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Abstract
We demonstrate how a generic automated theorem prover can be applied to establish the
non-orderability of groups. Our approach incorporates various tools such as reasoning from
the first principles, positive cones, torsions, generalised torsions and cofinal elements.

Keywords Automated theorem proving · Group theory · Groups orderability · Computer
assisted mathematics

1 Introduction

The study of orderable groups has a rich history [1–4] among group theorists. In the last
decade of the 20th century, researchers gradually recognised the significance of orderability
in topology, and it has since remained an active and thriving area of research.

The three most extensively studied variants of group orderability are left order, bi-order,
and (left-invariant) circular order. In this paper, wewill also study the existence of bi-invariant
circular orders. We consider the following algorithmic problem.

Problem 1 Given a group G with presentation 〈S|R〉 and a type of group orderability, deter-
mine whether G is orderable.

In general, Problem 1 has been proven to be undecidable for any type of orderability by
[5, Theorem 3.3]. Despite its undecidability, the problem remains highly intriguing when
considering specific groups that arise in topology. Notably, the braid groups [6–8], the map-
ping class groups [9, 10], the fundamental groups of 3-manifolds [11–14], and lattices in Lie
groups [15] are among the groups where Problem 1 holds great significance.

We focus on the non-orderability aspect of Problem 1, which involves finding a con-
tradiction assuming the existence of an order. We believe that, by providing simple proofs
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demonstrating the non-orderability of a group of interest, one may deepen our understanding
and reveal intriguing topological structures.

Most previous automated proofs of non-orderability are variants of the algorithmdescribed
in [16, Section 8]. This algorithm relies on a short-lex automatic structure to tackle the
word problem and seeks to identify contradictions within the positive cone of a left order.
Later, Dunfield [17] enhanced this algorithm for the fundamental group of a finite-volume
hyperbolic 3-manifold by solving the word problem through an SL2(C) representation.

We present a methodology for establishing non-orderability using generic automated the-
orem proving instead of specialized algorithms. In contrast to previous approaches, our
method offers a unified framework capable of handling all variants of orderability without
any assumptions about the group. The flexibility of the imposed assumptions makes it easier
to discover new proofs and results in non-orderability.

We provide many examples to illustrate our methodology, ranging in difficulty. A par-
ticularly interesting one is Example 18, where we provide an alternative proof of the
non-left-orderability [10] of Homeo(D, ∂D), the group of homeomorphisms of the disk
fixing the boundary, using the concept of left absolutely cofinal elements; see also [18].

1.1 Main results and organisation of the paper

In Sect. 2, we present the first principles approach. As its name suggests, we directly break
down the original problem into axioms in first-order logic, and then prove the non-orderability
through the automatically-derived contradiction. To derive sufficient axioms from the group
presentation, a necessary technical step is to identify inequalities using an automated finite
model finder.

When compared to specific algorithms, like the one described in [16, Section 8], our
approach offers a significant advantage: the ability to readily modify input axioms. We
have noticed that the axiom of connectedness consumes excessive computational resources.
Therefore, in Sect. 3.1, we introduce the weakened theory approach, in which we substitute
the axiom of connectedness with weaker assumptions.

InSect. 3.2,wediscuss a further optimisationof our approach: the positive cone translation.
This method has been used in the literature for establishing non-left-orderability and non-
bi-orderability. We extend its applicability to left-invariant or bi-invariant circular orders.
From the perspective of automated reasoning, the positive cone translation results in an
equiconsistent theory with predicates of smaller arities, thereby enhancing the efficiency of
our reasoning process.

In Sect. 4, we establish the equivalence between an element g ∈ G being a torsion or a
generalised torsion and the inconsistency of the corresponding weakened theory with respect
to the pair (e, g). One may compare this result with the well-known fact that the existence
of a nontrivial torsion (resp. generalised torsion) implies non-left-orderability (resp. non-bi-
orderability).

Furthermore, we extend this analysis to bi-invariant circular orders. If the axiom of
cyclicity is dropped, and the axiom of connectedness is weakened with respect to the triple
(e, f g f −1, g), then the theory for bi-invariant circular orders is inconsistent if and only if
f −1 is in the monoid generated by f and the centraliser of g.
In Sect. 5, we further study the strength of the axiom of cyclicity for bi-invariant circular

orders. For this purpose, we develop the theory of left relatively convex subgroups defined by
Antolın, Dicks, and Sunic [19]. Unlike previous works such as [3], their definition does not
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impose restrictions on the left-orderability of the ambient group. We extend some properties
of relatively convex subgroups of left-orderable groups to general cases.

(a) The equivalence (a) ⇔ (c) in Proposition 10 generalises the usual definition of relatively
convex subgroups of left-orderable groups.

(b) The equivalence (a) ⇔ (b) in Proposition 11 generalises [20, Theorem 1.4.10].
(c) Proposition 12generalises [3, Proposition 5.1.10], establishing the closure property under

arbitrary intersection.

Using the theory of left relatively convex subgroups, we demonstrate that a relation on the
group G satisfying all axioms except cyclicity exists if and only if the centraliser of each
subset of G is left relatively convex in G.

In Sect. 6, we introduce the concept of the left relatively convex subgroup closure, denoted
as cl(A), for a subset A. This closure is defined as the intersection of all left relatively convex
subgroups containing A. Additionally, we define the left absolute cofinal subgroup as a
subgroup H forwhich cl(H) = G. By the equivalence (a)⇔ (c) established inProposition 14,
a subgroup is left absolutely cofinal if and only if it is cofinal with respect to every left total
preorder.

Based on the search for left absolute cofinal cyclic subgroups, we introduce a method-
ology for establishing the non-left-orderability of every nontrivial quotient using automated
theorem proving. Our approach formalises a common practice in establishing the non-left-
orderability, which involves tracking fixed points in the dynamical realisation. We believe
this formalisation could also be used in other scenarios, including the development of fast
algorithms such as the one detailed in [16, Section 8], as well as in human proofs.

Propositions 1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 20 establish the group theoretic implications of
the consistency or inconsistency of various theories. The utilisation of an automated theorem
prover like Prover9 enables the automatic detection of contradictions in a first-order theory,
thereby implying corresponding group theoretic properties.

We provide numerous examples at the end of each section to illustrate our methodology.
In Sect. 7, we elaborate our approach for performing automated reasoning tasks in these
examples using Prover9 andMace4. Furthermore, we provide a summary of the performance
of these automated theorem provers when executing these tasks.

2 Non-orderability from first principles

In this section, we demonstrate a methodology for reducing the non-orderability of a group
G with presentation 〈S|R〉 to automated theorem proving tasks. Specifically, we address the
following variant of Problem 1.

Problem 2 Given a groupG with presentation 〈S|R〉 and a type of group orderability, provide
an automated proof of the non-orderability of G.

To achieve this goal, we first extract the assumptions of our problem setting in first-order
logic. Thenwe utilise two tools for experimental evaluation: Prover9 andMace4 [21]. Prover9
is a widely used automated theorem prover that operates on first-order logic. It takes a set
of logical axioms as input and attempts to find a proof of a conjecture. And the finite model
finder Mace4 is designed to search for finite models that satisfy a given set of first-order
logical formulas.

123



   19 Page 4 of 32 A. Lisitsa et al.

2.1 Group axioms

Agroup is a set togetherwith an associative binary operation ·, such that there exists an identity
element, and every element has an inverse. In a first-order logic perspective, we consider the
groups as models for the following standard system of axiomsGr in a vocabulary consisting
a binary functional symbol · for group multiplication, a unary functional symbol ′ (in postfix
notation) for group inverse operation, and a constant e for the identity element in the group:

(a) ∀x∀y∀z((x · y) · z = x · (y · z)), (associativity)
(b) ∀x(x · e = e · x = x), (identity element)
(c) ∀x(x ′ · x = x · x ′ = e). (inverse element)

For the group with presentation 〈S|R〉, we encode every generator in S as an additional
constant, and every relation in R as an additional equational axiom, in a standard way. We
denote this system of axioms by AxR .

In addition to the group G presented by 〈S|R〉, any quotient group of G is also a model
of Gr ∪ AxR . To establish non-orderability, it is crucial to distinguish between G and its
quotient groups. Therefore, we need to include an additional situation-dependent set S of
true statements for the group G. In practice, S can be taken as a set of inequalities in G.

2.2 Order axioms

By definition, a left order on a group G is a linear order < on G that is invariant under left
multiplication, and a bi-order is one that is invariant under left and right multiplication. Thus
the left order and bi-order satisfy the following axioms AxL for linear orders:

(a) ∀x(¬(x < x)), (irreflexivity)
(b) ∀x∀y∀z((x < y) ∧ (y < z) → (x < z)), (transitivity)
(c) ∀x∀y((x = y) ∨ (x < y) ∨ (y < x)). (connectedness)

In addition, the left order satisfies the left-invariance axiom OrdL:

(d) ∀x∀y∀z((x < y) → (z · x < z · y)). (left-invariance)

And the bi-order satisfies the bi-invariance axiom OrdB:

(e) ∀x∀y∀z∀u((x < y) → ((z · x) · u < (z · y) · u)). (bi-invariance)

By definition, a cyclic order on a set is a ternary relation C(·, ·, ·) satisfying the following
axioms AxC:

(a) ∀x∀y∀z(C(x, y, z) → C(y, z, x)), (cyclicity)
(b) ∀x∀y(¬C(x, y, y)), (irreflexivity)
(c) ∀x∀y∀z∀u(C(x, y, z) ∧ C(x, z, u) → C(x, y, u)), (transitivity)
(d) ∀x∀y∀z((x = y) ∨ (y = z) ∨ (z = x) ∨ C(x, y, z) ∨ C(x, z, y)). (connectedness)

When referring to a circular order on a group G, it is conventionally understood as a
cyclic order on the elements of G that is invariant under left multiplication. So the circular
order also satisfies the left-invariance axiom OrdCL:

(e) ∀x∀y∀z∀u(C(x, y, z) → C(u · x, u · y, u · z)). (left-invariance)

And the bi-invariant circular order satisfies the bi-invariance axiom OrdCB:

(f) ∀x∀y∀z∀u∀v(C(x, y, z) → C((u · x) · v, (u · y) · v, (u · z) · v)). (bi-invariance)
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2.3 The first principles approach

If a group is orderable, then with the corresponding order it would constitute a model for the
first-order theory with applicable axioms from Sects. 2.1 and 2.2, which in turn would entail
that the theory is consistent. In other words, we have the following proposition.

Proposition 1 Let G be a group with presentation 〈S|R〉. Let S be a set of true statements
for G. Then the following statements hold:

(a) If Gr ∪ AxR ∪ AxL ∪ OrdL ∪ S is inconsistent, then G is not left-orderable.
(b) If Gr ∪ AxR ∪ AxL ∪ OrdB ∪ S is inconsistent, then G is not bi-orderable.
(c) If Gr ∪ AxR ∪ AxC ∪ OrdCL ∪ S is inconsistent, then G is not circularly orderable.
(d) IfGr∪AxR ∪AxC∪OrdCB∪S is inconsistent, then G does not admit a bi-invariant

circular order.

According to Proposition 1, given the group presentation, to establish non-orderability of
the presented group, one can apply an automated theorem prover in the first-order logic to
derive a contradiction from the corresponding theory.

Let us outline some important observations:

(a) The proposed approach is not fully automatic. It requires a set of true statements S for
the group G to be provided before attempting a proof. In the next subsection, we will
discuss how to establish such statements using a finite model finder.

(b) The proposed approach is limited to establishing the non-orderability of groups. While
many groups are orderable, proving it involves second-order reasoning that includes the
quantifier “there exists an order”. Alternatively, it could be handled by inductive reason-
ing. Both directions of automation appear to be promising areas for further research, but
they are beyond the scope of this paper.

(c) An application of the automated reasoning to orderability can be found in [22]. In that
work, finite model building was used to establish the orderability of finite monoids.
However, this approach cannot be applied to show the left-orderability and bi-orderability
of infinite groups.

2.4 Finite models as a source of true statements

As we have already noticed, the proposed methodology is not complete and is not fully
automated. The choice of a set of true statements (inequalities)S in a groupof interest remains
a crucial and, generally, creative step. In applications one may use any known equationally
expressible property of the group, such as non-commutativity.

We propose here a partial automation of the search for true statements using an automated
reasoning technique, finite model finding. For a G presented by 〈S|R〉, a model ofGr∪AxR
can be viewed as a quotient group of G. Hence any inequality t1 �= t2 among ground terms
t1 and t2 which holds true in a model of Gr ∪ AxR also holds true in G.

The proposed approach then works as follows: for a group presentation 〈S|R〉, we search
for finite models of Gr ∪ AxR using an automated finite model finder tool, such as Mace4.
If a finite model G ′ is discovered, we can take any subset of ground inequalities true in G ′
as a set of true statements S in G.

If a group of interest G does not have nontrivial finite quotients, then the finite model
finder will never find a useful model. Hence this approach is incomplete. Empirically, it has
been effective in many, though not all, of our experiments.
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2.5 Examples

Now we show how the proposed first principles approach works on some simple examples.

Example 1 The fundamental group of Klein bottle has a presentation

〈a, b | a−1ba = b−1〉.
This group is known to be left-orderable, but not bi-orderable [11]. One can prove that the
group is not bi-orderable by noticing that one has to have both b < e and e < b, which is
impossible. This argument has to be complemented by a proof of the fact that b �= e. If b = e
in the group, then a becomes a generator. Thus it suffices to prove that the Klein bottle group
is not cyclic.

If we want to apply automated reasoning, the corresponding theory Gr ∪ AxR ∪ AxL ∪
OrdB can be formulated as follows in the syntax of Prover9:

% Gr % Ax_R
(x * y) * z = x * (y * z). (a’ * b) * a = b’.
x * e = x.
e * x = x.
x’ * x = e.
x * x’ = e.

% AxL % OrdB
- L(x,x). L(x,y) -> L((z*x)*u,(z*y)*u).
L(x,y) & L(y,z) -> L(x,z).
(x=y) | L(x,y) | L(y,x).

One can notice that it is impossible to prove contradiction from such a theory because
it is consistent and has a one-element model, namely, the trivial group. In order to get a
contradiction, one needs to add some true statements in the group (S in Proposition 1) to the
theory.

In this example, b �= e is sufficient. To prove b �= e in theKlein bottle group automatically,
we use the finitemodel building technique introduced in the previous subsection.When asked
if the theoryGr∪AxR ∪ {b �= e} has a model (Task 1.1), the model builder Mace4 produces
a model of size 2; see Table 2. Therefore, the inequality b �= e is confirmed in the Klein
bottle group.

We can use Prover9 to prove contradiction (Task 1.2) from the theoryGr∪AxR ∪AxL∪
OrdB ∪ {b �= e}. Note that Prover9 rediscovers the human-authored proof given above,
finding a contradiction after deriving both L(b, e) and L(e, b).

Example 2 Special linear group SL2(Z) has a presentation

〈a, b | a4 = e, (ba)3 = b2〉
and is known to be non-left-orderable because a is a nontrivial torsion.

We prove this fact automatically. First we validate that both a �= e and b �= e hold true
by finding models (Task 2.1) for the theory Gr ∪ AxR ∪ {a �= e, b �= e} using Mace4. Then
by adding {a �= e, b �= e} to the theory Gr ∪ AxR ∪ AxL ∪ OrdL, we derive contradiction
(Task 2.2) using Prover9.
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Example 3 The n-th Fibonacci group F(2, n) (n ≥ 2) has a presentation

〈a0, . . . , an−1 | aiai+1 = ai+2 for i = 0, . . . , n − 1〉.
When n is odd, this group contains a nontrivial torsion by [23, Proposition 3.1], which implies
the non-left-orderability. When n is even, this group is the fundamental group of a cyclic
branched cover of the figure-eight knot by [24, Theorem 1], and is not left-orderable by [25,
Theorem 2].

While our methods cannot automatically verify the non-left-orderability for every positive
integer n ≥ 2, we can apply them to some relatively large integers. These instances could
serve as inspiration for mathematicians to establish non-left-orderability in general cases.

Suppose that n = 12. Define the set of inequalities S by

S := {ai �= e : i = 0, . . . , n − 1}.
UsingMace4, we prove thatGr∪AxR ∪S is consistent (Task 3.1). Using Prover9, we prove
that Gr ∪ AxR ∪ AxL ∪ OrdL ∪ S is inconsistent (Task 3.2). Thus the Fibonacci group
F(2, 12) is not left-orderable.

When n = 11, the inconsistency of Gr ∪ AxR ∪ AxL ∪ OrdL ∪ S can still be verified
(Task 3.3) using Prover9. However, it is difficult to find a finite model ofGr∪AxR ∪S using
Mace4. To deal with the computational challenge, one approach is to manually deduce these
inequalities based on the fact that F(2, 11) is infinite [26].

Example 4 The braid group B3 on three strands is isomorphic to the knot group of the trefoil
knot T2,3, and have a presentation

〈a, b | aba = bab〉.
This group does not admit bi-invariant circular orders, according to [27, Corollary 8.8]. An
alternative proof follows from the left-orderability (thus they are torsion-free) and the non-
bi-orderability of braid groups, as well as knot groups of nontrivial torus knots. According
to [28, Proposition 3], a torsion-free group admits a bi-invariant circular order if and only if
it is bi-orderable.

To prove this fact automatically, we define the set of inequalities S by

S := {a �= e, b �= e, a �= b)}.
UsingMace4, we prove thatGr∪AxR ∪S is consistent (Task 4.1). Using Prover9, we prove
that Gr ∪AxR ∪AxC∪OrdCB∪S is inconsistent (Task 4.2). Thus the group B3 does not
admit bi-invariant circular orders.

Example 5 To illustrate howour approach can be applied to circular non-orderability, consider
the dihedral group D7 of order 14 given by the presentation

〈a, b | a7 = e, b2 = e, bab = a−1〉.
This group is finite and non-cyclic, thus by [28, Theorem 1], it is not circularly orderable.

We prove this fact directly using automated reasoning. Define the set of inequalitiesS by

S := {a �= e, b �= e, a �= b}.
Using Mace4, we prove that Gr ∪ AxR ∪ S is consistent (Task 5.1). Using Prover9, we

prove that Gr ∪AxR ∪AxC∪OrdCL∪S is inconsistent (Task 5.2). Thus the group D7 is
not circularly orderable.

123



   19 Page 8 of 32 A. Lisitsa et al.

Note that this example already takes much longer to compute than the previous ones; see
Table 1. To improve the applicability of our approach and handlemore complicated examples,
we present somemethods in the subsequent section to deal with the computational challenge.

3 Weakened theories and positive cones

3.1 Weakened theories

Establishing the non-orderability using automated theorem provers is inherently incomplete
methodology. It may fail for various reasons:

(a) If the orderability status of a group is unknown, it may turned out to be orderable. In the
case it is not possible to derive contradiction.

(b) The group may turned out to be non-orderable, but a supplied set of true statements is
not sufficient to derive contradiction.

(c) The supplied set of true statements may be sufficient to derive a contradiction, but it
takes too long to find a proof automatically.

In practice, it is difficult to distinguish between these alternatives. Hence to improve utility
of the methodology one needs to consider possible optimisations to improve efficiency of
the proof search.

One of possible optimisation is based on using weaker theory to derive contradictions.
For example, in a typical derivation of contradiction in the first principle approach the axiom

(c) ∀x∀y((x = y) ∨ (x < y) ∨ (y < x)) (connectedness)

in AxL can be used with a supplied inequality t1 �= t2 to derive (t1 < t2) ∨ (t2 < t1). So,
the search space for proof can potentially be reduced by removing this axiom and replacing
supplied inequality t1 �= t2 with (t1 < t2) ∨ (t2 < t1). In summary, we have the following
proposition.

Proposition 2 Let G be a group with presentation 〈S|R〉. Let S be a set of true statements
for G. Let S< be a set of formulas obtained by replacing all inequalities t1 �= t2 from S by
the corresponding formulas (t1 < t2) ∨ (t2 < t1). Let AxL′ denote AxL minus the axiom of
connectedness. Then the following statements hold:

(a) If Gr ∪ AxR ∪ AxL′ ∪ OrdL ∪ S< is inconsistent, then G is not left-orderable.
(b) If Gr ∪ AxR ∪ AxL′ ∪ OrdB ∪ S< is inconsistent, then G is not bi-orderable.

One can derive similar results for circular orders and bi-invariant circular orders.

Proposition 3 Let G be a group with presentation 〈S|R〉. Let S be a set of true statements
for G. Let SC be a set of formulas obtained by replacing each triple of inequalities {t1 �=
t2, t2 �= t3, t3 �= t1} from S by the corresponding formula C(t1, t2, t3) ∨ C(t1, t3, t2). Let
AxC′ denote AxC minus the axiom of connectedness. Then the following statements hold:

(a) IfGr∪AxR ∪AxC′ ∪OrdCL∪SC is inconsistent, then G is not circularly orderable.
(b) IfGr∪AxR ∪AxC′ ∪OrdCB∪SC is inconsistent, then G does not admit a bi-invariant

circular order.

To improve the efficiency further, we can strengthen the assumption (t1 < t2)∨(t2 < t1) in
S< to t1 < t2, or strengthen the assumption C(t1, t2, t3)∨C(t1, t3, t2) inSC to C(t1, t2, t3).
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By imposing stronger assumptions, we are testing the existence of an order satisfying extra
formulas. A contradiction of a strengthened theory leads to a partial result on non-orderability.
However, the first strengthening is free by symmetry.

Proposition 4 If we strengthen one formula of form (t1 < t2)∨ (t2 < t1) inS< to t1 < t2, or
of formC(t1, t2, t3)∨C(t1, t3, t2) inSC to C(t1, t2, t3), then the conclusions in Proposition 2
and Proposition 3 still hold.

Proof For each linear order <, we say x <op y if and only if y < x . Then all axioms in
AxL, OrdL, and OrdB hold invariant when replacing < with <op . Thus if < is a left order
(resp., a bi-order), then <op is also a left order (resp., a bi-order). Either < or <op satisfies
the formula t1 < t2.

For a cyclic orderC , we sayCop(x, y, z) if and only ifC(x, z, y). Then all axioms inAxC,
OrdCL, andOrdCB hold invariant when replacing C with Cop . Thus if < is a circular order
(resp., a bi-invariant circular order), then <op is also a circular order (resp., a bi-invariant
circular order). Either C or Cop satisfies the formula C(t1, t2, t3). ��

3.2 Positive cones

In this subsection, we incorporate awell-known technique in the theory of ordered groups into
our methodology: the positive cone technique. A positive cone of an order < on the group G
is defined as the set of all positive elements. In other words, it is the set {x ∈ G : e < x}. This
concept is particularly useful for left orders and bi-orders, as the positive cone determines
the left order or the bi-order. According to the left-invariance, we can show that x < y if and
only if x−1y is in the positive cone. By translating the axioms for orders to the corresponding
axioms for positive cones, we can gain a computational advantage, as it reduces a binary
predicate to a unary one.

The positive cone of a left order or a bi-order satisfies the following axioms, which we
denote by AxPL:

(a) ¬P(e), (irreflexivity)
(b) ∀x∀y(P(x) ∧ P(y) → P(x · y)), (closure)
(c) ∀x((x = e) ∨ P(x) ∨ P(x ′)). (connectedness)

Additionally, the positive cone of a bi-order satisfies the conjugacy invariance axiom PB:

(d) ∀x∀y(P(x) → P((y · x) · y′)). (conjugacy invariance)

We can generalise the positive cone method to circular orders. We define the positive cone
of a circular order C on the group G as the set {(x, y) ∈ G : C(e, x, y)}. Because C(x, y, z)
if and only if (x−1y, x−1z) is in the positive cone, the positive cone determines the circular
order. Thus we can translate the axioms for circular orders and bi-invariant circular orders to
the axioms for their positive cones as follows.

The positive cone of a circular order satisfies the following axioms, which we denote by
AxPCL:

(a) ∀x∀y(P(x, y) → P(x ′ · y, x ′)), (cyclicity)
(b) ∀x(¬P(x, x)), (irreflexivity)
(c) ∀x∀y∀z(P(x, y) ∧ P(y, z) → P(x, z)), (transitivity)
(d) ∀x∀y((e = x) ∨ (e = y) ∨ (x = y) ∨ P(x, y) ∨ P(y, x)). (connectedness)

Additionally, the positive cone of a bi-invariant circular order satisfies the conjugacy
invariance axiom PCB:
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(e) ∀x∀y∀z(P(x, y) → P((z · x) · z′), (z · y) · z′). (conjugacy invariance)

We encourage the readers to verify the following lemmas.

Lemma 1 Assume the axioms inGr holds for binary function ·, unary function ′ and constant
e. Let < be a binary predicate satisfying OrdL or OrdB. Define a unary predicate P by
P(x) if and only if e < x. Then

(a) the irreflexivity axiom in AxL implies the irreflexivity axiom in AxPL;
(b) the transitivity axiom in AxL implies the closure axiom in AxPL;
(c) the connectedness axiom in AxL implies the connectedness axiom in AxPL;
(d) the axiom OrdB implies the axiom PB.

Lemma 2 Assume the axioms inGr holds for binary function ·, unary function ′ and constant
e. Let P be a unary predicate. Define a binary predicate < by x < y if and only if P(x ′ · y).
Then

(a) the axiom OrdL holds;
(b) the irreflexivity axiom in AxPL implies the irreflexivity axiom in AxL;
(c) the closure axiom in AxPL implies the transitivity axiom in AxL;
(d) the connectedness axiom in AxPL implies the connectedness axiom in AxL;
(e) the axiom PB implies the axiom OrdB.

Lemma 3 Assume the axioms inGr holds for binary function ·, unary function ′ and constant
e. Let C be a ternary predicate satisfying OrdCL or OrdCB. Define a binary predicate P
by P(x, y) if and only if C(e, x, y). Then

(a) the cyclicity axiom in AxC implies the cyclicity axiom in AxPCL;
(b) the irreflexivity axiom in AxC implies the irreflexivity axiom in AxPCL;
(c) the transitivity axiom in AxC implies the transitivity axiom in AxPCL;
(d) the connectedness axiom in AxC implies the connectedness axiom in AxPCL;
(e) the axiom OrdCB implies the axiom PCB.

Lemma 4 Assume the axioms inGr holds for binary function ·, unary function ′ and constant
e. Let P be a binary predicate. Define a ternary predicate C by C(x, y, z) if and only if
P(x ′ · y, x ′ · z). Then
(a) the axiom OrdCL holds;
(b) the cyclicity axiom in AxPCL implies the cyclicity axiom in AxC;
(c) the irreflexivity axiom in AxPCL implies the irreflexivity axiom in AxC;
(d) the transitivity axiom in AxPCL implies the transitivity axiom in AxC;
(e) the connectedness axiom in AxPCL implies the connectedness axiom in AxC;
(f) the axiom PCB implies the axiom OrdCB.

By replacingAxL∪OrdLwithAxPL, replacingAxL∪OrdBwithAxPL∪PB, replacing
AxC ∪ OrdCL with AxPCL, and replacing AxC ∪ OrdCB with AxPCL ∪ PCB, we can
translate Proposition 1, Proposition 2, Proposition 3, and Proposition 4 into positive cone
forms. We prove that these positive cone translations lead to equiconsistent theories.

Proposition 5 Let si , ti (i = 0, 1, . . . , k) be ground terms. LetS denote the set of inequalities

{si �= ti : i = 0, 1, . . . , k}.
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Let S< denote the set of axioms

{s0 < t0} ∪ {(si < ti ) ∨ (ti < si ) : i = 1, . . . , k}.
Let SP denote the set of axioms

{P(s′
0 · t0)} ∪ {P(s′

i · ti ) ∨ P(t ′i · si ) : i = 1, . . . , k}.
Let AxPL′ (resp. AxL′) denote AxPL (resp. AxL) minus the axiom of connectedness. Then

(a) Gr ∪ AxR ∪ AxL ∪ OrdL ∪ S is consistent if and only if Gr ∪ AxR ∪ AxPL ∪ S is
consistent;

(b) Gr ∪AxR ∪AxL∪OrdB∪S is consistent if and only ifGr ∪AxR ∪AxPL∪PB∪S

is consistent;
(c) Gr ∪ AxR ∪ AxL′ ∪ OrdL ∪ S< is consistent if and only if Gr ∪ AxR ∪ AxPL′ ∪ SP

is consistent;
(d) Gr∪AxR ∪AxL′ ∪OrdB∪S< is consistent if and only ifGr∪AxR ∪AxPL′ ∪PB∪SP

is consistent.

Proof If a theory T1 involving < (in either of the four cases) is consistent, then there is a
model M1 of it. We extend M1 by the interpretation of P , defined as P(x) if and only if
e < x , then remove the interpretation of <. Then by Lemma 1, the resulting model M2 is a
model of the corresponding theory T2 involving P .

Conversely, if a theory T2 involving P is consistent, then there is a model M2 of it. We
interpret < by x < y if and only if P(x ′ · y) and then remove the interpretation of P . Then
by Lemma 2, the resulting model M1 is a model of the corresponding theory T1 involving
<. ��

Similarly, by Lemma 3 and Lemma 4, we have the following proposition.

Proposition 6 Let ri , si , ti (i = 1, . . . , k)be ground terms. LetSdenote the set of inequalities

{ri �= si , si �= ti , ti �= ri : i = 0, . . . , k}.
Let SC denote the set of axioms

{C(r0, s0, t0} ∪ {C(ri , si , ti ) ∨ C(ri , si , ti ) : i = 1, . . . , k}.
Let SP denote the set of axioms

{P(r ′
0 · s0, r ′

0 · t0)} ∪ {P(r ′
i · si , r ′

i · ti ) ∨ P(r ′
i · ti , r ′

i · si ) : i = 1, . . . , k}.
Let AxPCL′ (resp. AxC′) denote AxPCL (resp. AxC) minus the axiom of connectedness.
Then

(a) Gr ∪ AxR ∪ AxC ∪ OrdCL ∪ S is consistent if and only if Gr ∪ AxR ∪ AxPCL ∪ S

is consistent;
(b) Gr∪AxR∪AxC∪OrdCB∪S is consistent if and only ifGr∪AxR∪AxPCL∪PCB∪S

is consistent;
(c) Gr∪AxR ∪AxC′ ∪OrdCL∪SC is consistent if and only ifGr∪AxR ∪AxPCL′ ∪SP

is consistent;
(d) Gr ∪ AxR ∪ AxC′ ∪ OrdCB ∪ SC is consistent if and only if Gr ∪ AxR ∪ AxPCL′ ∪

PCB ∪ SP is consistent.
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Proposition 5 and Proposition 6 offer an alternative approach to demonstrating the incon-
sistency of the theories in Proposition 1 and Proposition 4 through automated reasoning,
which usually enhances efficiency.

It is worth noting that the performance of the automated theorem prover Prover9 on a
single task is highly unpredictable. For further optimisations, one may fine tune the proof
search strategy or attempt alternative presentations of the same group.

3.3 Examples

Example 6 In Example 5, we established the non-circular-orderability of the dihedral group
D7 using automated reasoning. However, the process of deducing the inconsistency of
Gr ∪ AxR ∪ AxC ∪ OrdCL ∪ S with Prover9 is time-consuming. By the statement (a) in
Proposition 6, we can alternatively demonstrate the inconsistency ofGr∪AxR∪AxPCL∪S

(Task 6.1). The positive cone translation significantly reduces the time required; see Table 1.

Example 7 Consider the special linear group SL2(Z)with the presentation as shown inExam-
ple 2. By [29, Theorem 5.10], in a group with a bi-invariant circular order, the torsion part is
central. Since a is a torsion element in SL2(Z) with ab �= ba, it follows that SL2(Z) does
not admit a bi-invariant circular order.

To prove this fact automatically, we first establish the inequalities e �= ab, e �= ba,
ab �= ba by building a model (Task 7.1) ofGr∪AxR ∪{e �= a ·b, e �= b ·a, a ·b �= b ·a} by
Mace4. Thenwe prove thatGr∪AxR∪AxPCL′∪PCB∪{P(a ·b, b ·a)} is inconsistent (Task
7.2) by Prover9. Thus by Proposition 3, Proposition 4 and the statement (d) in Proposition 6,
the special linear group SL2(Z) does not admit a bi-invariant circular order.

Example 8 The fundamental group of the Poincaré homology sphere has a presentation

〈a, b | (ab)2 = a3, a3 = b5〉.
This group is finite (of order 120), hence it is not left-orderable.

To prove this fact automatically, we check that a �= e by finding a model (Task 8.1) of
Gr ∪ AxR ∪ {e �= a} using Mace4. Then we prove that Gr ∪ AxR ∪ AxPL′ ∪ {P(a)} is
inconsistent (Task 8.2) by Prover9. Thus by Proposition 2, Proposition 4 and the statement (a)
in Proposition 5, the fundamental group of the Poincaré homology sphere is not left-orderable.

Example 9 The knot group of the knot 52 has a presentation

〈a, b | b2a2b2 = ab3a〉.
This group is known to be left-orderable, as all knot groups, and not bi-orderable, according
to [30, page 5] and [31, Theorem 7]. For the same reason as in Example 4, this group does
not admit a bi-invariant circular order.

We first prove the non-bi-orderability using automated reasoning. Amodel forGr∪AxR∪
{b · a �= (a · b) · b} can be found (Task 9.1) using Mace4. Thus ba �= ab2 holds true in this
group. We can verify thatGr∪AxR ∪AxPL′ ∪PB∪{P((b ·a)′ · ((a ·b) ·b))} is inconsistent
(Task 9.2) by Prover9. By Proposition 2, Proposition 4 and the statement (d) in Proposition 5,
the knot group of 52 is not bi-orderable. Alternatively, we may use the inequality ab �= ba
in the automated proof. (Task 9.3 and Task 9.4)

Now we show how to prove the non-existence of a bi-invariant circular order using auto-
mated reasoning. First, we prove e �= ab, e �= ba and ab �= ba by building a model (Task
9.5) of Gr ∪ AxR ∪ {e �= a · b, e �= b · a, a · b �= b · a} using Mace4. Then we prove the
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inconsistency ofGr∪AxR ∪AxPCL′ ∪PCB∪{P(a ·b, b ·a)} (Task 9.6) using Prover9. By
Proposition 3, Proposition 4 and the statement (d) in Proposition 6, the knot group of 52 does
not admit a bi-invariant circular order. Alternatively, we may use the inequalities e �= ba,
e �= ab2 and ba �= ab2 in the automated proof. (Task 9.7 and Task 9.8)

Example 10 The fundamental group of the Weeks manifold has a presentation

〈a, b | a2b2a2 = ba−1b, b2a2b2 = ab−1a〉.
According to [16, Theorem 9.2], this group is not circularly orderable. While our approach
is not sophisticated enough to provide an automated proof of the non-circular-orderability
in reasonable time, we can prove two weaker properties using automated reasoning: the
non-left-orderability and the absence of bi-invariant circular orders.

By building a finite model (Task 10.1) of Gr ∪ AxR ∪ {a �= e} using Mace4, we obtain
that a �= e. By deriving a contradiction (Task 10.2) of Gr ∪ AxR ∪ AxPL ∪ {a �= e} using
Prover9, it follows from Proposition 1 and the statement (a) in Proposition 5 that, the Weeks
manifold group is not left-orderable.

In order to prove the non-existence of bi-invariant circular orders automatically, we need
to confirm three inequalities e �= ab, e �= ba and ab �= ba. The first two inequalities can
be verified by building a finite model (Task 10.3) of Gr ∪ AxR ∪ {e �= a · b, e �= b · a}
using Mace4. However, the last inequality ab �= ba turns out to be more challenging. One
way to prove ab �= ba in the Weeks manifold group is through an SL2(C)-representation as
described on [32, page 24]. Alternatively, we can argue that the equality ab = ba implies
that the group of interest is isomorphic to the product of two cyclic groups of order 5, hence
it is finite and non-cyclic. According to [28, Theorem 1], in such a case, it is not circularly
orderable.

We can prove that the theoryGr∪AxR ∪AxPCL′ ∪PCB∪{P(a ·b, b ·a)} is inconsistent
(Task 10.4) using Prover9. Thus by Proposition 3, Proposition 4 and the statement (d) in
Proposition 6, the Weeks manifold group does not admit a bi-invariant circular order.

4 Torsions, generalised torsions, andmore

4.1 Torsions and generalised torsions

In this subsection, we show that, if S contains a single inequality t1 �= t2, then the methods
of establishing the non-left-orderability (resp. non-bi-orderability) via the weakened the-
ory described in Sect. 3.1 is essentially detecting whether t−1

1 t2 represents a torsion (resp.
generalised torsion) in the group presented by 〈S|R〉. Note that a nontrivial torsion (resp.
generalised torsion) is a well-known obstruction to left-orderability (resp. bi-orderability);
see [33, Proposition 1.3 and Problem 1.22] for example.

First, we present the definition of torsion and establish the desired equivalence.

Definition 1 A group element x ∈ G is called a torsion if there exists a positive integer n
such that xn = e where e is the identity element of the group G.

Proposition 7 Let G be a group with presentation 〈S|R〉. Let t be a ground term representing
a group element in G. Then Gr ∪ AxR ∪ AxPL′ ∪ {P(t)} is inconsistent if and only if t
represents a torsion in G.
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Proof We first prove the “if” part. If t represents a torsion in G, then there exists a positive
integer n such that tn = e holds assuming the axiomsGr andAxR , where the ground term tn is
recursively defined by t1 = t and tn = tn−1 ·t for n ≥ 2. The closure axiom inAxPL′ and the
axiom P(t) implies that P(tn) for every positive integer n inductively, hence we have P(e),
which contradicts to the irreflexivity axiom inAxPL′. ThereforeGr∪AxR ∪AxPL′ ∪{P(t)}
is inconsistent if t represents a torsion in G.

Next, we prove the “only if” part. Suppose that t represents a non-torsion element t̄
in G. For any x ∈ G, let P(x) be the proposition that t̄ n = x in G for some positive
integer n. We prove that the group G together with the predicate P constitutes a model for
Gr ∪ AxR ∪ AxPL′ ∪ {P(t)}:
(a) The axioms in Gr ∪ AxR are satisfied because G is the group with presentation 〈S|R〉.
(b) If P(e) holds, then there exists a positive integer n such that t̄ n = e, which contradicts to

the assumption that t̄ is not a torsion. Thus the irreflexivity axiom in AxPL′ is satisfied.
(c) If P(x) and P(y) holds for x, y ∈ G, then there exist positive integers m and n such

that t̄m = x and t̄ n = y, so we have t̄m+n = x and therefore P(xy) holds. Thus the
transitivity axiom in AxPL′ is satisfied.

(d) The axiom P(t) is satisfied by the definition of P .

Therefore the theory Gr ∪AxR ∪AxPL′ ∪ {P(t)} is consistent if t represents a non-torsion
element in G. ��

Then, we present the definition of generalised torsion and prove the analogous statement
to Proposition 7. For convenience, we consider the identity element e as a generalised torsion.

Definition 2 Agroup element x ∈ G is called a generalised torsion if there exist y1, . . . , yn ∈
G such that

(y1xy
−1
1 )(y2xy

−1
2 ) · · · (ynxy−1

n ) = e,

where e is the identity element of the group G.

Proposition 8 Let G be a group with presentation 〈S|R〉. Let t be a ground term representing
a group element in G. Then Gr ∪AxR ∪AxPL′ ∪ PB ∪ {P(t)} is inconsistent if and only if
t represents a generalised torsion in G.

Proof We first prove the “if” part. If t represents a generalised torsion t̄ in G, then there exist
y1, . . . , yn ∈ G such that

(y1 t̄ y
−1
1 )(y2 t̄ y

−1
2 ) · · · (yn t̄ y−1

n ) = e.

By the definition of 〈S|R〉, there exist ground terms t1, . . . , tn , such that the product of (ti ·t)·t ′i
(i = 1, . . . , n) equals e, assuming the axiomsGr andAxR . The conjugacy invariance axiom
PB and P(t) implies that P((ti · t) · t ′i ) for each i = 1, . . . , n. The closure axiom in AxPL′
implies P(e) by induction, which contradicts to the irreflexivity axiom in AxPL′. Therefore
Gr ∪AxR ∪AxPL′ ∪ PB ∪ {P(t)} is inconsistent if t represents a generalised torsion in G.

Next, we prove the “only if” part. Suppose that t represents an element t̄ in G that is not
a generalised torsion. For any x ∈ G, let P(x) be the proposition that

(y1 t̄ y
−1
1 )(y2 t̄ y

−1
2 ) · · · (yn t̄ y−1

n ) = x

in G for some y1, . . . , yn ∈ G. We prove that the group G together with the predicate P
constitutes a model for Gr ∪ AxR ∪ AxPL′ ∪ PB ∪ {P(t)}:
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(a) The axioms in Gr ∪ AxR are satisfied because G is the group with presentation 〈S|R〉.
(b) Since t̄ is not a generalised torsion, we have ¬P(e). Thus the irreflexivity axiom in

AxPL′ is satisfied.
(c) If P(x) and P(y) holds for x, y ∈ G, then there exist y1, . . . , ym ∈ G and z1, . . . , zn ∈ G

such that

(y1 t̄ y
−1
1 )(y2 t̄ y

−1
2 ) · · · (ym t̄ y−1

m ) = x

and

(z1 t̄ z
−1
1 )(z2 t̄ z

−1
2 ) · · · (zm t̄ z−1

n ) = y,

so we have

(y1 t̄ y
−1
1 )(y2 t̄ y

−1
2 ) · · · (ym t̄ y−1

m )(z1 t̄ z
−1
1 )(z2 t̄ z

−1
2 ) · · · (zm t̄ z−1

n ) = xy

and therefore P(xy) holds. Thus the transitivity axiom in AxPL′ is satisfied.
(d) If P(x) holds for x ∈ G, then there exist y1, . . . , yn ∈ G such that

(y1 t̄ y
−1
1 )(y2 t̄ y

−1
2 ) · · · (yn t̄ y−1

n ) = x .

Then for any y ∈ G we have

((yy1)t̄(yy1)
−1)((yy2)t̄(yy2)

−1) · · · ((yyn)t̄(yyn)−1) = yxy−1.

Thus the conjugacy invariant axiom PB is satisfied.
(e) The axiom P(t) is satisfied by the definition of P .

Therefore the theory Gr ∪AxR ∪AxPL′ ∪ PB∪ {P(t)} is consistent if t does not represent
a generalised torsion in G. ��

4.2 Analogous statement for bi-invariant circular orders

In this subsection, we establish an analogous statement for bi-invariant circular orders. We
give an equivalent condition for the inconsistency of a theory where the axiom of connect-
edness is weakened as described in Sect. 3.1 and the axiom of cyclicity is removed.

Proposition 9 Let G be a group with presentation 〈S|R〉. Let t1 and t2 be ground terms
representing the group elements t̄1 and t̄2 in G respectively. Let AxPCL

′
denote AxPCL

minus the axioms of cyclicity and connectedness. Then Gr ∪ AxR ∪ AxPCL
′ ∪ PCB ∪

{P((t2 · t1) · t ′2, t1)} is inconsistent if and only if t̄−1
2 is in the monoid generated by t̄2 and the

centraliser of t̄1.

Proof We first prove the “if” part. If t̄−1
2 is in the monoid generated by t̄2 and the centraliser

of t̄1, then there exist a nonnegative integer n and some ground terms s0 = t2, s1, s2, . . . sn ,
such that si (i = 1, 2, . . . , n) is either si−1 · t2 or si−1 · t where t and t1 represent commutative
elements in G, and that sn = e assuming Gr and AxR . We prove P((si · t1) · s′

i , t1) (i =
0, 1, . . . , n) inductively assuming Gr ∪ AxR ∪ AxPCL

′ ∪ PCB ∪ {P((t2 · t1) · t ′2, t1)}.
For i = 0, the statement P((s0 · t1) · s′

0, t1) holds true by assuming P((t2 · t1) · t ′2, t1).
Suppose that the statement P((si−1 · t1) · s′

i−1, t1) holds true for some i ∈ {0, 1, . . . , n − 1}.
If si = si−1 · t2, then we have

(si · t1) · s′
i = (si−1 · ((t2 · t1) · t ′2)) · s′

i−1
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assuming Gr. By the conjugacy invariance axiom PCB and P((t2 · t1) · t ′2, t1), we have

P((si · t1) · s′
i , ((si−1 · t1) · s′

i−1)). By the transitivity axiom in AxPCL
′
and the inductive

hypothesis, the statement P((si · t1) · s′
i , t1) holds true in this case. If si = si−1 · t where t

and t1 represent commutative elements in G, then we have

(si · t1) · s′
i = (si−1 · t1) · s′

i−1

assuming Gr, thus P((si · t1) · s′
i , t1) also holds true.

By taking i = n, we have P(t1, t1), which contradicts to the irreflexivity axiom inAxPCL
′
.

Therefore Gr ∪AxR ∪AxPCL
′ ∪ PCB∪ {P((t2 · t1) · t ′2, t1)} is inconsistent if t̄−1

2 is in the
monoid generated by t̄2 and the centraliser of t̄1.

Next, we prove the “only if” part. Suppose that t̄−1
2 is not in the monoid generated by t̄2

and the centraliser of t̄1. For any x, y ∈ G, let P(x, y) be the proposition that there exist
z1, z2 ∈ G, such that:

(a) x = z1z2 t̄2 t̄1 t̄
−1
2 z−1

2 z−1
1 ,

(b) y = z1 t̄1z
−1
1 , and

(c) z2 is in the monoid generated by t̄2 and the centraliser of t̄1.

We prove that the group G together with the predicate P constitutes a model forGr∪AxR ∪
AxPCL

′ ∪ PCB ∪ {P((t2 · t1) · t ′2, t1)}:
(a) The axioms in Gr ∪ AxR are satisfied because G is the group with presentation 〈S|R〉.
(b) If P(x, x) holds for some x ∈ G, then there exists z2 in the monoid generated by t̄2 and

the centraliser of t̄1, such that

z2 t̄2 t̄1 t̄
−1
2 z−1

2 = z−1
1 xz1 = t̄1.

In this case, the element t̄−1
2 z−1

2 is in the centraliser of t̄1. Since a monoid is closed under
multiplication by definition, the element t̄−1

2 is in the monoid generated by t̄2 and the
centraliser of t̄1, which contradicts to the assumption. Thus the the irreflexivity axiom in
AxPCL

′
is satisfied.

(c) If P(x, y) and P(y, z) holds for x, y ∈ G, then there exist z1, z2, z3, z4 ∈ G, such that

x = z1z2 t̄2 t̄1 t̄
−1
2 z−1

2 z−1
1 ,

y = z1 t̄1z
−1
1 = z3z4 t̄2 t̄1 t̄

−1
2 z−1

4 z−1
3 ,

z = z3 t̄1z
−1
3 ,

and z2 and z4 are in the monoid generated by t̄2 and the centraliser of t̄1. By the second
equality, the element t̄−1

2 z−1
4 z−1

3 z1 is in the centraliser of t̄1. Since a monoid is closed
under multiplication by definition, the element

z−1
3 z1z2 = z4 t̄2(t̄

−1
2 z−1

4 z−1
3 z1)z2

is in the monoid generated by t̄2 and the centraliser of t̄1. The elements z3, z
−1
3 z1z2 ∈ G

satisfy the conditions in the definition of P(x, z), hence P(x, z) holds true. Thus the
transitivity axiom in AxPCL

′
is satisfied.

(d) If P(x, y) holds for some x, y ∈ G, then there exist z1, z2 ∈ G such that the conditions
in the definition of P(x, y) are satisfied. Then zz1, z2 ∈ G satisfy the conditions in the
definition of P(zxz−1, y), hence P(zxz−1, y). Thus the conjugacy invariance axiom
PCB is satisfied.

(e) The axiom P((t2 · t1) · t ′2, t1) is satisfied by taking z1 = z2 = e in the definition of P .
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Therefore the theory Gr ∪AxR ∪AxPCL
′ ∪ PCB∪ {P((t2 · t1) · t ′2, t1)} is consistent if t̄−1

2
is not in the monoid generated by t̄2 and the centraliser of t̄1.

��

4.3 Examples

Example 11 Consider the Fibonacci group F(2, n) (n ≥ 2) with the presentation shown in
Example 3. According to [34, Theorem 5.2], the element a0 is a generalised torsion. To
prove this fact automatically when n = 11 or n = 12, we can verify the inconsistency (Task
11.1 and Task 11.2) of Gr ∪ AxR ∪ AxPL′ ∪ PB ∪ {P(a0)} using Prover9, and then apply
Proposition 8.

Example 12 In Example 7, we established the absence of bi-invariant circular orders via
weakened theories. In fact, the axiom of cyclicity is redundant in the automated proof. By
Prover9, we can prove that Gr ∪ AxR ∪ AxPCL

′ ∪ PCB ∪ {P(a · b, b · a)} is inconsistent
(Task 12.1). Thus by Proposition 9, the element a−1 is in the monoid generated by a and the
centraliser of ba. Alternatively, this condition follows from the relation a−1 = a3.

Example 13 In Example 8, we established the non-left-orderability of the fundamental group
of the Poincaré homology sphere via weakened theories. By Proposition 7, the inconsistency
of the weakened theory implies that a is a torsion. Alternatively, it follows from that this
group is finite.

Example 14 In Example 9, we established the non-bi-orderability of the knot group of 52 via
weakened theories in two ways (the inequalities ba �= ab2 and ba �= ab). By Proposition 8,
it follows that a−1b−1ab2 and b−1a−1ba are generalised torsions. Note that the latter one
was previously discovered in [31, Theorem 7].

Example 15 In Example 10, we established the absence of bi-invariant circular orders via
weakened theories. In this example, the axiom of cyclicity is also redundant. We can verify
the inconsistency of Gr ∪ AxR ∪ AxPCL

′ ∪ PCB ∪ {P(a · b, b · a)} (Task 15.1) using
Prover9. Thus by Proposition 9, the element a−1 is in the monoid generated by a and the
centraliser of ba. Alternatively, this condition follows from the relations b−1 = a(ba)−1 and
a−1 = b−3ab−1a3b−1.

5 Relative convexity and strength of cyclicity axiom

In this section, we further explore the consistency of the theory regarding bi-invariant circular
orderswhen the axiomof cyclicity is removed.Wedo notweaken the axiomof connectedness.

To state our criterion, we introduce the concept of left relative convexity. In contrast to
traditional usage (relative convexity of left-orderable groups), we do not restrict the ambient
group to a left-orderable group. Thuswe adopt the following definition introduced byAntolın,
Dicks, and Sunic [19]. The proof of equivalence of definitions could be found in [35, Lemma
2.1].

Definition 3 Let G be a group and H be a subgroup of G. We say H is left relatively convex
in G when any of the following equivalent conditions hold.

(a) There exists a G-invariant order on the left G-set G/H .
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(b) There exists a subsemigroup P of G such that P � H � P−1 is a partition of G, and
HPH ⊆ P .

A total preorder ≤ on a group G is called a left total preorder if it is invariant under
multiplication. A subset S ofG is called convex relative to the left total preorder≤ if x, z ∈ S
and x ≤ y ≤ z implies y ∈ S.

Based on the condition (b) inDefinition 3,we establish the following equivalent conditions
for a subgroup to be left relatively convex.By the equivalence (a)⇔ (c) in the next proposition,
the definition of left relative convexity serves as a left total preorder adaptation of the concept
of relative convexity in left-orderable groups.

Proposition 10 Let G be a group and H be a subgroup of G. The following statements are
equivalent.

(a) The subgroup H is left relatively convex in G.
(b) The subgroup H is the residue group {x ∈ G : e ≤ x ≤ e} of some left total preorder ≤

on G.
(c) The subgroup H is convex relative to some left total preorder ≤ on G.

Proof For the implication (a) ⇒ (b), let P be the subsemigroup described in the condition
(b) in Definition 3. Define the binary relation ≤ on G by x ≤ y if and only if x−1y ∈ P ∪ H .
Then we can check that ≤ is a left total preorder on G: the reflexivity follows from e ∈ H ,
the transitivity follows from PP ∪ PH ∪ HP ⊆ P and HH ⊆ H , the totality follows from

(P ∪ H) ∪ (P ∪ H)−1 = P ∪ H ∪ P−1 = G,

and the left-invariance follows from the definition of≤. Now we prove that the residue group
of ≤ is H . The inequality e ≤ x ≤ e holds if and only if both x and x−1 are in P ∪ H , which
holds if and only if

x ∈ (P ∪ H) ∩ (P ∪ H)−1 = (P ∩ P−1) ∪ H = H .

The implication (b)⇒ (c) holds because the residue group is always convex by definition.
For the implication (c)⇒ (a), suppose that≤ is a left total preorder on G relative to which

H is convex. Let P denote the set {x ∈ G \ H : e ≤ x}. We prove that P satisfies the
condition (b) in Definition 3.

(a) For any x, y ∈ P , by the transitivity and the left-invariance of ≤, we have e ≤ x ≤ xy.
Then by the convexity of ≤, we have xy ∈ G \ H , hence we have xy ∈ P . Therefore P
is a subsemigroup.

(b) By definition, P and H are disjoint. Because H is a subgroup, we have H = H−1, which
implies that P−1 and H are also disjoint. Now suppose x ∈ P ∩ P−1. Then x, x−1 ∈ P .
Because P is a semigroup, it follows that e = xx−1 must also belong to P , which is a
contradiction. Therefore, the subsets P , H , and P−1 are disjoint.

(c) For any x ∈ G \ H , by the totality and the left-invariance of ≤, either e ≤ x or
e ≤ x−1 holds. Since H is a subgroup, either x ∈ P or x ∈ P−1 holds. Thus we have
G = P � H � P−1.

(d) Suppose that x ∈ H and y ∈ P . If xy ∈ H , then y = x−1(xy) ∈ P ∩ H . If xy ∈ P−1,
then x = (xy)y−1 ∈ H ∩ P−1. Because G = P � H � P−1, we have xy ∈ P . Thus we
have HP ⊆ P . For the same reason, we have PH ⊆ P . Therefore HPH ⊆ PH ⊆ P .

��
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Next, we establish some equivalent statements for the condition (a) in Definition 3. Note
that the equivalence (a)⇔ (b) in the following proposition generalises [20, Theorem 1.4.10].

Proposition 11 Let G be a group and H be a subgroup of G. The following statements are
equivalent.

(a) The subgroup H is left relatively convex in G.
(b) The subgroup H is a kernel of an order preserving G-action on some totally ordered set

(�,<).
(c) For any finite set of elements g1, . . . , gn ∈ G \ H, there exist ε1, . . . , εn ∈ {−1, 1} such

that the subsemigroup generated by Hgε1
1 H , . . . , Hgεn

n H does not contain the identity
element e.

(d) For any finite set of elements g1, . . . , gn ∈ G \ H, there exist ε1, . . . , εn ∈ {−1, 1} such
that the subsemigroup generated by gε1

1 , . . . , gεn
n has empty intersection with H.

Proof For the implication (a) ⇒ (b), suppose that H is left relatively convex in G. By the
condition (a) in Definition 3, there exists a G-invariant order < on the left G-set G/H . And
the subgroup H is the kernel of the order preserving G-action on the totally ordered set
(G/H ,<).

The implication (b) ⇒ (c) was proved by Tararin; see [3, Proposition 5.1.5].
The implication (c)⇒ (d) holds because H is a subgroup: if h ∈ H is in the subsemigroup

generated by gε1
1 , . . . , gεn

n , then e is in the subsemigroup generated by gε1
1 , . . . , gεn

n and
h−1gε1

1 , . . . , h−1gεn
n .

The implication (d)⇒ (a) can be deduced from [36, Lemma 8]; see also [4, Lemma 2.2.3].
��

Finally, we prove that the set of left relatively convex subgroups is closed under arbitrary
intersection, generalising [3, Proposition 5.1.10], the same property for left relatively convex
subgroups of a left-orderable group.

Proposition 12 The intersection of left relatively convex subgroups of G is left relatively
convex in G.

Proof Let {Hα : α ∈ I } be a family of left relatively convex subgroups of G. By the impli-
cation (a) ⇒ (b) in Proposition 11, there exist totally ordered sets (�α,<α) (α ∈ I ) such
that Hα is the kernel of an order preserving G-action on (�α,<α).

Let � denote the disjoint union of all �α (α ∈ I ). We choose an arbitrary total order
<index on I , then define x < y for some x ∈ �α and y ∈ �β if and only if either
α <index β, or α = β and x <α y. In this way, the binary relation < be a total order on �

such that each inclusion map �α ↪→ � is order preserving. Therefore, the natural G-action
on� is order preserving. Since the kernel of this group action is

⋂
α∈I Hα , by the implication

(b) ⇒ (a) in Proposition 11, the statement holds true. ��
Now we state the criterion for the existence of a predicate satisfying all axioms for a

bi-invariant circular order, except for the axiom of cyclicity.

Proposition 13 LetAxPCL denoteAxPCLminus the axiomof cyclicity. There exists a binary
relation P(·, ·) on the group G satisfying the axioms in AxPCL ∪ PCB if and only if the
centraliser of each subset of G is left relatively convex in G.

Proof We first prove the “only if” part. Suppose that there exists a binary relation P(·, ·) on
G satisfying the axioms in AxPCL ∪ PCB. For each x ∈ G, we define a binary relation ≤x

on G by y ≤x z if and only if either y−1z commutes with x , or P(yxy−1, zxz−1) holds true.
We prove that ≤x is a left total preorder on G with the residue being the centraliser of x .
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(a) The reflexivity follows from that e commutes with x .
(b) Suppose that y ≤x z and z ≤x u. We consider four scenarios. If both y−1z and

z−1u commute with x , then y−1u also commutes with x . If y−1z commutes with x
and P(zxz−1, uxu−1) holds, then by zxz−1 = yxy−1, we have P(yxy−1, uxu−1). If
P(yxy−1, zxz−1) holds and z−1u commutes with x then by zxz−1 = uxu−1, we also
have P(yxy−1, uxu−1). If both P(yxy−1, zxz−1) and P(zxz−1, uxu−1) hold true, then
by the transitivity axiom in AxPCL, we have P(yxy−1, uxu−1). In either way, we have
z ≤x u. Thus we proved the transitivity of ≤x .

(c) The totality follows from the connectedness axiom in AxPCL.
(d) The left-invariance follows from the conjugacy invariance axiom PCB.
(e) If y is in the centraliser of x , then so is y−1. By definition, we have e ≤x y ≤x e. So the

centraliser of x is a subgroup of the residue of ≤x .
(f) If y is not in the centraliser of x , then neither is y−1. If we also have e ≤x y ≤x e,

then by definition, we have P(x, yxy−1) and P(yxy−1, x). By the transitivity axiom in
AxPCL, we have P(x, x), which contradicts to the irreflexivity axiom in AxPCL. Thus
the residue of ≤x is a subgroup of the centraliser of x .

By the implication (b) ⇒ (a) in Proposition 10, the centraliser of any group element is left
relatively convex in G. By Proposition 12, the centraliser of any subset is left relatively
convex in G.

Then we prove the “if” part. Suppose that the centraliser of any x ∈ G is left relatively
convex in G. Let Con(G) denote the set of conjugacy classes of G. For each conjugacy class
γ ∈ Con(G), select an group element xγ in γ . By the implication (a)⇒ (b) in Proposition 10,
there exists a left total preorder ≤γ on G such that the residue group of ≤γ is the centraliser
of xγ . We choose an arbitrary total order <index on Con(G), then define P(y, z) for some
y ∈ γ1 and z ∈ γ2 (γ1, γ2 ∈ Con) if and only if either γ1 <index γ2, or γ1 = γ2 and the
following four conditions hold for some pair (y0, z0) ∈ G × G:

(a) y = y0xγ1 y
−1
0 .

(b) z = z0xγ1 z
−1
0 .

(c) y0 ≤γ1 z0 holds.
(d) z0 ≤γ1 y0 does not hold.

We prove that the binary relation P(·, ·) satisfies the axioms in AxPCL ∪ PCB.

(a) We first prove the irreflexivity axiom in AxPCL. Suppose that P(y, y) for some y ∈ G.
By definition, there exists (y0, z0) ∈ G × G satisfying the four conditions above. Let γ
denote the conjugacy class of y, then by y = y0xγ y

−1
0 = z0xγ z

−1
0 , the element y−1

0 z0 is
in the centraliser of xγ . In this case, we have z0 ≤γ y0, which contradicts to the fourth
condition.

(b) Then we prove the transitivity axiom in AxPCL. Suppose that both P(y, z) and P(z, u)

hold true. Letγ1, γ2, γ3 denote the conjugacy classes of y, z, u respectively.Bydefinition,
we have γ1 ≤index γ2 and γ2 ≤index γ3. By the transitivity of <index, we have
γ1 ≤index γ3. If γ1 <index γ3, then P(y, u) holds true. Otherwise, we have γ1 = γ2 =
γ3, and there exist pairs (y0, z0) and (y1, z1) ∈ G ×G satisfying the four conditions for
(y, z) and (z, u) respectively. We prove that the pair (y0, z1) satisfies the four conditions
for (y, u). The first two conditions follow from corresponding conditions for (y, z) and
(z, u). By z = z0xγ1 z

−1
0 = y1xγ1 y

−1
1 , the element y−1

1 z0 is in the centraliser of xγ1 .
Thus we have z0 ≤γ1 y1. By the transitivity of ≤γ1 , we have y0 ≤γ1 z0 ≤γ1 y1 ≤γ1 z1.
Thus the third condition is satisfied. If z1 ≤γ1 y0 holds, then by the transitivity of ≤γ1 ,
we have z0 ≤γ1 y1 ≤γ1 z1 ≤γ1 y0, which contradicts to the corresponding conditions
for (y, z). Therefore, we have P(y, u) if both P(y, z) and P(z, u) hold true,
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(c) Nowwe prove the connectedness axiom inAxPCL. Suppose that y and z are two distinct
group elements. Let γ1 and γ2 denote the conjugacy classes of y and z respectively.
If γ1 �= γ2, then by the connectedness of <index, we have either γ1 <index γ2 or
γ2 <index γ2, thus we have either P(y, z) or P(z, y). Otherwise, suppose that γ1 = γ2,
then there exists (y0, z0) ∈ G × G such that y = y0xγ1 y

−1
0 and z = z0xγ1 z

−1
0 . By the

totality of ≤γ1 , we have either y0 ≤γ1 z0 or z0 ≤γ1 y0. By y �= z, the element y−1
0 z0 is

not in the centraliser of xγ1 , thus only one of y0 ≤γ1 z0 and z0 ≤γ1 y0 holds.
(d) Finally we prove the conjugacy invariance axiom PCB. Suppose that P(y, z) holds true.

Let γ1 and γ2 denote the conjugacy classes of y and z respectively. Then by definition,
either γ1 <index γ2, or γ1 = γ2 and there exists (y0, z0) ∈ G×G satisfying the four con-
ditions for (y, z). For any u ∈ G, we have uyu−1 ∈ γ1 and uzu−1 ∈ γ2. If γ1 <index γ2,
then we have P(uyu−1, uzu−1). Otherwise, we prove that (uy0, uz0) ∈ G ×G satisfies
the four conditions for (uyu−1, uzu−1). The first two conditions follow from correspond-
ing conditions for (y, z). The last two conditions follow from corresponding conditions
for (y, z) and the left-invariance of ≤γ1 . Therefore P(y, z) implies P(uyu−1, uzu−1).

��

6 Absolute cofinality and non-left-orderability

In this section, we introduce a methodology to integrate the fixed point method for non-left-
orderability into automated reasoning. The term “fixed point method” originates from the
dynamic realisation of a left order. However, instead of introducing the dynamic realisation,
we opt for the concept of cofinal elements for convenience, which essentially yields the same
proofs.

We define the left absolute cofinality as a dual concept of the left relative convexity. This
makes our definition slightly different from traditional usage.

To begin with, we introduce the concept of the left relatively convex subgroup closure and
integrate it into automated reasoning.

6.1 Relatively convex subgroup closure

By Proposition 12, the left relatively convex subgroups form a Moore collection. So we can
define a natural closure operator cl based on this family. The following definition extends the
definition of the relatively convex subgroup closure in [37] to arbitrary groups.

Definition 4 For a subset A in a group G, we define the left relatively convex subgroup
closure cl(A) as the intersection of all left relatively convex subgroups H with A ⊆ H ⊆ G.

By Proposition 12, a subset A ⊆ G is a left relatively convex subgroup of G if and only
if cl(A) = A.

Proposition 14 Let A be a subset of the group G, and g ∈ G be a group element. Let 〈A〉
denote the subgroup generated by A. The following statements are equivalent.

(a) The element g is in the left relatively convex subgroup closure cl(A).
(b) For any subsemigroup S with A ∪ A−1 ⊆ S ⊆ G and S ∪ S−1 = G, we have g ∈ S.
(c) For any left total preorder ≤ on G, there exists x ∈ 〈A〉 such that g ≤ x.
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Proof First we prove the implication (a) ⇒ (b). Suppose that S is a subsemigroup S with
A ∪ A−1 ⊆ S ⊆ G and S ∪ S−1 = G. Let P denote the set S \ S−1. By S ∪ S−1 = G,
the group G can be written as the disjoint union P � (S ∩ S−1) � P−1. We first prove
that P is a subsemigroup. For any x, y ∈ P , we have xy ∈ S by the closure of S under
multiplication. If we have xy ∈ S−1, then y−1 = (xy)−1x is in S by the closure of S
under multiplication, which contradicts to the assumption that y ∈ P . Now we prove that
(S ∩ S−1)P(S ∩ S−1) ⊆ P . On the one hand, since P ⊆ S, by the closure of S under
multiplication, we have (S ∩ S−1)P(S ∩ S−1) ⊆ S. On the other hand, if there exist x, z ∈
S ∩ S−1 and y ∈ P such that xyz ∈ S−1, then y−1 = z(xyz)−1x is in S by the closure
of S under multiplication, which contradicts to the assumption that y ∈ P . So we have
(S∩ S−1)P(S∩ S−1) ⊆ P by the definition of P . Therefore S∩ S−1 is left relatively convex
by the condition (b) in Definition 3. By the assumption that g ∈ cl(A), we have

g ∈ cl(A) ⊆ cl(S ∩ S−1) = S ∩ S−1 ⊆ S.

Then we prove the implication (b) ⇒ (c). For any left total preorder ≤ on G, consider the
set

S := {x ∈ G : for all a1 ∈ 〈A〉 there exists a2 ∈ 〈A〉 such that xa1 ≤ a2}.
We prove that S satisfies the condition described in (b). First, for any x ∈ A ∪ A−1 and any
a1 ∈ 〈A〉, we can choose a2 = xa1 ∈ 〈A〉. Thus by the reflexivity of≤, we have A∪A−1 ⊆ S.
Second, if x, y ∈ S, then for all a1 ∈ 〈A〉 there exists a2 ∈ 〈A〉 such that ya1 ≤ a2, and also
there exists a3 ∈ 〈A〉 such that xa2 ≤ a3. By the left-invariance and the transitivity of ≤,
we have xya1 ≤ xa2 ≤ a3. Thus we have xy ∈ S by the definition of S. In other words, S
is a subsemigroup. Finally, for any x ∈ G, if both x /∈ S and x−1 /∈ S hold true, then there
exists a1 ∈ 〈A〉 such that ¬(xa1 ≤ a2) for all a2 ∈ 〈A〉, and there exists a3 ∈ 〈A〉 such that
¬(x−1a3 ≤ a4) for all a4 ∈ 〈A〉. In particular, we have ¬(xa1 ≤ a3) and ¬(x−1a3 ≤ a1).
By the left-invariance of ≤, neither xa1 ≤ a3 nor a3 ≤ xa1 holds true, which contradicts to
the totality of ≤. Thus we have S ∪ S−1 = G. Suppose that (b) holds, then we have g ∈ S.
By taking a1 = e in the definition of S, there exists x ∈ 〈A〉 such that g ≤ x .

Finally we prove the implication (c) ⇒ (a). Suppose that H is an arbitrary left relatively
convex subgroup with A ⊆ H ⊆ G. Since H is a subgroup, we have 〈A〉 ⊆ H . By the
implication (a) ⇒ (b) in Proposition 10, there exists a left total preorder ≤ on G with the
residue being H . Suppose that (c) holds, then there exists x ∈ 〈A〉 such that g ≤ x . Define
x ≤op y if and only if y ≤ x , then we can check that ≤op is also a left total preorder. By the
statement (c), there exists y ∈ 〈A〉 such that g ≤op y. Because e ≤ y ≤ g ≤ x ≤ e, we have
g ∈ H . By the arbitrariness of H , we have g ∈ cl(A). ��

Now we present a methodology for proving gk+1 ∈ cl({g1, . . . , gk}) in a group G using
generic automated theorem proving based on the implication (b) ⇒ (a) in Proposition 14.
For convenience, let CC denote the following axioms for a unary predicate P(·):
(a) ∀x∀y(P(x) ∧ P(y) → P(x · y)), (closure)
(b) ∀x(P(x) ∨ P(x ′)). (connectedness)

Proposition 15 Let G be a group with presentation 〈S|R〉. Let t1, . . . , tk, tk+1 be ground
terms representing group elements t̄1, . . . , t̄k, t̄k+1 in G respectively. Then the theory Gr ∪
AxR ∪ CC ∪ {P(ti ) ∧ P(t ′i ) : i = 1, . . . , k} ∪ {¬P(tk+1)} is inconsistent if and only if t̄k+1

is in the left relatively convex subgroup closure cl({t̄1, . . . , t̄k}).
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Proof We first prove the “only if” part. Assume that t̄k+1 is not in the left relatively convex
subgroup closure cl({t̄1, . . . , t̄k}). By the implication ¬(a) ⇒ ¬(b) in Proposition 14, there
exists a subsemigroup S+ ⊆ G with t̄i , t̄

−1
i ∈ S+ (1 ≤ i ≤ k), S+∪S−1+ = G, and t̄k+1 /∈ S+.

Define the unary predicate P by P(t) if and only if t represents an element in S+. Then we
can check that the group G together with the predicate P constitutes a model for the theory
Gr ∪AxR ∪CC∪ {P(ti ) ∧ P(t ′i ) : i = 1, . . . , k} ∪ {¬P(tk+1)}. Therefore it is consistent if
t̄k+1 is not in cl({t̄1, . . . , t̄k}).

Then we prove the “if” part. Assume that the theory Gr ∪ AxR ∪ CC ∪ {P(ti ) ∧ P(t ′i ) :
i = 1, . . . , k} ∪ {¬P(tk+1)} is consistent, then there is a modelM of it. Let S+ ⊆ G denote
the subset

S+ := {x ∈ G : x is represented by a ground term t such that P(t) in M}
Then S+ has the following properties.

(a) For any x, y ∈ S+, there exist ground terms t1, t2 representing x, y respectively such
that P(t1) and P(t2) hold true in M. By the closure axiom in CC, P(t1 · t2) holds true
inM. Since xy is represented by t1 · t2, we have xy ∈ S+ for any x, y ∈ S+. Thus S+ is
a subsemigroup.

(b) For each 1 ≤ i ≤ k, the elements t̄i and t̄
−1
i in G are represented by the ground terms ti

and t ′i respectively. Thus by P(ti ) ∧ P(t ′i ), we have t̄i , t̄
−1
i ∈ S+.

(c) For any x ∈ G, let t be a ground term representing x . Then x−1 is represented by the
ground term t ′. By the connectedness axiom in CC, either P(t) or P(t ′) holds true in
M. Thus we have S+ ∪ S−1+ = G.

For any ground term s representing t̄k+1 inG, by the definition of 〈S|R〉, the axiomsGr∪AxR
imply that s = tk+1 in M. By the axiom ¬P(tk+1), we have ¬P(s) in M. Thus we have
t̄k+1 /∈ S+.

By the implication ¬(b) ⇒ ¬(a) in Proposition 14, the element t̄k+1 is not in the left
relatively convex subgroup closure cl({t̄1, . . . , t̄k}). ��

6.2 Absolute cofinality

We say a subgroup H ⊆ G is left absolutely cofinal if the left relatively convex subgroup
closure cl(H) equals G. By the equivalence (a) ⇔ (c) in Proposition 14, a subgroup H ⊆ G
is left absolutely cofinal if and only if it is cofinal1 with respect to every left total preorder ≤
on G.

It follows from the condition (a) in Definition 3 that the trivial subgroup {e} is left rela-
tively convex if and only if G is left-orderable. Now we establish the left absolutely cofinal
counterpart of this fact.

Proposition 16 The trivial subgroup {e} is not left absolutely cofinal in the group G if and
only if G admits a nontrivial left-orderable quotient.

Proof Wefirst prove the “only if” part. If {e} is not left absolutely cofinal in the groupG, then
there exists a proper subgroup H which is left relatively convex in G. By the implication
(a) ⇒ (d) in Proposition 11, for any finite set of elements g1, . . . , gn ∈ G \ H , there
exist ε1, . . . , εn ∈ {−1, 1} such that the subsemigroup generated by gε1

1 , . . . , gεn
n has empty

1 A subset B ⊆ A of a preordered set (A, ≤) is called cofinal if for every a ∈ A there exists b ∈ B such that
a ≤ b.
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intersection with H . By [4, Lemma 2.2.3], the quotient group G/core(H) is left-orderable,
where core(H) := ∩{gHg−1 : g ∈ G} is the largest normal subgroup of G contained in H .
Since H is proper, the quotient group G/core(H) is nontrivial.

Then we prove the “if” part. Suppose that N is a proper normal subgroup of G such that
G/N is left-orderable. The G-action on G/N preserves the left orders, so by the condition
(a) in Definition 3, the subgroup N is left relatively convex in G. Therefore {e} is not left
absolutely cofinal in G. ��

It isworth noting that the condition that a group does not admit any nontrivial left-orderable
quotients holds significant importance in topology. According to the L-space conjecture, it is
conjectured that a closed connected 3-manifold is an L-space if and only if its fundamental
group does not admit any nontrivial left-orderable quotient. If we replace this condition with
the non-left-orderability, we would have to assume the manifold is at least irreducible. This
would only make things more complicated; compare [38, Theorem 1.9] to [38, Corollary
1.10] for example.

While one may establish the non-left-orderability by proving cl(e) = G through suc-
cessive applications of Proposition 15, this method is not much different from the positive
cone formalisation presented in Proposition 5 and Proposition 6. In the remainder of this
subsection, we introduce an alternative approach that simplifies the computation.

It is well-known that the absolute cofinality of a cyclic subgroup 〈g〉 implies that every
conjugate of g has the same sign with respect to any given left order on G; see [39, Property
3.1] or [40, Lemma 4.6] for example. In order to generalise this fact to left total preorders,
we prove the following statement.

Proposition 17 Let ≤ be a left total preorder on the group G. If e ≤ xn for some x ∈ G and
some positive integer n, then e ≤ x.

Proof By the connectedness of ≤, we have either e ≤ x or x ≤ e. In the second case, we
have

e ≤ xn ≤ xn−1 ≤ · · · ≤ x

by the transitivity and the left-invariance of ≤. Therefore, in either case, we have e ≤ x . ��

Now we generalise [40, Lemma 4.6] to left total preorders.

Proposition 18 Let ≤ be a left total preorder on the group G. Let x ∈ G be an element with
e ≤ x and 〈x〉 being left absolutely cofinal. Then we have e ≤ yxy−1 for every y ∈ G.

Proof By the connectedness of ≤, we have either y ≤ e or e ≤ y. We consider two scenarios
separately.

First, suppose that y ≤ e. Then by the cofinality of 〈x〉 with respect to ≤, there exists an
integer n such that y−1 ≤ xn . Because

y−1 ≤ xn ≤ xn+1 ≤ xn+2 ≤ · · · ,

we can assume that n is positive. And we have

e ≤ yxn ≤ yxn y−1 = (yxy−1)n .

By Proposition 17, we have e ≤ yxy−1.
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Then, suppose instead that e ≤ y. Define the binary relation ≤op by x ≤op y if and only
if y ≤ x , then we can check that ≤op is also a left total order on G. By the cofinality of 〈x〉
with respect to ≤op , there exists an integer n such that y−1 ≤op x−n . Because

· · · ≤ x−n−2 ≤ x−n−1 ≤ x−n ≤ y−1,

we can also assume that n is positive. By e ≤ xn y−1, we have

e ≤ y ≤ yxn y−1 = (yxy−1)n .

By Proposition 17, we have e ≤ yxy−1. ��
A subsemigroup A of the group G is called isolated if xn ∈ A for some positive integer

n implies x ∈ A for every x ∈ G. It is called normal if x Ax−1 ⊆ A for every x ∈ G.
The following statement is a left total preorder adaptation of the technique developed in [41,
Section 3].

Proposition 19 Let g0, g1, . . . , gk ∈ G. Suppose that 〈gi 〉 is left absolutely cofinal in G for
each 0 ≤ i ≤ k, and that {e} is not left absolutely cofinal in G. Then there exists an isolated
normal subsemigroup S such that:

(a) for each 1 ≤ i ≤ k, either gi ∈ S or g−1
i ∈ S holds;

(b) the element g0 is in S;
(c) the identity element e is not in S.

Proof Since {e} is not left absolutely cofinal in G, there exists a proper subgroup H which is
left relatively cofinal in G. By the implication (a) ⇒ (b) in Proposition 10, there exists a left
total preorder≤ onG with the residue being H . We assume e ≤ g0 without loss of generality,
because otherwise we can replace ≤ with ≤op , where x ≤op y if and only if y ≤ x .

For any g ∈ G, we define the binary relation ≤g by x ≤g y if and only if xg ≤ yg. Then
the reflexivity, transitivity, totality, and left-invariance of ≤ imply the same properties for ≤g

respectively. Therefore ≤g is a left total preorder on G. Moreover, the residue group of ≤g

is g−1Hg.
Let Pg denote the set {x ∈ G \ g−1Hg : e ≤g x}. Then by the proof of the implication

(c) ⇒ (a) in Proposition 10, the set Pg is a subsemigroup of G such that Pg � g−1Hg � P−1
g

is a partition of G, and HPgH ⊆ Pg . We prove that the subset S := ⋂
g∈G Pg satisfies the

desired conditions.

(a) S is a subsemigroup, because every Pg is a subsemigroup.
(b) If xn ∈ S for some x ∈ G and some positive integer n, then we have e ≤g xn and

xn /∈ g−1Hg for every g ∈ G. By Proposition 17, we have e ≤g x for every g ∈ G.
Since g−1Hg is a subgroup, we have x /∈ g−1Hg for any g ∈ G. Thus we have x ∈ S.
In other words, S is isolated.

(c) By the relation x Pgx−1 = Pxg , the subsemigroup S is normal.
(d) For each 0 ≤ i ≤ k, since 〈gi 〉 is left absolutely cofinal in G, by the implication (b)

⇒ (a) in Proposition 10, we have gi /∈ g−1Hg for any g ∈ G. Since gi /∈ H and
G = Pe � H � P−1

e , it follows that gi ∈ Pe or g−1
i ∈ Pe. So, there exist exponents

εi ∈ {−1, 1} such that gεi
i ∈ Pe. By e ≤ g0, we have ε0 = 1. Since g−1Hg is a

subgroup, we have gεi
i /∈ g−1Hg for any g ∈ G. Since 〈gεi

i 〉 = 〈gi 〉 is left absolutely
cofinal in G, by Proposition 18, we have e ≤g gεi

i for any g ∈ G. Therefore, we have
g0 ∈ S, and gεi

i ∈ S for each 1 ≤ i ≤ k.
(e) Since e ∈ g−1Hg for every g ∈ G, we have e /∈ S.
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��
Now we present our methodology to integrate the fixed point method for non-left-

orderability into automated reasoning. We suppose that the left absolute cofinality was
checked through successive uses of Proposition 15. Then we may use Proposition 20 below
to establish the non-left-orderability.

For each positive integerm and each ground term t , recursively define the ground term tm

by t1 = t and tm = tm−1 · t for m ≥ 2. Let M be a set of positive integers. Let Isolated(M)

denote the set of axioms for a unary predicate P(·), containing the following axiom for each
m ∈ M :

(a) ∀x(P(xm) → P(x)). (m-isolation)

Proposition 20 Let G be a group with presentation 〈S|R〉. Let t0, t1, . . . , tk be ground terms
representing group elements t̄0, t̄1, . . . , t̄k in G respectively. Suppose that 〈t̄i 〉 is left absolutely
cofinal in G for each 0 ≤ i ≤ k. LetAxPL′ denoteAxPLminus the axiom of connectedness.
Let M be a set of positive integers. If the theory Gr ∪AxR ∪AxPL′ ∪ PB∪ Isolated(M) ∪
{P(t0)} ∪ {P(ti ) ∨ P(t ′i ) : i = 1, . . . , k} is inconsistent, then G does not admit nontrivial
left-orderable quotients.

Proof If G admits a nontrivial left-orderable quotient, then by Proposition 16, the trivial
subgroup {e} is not left absolutely cofinal in G. Then by Proposition 19, there exists an
isolated normal subsemigroup S+ such that:

(a) for each 1 ≤ i ≤ k, either t̄i ∈ S+ or t̄−1
i ∈ S+ holds;

(b) the element t̄0 is in S+;
(c) the identity element e is not in S+.

Define the unary predicate P by P(t) if and only if t represents an element in S+. Then we
can check that the group G together with the predicate P constitutes a model for the theory
Gr∪AxR ∪AxPL′ ∪PB∪Isolated(M)∪{P(t0)}∪{P(ti )∨P(t ′i ) : i = 1, . . . , k}. Therefore
the theory is consistent if G admits a nontrivial left-orderable quotient. ��

Notice that the set of axioms {P(t0)} ∪ {P(ti ) ∨ P(t ′i ) : i = 1, . . . , k} in Proposition 20
has the same form as SP defined in Proposition 5. Thus, for convenience, we name this set
as SP with respect to the pairs (e, ti ) (i = 0, 1, . . . k).

6.3 Examples

Example 16 Consider the Weeks manifold group with the presentation as shown in Exam-
ple 10. We prove that this group does not admit nontrivial left-orderable quotients using
automated reasoning.

First, we prove thatGr∪AxR ∪CC∪{P(a)∧ P(a′),¬P(b)} is inconsistent (Task 16.1)
using Prover9. By Proposition 15, we have b ∈ cl(a). Thus 〈a〉 is left absolutely cofinal. By
symmetry, the subgroup 〈b〉 is also left absolutely cofinal.

Consider the setSP with respect to the pairs (e, a) and (e, b). We prove thatGr∪AxR ∪
AxPL′ ∪PB∪SP is inconsistent (Task 16.2) using Prover9. By Proposition 20, the group of
interest does not admit nontrivial left-orderable quotients. The non-left-orderability follows
from the nontriviality.
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Example 17 Consider the fundamental group of the fourfold branched cover of the two-bridge
knot K[6,−6]. According to [42, Theorem 1.9], this group is not left-orderable. We consider
the following presentation of the group:

〈ai , bi | a3i bi = a3i+1, aib
3
i = b3i−1 for i = 0, 1, 2, 3〉,

where the indices are taken modulo 4.
We can derive contradictions (Task 17.1 and Task 17.2) from the theories Gr ∪ AxR ∪

CC ∪ {P(a0) ∧ P(a′
0),¬P(b0)} and Gr ∪ AxR ∪ CC ∪ {P(b0) ∧ P(b′

0),¬P(a1)} using
Prover9. By Proposition 15, we obtain b0 ∈ cl(a0) and a1 ∈ cl(b0). By symmetry, we have
bi ∈ cl(ai ) and ai+1 ∈ cl(bi ) for each i = 0, 1, 2, 3. Therefore, each 〈ai 〉 (i = 0, 1, 2, 3) is
left absolutely cofinal.

Consider the set SP with respect to the pairs (e, ai ) (i = 0, 1, 2, 3). We prove that
the theory Gr ∪ AxR ∪ AxPL′ ∪ PB ∪ SP is inconsistent (Task 17.3) using Prover9. By
Proposition 20, the group does not admit nontrivial left-orderable quotients. The non-left-
orderability follows from the nontriviality, which can be verified by building a model (Task
17.4) of Gr ∪ AxR ∪ {e �= a0} using Mace4.

Example 18 Hyde [10] proved that the group Homeo(D, ∂D) of homeomorphisms of the
disc that fix the boundary is not left-orderable. He constructed a subgroup H generated
by six elements a, b, c0, d0, c1, d1, corresponding to α−1, β−1, γ, δ, γ η, δη on [10, page
4]. Let the subgroups H0, H1 be generated by a, b, c0, d0 and a, b, c1, d1 in H . Then he
proved that, for any left order on H0 (resp. H1), we have max(a, a−1) < max(b, b−1) (resp.
max(a, a−1) > max(b, b−1)).

In this example, we establish the non-left-orderability through automated reasoning. This
proof is different from Hyde’s proof and the one in [18].

The elements a, b, c0, d0, c1, d1 satisfy the following relations: ab = ba, c0b = bc0,
d0b = bd0, c0a3c0 = a3, d0a3d0 = a3, (d−1

0 c0d0a)6 = a6b36, c1a = ac1, d1a = ad1,
c1b3c1 = b3, d1b3d1 = b3, (d−1

1 c1d1b)6 = a36b6. Note that the terms containing a36 or b36

pose a significant computational challenge for the automated prover. To address this issue,
our first task is to manually simplify these relations.

Define the set of group elements T = {t0, t1, t2, t3, t4, t5, t6} in H by t0 = a3, t1 = b3,
t2 = t−2

1 d−1
0 c0d0, t3 = t−2

0 d−1
1 c1d1, t4 = t2a, t5 = t3b, t6 = t34 , t7 = t35 . Let R0 be the

set of the following relations: t0 = a3, t0t1 = t1t0, c0t1 = t1c0, d0t1 = t1d0, c0t0 = t0c
−1
0 ,

d0t0 = t0d
−1
0 , t21 t2 = d−1

0 c0d0, t4 = t2a, t6 = t34 , t
2
6 = t20 . Similarly, let R1 be the set

of the following relations: t1 = b3, t1t0 = t0t1, c1t0 = t0c1, d1t0 = t0d1, c1t1 = t1c
−1
1 ,

d1t1 = t1d
−1
1 , t20 t3 = d−1

1 c1d1, t5 = t3b, t7 = t35 , t
2
7 = t21 . Then we can check that R0 and

R1 are satisfied in H . Note that the sets R0 and R1 are symmetric: R1 can be obtained by
replacing a, c0, d0, t0, t1, t2, t4, t6 in R0 with b, c1, d1, t1, t0, t3, t5, t7 respectively.

Let G be the group with presentation

〈{a, b, c0, d0, c1, d1} ∪ T | R0 ∪ R1〉,
then H is a quotient group of G. By the Homeo(D, ∂D)-representation [10] of H , we
conclude that H is nontrivial. We are going to prove that G does not admit nontrivial left-
orderable quotients, which implies that H is not left-orderable.

For each t ∈ {a, c0, d0, t1}, we check that Gr ∪ AxR0 ∪ CC ∪ {P(t0) ∧ P(t ′0),¬P(t)} is
inconsistent (Task 18.1, Task 18.2, Task 18.3 andTask 18.4) usingProver9.ByProposition 15,
we obtain that a, c0, d0, t1 ∈ cl(t0) in G. By symmetry, we have b, c1, d1, t0 ∈ cl(t1). Since
G is generated by a, b, c0, d0, c1, d1, we have cl(t0) = cl(t1) = G. In other words, 〈t0〉 and
〈t1〉 are left absolutely cofinal in G.
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We verify that the theories Gr ∪ AxR0 ∪ CC ∪ {P(t0 · t1) ∧ P((t0 · t1)′),¬P(t1)} and
Gr ∪ AxR0 ∪ CC ∪ {P(t0 · t ′1) ∧ P((t0 · t ′1)′),¬P(t1)} are inconsistent (Task 18.5 and Task
18.6) using Prover9. By Proposition 15, we obtain t1 ∈ cl(t0t1) and t1 ∈ cl(t0t

−1
1 ), which

implies that 〈t0t1〉 and 〈t0t−1
1 〉 are left absolutely cofinal in G.

Consider the set SP with respect to the pairs (e, t0), (e, t1), (e, t0 · t1) and (e, t0 · t ′1). In
order to apply Proposition 20, we would like to prove the inconsistency of Gr ∪ AxR0 ∪
AxR1 ∪AxPL′ ∪PB∪ Isolated({2}) ∪SP . However, this task is computationally challeng-
ing for Prover9, so we break the task into two cases according to the comparison between
max(a, a−1) and max(b, b−1).

We verify thatGr∪AxR0 ∪AxPL′ ∪PB∪Isolated({2})∪SP ∪{P(t ′0 · t ′1)∨ P(t ′0 · t1)} and
Gr∪AxR1∪AxPL′∪PB∪Isolated({2})∪SP∪{¬(P(t ′0·t ′1)∨P(t ′0·t1))} are inconsistent (Task
18.7 and Task 18.8) by Prover9. Since either P(t ′0 · t ′1)∨ P(t ′0 · t1) or ¬(P(t ′0 · t ′1)∨ P(t ′0 · t1))
holds, the theory Gr ∪ AxR0 ∪ AxR1 ∪ AxPL′ ∪ PB ∪ Isolated({2}) ∪ SP is inconsistent.
By Proposition 20, the group G does not admit nontrivial left-orderable quotients.

7 Automated reasoning tasks

We have applied our methodology to many groups given by their presentations. In these
examples, numerous automated reasoning tasks are performed either by Prover9 to derive
a contradiction or by Mace4 to find a finite model. We always use Knuth-Bendix ordering
when performing Prover9 tasks.

We provide a Python 3 script on [43] that generates input files for Prover9 and Mace4,
and runs them by calling the automated theorem provers. This script comes with following
predefined axiom sets in Prover9/Mace4 format: Gr, AxL, OrdL, OrdB, AxC, OrdCL,
OrdCB, AxPL, PB, AxPCL, PCB, CC, and Isolated(M). It also generates axiom sets
AxR , S, and SP from given pairs or triples.

For each automated reasoning task described in this paper, we create a task specifying
the program name (prover9 or mace4) and the selected axiom sets, and then execute this
task. To run the Python program, one need to install Prover9 and Mace4 [21], and set the
value of BIN_LOCATION to the location of the binary files. The output of this program
consists of the standard inputs and outputs of the automated theorem provers, which can also
be accessed on [43].

We execute our code using Python 3.9.12 and version LADR-Dec-2007 of Prover9 and
Mace4, running on hardwarewith anAMDRyzen 7 4800HSprocessor operating at 2.90GHz,
equipped with 16.0 GB of RAM, and operating on Windows 11 Home. Table 1 summarises
the time spent by Prover9 in seconds.

All of our Mace4 tasks can be solved in less than one second, except for Task 8.1, which
takes 139 seconds to solve. Table 2 summarises the sizes of the finite models found byMace4.

8 Conclusion

In this paper, we presented a general and unified methodology of using automated reasoning
for establishing the non-orderability of groups and illustrated it with numerous examples. In
simple cases, such as in Example 1, automated reasoning has recovered a well-known human
proof of the non-orderability. In many other cases, such as in Examples 3, 4, 7, 9, 10, 18,
alternative automated proofs of nontrivial non-orderability statements were found. The pro-
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Table 1 Time spent by Prover9, measured in seconds.

Prover9 tasks User CPU time System CPU time Wall clock time

Task 1.2 0.00 0.00 0

Task 2.2 0.00 0.00 0

Task 3.2 4.83 0.05 31

Task 3.3 1.78 0.08 31

Task 4.2 27.77 0.16 38

Task 5.2 973.94 16.66 1756

Task 6.1 39.84 0.06 44

Task 7.2 0.00 0.00 0

Task 8.2 0.00 0.00 0

Task 9.2 15.31 0.00 19

Task 9.4 25.72 0.03 32

Task 9.6 0.80 0.00 10

Task 9.8 6.73 0.05 40

Task 10.2 59.33 0.05 66

Task 10.4 0.00 0.03 0

Task 11.1 10.42 0.01 13

Task 11.2 3.41 0.00 7

Task 12.1 0.00 0.00 0

Task 15.1 0.00 0.00 1

Task 16.1 2.06 0.00 5

Task 16.2 0.00 0.00 1

Task 17.1 6.61 0.08 21

Task 17.2 5.34 0.00 20

Task 17.3 0.75 0.01 9

Task 18.1 0.00 0.00 0

Task 18.2 0.00 0.00 0

Task 18.3 0.00 0.00 0

Task 18.4 0.16 0.00 2

Task 18.5 1.81 0.06 12

Task 18.6 0.64 0.00 8

Task 18.7 71.31 4.23 245

Task 18.8 5.33 0.03 18

Table 2 Sizes of finite models
found by Mace4.

Mace4 tasks Model size Mace4 tasks Model size

Task 1.1 2 Task 9.1 14

Task 2.1 2 Task 9.3 14

Task 3.1 4 Task 9.5 14

Task 4.1 6 Task 9.7 14

Task 5.1 14 Task 10.1 5

Task 7.1 6 Task 10.3 5

Task 8.1 60 Task 17.4 5
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posed methodology is flexible and incorporates both reasoning from the first priniciples,
relying directly on first-order axiomatizations of variants of orderability, and reasoning using
additional mathematical concepts developed in the area, such as positive cones, torsions, and
cofinal elements.

For mathematicians working on orderable groups, our approach may provide help in
exploring the orderability of concrete groups given by presentations. Within the field of
Automated Reasoning, the proposed method may serve as a source of many challenging
and often open problems for automated theorem proving and disproving. For example, the
bi-orderability of knot groups remains unknown for many knots, and even if it is known, the
existing human proofs may be too intricate and difficult to validate. One intriguing example
is non-bi-orderability of groups of knots 62 and 76 established in [44] by involved human
proofs. We pose it as a challenge to prove using automated reasoning methods developed in
this paper.
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