

n∑
t=1

z̃2t −
n∑

t=1

z̃20,t = 2 [z̃0 (n)−X0 (n)]
n∑

t=1

φt
nz̃0,t + [z̃0 (n)−X0 (n)]

2
n∑

t=1

φ2t
n

+

[
X0 (n)

2

((
1− ρn
φn − ρn

)2

− 1

)
− 2X0 (n) z̃0 (n)

(
1− ρn
φn − ρn

− 1

)] n∑
t=1

φ2t
n

−2X0 (n)

(
1− ρn
φn − ρn

− 1

) n∑
t=1

z̃0,tφ
t
n + 2X0 (n)

1− ρn
φn − ρn

n∑
t=1

z̃0,tρ
t
n

+2X0 (n) z̃0 (n)
1− ρn
φn − ρn

O (κn) +X0 (n)
2

(
1− ρn
φn − ρn

)2

O (κn) . (S.8)

When (1− φn) / (1− ρn) → 0,
∑n−1

t=1 φ
t
nz̃0,t = Op

(
(1− φ2

n)
−1/2

κn

)
and Assumption 2(c)

implies that the first term on the right of (S.8) has order

op

(
n1/2κ1/2n (1− φn)

1/2
)
Op

((
1− φ2

n

)−1/2
κn

)
= op

(
n1/2κ3/2n

)
= op (nκn) .

Similarly, the second term on the right of (S.8) has order op (nκn). Since (1− φn) / (1− ρn) →

0 implies that both 1−ρn
φn−ρn

− 1 and
(

1−ρn
φn−ρn

)2
− 1 are O [(1− φn)κn] and X0 (n) and z̃0 (n)
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are both op
(
n1/2

)
, the third and fourth terms on the right of (S.8) have order op (nκn) .

The fifth term has order op

[
n1/2 (1− φn)

1/2 κ2n

]
= op

(
n1/2κ

3/2
n

)
= op (nκn). For the last

three terms on the right of (S.8), (1− ρn) / (φn − ρn) = O (1), so the sixth term has order

op

[
n1/2 (1− φn)

1/2 κ2n

]
= op

(
n1/2κ

3/2
n

)
= op (nκn), and the seventh and eighth terms are

op (nκn). This establishes (S.7) and completes the proof of part (iii) when c = −∞. When

c ∈ R, 1− ρ2nφ
2
n ∼ 2(1− ρnφn) so (S.6) implies that

1

n

(
1− ρ2nφ

2
n

)(n−1∑
t=0

z̃2t −
n−1∑
t=0

z̃20,t

)
=

(
z̃0 (n)√

n

)2

+ op (1)

completing the proof of part (iii).

S.1.3 Proof of Theorem 1

Firstly, we show that, as in the standard case of a zero instrument initialisation, the KMS

correction does not affect the limit distribution of the t-statistic; we need to show that

(
1− ρ2nφ

2
n

)
z̄2n−1 = op (1) . (S.9)

By (20),

(
1− ρ2nφ

2
n

)1/2
z̄n−1 =

1

n

(
1− ρ2nφ

2
n

)1/2 n∑
t=1

z̃0,t−1 (S.10)

+

[
z̃0 (n)−X0 (n)

1− ρn
φn − ρn

] (
1− ρ2nφ

2
n

)1/2 1

n

n−1∑
t=0

φt
n

+ X0 (n)
1− ρn
φn − ρn

(
1− ρ2nφ

2
n

)1/2 1

n

n−1∑
t=0

ρtn. (S.11)

Since
∑n

t=1 z̃0,t−1 = Op

(
n1/2

(
κn ∧ (1− φn)

−1)), the first term on the right of (S.11) is

Op

(
n−1/2 (1− φn)

−1/2
)

= op (1). Since X0 (n) = Op

(
n1/2

)
, the last term of (S.11) is

Op

(
n−1X0 (n) (1− ρ2nφ

2
n)

−1/2
)
= Op

(
n−1/2 (1− ρ2nφ

2
n)

−1/2
)
= op (1). When (1− ρn) / (1− φn) =

O (1), the second term of (S.11) is

Op

(
n1/2

) (
1− φ2

n

)1/2 1

n

n−1∑
t=0

φt
n = Op

(
n−1/2

(
1− φ2

n

)−1/2
)
= op (1) .
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When (1− ρn) / (1− φn) → ∞, the second term of (S.11) is[
z̃0 (n)−X0 (n) +Op

(
n1/21− φn

1− ρn

)]
Op

[
κ−1/2
n

1

n
(1− φn)

−1

]
= op

(
n−1/2 (1− φn)

−1/2
)

+ Op

(
n−1/2κ1/2n

)
= op (1)

by Assumption 2(iii) on the order of |z̃0 (n)−X0 (n)|. This completes the proof of (S.9).

By (S.9), we conclude that T †
n (φn)= T̃ †

n (φn)+op (1), and Tn (φn) =T̃n (φn)+op (1) where

T̃ †
n (φn) :=

∣∣∣∑n
j=1 xj−1z̃j−1

∣∣∣∑n
j=1 xj−1z̃j−1

σ̂−1
ε

(
n∑

t=1

z̃2t−1

)−1/2 n∑
t=1

z̃t−1εt (S.12)

where the instrument process z̃t has initialisation z̃0 (n) satisfying parts (ii) and (iii) of

Assumption 2 and

T̃n (φn) :=

∣∣∣∑n
j=1 xj−1z̃

0
j−1

∣∣∣∑n
j=1 xj−1z̃

0
j−1

σ̂−1
ε

(
n∑

t=1

(
z̃0t−1

)2)−1/2 n∑
t=1

z̃0t−1εt (S.13)

where z̃0t =
∑t

j=1 φ
t−j
n ∆xj is the restriction of z̃t with z̃0 (n) = 0. Lemma 2, implies that,

when c = −∞, Lemma 2 implies that, when c = −∞, T̃n (φn) = T 0
n (φn) + op (1) and

T̃ †
n (φn) = T 0

n (φn) + op (1) where

T 0
n (φn) =

∣∣∣∑n
j=1 x0,j−1z̃0,j−1

∣∣∣∑n
j=1 x0,j−1z̃0,j−1

σ̂−1
ε

(
n∑

t=1

z̃20,t−1

)−1/2 n∑
t=1

z̃0,t−1εt

with x0,t and z̃0,t defined in (18). By Theorem 1 of Magdalinos and Petrova (2025),

T 0
n (φn)

d→ ζ
d
= N (0, 1). We conclude that, when c = −∞,

[
Tn (φn) , T

†
n (φn)

]
= [1, 1]T 0

n (φn) + op (1)
d→ [1, 1] ζ, (S.14)

showing the theorem for the weakly persistent case.

For the local-to-unit root case, c ∈ R, the computations

1√
n

n−1∑
j=1

ρjnuj =
1√
n

∫ n−1

1

ρ⌊t⌋n dS⌊t⌋ =

∫ (n−1)/n

1/n

ρ⌊nt⌋n d

(
S⌊nt⌋√
n

)
d→
∫ 1

0

ectdB (t)

1

n3/2

n∑
t=1

ρt−1
n x0,t−1 =

1

n3/2

∫ n−1

0

ρ⌊t⌋n x0⌊t⌋dt =

∫ (n−1)/n

0

ρ⌊nt⌋n

x0⌊nt⌋
n1/2

dt
d→
∫ 1

0

ectJc (t) dt
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and (21) imply that ψn (c)
d→ ψ (c), where

ψ (c) =

∫ 1

0

ectdB (t) +
1− ec

c
B (1)− c

∫ 1

0

ectJc (t) dt+ (1− ec)

∫ 1

0

Jc (t) dt

+ Gc (B,X0)

(
1 +

1− ec

c

)
+ X0 (1− ec)

(
1

2
(1 + ec) +

1

c
(1− ec)

)
.(S.15)

Lemma 2(ii), (S.15) and Lemma 3 of Magdalinos and Petrova (2025) imply that

n−1
(
1− ρ2nφ

2
n

) n∑
t=1

(xt − x̄n) z̃t
d→ Ψc := ω2+Jc (1)

2+2X0ψ (c)−2 (Jc (1) +Gc (B,X0))

∫ 1

0

Jc (r) dr.

(S.16)

Lemma 2(iii) and Lemma 3 of Magdalinos and Petrova (2025) imply

n−1
(
1− ρ2nφ

2
n

) n∑
t=1

z̃2t−1 = ω2 +Gc

(
Bn, n

−1/2X0 (n)
)2

+ op (1) . (S.17)

By standard IVX asymptotics (Phillips and Magdalinos (2009)), n−1/2 (1− ρ2nφ
2
n)

1/2∑n
t=1 z̃0,t−1εt =

Un (1) + op (1) when c ∈ R; hence Lemma 2(i) gives

n−1/2
(
1− φ2

n

)1/2 n∑
t=1

z̃t−1εt = Un (1) + n−1/2z̃0 (n) ζn + op (1)

=
[
1, Gc

(
Bn, n

−1/2X0 (n)
)]

[Un (1) , ζn (1)]
′ + op (1) .(S.18)

Using (S.17) and (S.18), the t-statistic satisfies

T̃ †
n (φn) = [1 + op (1)]

∣∣∣∑n
j=1 xj−1z̃j−1

∣∣∣∑n
j=1 xj−1z̃j−1

× 1

σ̂ε

(
1

n

(
1− φ2

n

) n∑
t=1

z̃2t−1

)−1/2
1√
n

(
1− φ2

n

)1/2 n∑
t=1

z̃t−1εt

= [1 + op (1)]

∣∣∣∑n
j=1 xj−1z̃j−1

∣∣∣∑n
j=1 xj−1z̃j−1

(
ω2 +Gc

(
Bn, n

−1/2X0 (n)
)2)−1/2 [

ω,Gc

(
Bn, n

−1/2X0 (n)
)]
wn

where, by Lemma 1,

wn :=
1

σε

[
1

ω
Un (1) , ζn (1)

]′
d→ w

d
= N (0, I2) . (S.19)

By Lemma 2(ii), n−1 (1− φ2
n)
∑n

j=1 xj−1z̃j−1 = gc
(
Bn, n

−1/2X0 (n)
)
+ op (1), where gc is a

continuous function on D [0, 1]×R and the function x 7→ sign (x) is PB,X0-a.s. continuous
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(PB,X0 (0) = 0 as PB,X0 is a Gaussian measure by Assumption 2(i)), (S.16), (S.17) and the

continuous mapping theorem imply that

T̃ †
n (φn)

d→ sign (Ψc)
(
ω2 +Gc (B,X0)

2)−1/2
[ω,Gc (B,X0)]w =

(
υc

∥υc∥

)′

w

where υc := sign (Ψc)
(
ω2 +Gc (B,X0)

2)−1/2
[ω,Gc (B,X0)]

′ is a random vector indepen-

dent of w
d
= N (0, I2) by Lemma 1 and Assumption 2(i) since υc/ ∥υc∥ has unit length,

(S.19) implies

(υc/ ∥υc∥)′w
d
= N (0, 1)

as required.

For T̃n (φn) in (S.13), Lemma 2 with z̃0 (n) = 0 implies that

T̃n (φn) =

∣∣∣∑n
j=1 xj−1z̃

0
j−1

∣∣∣∑n
j=1 xj−1z̃

0
j−1

σ̂−1
ε

(
n∑

t=1

z̃20,t−1

)−1/2 n∑
t=1

z̃0,t−1εt + op (1)

= sign

(
n∑

j=1

xj−1z̃
0
j−1

)
1

ω

1

σε

Un (1) + op (1) .

By (S.16), sign
(∑n

j=1 xj−1z̃
0
j−1

)
d→ sign (Ψ0

c) where Ψ0
c is the restriction of Ψc in (S.16)

when Gc (B,X0) = 0. Lemma 1 then implies that T̃n (φn)
d→ N (0, 1) as required. This

completes the proof of T †
n (φn)

d→ N (0, 1) and Tn (φn)
d→ N (0, 1).

Joint convergence of
[
T †
n (φn) , Tn (φn)

]
has been established in (S.14) in the weakly

persistent case. In particular, (S.14) implies that

max
{
T †
n (φn) , Tn (φn)

} d→ ζ
d
= N (0, 1) .

In the strongly persistent case, we may write T †
n (φn)

Tn (φn)

 =

 T̃ †
n (φn)

T̃n (φn)

+ op (1) = Mn

 1
ω

1
σε
Un (1)

1
σε
ζn (1)

 . (S.20)

where, denoting ςn = sign
{∑n

j=1 xj−1z̃j−1

}
, ς0n = sign

{∑n
j=1 xj−1z̃

0
j−1

}
,

Mn =

 ςn
ω(

ω2+Gc(Bn,n−1/2X0(n))
2
)1/2 ςn

Gc(Bn,n−1/2X0(n))(
ω2+Gc(Bn,n−1/2X0(n))

2
)1/2

ς0n 0

 .
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In the local to unity case, Gc

(
Bn, n

−1/2X0 (n)
) d→ Gc (B,X0) ̸= 0 a.s. since Gc (B,X0) is

continuously distributed by Assumption 2. Also, ςn
d→ ςc :=sign {Ψc}, ς0n

d→ ς0c :=sign {Ψ0
c}.

By applying Lemma 1 to (S.20),
[
1
ω

1
σε
Un (1) ,

1
σε
ζn (1)

]′ d→ N (0, I2), Mn
d→ M and T †

n (φn)

Tn (φn)

 d
=

 ω

(ω2+G2
c)

1/2Z1 +
Gc

(ω2+G2
c)

1/2Z2

Z1

 (S.21)

where Z1 = ςc
ωσε

U (1) and Z2 = ς0c
σε
ζ (1) are independent N (0, 1) random variables, by

independence of ςc and U (1) and of ς0c and ζ (1) and we abbreviate Gc := Gc (B,X0). Next,

we obtain an expression for the distribution of

Tmax := max

{
ω

(ω2 +G2
c)

1/2
Z1 +

Gc

(ω2 +G2
c)

1/2
Z2, Z1

}
,

the maximum of the limits in distribution of
[
T †
n (φn) , Tn (φn)

]
in (S.21). The c.d.f. of

Tmax is given by

P (Tmax ≤ λ) = P

(
Z1 ≤

ω

(ω2 +G2
c)

1/2
Z1 +

Gc

(ω2 +G2
c)

1/2
Z2 ≤ λ

)

+P

(
ω

(ω2 +G2
c)

1/2
Z1 +

Gc

(ω2 +G2
c)

1/2
Z2 ≤ Z1 ≤ λ

)
= p1 (λ) + p2 (λ)

where

p1 (λ) = P
([(

ω2 +G2
c

)1/2 − ω
]
Z1 ≤ GcZ2 ≤

(
ω2 +G2

c

)1/2
λ− ωZ1

)
and

p2 (λ) = P
(
GcZ2 ≤

((
ω2 +G2

c

)1/2 − ω
)
Z1, Z1 ≤ λ

)
.

Denoting Ac := (ω2 +G2
c)

1/2 − ω, Bc := (ω2 +G2
c)

1/2
and using the law of iterated expec-

tations, we obtain

P (Tmax ≤ λ) = P (AcZ1 ≤ GcZ2 ≤ Bcλ− ωZ1) + P (GcZ2 ≤ AcZ1, Z1 ≤ λ)

= E [P (AcZ1 ≤ GcZ2 ≤ Bcλ− ωZ1|Gc)]

+E [P (GcZ2 ≤ AcZ1, Z1 ≤ λ|Gc)] . (S.22)
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Since Z1 is independent of GcZ2, the density of (Z1, GcZ2) conditional on Gc is given by

f(Z1,GcZ2) (x1, x2) =
1

2π
e−

1
2
x2
1e

− 1

2G2
c
x2
2 .

Hence,

P (AcZ1 ≤ GcZ2 ≤ Bcλ− ωZ1|Gc) =

∫ ∞

−∞

∫ Bcλ−ωx1

Acx1

f(Z1,GcZ2) (x1, x2) dx2dx1

=
1

2π

∫ ∞

−∞
e−

1
2
x2
1

∫ Bcλ−ωx1

Acx1

e
− 1

2G2
c
x2
2dx2dx1

and

P (GcZ2 ≤ AcZ1, Z1 ≤ λ|Gc) =

∫ λ

−∞

∫ Acx1

−∞
f(Z1,GcZ2) (x1, x2) dx2dx1

=
1

2π

∫ λ

−∞
e−

1
2
x2
1

∫ Acx1

−∞
e
− 1

2G2
c
x2
2dx2dx1

Substituting into (S.22) and differentiating with respect to λ, we obtain the density function

of Tmax:

fTmax (λ) =
1

2π
E
(
Bc

∫ ∞

−∞
e−

1
2
x2
1e

− 1

2G2
c
(Bcλ−ωx1)

2

dx1 + e−
1
2
λ2

∫ Acλ

−∞
e
− 1

2G2
c
x2
2dx2

)
=

1

2π
EBce

− 1

2G2
c
B2

cλ
2
∫ ∞

−∞
e
− 1

2

(
1+ ω2

G2
c

)[
x2
1−2 Bcλω

G2
c+ω2 x1

]
dx1

+
1

2π
e−

1
2
λ2E

∫ Acλ

−∞
e−

1
2(

x2
|Gc|)

2

dx2

=
1

2π
EBce

− 1

2G2
c
B2

cλ
2

e
1
2

(
1+ ω2

G2
c

)(
Bcλω

G2
c+ω2

)2 ∫ ∞

−∞
e
− 1

2

(
1+ ω2

G2
c

)(
x1− Bcλω

G2
c+ω2

)2

dx1

+
1

2π
e−

1
2
λ2E |Gc|

∫ Acλ
|Gc|

−∞
e−

1
2
x2
2dx2

=
1√
2π

E
Bce

− 1
2

B2
cλ

2

G2
c+ω2√

1 + ω2/G2
c

+
1√
2π
e−

1
2
λ2E

[
|Gc|Φ

(
Acλ

|Gc|

)]
= ϕ (λ)

[
E |Gc|+ E |Gc|Φ

(
λ
(ω2 +G2

c)
1/2 − ω

|Gc|

)]
,

as required.

Additional Reference

Jacod, J. and Shiryaev, A.N.S. (2003). Limit theorems for stochastic processes. Springer-Verlag

Berlin Heidelberg New York.

S12



S.2 Residual Wild Bootstrap Implementation

We apply the residual wild bootstrap [RWB] method detailed in Algorithm 1 of Demetrescu et al.

(2022, p.13) to obtain simulated bootstrap critical values for the Tn (φn), T
†
n (φn), Tn (φn)

2 and

T †
n (φn)

2 tests considered in this paper. In Algorithm S.1, we outline the procedure to implement

the T †
n (φn) test statistic at the α significance level. The corresponding RWB implementation of

the other tests is performed in the same manner; see the subsequent discussion in Remarks S.2.1–

S.2.3. Details on how to obtain simulated bootstrap p-values for the tests are given in Remark

S.2.4. Then in section S.2.1 we detail how to obtain simulated bootstrap critical values and p-

values for the union-of-rejection tests discussed in Remark 3.3.

Algorithm S.1. (Residual Wild Bootstrap Algorithm)

Step 1: Estimate (1) by OLS to obtain the residuals ε̂t, t = 1, ..., n.

Step 2: Estimate by OLS the equation

xt = m+

p∑
j=1

ajxt−j + bỹt + ut (S.23)

where ỹt := yt−n−1
∑n

j=1 yj, to obtain the OLS estimates m̂, âj, j = 1, ..., p, and b̂, and compute

ût := xt − m̂−
∑p

j=1 âjxt−j, t = p, ..., n. Set ût = 0 for t = 1, ..., p− 1.

Step 3: Generate bootstrap innovations (ε∗t , u
∗
t )

′ := (Rtε̂t, Rtût)
′, t = 1, ..., n where Rt t = 1, ..., n

is a scalar sequence of NIID(0, 1) random variables which are independent of the sample data.

Step 4: Define the bootstrap data (y∗t , x
∗
t−1)

′, t = 1, ..., n, where y∗t = ε∗t (so that the null hypoth-

esis is imposed on the bootstrap data y∗t ) and where x∗t is generated according to the recursion

x∗t =

p∑
j=1

âjx
∗
t−j + u∗t , t = 1, ..., n
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with initial conditions x∗0 = ... = x∗−(p−1) = 0. Create the associated IVX instrument, z̃∗t =

φnz̃
∗
t−1 +∆x∗t , t = 1, ..., n, initialised at z̃∗0 = x∗0 − x̄∗n, where x̄∗n = n−1

∑n
t=1 x

∗
t . Notice that φn

is the same value used in constructing the IVX instrument, z̃t, from xt.

Step 5: Using the bootstrap data (y∗t , x
∗
t−1, z̃

∗
t−1)

′, t = 1, ..., n, in place of the original sample data,

(yt, xt−1, z̃t−1)
′, t = 1, ..., n, construct the bootstrap analogue of the T †

n (φn) statistic, denoting this

test statistic as T †
n (φn)

∗.

Step 6: Repeat steps 3-5 B times, with the {Rt} sequences additionally independent across the

B bootstrap replications, and define cvTn(φn)
∗,α and cvTn(φn)

∗,1−α as the α and (1− α) quantiles,

respectively, of the resulting B bootstrap test statistics. The null is rejected at the α significance

level when testing in the right tail if the Tn (φn) test statistic is greater than cvTn(φn)
∗,1−α, and

when testing in the left tail the null is rejected at the α significance level if the Tn (φn) test statistic

is less than cvTn(φn)
∗,α.

Remark S.2.1. Notice that Algorithm S.1 differs slightly from Algorithm 1 of Demetrescu

et al. (2022) in that ỹt is included as a covariate in (S.23) in Step 2. This results in improved

estimates of the autoregressive parameters from this regression, but does not alter the large sample

properties of the bootstrap statistics relative to Algorithm 1 of Demetrescu et al. (2022) where

ỹt is not included in (S.23). ♢

Remark S.2.2. A bootstrap implementation of Tn (φn) can be performed in a similar manner

to that detailed for T †
n (φn) in Algorithm S.1. The only difference would be that the bootstrap

instrument z̃∗t would be initialised at z̃∗0 = 0. For future reference, we define cv
T †
n(φn)

∗,α
and

cv
T †
n(φn)

∗,1−α
as the α and (1− α) quantiles of the resulting B bootstrap test statistics. ♢

Remark S.2.3. A two-sided variant of both tests can be performed by replacing T †
n (φn) or

Tn (φn), and their bootstrap analogues, with T †
n (φn)

2 or Tn (φn)
2, respectively, and rejecting in

the upper tail. ♢

Remark S.2.4. We can also construct simulated bootstrap p-values for the Tn (φn) and T †
n (φn)

tests. Taking the Tn (φn) statistic to illustrate the method, denote the B bootstrap analogue
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statistics obtained from running Algorithm S.1 as Tn,i (φn)
∗, i = 1, ..., B. The simulated upper

tail bootstrap p-value for the test is then calculated as the percentage of bootstrap statistics that

do not exceed the actual statistic; that is, pUTn(φn)
:= B−1

∑B
i=1 I(Tn,i (φn)

∗ < Tn (φn)). Similarly,

the simulated lower tail bootstrap p-value is calculated as the percentage of bootstrap statistics

that exceed the actual statistic; that is, pLTn(φn)
:= B−1

∑B
i=1 I(Tn,i (φn)

∗ > Tn (φn)). As B → ∞,

these both converge almost surely to the true p-values. ♢

Remark S.2.5. We also considered initialising the bootstrap series x∗t at x∗0 = x0 − x̄n but

found that while this did improve the size of tests based on Tn (φn) when c, α > 0, they were still

significantly less powerful than tests based on T †
n (φn). ♢

S.2.1 Union of Rejection Tests

The methods outlined above are applicable for tests based on Tn (φn), T †
n (φn), Tn (φn)

2 and

T †
n (φn)

2. Simulated bootstrap critical values and p-values for the union-of-rejections tests dis-

cussed in Remark 3.3 are simple to obtain using the approach outlined in section 2.3 of Smeekes

and Taylor (2012) for bootstrapping union of rejections type tests. Usefully, these not require any

additional bootstrap computation.

(i) Consider first the right-tailed test for H0 : β = 0 against H1 : β > 0 based on the maximum

of the Tn (φn) and T †
n (φn) statistics, which rejects for large values of the UR statistic defined in

Remark 3.3. Our bootstrap implementation of this test is based on the statistic,

UR := max
{
T †
n (φn) , Tn (φn) + d∗R

}
where d∗R := cv

T †
n(φn)

∗,1−α
− cvTn(φn)

∗,1−α, in which cv
T †
n(φn)

∗,1−α
is the α level upper-tailed boot-

strap critical value for T †
n (φn) defined in Step 6 of Algorithm S.1, and cvTn(φn)

∗,1−α is the corre-

sponding quantity for Tn (φn) defined in Remark S.2.2. The correction term, d∗R, is added onto

Tn(φn) to allow for the possibility that the finite sample null distributions of T †
n (φn) and Tn (φn)

are not equal at the 1 − α quantile. In large samples d∗R will be zero because the two statistics

have the same limiting null distribution. The use of an additive correction term is a slight mod-

ification to the union-of-rejections strategy proposed by Smeekes and Taylor (2012) who use a
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multiplicative correction factor to line up the finite sample critical values of the statistics forming

the union they consider.1

Denoting the ith bootstrap analogues of the Tn (φn), T
†
n (φn) statistics, obtained as in Algorithm

S.1, as Tn,i (φn)
∗ and T †

n,i (φn)
∗, i = 1, ..., B, one can compute the corresponding ith bootstrap

statistic, U∗
R,i, as

U∗
R,i := max

{
T †
n,i (φn)

∗ , Tn,i (φn)
∗ + d∗R

}
.

The (1 − α) quantile of the B bootstrap U∗
R,i, i = 1, ..., B, statistics then gives a simulated

bootstrap critical value appropriate for right-tailed testing at the α level based on the UR test

statistic.

(ii) Next consider the left-tailed test for H0 : β = 0 against H1 : β < 0 based on the minimum

of the Tn (φn) and T †
n (φn) statistics which rejects for large negative values of the UL statistic in

Remark 3.3. A bootstrap implementation of this test is based on the statistic

UL := min
{
T †
n (φn) , Tn (φn) + d∗L

}

where d∗L := cv
T †
n(φn)

∗,α
− cvTn(φn)

∗,α.

Again, denoting the ith bootstrap analogues of the Tn (φn), T †
n (φn) statistics, obtained as in

Algorithm S.1, as Tn,i (φn)
∗ and T †

n,i (φn)
∗, i = 1, ..., B, one can compute the corresponding ith

bootstrap statistic, U∗
L,i as

U∗
L,i := min

{
T †
n,i (φn)

∗ , Tn,i (φn)
∗ + d∗L

}

1In the context of left-tailed tests we found that the two bootstrap critical values used to calculate d∗R

can sometimes have opposite signs, necessitating the additive, rather than multiplicative, correction term.
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The α quantile of the B bootstrap U∗
L,i, i = 1, ..., B, statistics then gives a simulated bootstrap

critical value appropriate for left-tailed testing at the α level based on the UL test statistic.

(iii) Finally, consider the two-sided test for H0 : β = 0 against H1 : β ̸= 0 based on the maximum

of the Tn (φn)
2 and T †

n (φn)
2 statistics which rejects for large positive values of the U2S statistic in

Remark 3.3. Denoting the α level upper-tailed bootstrap critical values for Tn (φn)
2 and T †

n (φn)
2

as cvTn(φn)
∗2,1−α and cv

T †
n(φn)

∗2,1−α
, respectively, a bootstrap implementation of the test can be

based on the statistic

U2S := max
{
T †
n (φn)

2 , Tn (φn)
2 + d∗2S

}
where d∗2S := cv

T †
n(φn)

∗2,1−α
− cvTn(φn)

∗2,1−α.

Denoting the ith bootstrap analogues of the Tn (φn)
2, T †

n (φn)
2 statistics, obtained as in Algorithm

S.1, as Tn,i (φn)
∗2 and T †

n,i (φn)
∗2, i = 1, ..., B, one can compute the corresponding ith bootstrap

statistic, U∗
2S,i as

U∗
2S,i := min

{
T †
n,i (φn)

∗2 , Tn,i (φn)
∗2 + d∗2S

}

where d∗2S := cv
T †
n(φn)

∗2,1−α
− cvTn(φn)

∗2,1−α, with cv
T †
n(φn)

∗2,1−α
and cvTn(φn)

∗2,1−α the simulated

(1 − α) bootstrap quantiles obtained from the ordered T †
n,i (φn)

∗2 and Tn,i (φn)
∗2, i = 1, ..., B,

bootstrap statistics, respectively. The (1 − α) quantile of the B bootstrap U∗
2S,i, i = 1, ..., B,

statistics then gives a simulated bootstrap critical value appropriate for two-sided testing at the

α level based on the U2S test statistic.

For each of the bootstrap test procedures outlined in (i)–(iii) above, corresponding simulated

bootstrap p-values can be calculated by performing the bootstrap variant of the test over a fine

grid of different significance levels, with the bootstrap p-value chosen as the lowest (closest to

zero) significance level for which the test signals a rejection.
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S.3 Additional Monte Carlo Simulation Results

In this section we provide additional Monte Carlo results to those provided in Section 5 for:

c ∈ {5, 10, 30, 40} for n = 250; and c ∈ {0, 2, 5, 10, 20, 30, 40, 50} for n = 1000.
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Figure S.1: Finite Sample Power, Right Tail, n = 250, δ = −0.95, c = 5
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Figure S.2: Finite Sample Power, Right Tail, n = 250, δ = −0.95, c = 10
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Figure S.3: Finite Sample Power, Right Tail, n = 250, δ = −0.95, c = 30
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Figure S.4: Finite Sample Power, Right Tail, n = 250, δ = −0.95, c = 40
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Figure S.5: Finite Sample Power, Left Tail, n = 250, δ = −0.95, c = 5
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Figure S.6: Finite Sample Power, Left Tail, n = 250, δ = −0.95, c = 10
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Figure S.7: Finite Sample Power, Left Tail, n = 250, δ = −0.95, c = 30
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Figure S.8: Finite Sample Power, Left Tail, n = 250, δ = −0.95, c = 40
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Figure S.9: Finite Sample Power, Left Tail, n = 250, δ = −0.95, c = 50
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Figure S.10: Finite Sample Power, Right Tail, n = 1000, δ = −0.95, c = 0
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Figure S.11: Finite Sample Power, Right Tail, n = 1000, δ = −0.95, c = 2
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Figure S.12: Finite Sample Power, Right Tail, n = 1000, δ = −0.95, c = 5
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Figure S.13: Finite Sample Power, Right Tail, n = 1000, δ = −0.95, c = 10
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Figure S.14: Finite Sample Power, Right Tail, n = 1000, δ = −0.95, c = 20
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Figure S.15: Finite Sample Power, Right Tail, n = 1000, δ = −0.95, c = 30
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Figure S.16: Finite Sample Power, Right Tail, n = 1000, δ = −0.95, c = 40
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Figure S.17: Finite Sample Power, Right Tail, n = 1000, δ = −0.95, c = 50
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Figure S.18: Finite Sample Power, Left Tail, n = 1000, δ = −0.95, c = 0
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Figure S.19: Finite Sample Power, Left Tail, n = 1000, δ = −0.95, c = 2
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Figure S.20: Finite Sample Power, Left Tail, n = 1000, δ = −0.95, c = 5
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Figure S.21: Finite Sample Power, Left Tail, n = 1000, δ = −0.95, c = 10
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Figure S.22: Finite Sample Power, Left Tail, n = 1000, δ = −0.95, c = 20
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Figure S.23: Finite Sample Power, Left Tail, n = 1000, δ = −0.95, c = 30
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Figure S.24: Finite Sample Power, Left Tail, n = 1000, δ = −0.95, c = 40
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Figure S.25: Finite Sample Power, Left Tail, n = 1000, δ = −0.95, c = 50
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