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Abstract

The ability to create and interact with high-fidelity digital representations of the physical

world is crucial for applications ranging from digital twins to autonomous navigation.

Yet, the robust interpretation and reconstruction of 3D environments from sparse or

noisy observations remains a significant challenge for artificial intelligence. This thesis

addresses the fundamental problems in 3D reconstruction by exploring the evolving

landscape of deep learning over spatial data, from structured parametric models to

flexible implicit representations. Our research navigates the trade-offs between these

paradigms to develop novel methods that enhance reconstruction fidelity, efficiency,

and user control.

The investigation begins by confronting the limitations of explicit parametric meth-

ods in handling complex topologies from unstructured point clouds. This analysis

motivates a pivot towards implicit neural representations. Our work introduces key in-

novations in this area, including Seed-Net, an interactive framework that differentiably

incorporates sparse user guidance to refine local geometric details in neural fields, and

NeuLap, a geometry-aware training scheme that leverages a learned Laplacian prior to

refine the convergence process and improve the reconstruction of sharp features from

limited data. Building on these insights, the research path leads to the development

of a general-purpose backbone for large-scale 3D learning: a Hierarchical Attention

OctTree. This architecture introduces a novel attention propagation mechanism that

efficiently captures multi-scale spatial context, demonstrating competitive performance

and memory efficiency.

Collectively, these contributions offer a suite of methods and a conceptual roadmap

for 3D spatial learning. Through advancements in interactive reconstruction, prior-

guided optimization, and scalable deep learning architectures, this research contributes

to the field of representing and reconstructing high-fidelity 3D spatial data, providing

technical insights and solutions that are valuable for various future applications in fields

such as digital twins, robotics, and creative design.
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1
Introduction and Research Overview

In this chapter, we provide an overview of the research problem, motivations, and

objectives in the field of 3D spatial learning and reconstruction. We begin by examining

the fundamental rationale behind reconstruction models and their role in spatial learn-

ing (1.1), followed by a systematic analysis of key challenges in 3D reconstruction and

spatial learning (2.2). These challenges span across multiple aspects including repre-

sentation, computational efficiency, geometric fidelity, interactive control, and learning

generalization. Building upon these challenges, we present our research objectives

(1.3) that aim to advance the state-of-the-art in 3D reconstruction through innovative

approaches in parametric reconstruction, user-controllable refinement, computational

efficiency, and scalable learning frameworks. Finally, we outline our main contribu-

tions (1.4) that address these objectives through novel methodologies and architectural

innovations in 3D spatial learning.

1.1 Rationale: From Reconstruction Models to 3D Spatial

Learning

In the realm of machine learning and artificial intelligence, the ability to understand and

represent data is fundamental to various applications. Two prominent approaches have

emerged for this purpose: generative models and reconstruction models. This section

systematically analyzes these two paradigms and their respective advantages in learning
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data representations, with a particular focus on 3D spatial data and reconstruction tasks.

Generative models aim to learn either the joint probability distribution P (X, Y ) of the

data and labels, or the data distribution P (X) itself, where X represents the input space

and Y the label space. Unlike discriminative models that directly learn the conditional

distribution P (Y |X), generative models can derive this conditional probability when

modeling P (X, Y ), or focus solely on modeling the underlying data distribution P (X) as

seen in modern deep generative models. This fundamental approach enables generative

models to:

• Learn the complete data manifold

• Generate novel samples that follow the learned distribution

• Perform tasks such as image synthesis and style transfer

Reconstruction models, in contrast, focus on learning a mapping from corrupted or

incomplete data to the original data space. This task requires the model to:

• Learn the prior distribution of the data

• Model the relationship between corrupted and original data

• Preserve essential information during the reconstruction process

The challenge lies in accurately recovering the full data from partial information, which

necessitates a deep understanding of the data’s structure and semantics. In the context

of 3D reconstruction, these challenges are further amplified:

• Handling noisy and sparse inputs

• Recovering fine geometric details while maintaining global structure

• Ensuring computational efficiency for real-time applications

The key distinction between these two paradigms lies in their learning objectives.

While generative models focus on capturing the complete data distribution, reconstruc-

tion models must additionally learn the mapping from corrupted to original data. This

additional requirement often leads to more robust feature representations, as the model

must preserve essential information while filtering out noise. However, generative

models excel in tasks requiring novel sample generation
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In the context of 3D spatial learning, both paradigms face unique challenges that

require specialized solutions:

• Representation Efficiency: Developing compact yet expressive representations

for complex 3D geometric structures

• Computational Scalability: Optimizing computational resources for processing

large-scale 3D spatial data

• Geometric Fidelity: Preserving intrinsic geometric properties throughout the

reconstruction pipeline

• Interactive Control: Integrating user-guided feedback mechanisms for iterative

refinement

These challenges motivate our research in developing novel approaches that combine

the strengths of both paradigms while addressing the specific requirements of 3D spatial

learning.

Building upon the discussed challenges and methodologies, our research aims to

advance the field of 3D reconstruction. We delve into the intricacies of this domain to

deepen the understanding of deep learning over spatial data. Our work confronts the

key challenges of representation efficiency, computational scalability, geometric fidelity,

and interactive control. We focus on developing innovative approaches that harness the

strengths of reconstruction models to create robust feature representations and accurate

reconstructions. Specifically, we aim to develop models capable of both learning the

complete data distribution and accurately restoring original data from corrupted inputs.

By contributing novel solutions that meet these demanding requirements, this thesis

seeks to push the boundaries of 3D reconstruction and spatial data representation.

1.2 Challenges in 3D Reconstruction and 3D Spatial Learn-

ing

This section analyzes the key challenges in 3D reconstruction and spatial learning,

focusing on five main aspects: representation, computational efficiency, geometric

fidelity, interactive control, and learning generalization. These challenges form the



1.2 Challenges in 3D Reconstruction and 3D Spatial Learning 9

foundation for our research objectives and drive the development of novel solutions

presented in this thesis.

1.2.1 Representation Challenges

One of the fundamental challenges in 3D reconstruction lies in developing appropriate

representations for complex spatial data. This includes learning data representations

for the input data and choosing the appropriate representations for the reconstruction

output.

Sparse and Noisy Data Handling

Effectively processing and utilizing sparse and noisy input data is a primary challenge

in 3D spatial learning. This involves developing robust algorithms that can handle

incomplete information and measurement uncertainties while still producing reliable

reconstructions.

These input data may include point clouds, single-view, multi-view, and RGB-D

images, videos, and other modalities. In our corresponding research, we focus on point

cloud data and multi-view images to leverage learned priors for reconstructing from

those input data with different approaches.

Representation Trade-offs

Finding the optimal balance between compactness and expressiveness in representations

remains a significant challenge. Compact representations are computationally efficient

but may lose important details, while highly expressive representations can capture fine

details but may be impractical for real-world applications.

For learning representations for 3D input data specifically, a model that generalizes

well may tend to oversmooth the input data, leading to a loss of important local

geometric structures during the reconstruction process.

Explicit vs. Implicit Representations

The choice between explicit and implicit representations presents distinct advantages

and limitations. Explicit representations offer direct control and interpretability but
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may struggle with complex topologies, while implicit representations handle topology

changes naturally but may lack precise control over surface properties.

In our research, we investigated both explicit and implicit representations. For

explicit representations, we narrow down our research to parametric explicit represen-

tations to produce an interpretable, interactable, and generalisable 3D reconstruction

model in a reversed engineering manner. For implicit representations, we aim to

develop generalisable 3D reconstruction models based on learned priors.

Semantic Information Preservation

Maintaining semantic information during the reconstruction process is crucial for many

applications. This involves preserving object identities, relationships, and contextual

information while performing geometric reconstruction. In our research, we focus on

the semantic information on the surfaces, including the preservation of information of

local geometric structures and their corresponding semantic meanings.

1.2.2 Computational Efficiency Challenges

As 3D reconstruction applications scale up, computational efficiency becomes crucial.

Scalability for Large-Scale Data

Processing large-scale 3D spatial data requires efficient algorithms and data structures

that can handle massive point clouds, high-resolution meshes, and complex scene

representations without compromising accuracy or performance.

Algorithmic Efficiency Optimization

Optimizing algorithmic efficiency and reducing data requirements at either the learning

or inference stage is crucial for practical applications. This includes developing methods

that can learn effectively from limited training data and implementing efficient inference

strategies for deep learning models.

In our research, we try to enhance the training efficiency of the proposed models

from these three aspects:

• Integrating and transferring priors that guide the learning process
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• Enabling human users to selectively provide guidance during the inference process

• Designing efficient algorithms for multi-scale spatial data that pass information

efficiently across local and global features.

Multi-scale Information Propagation

Efficient information propagation across multi-scale spatial data requires sophisticated

algorithms that can effectively handle different levels of detail while maintaining con-

sistency across scales.

1.2.3 Geometric Fidelity Challenges

Preserving geometric properties during reconstruction is a crucial aspect of 3D recon-

struction. Current neural network-based implicit 3D reconstruction models are able to

produce high-quality view synthesis results. However, the iso-surface of the implicit

field carries little information about the underlying geometric properties of the recon-

structed surface, thus leading to the loss of geometric details and geometrical semantics

such as edges and corners.

Global-Local Structure Balance

Balancing global structure with local detail preservation requires sophisticated algo-

rithms that can maintain the overall shape while accurately capturing fine-scale features.

This involves developing multi-scale approaches that can effectively handle both aspects

simultaneously.

Furthermore, when dealing with noisy or sparse input data as discussed above, the

reconstruction process faces a significant challenge in distinguishing signal from noise

and subtle geometric details.

Surface Detail Reconstruction

Accurate reconstruction of both smooth surfaces and sharp features presents unique

challenges. Different surface types require different handling strategies, and maintain-

ing both types of features in a single reconstruction is particularly challenging.
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Geometric Constraint Preservation

Maintaining geometric constraints and priors throughout the reconstruction process

ensures the physical validity and usability of the results. This includes preserving

symmetries, parallelism, and other important geometric relationships.

1.2.4 Interactive Control and Refinement Challenges

Enabling effective user interaction presents a challenge during the 3D reconstruction

process, as it requires the system to balance the automated processing with the manual

adjustments, and the system must interpret and apply user intentions while maintaining

reconstruction quality.

This is essential for the industry applications, as the 3D reconstruction models may

not always produce the desired results in an end-to-end manner, and the user may need

to provide additional information to guide the reconstruction process.

Interface Design

Designing intuitive interfaces for human-in-the-loop reconstruction requires careful

consideration of user experience and workflow efficiency. The interface must provide

powerful controls while remaining accessible to users with varying levels of expertise.

Real-time Feedback

Implementing real-time feedback mechanisms is essential for interactive systems. Users

need immediate visual feedback to understand the impact of their actions and make

informed decisions during the reconstruction process.

Progressive Refinement

Developing progressive refinement strategies allows users to iteratively improve results.

This involves creating algorithms that can incrementally update reconstructions based

on new input while maintaining stability and consistency.
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User Input Integration

Effectively incorporating user input and guidance requires robust algorithms that can

balance automated processing with manual adjustments. The system must interpret

and apply user intentions while maintaining reconstruction quality.

1.2.5 Learning and Generalization Challenges

Limited Data Learning

Learning complete 3D representations from limited data requires sophisticated ap-

proaches that can effectively leverage prior knowledge and geometric constraints to fill

in missing information.

This challenge is significant in learning over 3D spatial data, as the amount of 3D

datasets for supervising the learning process is far less than the 2D images in computer

vision.

Feature Learning

Effective feature extraction and representation learning are fundamental to successful

3D reconstruction. This involves developing methods that can capture meaningful

geometric and semantic features across multiple scales.

Especially for indoor/outdoor scenes, the scene-level semantic information may

further guide the reconstruction model to infer object-level geometric and semantic

features. This dependency may propagate across multiple scales. For example, for

a point cloud representing a large outdoor scene, a line of repetitive curved sticks

alongside a road may be inferred as lamp posts, and the details of the lamp posts may

further be inferred from other clones of this repetitive pattern.

These challenges motivate our research objectives and guide our proposed solutions,

as we seek to advance the state-of-the-art in 3D reconstruction and spatial learning. In

Chapter 2, we will delve into the existing works related to these challenges, and in later

chapters, we will present our proposed solutions to them.
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1.3 Research Objectives

The primary objective of this research is to advance 3D spatial learning by addressing

critical challenges in reconstruction and representation. This includes generating sparse

representations for surface reconstruction from noisy inputs, enhancing the controlla-

bility of implicit methods, and improving information propagation and aggregation

across multi-scale spatial data.

By systematically tackling these challenges, our research not only aims to improve

reconstruction quality but also to provide architectural and methodological innovations

in 3D reconstruction and representation. The specific objectives are as follows:

1. To Enhance 3D Parametric Reconstruction from Noisy Inputs Develop machine-

learning-based methods for parametric surface fitting frameworks to robustly

reconstruct 3D shapes from noisy point clouds while preserving structural in-

tegrity.

2. To Enable User-Controllable Refinement in Implicit 3D Reconstruction De-

velop interactive pipelines that integrate human feedback to enhance local detail

precision in neural field-based reconstructions.

3. To Improve the Computational Efficiency of Implicit Neural Representations

Optimize neural field training efficiency by integrating geometric priors as guid-

ing signals, reducing computational costs without compromising reconstruction

quality.

4. To Propose a General-Purpose 3D Learning Framework that is Scalable and

Adaptive for Complex Scenes Propose hierarchical architectures based on the

attention mechanism for scalable and adaptive 3D deep learning on large-scale or

multi-resolution data.

1.4 Contribution

In this research, our objective is to investigate various machine learning-based 3D

reconstruction methods, state their advantages and disadvantages, and propose novel
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methods that improve existing approaches. We also derive new techniques in the more

general area of learning an expressive representation of spatial data.

In detail, our research proposes the following innovations with advancements to 3D

spatial learning and reconstruction:

1. Seed-Net: Differentiable Interactive Refinement for Implicit Reconstruction

• Innovation: A human-in-the-loop implicit reconstruction pipeline where

user-provided positions (e.g., sparse clicks) guide the neural field optimisa-

tion via a differentiable feedback layer.

• Advancement: Achieves progressively better reconstruction results with an

experiment that mimics user interaction during the reconstruction.

• Impact: Potential in the reconstruction of objects in digital twin systems

where user interest may focus on a certain local area of an object.

2. NeuLap: Laplacian Priors for Accelerated Neural Field Training

• Innovation: A geometry-aware training framework that uses a pre-trained

denoising network to inject a Laplacian-based geometric prior into the error-

propagation process of an implicit neural field, guiding optimisation towards

more plausible surfaces.

• Advancement: Achieves state-of-the-art reconstruction quality, improving

the F-score of the baseline NeuRIS from 0.691 to 0.759 on ScanNet. It enhances

performance with limited data and demonstrates superior preservation of

sharp geometric features like edges and corners.

• Impact: Enables high-fidelity 3D reconstruction from limited views, particu-

larly for generating watertight surfaces with sharp details, which is critical

for digital twin and reverse engineering applications.

3. Partitioned Deforming Boxes for Shape Reconstruction

• Innovation: A dynamic grid-based deformation framework that combines

adaptive boxes and deforms them into the desired shape, allowing localised

shape adjustments without global re-optimisation.
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• Advancement: Represents the reconstructed surfaces into a sparse, uniform

representation that is suitable for both smooth surface curvature and sharp

edges and corners.

• Impact: Enables reconstruction for applications requiring real-time shape

editing (e.g., digital twin prototyping).

4. Attention Propagation in OctTrees for General-Purpose 3D Learning

• Innovation: A novel hierarchical attention mechanism for OctTrees, fea-

turing iterative bottom-up and top-down passes that efficiently propagate

contextual information across the entire tree structure.

• Advancement: Giving a competitive performance to strong grid-based base-

lines like ConvONet on reconstruction benchmarks while using less GPU

memory. This demonstrates superior efficiency and scalability for processing

large-scale 3D scenes.

• Impact: Provides a foundational, general-purpose architecture for a wide

range of 3D deep learning tasks, including semantic segmentation and object

detection, by enabling powerful multi-scale feature learning on sparse 3D

data.
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2
Literature Review and Technical Foundations

The field of 3D reconstruction and spatial learning has witnessed significant advance-

ments with the emergence of deep learning techniques. This chapter provides a com-

prehensive review of the fundamental concepts, technical challenges, and the corre-

sponding attempts and solutions in this domain. We begin with an overview of the

fundamental concepts and the corresponding technical challenges in Section 2.1 and 2.2,

which sets the stage for our detailed examination of various methodological approaches.

The review is structured to progressively build understanding from fundamental

concepts to advanced methodologies. We first examine explicit surface reconstruction

methods in Section 2.3, which represent the traditional approach to 3D reconstruction.

This is followed by an analysis of modern implicit reconstruction techniques in Sec-

tion 2.4, with particular emphasis on neural representations and their applications in

novel view synthesis. Finally, Section 2.5 discusses general-purpose frameworks for

deep spatial learning, presenting a unified perspective on architectural solutions and

practical considerations.

2.1 Fundamental Concepts and Background

Understanding 3D reconstruction and spatial learning requires a solid foundation in sev-

eral key technical areas. This section establishes the essential concepts that underpin our

subsequent discussions. We begin by examining various data representation schemes

(2.1.1) that form the basis for encoding 3D spatial information, followed by fundamen-
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tal geometric concepts (2.1.2) that govern spatial relationships and transformations.

In (2.1.3), we explore core methodological approaches that have been developed for

learning and reconstructing 3D spatial data in various paradigms. Finally, we discuss

standard evaluation metrics (2.1.4) that enable quantitative assessment of reconstruction

quality and spatial learning performance. These fundamentals provide the necessary

theoretical framework for understanding both traditional approaches and modern deep

learning-based solutions in 3D reconstruction.

2.1.1 Data Representations

The structure and performance of deep learning algorithms over 3D spatial data for

downstream tasks heavily depends on the representation of the input data, since differ-

ent representations are organised with different information topologies, thus providing

different structural features, and may encapsulate different information explicitly or

implicitly. By input data here we refer not only to the original input to the system,

but also the data that an algorithm directly manipulates, and the desired output of the

algorithm.

The representation for spatial data can be classified into two types according to

how the data is organised: structured and unstructured representations. A structured

representation means that the data units are organised in a regular pattern or grid-like

structure that maintains consistent relationships between elements, while unstructured

representations have no fixed organization pattern between elements, though they

still carry information with spatial relationships. For example, a point-cloud is an

unstructured representation - while each point carries its positional information, the

order of the points inside a point cloud is arbitrary and does not follow any regular

pattern. The structured data representations are usually more amenable to processing

with algorithms transferred from 2D paradigms, but due to their rigid organization, they

may not be suitable for non-rigid objects with deformations since the regular structure

may change during the deformation while the topology persists.

Point Clouds and Their Properties

One of the most important representations in the unstructured representation family is

the point-cloud representation. It is one of the most intuitive ways to represent 3D data
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by encoding 3D structures as a set of discrete points in space and is notably information

efficient. A point cloud P = {pi ∈ R3}Ni=1 consists of N points, where each point pi

typically contains 3D coordinates (x, y, z) and may include additional attributes such as

color, normal vectors, or other feature information. It usually serves as either the input

or the output of the algorithm, representing a set of sampled points on the surface of

the object, and the algorithm is designed to be invariant to the point order.

The major challenge with point clouds is that they are inherently unordered data,

requiring algorithms to be designed as permutation invariant or symmetric functions

to ensure consistent results regardless of point ordering. Another challenge for point

clouds is that while they preserve positional information in 3D space, they lack explicit

connectivity information between points, which introduces ambiguity when surface

information is required for reconstruction or analysis tasks.

Surface Representations

Surface Representations form a distinct family of 3D representations that explicitly

preserve surface topology information in 3D space. A surface can either be explicitly

represented as a graph, or implicitly represented as the isocontour of a scalar function

(discussed in subsection 2.1.1).

The mesh representation is one of the most preferred and mature surface represen-

tations in both computer vision and computer graphics, which represents a surface as

a graph of connected polygons (typically triangles). Formally, a meshM = (V , E ,F)

consists of vertices V , edges E , and faces F . This representation is storage-efficient

but is sensitive to noise, missing data, and resolution problems. It has historically

faced challenges with deep learning methods, which traditionally did not work well

on graph-structured data. However, with the emergence of graph neural networks like

GATs [143] and Graph-GAN [145], these limitations are being addressed.

Another graph-based surface representation that has become standard in computer-

aided design (CAD) is the parametric surface representation, including spline-based

approaches like Bézier surfaces and NURBS (Non-Uniform Rational B-Splines) [105].

NURBS surfaces are defined by a set of control points, weights, and knot vectors that

together define a parametric function S(u, v) : [0, 1]2 → R3 mapping a 2D parameter

space to 3D space. This kind of representation offers several advantages over meshes:
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• Compactness: Requires fewer parameters to represent smooth surfaces

• Precision: Represents curved surfaces exactly rather than approximating them

• Multi-resolution: Can be evaluated at arbitrary resolution

• Differentiability: Provides continuous derivatives important for analysis

Advantages in Surface Representation

Bézier surfaces, which are extensions of Bézier curves, offer several advantages for

surface representation in 3D reconstruction and CAD applications:

1. Local Control: Changes to the control points affect only the local region of the

surface, making it easy to edit and modify specific areas without impacting the

entire shape

2. Smoothness: Bézier surfaces can achieve high degrees of smoothness (G1 continu-

ity or higher), which is essential for creating aesthetically pleasing and functional

designs

3. Variety of Shapes: They can represent a wide range of shapes from simple planes

to complex curved surfaces, making them versatile for diverse modeling tasks.

4. Efficient Computation: The parametric nature of Bézier surfaces provides a

sparse representation that allows for efficient computation of surface properties

and manipulations, which is crucial for real-time applications and interactive

design environments.

5. Industrial Standard Alignment: Bézier surfaces align with industrial standards

for 3D modeling, ensuring compatibility with widely used CAD software and

facilitating seamless integration into existing workflows. This alignment is crucial

for maintaining consistency and interoperability across different stages of the

design and manufacturing process.

Implicit Representations

Implicit representations define 3D geometry as the level set (typically the zero-level

set) of a continuous function f : R3 → R. Rather than explicitly storing geometry, these
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representations encode a shape as:

S = {x ∈ R3|f(x) = 0} (2.1)

The function f(x) typically represents a signed distance function (SDF) where |f(x)|

gives the distance to the nearest surface point, with negative values inside the object

and positive values outside. Alternatively, occupancy functions map points to binary

values indicating whether a point lies inside (1) or outside (0) the shape, or a continuous

value representing the probability of occupancy as a real number in the range of [0, 1].

Traditional implicit representations include:

• Signed Distance Fields (SDFs): Store distance to the nearest surface with sign

• Occupancy Fields: Binary fields indicating inside/outside status

• Radial Basis Functions (RBFs): Represent shapes as weighted sums of radial

functions

More recently, Neural Implicit Representations have gained significant attention

in 3D reconstruction. These approaches represent 3D shapes as the level sets of neural

networks that map spatial coordinates to signed distances or occupancy values. Notable

examples include:

• DeepSDF [99]: Represents shapes as learned continuous SDFs

• Neural Radiance Fields (NeRF) [90]: Represents both geometry and appearance

• Occupancy Networks [87]: Learn continuous occupancy functions

Key advantages of implicit representations include:

• Continuous: Represent surfaces at arbitrary resolution

• Topologically flexible: Can represent shapes of arbitrary genus

• Watertight: Naturally produce closed surfaces

• Differentiable: Enable gradient-based optimization

• Compositional: Support Boolean operations (union, intersection)
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The major limitations are:

• Extraction cost: Converting to explicit representations (e.g., via Marching Cubes

[82, 73] and Dual Contouring [52, 12]) is computationally expensive

• Query efficiency: Evaluating points requires forward passes through neural

networks

• Feature correspondence: Difficult to establish point correspondences across

shapes

Multi-view and RGB-D Images

The structured representation family has been extensively studied since the early days

of 2D computer vision. Multi-view images represent a popular structured input data

format used across various tasks, as they provide relatively rich data for the restoration

of 3D information while being suitable for direct processing by existing image-based 2D

algorithms, with no depth sensors required for data acquisition. Formally, a multi-view

dataset consists of a set of images {Ii}Ni=1 captured from different viewpoints, along

with camera parameters {Ki, Ri, Ti}Ni=1 where Ki represents intrinsic parameters, and

Ri, Ti represent rotation and translation respectively.

However, determining the optimal number of views for specific tasks remains

challenging, potentially leading to either information loss or redundancy. Another

limitation is the loss of intrinsic geometric properties in the input data.

The RGB-D data acquired by sensors (e.g., structured light, time-of-flight, stereo) and

the derived RGB-D images are another widely applied structured data representation.

An RGB-D image pairs a standard RGB image with a corresponding depth map D,

where each pixel (u, v) has both color I(u, v) ∈ R3 and depth information D(u, v) ∈ R.

Algorithms working with such representations benefit from computational efficiency

as they don’t require extra data conversion and aggregation in the system pipeline,

making them suitable for real-time applications such as autonomous driving, on-the-

fly scanning, and monitoring. These algorithms also leverage existing deep-learning

approaches for images since RGB-D data can be treated as either an image with an extra

channel or two separate images (RGB and depth). While a single RGB-D frame lacks

complete geometry information, rich geometric data can be aggregated by combining
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RGB-D information from multiple views, making it more information-rich than multi-

view images while sharing similar limitations.

Volumetric Representations

The Volumetric representation family provides structured 3D representations that

directly encode spatial information while maintaining a regular lattice structure suitable

for grid-based algorithms.

Voxels extend the concept of "pixels" into 3D space, discretizing it into unit cubes

with associated occupation states to describe the 3D structure. Formally, a voxel grid

can be defined as a 3D tensor V ∈ RW×H×D×C where W,H,D represent width, height,

and depth dimensions, while C represents the feature channels at each voxel location.

This representation facilitates the transfer of pixel-based algorithms to 3D, and the

voxel occupation state naturally maps to probability distributions in 3D space, making

it suitable for generative models to learn structural priors. However, the cubic space

complexity limits resolution, making it suboptimal for detailed structures.

The octree representation offers an alternative with logarithmic growth in resolution

through its tree structure. Rather than using a uniform grid, an octree recursively

subdivides space into eight equal octants, allocating higher resolution only to regions

containing geometry. This approach achieves significant memory savings, especially

for sparse scenes. However, its irregular memory access patterns and complexity in

implementation with current deep-learning approaches has limited its widespread

adoption.

A common limitation of volumetric representations is that despite storing original

3D information, they may not preserve intrinsic surface topology, potentially creating

ambiguity in surface-related tasks (e.g., visualization, physical simulation).

Structured Hyper-representations

Structured hyper-representations extend traditional volumetric approaches by orga-

nizing spatial data in more sophisticated hierarchical or hybrid structures. These

approaches aim to balance the advantages of different representation types while miti-

gating their individual limitations.

Key examples include:
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• Hierarchical Grid Structures: Extensions of octrees that organize voxels in multi-

resolution grids. Examples include Sparse Voxel Octrees (SVOs) [64] and Hierar-

chical Surface Prediction (HSP) [40].

• Hybrid Representations: Combinations of multiple representation types. For

instance, Atlas-Net [35] represents 3D shapes as collections of parametric surface

patches.

• Multi-scale Grid Representations: Approaches that maintain information at mul-

tiple resolutions simultaneously, such as Feature Grids and Hierarchical Feature

Learning [116].

These hyper-representations offer several advantages:

• Adaptive Resolution: Can allocate higher detail to complex regions

• Memory Efficiency: Reduce storage requirements compared to uniform grids

• Multi-scale Features: Capture both fine details and global structure

• Hierarchical Processing: Enable coarse-to-fine processing strategies

For a comprehensive review of data representations in deep learning over 3D spatial

data, we refer the reader to [3].

The choice of representation fundamentally impacts algorithm design, performance,

and the types of geometric or topological properties that can be effectively captured

and manipulated. Understanding these trade-offs is essential for developing effective

3D learning systems.

2.1.2 Geometric Concepts

Geometric concepts form the mathematical language used to describe and analyze

3D shapes and spaces. A thorough understanding of these principles is crucial for

developing and evaluating 3D reconstruction and spatial learning algorithms. This

subsection delves into key areas including differential geometry, surface properties,

topology, and implicit representations like level sets.
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Differential Geometry Basics

Differential geometry provides tools to analyze the local properties of curves and

surfaces. Surfaces can be defined explicitly (parametrically) or implicitly. Parametric

surfaces, like Bézier or NURBS patches, are defined by functions mapping a 2D domain

to 3D space, s(u, v). Implicit surfaces are defined as level sets (see 2.1.2). For both,

concepts such as tangent spaces, curvature (e.g., Gaussian and mean curvature), and the

first and second fundamental forms are fundamental. Tangent spaces define the local

linear approximation of a surface at a point. Curvature measures how much a surface

deviates from being flat at a point, capturing intrinsic geometric information. These

concepts are essential for understanding shape characteristics, surface smoothness, and

for developing algorithms related to shape matching, registration, and surface fairing.

Understanding local geometry is critical for methods that operate directly on surface

meshes or point clouds.

Surface Properties and Normals

Surface properties describe the characteristics of a 3D object’s boundary. Key properties

include continuity (C0, C1, C2), which defines the smoothness of the surface and its

derivatives. Surface normals, vectors perpendicular to the tangent plane at each point,

are particularly important. Normals are crucial for rendering (calculating lighting and

shading), defining orientation, and are often estimated or predicted in reconstruction

tasks. Accurate estimation and representation of surface normals are vital for achieving

visually plausible and geometrically correct reconstructions. Other properties like

surface area and volume are also fundamental geometric quantities.

Topology and Manifolds

Topology studies the properties of shapes that are invariant under continuous de-

formations, such as stretching or bending, but not tearing or gluing. Concepts like

connectivity, genus (number of "handles"), and the Euler characteristic describe the

global structure of a shape. For instance, topology helps determine if a surface is closed

(watertight) or has boundaries. Many surfaces encountered in 3D modeling and recon-

struction can be modeled as 2-manifolds. A 2-manifold is a topological space where

every point has a neighborhood that is topologically equivalent to an open disk in the
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Euclidean plane (R2). Understanding manifold properties is crucial for mesh processing,

parameterization, and ensuring the topological correctness of reconstructed surfaces.

Level Sets and Implicit Fields

Implicit representations define surfaces indirectly, typically as the zero level set of a

function f : R3 → R. The surface S is defined as S = {x ∈ R3|f(x) = 0}. A prominent

example is the Signed Distance Function (SDF), where f(x) represents the shortest

distance from point x to the surface, with the sign indicating whether x is inside or

outside the object. The Laplacian of the SDF, ∆f , evaluated at the surface approximates

the mean curvature H of the surface S. Specifically, for a true SDF f , the relationship on

the surface is:

∆f(x) = −2H(x) for x where f(x) = 0

This property links the volumetric field f to the intrinsic geometry of the surface it rep-

resents. For SDFs represented by neural networks, the Laplacian can often be computed

efficiently using automatic differentiation. This allows its use as a geometric regularizer

during network training, promoting smoother surfaces or enforcing specific curvature

properties. Level set methods, pioneered by Osher and Sethian, use these implicit

functions to track moving interfaces and represent complex shapes. Implicit fields,

particularly SDFs learned by neural networks (e.g., DeepSDF [99]), have become central

to modern deep learning approaches for 3D reconstruction. They offer advantages in

representing arbitrary topologies, handling noisy data, and enabling continuity and

differentiability, which are beneficial for gradient-based optimization in deep learning.

These representations decouple the surface geometry from a specific discretization like

a mesh.

Geometric Operators and Priors

Beyond describing geometry, mathematical operators can analyze and enforce desirable

shape properties. The Laplace-Beltrami operator (∆), a generalization of the standard

Laplacian to surfaces (manifolds), is particularly significant. In Cartesian coordinates, it

is defined as:

∆f = ∇ · ∇f = ∇2f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
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It measures the local variation or curvature of functions defined on the surface. Minimiz-

ing quantities related to the Laplacian often promotes surface smoothness or fairness,

reducing high-frequency details or noise. Consequently, Laplacian-based terms are fre-

quently employed as regularization priors in geometric optimization problems and deep

learning frameworks. These priors encode assumptions about expected surface charac-

teristics, guiding the reconstruction or learning process towards geometrically plausible

results, as seen in methods aiming to preserve sharp features or ensure smoothness.

Similar differential analysis can also be applied to explicit geometric data, such as depth

maps or normal fields, to estimate intrinsic, viewpoint-invariant surface properties like

curvature.

2.1.3 Methods for 3D Reconstruction and Deep Spatial Learning

Advancements in deep learning have profoundly reshaped the landscape of 3D recon-

struction and spatial learning. Traditional methods often relied on geometric constraints

and optimization techniques, while modern approaches leverage neural networks to

learn complex spatial relationships directly from data. This subsection outlines funda-

mental methodologies, focusing first on how spatial data is encoded and features are

learned, and subsequently detailing deep learning approaches tailored for dense 3D

reconstruction from various input modalities.

Data Representations and Feature Encoding

Effective feature encoding is paramount for applying deep learning to 3D data. The

choice of representation and encoding strategy depends heavily on the input data

modality and the specific task.

Processing Point Clouds Point clouds, as raw, unordered sets of points in 3D space

(typically pi = (xi, yi, zi)), pose unique challenges for standard deep learning archi-

tectures like CNNs that assume structured input. Early pioneering work addressed

the unordered nature using symmetric functions. PointNet [108] introduced a shared

Multi-Layer Perceptron (MLP) applied to each point independently, followed by a

max-pooling operation to achieve permutation invariance and aggregate a global fea-

ture vector. PointNet++ [109] improved upon this by introducing hierarchical feature



28 Literature Review and Technical Foundations

learning. It recursively partitions the point set and applies PointNet locally, capturing

finer-grained geometric structures at multiple scales. Dynamic Graph CNN (DGCNN)

[156] proposed constructing local graphs in feature space dynamically at each layer,

allowing the network to learn edge features and aggregate information adaptively.

These encoders form the backbone for many point cloud analysis tasks, including

classification, segmentation, and as input stages for reconstruction methods.

Leveraging Multiview Images Reconstructing 3D geometry from multiple 2D images

is a long-standing vision problem. Deep learning methods build upon principles

from traditional Multi-View Stereo (MVS). Feature extraction typically starts with

applying 2D Convolutional Neural Networks (CNNs) as backbones to each input

view, producing per-pixel feature maps. A core challenge is aggregating these 2D

features into a coherent 3D representation, respecting geometric consistency across

views. Deep MVS methods like MVSNet [169] explicitly leverage epipolar geometry.

They construct 3D cost volumes by warping features from source views onto reference

camera frustums along hypothesised depth planes. A 3D CNN then regularizes this

cost volume to predict a depth map for the reference view. Subsequent works refined

cost volume construction, aggregation techniques, and efficiency. Other approaches

learn implicit correspondences or use attention mechanisms to fuse information across

views, preparing features for volumetric or implicit reconstruction.

Volumetric and Implicit Representations Beyond input encoding, the target repre-

sentation for reconstruction also influences methods. Early deep learning methods

often used voxel grids, dividing space into uniform cells and predicting occupancy

or SDF values [16]. While direct, voxels suffer from high memory consumption and

limited resolution. Implicit functions, as discussed in 2.1.2, offered a memory-efficient

alternative. Networks like Occupancy Networks [87] and DeepSDF [99] learn functions

that map 3D coordinates (and potentially a shape code) to occupancy probability or

signed distance, enabling continuous representations and arbitrary resolution querying.

Deep Learning Approaches for Dense Reconstruction

The goal of dense reconstruction is to capture detailed geometry and, often, appearance

from input data. Deep learning has yielded powerful methods operating on various
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inputs.

The 3D Reconstruction Pipeline Context The overall 3D reconstruction pipeline

often involves stages like data acquisition, preprocessing, sparse reconstruction (e.g.,

Structure-from-Motion for camera poses), dense reconstruction, surface generation, and

texturing, as illustrated in Figure 2.1. While pipelines vary, this thesis focuses specifically

on the **dense reconstruction** stage, where detailed spatial information (geometry

and/or appearance) is inferred, typically from sparse initial estimates or directly from

input data like images or point clouds. This stage is critical for high-fidelity results

and challenges networks to learn robust and generalizable spatial representations.

We believe advancing dense reconstruction methods directly contributes to improved

generalised spatial learning capabilities.

Figure 2.1: A typical pipeline for 3D reconstruction [44]. This thesis focuses on the

Dense Reconstruction stage.

Reconstruction from Point Clouds Given an input point cloud (often sparse or in-

complete), deep learning methods aim to generate a dense and complete surface rep-

resentation. Some approaches generate explicit surface elements. AtlasNet [35] learns
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to deform a collection of 2D patches (parameterized squares) onto the target surface.

FoldingNet [167] learns a mapping from a fixed 2D grid to the 3D surface, effectively

"folding" the grid into the target shape. Other methods leverage implicit representations

learned from point cloud features. Occupancy Networks [87] can be conditioned on

point cloud features (e.g., derived from PointNet) to predict occupancy for any query

point in space. Similarly, DeepSDF [99] concepts can be adapted to infer continuous

SDFs from input points, allowing for surface extraction via methods like Marching

Cubes [82].

Reconstruction from Multiview Images Dense reconstruction from multiple images

has seen dramatic progress with neural rendering techniques that implicitly or explicitly

model geometry alongside appearance.

Neural Radiance Fields (NeRF) NeRF [90] revolutionized novel view synthesis

and implicitly captures geometry. It represents a scene using a fully-connected neural

network (MLP) that maps a 5D coordinate (3D location x and 2D viewing direction d)

to a volume density σ and view-dependent emitted color c. Images are rendered by

sampling points along camera rays and integrating color weighted by density using

principles of volume rendering:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, where T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
While producing highly photorealistic renderings, vanilla NeRF suffers from slow train-

ing and rendering times. Numerous follow-up works have addressed these limitations

through efficient representations like explicit voxel grids [173], hash grids [93], or im-

proved sampling strategies. Extracting explicit surfaces from NeRF often involves

querying density σ and applying methods like Marching Cubes, although the resulting

geometry may lack fine detail. Some variants explicitly incorporate surface constraints

or representations (e.g., predicting an SDF alongside density) to improve geometric

quality [150].

3D Gaussian Splatting (3DGS) 3D Gaussian Splatting [57] offers an alternative

approach achieving state-of-the-art rendering quality with real-time performance. In-

stead of an implicit MLP, 3DGS represents the scene explicitly using a large number of
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3D Gaussians. Each Gaussian is defined by its position (mean µ), shape (covariance

Σ), color (represented by Spherical Harmonics coefficients), and opacity (α). These

parameters are optimized directly to minimize the rendering loss against input views.

Rendering involves projecting the 3D Gaussians onto the 2D image plane and "splatting"

their contribution onto pixels using a differentiable tile-based rasterizer. While highly

efficient for rendering, 3DGS does not inherently represent a continuous surface. The

geometry is captured by the distribution of Gaussian centroids, which resembles a point

cloud. Its explicit nature makes editing potentially easier than NeRF, but sophisticated

surface reconstruction from the Gaussians remains an area of research. Its success high-

lights the power of explicit, point-based representations when combined with efficient

differentiable rendering.

2.1.4 Evaluation Metrics for 3D Reconstruction

Evaluating the quality of 3D reconstructions requires quantitative metrics that capture

different aspects of geometric fidelity and, where applicable, appearance or complexity.

Various metrics exist, often tailored to specific data representations like point clouds,

meshes, or volumes.

Chamfer Distance (CD) For comparing two point sets, S1 (prediction) and S2 (ground

truth), the Chamfer Distance is widely used [22, 2]. It measures the average squared

distance from each point in one set to its nearest neighbor in the other set:

dCD(S1, S2) =
1

|S1|
∑
x∈S1

min
y∈S2

||x− y||22 +
1

|S2|
∑
y∈S2

min
x∈S1

||x− y||22 (2.2)

Sometimes, only one direction is used, or the two terms are combined using max instead

of sum. It provides a general measure of point set similarity.

Earth Mover’s Distance (EMD) Also known as the Wasserstein-1 distance, EMD is

another metric for point sets, particularly effective when |S1| = |S2|:

dEMD(S1, S2) = min
ϕ:S1→S2

1

|S1|
∑
x∈S1

||x− ϕ(x)||2 (2.3)

Here, ϕ : S1 → S2 is a bijection (one-to-one mapping). EMD finds the minimum average

distance required to "move" points from S1 to match S2. It often captures structural

differences better than CD but is more computationally expensive [2].
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Hausdorff Distance For comparing meshes or point clouds, the Hausdorff Distance

measures the maximum nearest-neighbor distance between two sets S1 and S2:

dH(S1, S2) = max

(
sup
x∈S1

inf
y∈S2

||x− y||2, sup
y∈S2

inf
x∈S1

||x− y||2
)

(2.4)

It represents the greatest distance from a point in one set to the closest point in the other

set, making it sensitive to outliers and capturing worst-case errors.

Intersection over Union (IoU) For volumetric representations (e.g., voxel grids or

implicit functions evaluated on a grid), IoU measures the overlap between the predicted

volume Vpred and the ground truth volume Vgt [87, 16]:

IoU(Vpred, Vgt) =
|Vpred ∩ Vgt|
|Vpred ∪ Vgt|

(2.5)

Where | · | denotes volume (or count for voxel grids). IoU ranges from 0 (no overlap) to

1 (perfect overlap) and is standard for evaluating occupancy predictions.

Quadric Error Metric (related to Quadric Loss) While often used for mesh simplifica-

tion, the concept behind the Quadric Loss provides a point-to-surface distance useful for

evaluation. Given an output point s (in homogeneous coordinates [x, y, z, 1]T ) and its

corresponding nearest vertex t on an input meshM, let Pt be the set of plane equations

pi = [ai, bi, ci, di]
T for the faces incident on vertex t. The squared distance of s to a plane

pi is (pTi s)2 = sT (pip
T
i )s. The sum of squared distances to these incident planes defines

the quadric error at t for point s:

Equad(s, t) =
∑
pi∈Pt

sT (pip
T
i )s (2.6)

Averaging this error over all output points s (using their nearest neighbors t) gives a

metric sensitive to surface deviations, particularly good at penalizing displacements

that violate sharp edges defined by the incident planes.

Rendering Quality Metrics For methods that reconstruct appearance alongside ge-

ometry (like NeRF or 3DGS), evaluation often relies on comparing rendered images to

ground truth views using standard image quality metrics:

• Peak Signal-to-Noise Ratio (PSNR): Measures pixel-wise error, higher is better.
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• Structural Similarity Index (SSIM): Measures perceptual similarity based on

luminance, contrast, and structure, range [-1, 1], higher is better.

• Learned Perceptual Image Patch Similarity (LPIPS): Uses deep features to mea-

sure perceptual distance, lower is better [90].

Complexity Metrics Beyond geometric accuracy, the complexity of the reconstructed

representation itself can be important. Metrics like the Akaike Information Criterion

(AIC) and Bayesian Information Criterion (BIC) can be adapted to balance reconstruc-

tion error (e.g., squared error term) against the number of parameters k used in the

representation (e.g., number of polygons, Gaussians, or network parameters):

AIC = N ln(MSE) + 2k (2.7)

BIC = N ln(MSE) + k lnN (2.8)

Where N is the number of data points and MSE is the mean squared error. Lower values

indicate a better trade-off between accuracy and complexity.

2.2 Overview of Technical Challenges

Developing robust and effective methods for 3D reconstruction and spatial learning

involves addressing a complex set of interdependent challenges. These range from fun-

damental issues related to data representation and computational demands to achieving

high geometric fidelity and ensuring models can learn effectively and generalize to

new data. Understanding these challenges is crucial for contextualizing the specific

approaches detailed later in this review and motivates the contributions of this thesis.

This section provides a high-level overview of these key technical hurdles.

2.2.1 Fundamental Challenges

Data Representation and Acquisition

A primary challenge lies in representing 3D spatial information effectively. Real-world

data acquisition, often via sensors like LiDAR or RGB-D cameras, typically yields

unstructured, sparse, noisy, and incomplete point clouds [39]. Handling such imperfec-

tions is critical for reliable reconstruction. Furthermore, 3D data can be represented in
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diverse formats, including explicit representations like polygon meshes and parametric

surfaces (e.g., B-splines, NURBS) [105], or implicit representations like voxel grids,

occupancy fields [87], Signed Distance Functions (SDFs) [99], and Neural Radiance

Fields (NeRF) [90].

Each representation involves trade-offs: explicit surfaces offer direct manipulation

but can struggle with complex or changing topologies; implicit functions handle ar-

bitrary topologies naturally and can be memory-efficient but may require complex

extraction procedures (e.g., Marching Cubes [82]) and can be difficult to edit directly

[165]. Point clouds are raw but lack explicit connectivity, while voxel grids suffer from

cubic scaling in memory and computation [3]. Choosing an appropriate representation

and designing networks that effectively process its specific structure (e.g., permutation

invariance for point clouds [108]) remains a key design consideration. Handling varying

densities, irregular structures, and integrating multi-modal data (e.g., images and point

clouds) add further complexity.

Computational Considerations

Processing 3D data is computationally intensive due to its high dimensionality. Large

point clouds, high-resolution voxel grids, or dense queries required by some implicit

methods (like original NeRF [90]) demand significant memory and processing power.

This poses scalability challenges for large-scale scenes or environments. Achieving

real-time performance, crucial for interactive applications or robotics, often requires

substantial optimization.

Strategies to mitigate these costs include developing efficient algorithms (e.g., Pois-

son Surface Reconstruction [55], Ball-Pivoting [5]), using specialized data structures like

Octrees [116] or sparse voxel grids with sparse convolutions [33], and designing efficient

neural network architectures or query strategies (e.g., multi-resolution hash grids in

Instant-NGP [93], tensor factorizations [10], or explicit structures like 3D Gaussian

Splatting [56]). Optimizing algorithms for specific hardware and developing adaptive

or incremental methods remain active research areas.
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Quality, Fidelity, and Detail

Achieving high-quality 3D reconstructions that accurately capture both the overall struc-

ture and fine geometric details of objects and scenes is paramount. Challenges include

ensuring geometric fidelity (accuracy relative to the ground truth), preserving sharp

features and high-frequency surface details (textures, small structures), and avoiding

visual artefacts like noise, holes, or inaccurate topology [39]. Handling complex topolo-

gies (e.g., thin structures, self-intersections, objects with holes or handles) is particularly

challenging for many methods, especially traditional parametric approaches [172].

Implicit methods, while flexible topologically, can face difficulties in accurately

representing sharp edges or fine details due to inherent biases in network architectures

(e.g., spectral bias of MLPs) [124]. Techniques like periodic activations (SIRENs [124]) or

Fourier features [132] help mitigate this but introduce their own complexities. Extracting

high-quality surfaces from implicit fields, particularly NeRF’s density field, requires

careful formulation, as demonstrated by methods like NeuS [150] which bridges SDFs

and volume rendering. There is often a trade-off between representation robustness

(e.g., using strong priors) and fidelity, where priors can lead to overly smooth results,

losing important details. Ensuring global consistency across large reconstructions also

remains difficult.

2.2.2 Learning and Generalization Challenges

Beyond fundamental representation and computational issues, learning-based ap-

proaches introduce their own set of challenges.

Learning from Limited or Imperfect Data

Deep learning models typically require large amounts of training data. Acquiring

and annotating large-scale, high-quality 3D datasets is expensive and time-consuming.

Therefore, a significant challenge is developing methods that can learn effectively from

limited, sparse, or noisy data (few-shot learning). Implicit methods optimized solely

via photometric loss (like NeRF) are particularly susceptible to geometric artefacts

when input views are sparse [96]. Incorporating geometric priors (e.g., depth, normals,

symmetry) or regularization techniques is often necessary to improve robustness in
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such scenarios [19, 146].

Generalization and Adaptability

Ensuring that learned models generalize well to unseen objects, scenes, or data distribu-

tions is crucial for practical deployment. Many early implicit methods, including NeRF,

required per-scene optimization, limiting their ability to generalize [90]. Developing

architectures and training strategies that promote generalization across diverse inputs

is an active area of research. This involves techniques like conditioning models on

input features [175], using robust regularization [96], employing meta-learning to learn

adaptable priors [123], or designing architectures with appropriate inductive biases.

Inductive Biases and Feature Learning

Designing deep learning models that effectively capture the underlying structure of 3D

data requires incorporating appropriate inductive biases [92]. Key considerations for

3D include locality (nearby points/voxels are related), transformation equivariance or

invariance (robustness to rotation, translation), and hierarchical structure (part-whole

relationships) [109, 116]. Architectures must be designed to leverage these biases, for

example, through local aggregation operations (spatial convolutions, neighbourhood

processing in PointNet++ [109]), specialized layers for rotation handling [18], or multi-

scale processing. Learning robust and discriminative features across different scales

and representations remains a core challenge in 3D deep learning.

2.3 Explicit Surface Fitting and Inference

Explicit surface reconstruction methods directly model the geometry of 3D objects by

fitting graph representations (e.g. meshes, Bézier patches) to input data. Unlike implicit

approaches that represent surfaces indirectly, explicit methods generate surface elements

that can be directly manipulated, offering advantages in applications requiring precise

control over surface properties. This section explores various explicit reconstruction

techniques, their mathematical foundations, and domain-specific applications.
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2.3.1 Parametric Reconstruction

Parametric reconstruction approaches represent 3D surfaces using mathematical func-

tions with finite sets of parameters. These methods are particularly valuable in computer-

aided design, reverse engineering, and applications requiring compact, editable surface

representations. By controlling a limited set of parameters, these techniques can effi-

ciently represent complex geometries while providing intuitive handles for subsequent

modification.

Mesh Representation and Parametric Surfaces

Mesh Representation Polygon meshes represent the most common explicit surface

representation in computer graphics and 3D reconstruction. A mesh consists of vertices,

edges, and faces that collectively approximate a surface. Mathematically, a mesh M can

be defined as M = (V,E, F ), where V is a set of vertices with positions in 3D space, E is

a set of edges connecting vertices, and F is a set of faces defined by sequences of edges.

While meshes offer flexibility in representing surfaces of arbitrary topology, they

present challenges in ensuring smoothness and continuity. High-quality mesh recon-

struction typically requires operations such as mesh simplification, re-meshing, and

surface fairing to balance between geometric fidelity and representation efficiency. Algo-

rithms such as Marching Cubes [82] and Poisson Surface Reconstruction [55] generate

meshes from implicit functions or point clouds, but often require post-processing to

achieve desired surface properties.

Bézier B-Spline Surface Representations Parametric surface representations form

the foundation of many computer-aided design systems and explicit reconstruction

approaches. Among these, Bézier and B-spline surfaces are particularly important due

to their mathematical elegance and intuitive control mechanisms.

Bézier curves and patches are parametric representations extensively used in CAD

due to their desirable properties, such as flexibility in shape control and ease of blending

with other curves or surfaces. The mathematical definition of a Bézier curve is grounded

in the Bernstein polynomial basis, providing a smooth and continuous representation

of the curve’s points:
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B(t) =
n∑

i=0

Bi,nPi (2.9)

=
n∑

i=0

n

i

 (1− t)n−itiPi (2.10)

where Pi are the control points, Bi,n are the Bernstein basis functions, and t is the

parameter that varies within the range [0, 1]. The properties of Bernstein polynomials

ensure that the curve will pass through the first and last control points, with the curve

being influenced by the other control points in a weighted manner to provide smooth

transitions.

While Bézier representations offer elegant formulations, they have limitations for

complex modeling tasks due to their global influence property—modifying one control

point affects the entire curve or surface. B-splines address this limitation by extend-

ing the capabilities of Bézier representations, offering local control and higher-order

continuity across segments. A B-spline surface of degree (p, q) is defined as:

S(u, v) =
n∑

i=0

m∑
j=0

Ni,p(u)Nj,q(v)Pi,j (2.11)

where Ni,p and Nj,q are the B-spline basis functions, and Pi,j are the control points.

The basis functions are defined recursively and provide Cp−1 continuity across knot

spans, enabling flexible modeling of complex geometries while maintaining smoothness

properties.

NURBS (Non-Uniform Rational B-Splines) further extend this flexibility by intro-

ducing rational weights to control points, enabling the exact representation of conic

sections and offering enhanced modeling capabilities. Piegl and Tiller [105] provide a

comprehensive survey on NURBS, highlighting their mathematical foundations and

geometric properties that make them the industry standard for CAD applications.

In 3D reconstruction, these parametric representations offer compact and editable

models that can efficiently represent complex geometries while providing intuitive

handles for subsequent modification. For instance, a bicubic Bézier patch is controlled

by a 4×4 grid of control points, while B-spline and NURBS surfaces offer more flexibility

through their local control properties, making them particularly valuable for reverse

engineering and interactive modeling applications.
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Learning-Based Mesh and Patch Generation

Modern approaches to explicit reconstruction increasingly leverage deep learning to

generate geometric representations directly from various inputs. These methods of-

ten focus on creating patch-based or full mesh representations, aiming to improve

generalizability and handle complex topologies.

Patch-based methods in 3D shape representation aim to leverage local similarities

across object categories to enhance generalizability and control over shape deformations.

These approaches face challenges in handling complex topologies and maintaining

high-fidelity details. Tretschk et al. [140] introduce PatchNets, which utilize patch-

level similarities to improve generalizability. In the context of textureless deformable

3D surfaces, Tsoli and Argyros [141] extend these concepts with their Patch-Based

Reconstruction framework for texture-less deformable 3D surfaces, achieving increased

accuracy even with limited training data. Meanwhile, Groueix et al. [35] further explore

this domain with AtlasNet, which learns 3D surface generation using parametric surface

elements, offering improved precision and generalization capabilities, though it may

struggle with complex topologies.

Recent deep learning approaches have also focused on directly generating explicit

mesh representations from inputs like single images or point clouds, offering an alterna-

tive to patch-based or implicit methods. A notable example is BSP-Net [13], which learns

to represent a 3D shape as a Binary Space Partitioning (BSP) tree. The network produces

a set of convex polytopes whose union forms the final, watertight mesh. This method

is end-to-end trainable and generates a compact, editable representation reminiscent

of constructive solid geometry. Another line of work focuses on deforming a template

mesh. For example, Mesh R-CNN [32] extends Mask R-CNN for 3D object detection

and mesh reconstruction from single images. It predicts a coarse voxel representation

which is converted to a mesh, and then refines the vertex positions of the mesh with a

graph convolutional network.

Reverse Engineering and Parametric Fitting

A key application of explicit reconstruction is reverse engineering, which focuses on

converting unstructured geometric data, such as point clouds or meshes, into parametric

CAD models suitable for engineering workflows. This often involves fitting B-spline or
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NURBS surfaces to the data.

These methods address a fundamental challenge in computational design: convert-

ing unstructured geometric data into parametric representations suitable for engineering

workflows. To address the issue of complex initial structures, Yin et al. [170] propose

NURBS-based Automated Model Generation, a robust CAD model generation method

that automates this conversion process. Buonamici et al. [7] explore Reverse Engineering

Modeling strategies, identifying limitations in current frameworks while introducing

strong assumptions on output structure. PIE-NET, introduced by Wang et al. [154], is a

technique for parametric inference of point cloud edges, which improves edge detection

accuracy but relies on assumptions about basic geometry types in CAD models. These

approaches collectively advance the state of the art in generating editable CAD repre-

sentations from raw 3D data, though they continue to face challenges with complex

geometries and maintaining feature fidelity.

B-Spline and NURBS methods are central to explicit reconstruction, offering superior

flexibility and local control compared to Bézier representations. However, fitting these

surfaces to raw data like point clouds presents challenges in feature preservation, topo-

logical correctness, and computational efficiency. A primary concern is the preservation

of sharp features during the fitting process. Liew et al. [74] investigated edge-aware

B-spline surface fitting to maintain sharpness, while Kawasaki et al. [54] proposed a

fairing technique that explicitly balances surface smoothing with feature preservation

through careful parameter tuning.

Yoshihara et al. [172] present a method for topologically robust B-spline surface

reconstruction from point clouds, effective for complex models but computationally

intensive. Meanwhile, Galvez et al. [25] use Particle Swarm Optimization for NURBS

surface reconstruction, offering high accuracy but facing challenges with complex

topologies. Abdul-Hossen et al. [1] discuss Bi-cubic B-spline Mathematical Modeling

for 3D surface reconstruction, providing surface control without altering control points.

Leal et al. [66] present a method for constructing NURBS surfaces from unorganized

points, achieving low fitting error while maintaining surface continuity.

Recent advances in B-spline surface reconstruction include neural approaches. Igle-

sias and Galvez [47] introduce functional networks for B-spline surface reconstruction,

demonstrating how neural-inspired computational models can efficiently fit B-spline
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surfaces to scattered data points. Their approach shows significant advantages in han-

dling noisy data compared to traditional methods. Similarly, Zheng and Wang [180]

propose a fast B-spline curve fitting method using the L-BFGS optimization algorithm,

significantly reducing computational complexity by optimizing control points and foot

points simultaneously.

A significant challenge in B-spline surface fitting is knot placement optimization.

Zhao et al. [179] address this with an adaptive knot placement method using a Gaussian

Mixture Model (GMM)-based continuous optimization algorithm. Their approach treats

knot positions as variables optimized through evolutionary strategies, demonstrating

improved fitting accuracy compared to uniform knot placement methods. For complex

topologies, NorouzzadehRavari and Hariri [97] propose a reconstruction method for

B-spline curves and surfaces using adaptive group testing, which efficiently identifies

optimal knot positions for complex geometries. This approach complements the topo-

logically robust methods proposed by Yoshihara et al. [172], providing comprehensive

solutions for handling arbitrary topological structures.

Constructive Solid Geometry (CSG)

CSG is a traditional solid modeling technique that defines complex shapes by applying

Boolean operations (union, intersection, difference) to simpler primitive shapes like

spheres, cubes, and cylinders. The result is a binary tree where leaf nodes are primitives

and internal nodes are operations. While powerful for parametric and editable modeling,

inferring a CSG representation from raw 3D data like point clouds is a challenging

inverse problem. Recent works have started to bridge this gap. UCSG-Net [53] is an

attempt at unsupervised discovery of CSG trees from 3D data, showcasing the potential

of integrating traditional explicit modeling with deep learning. Neural Parts [100] uses

invertible neural networks to learn expressive 3D shape abstractions, decomposing

objects into constituent parts that can be manipulated.

2.3.2 Challenges Specific to Explicit Reconstruction

While sharing fundamental hurdles with other paradigms (see Section 2.2), the im-

plementation of explicit surface reconstruction methods presents several technical

challenges specific to their nature. These primarily relate to handling input data im-
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perfections when fitting structured representations like meshes or parametric surfaces,

managing computational costs associated with these structures, and correctly capturing

complex surface topology. This section explores these specific challenges and discusses

solution approaches tailored to explicit representations.

Data Sparsity and Noise in Explicit Fitting

Fitting explicit models like meshes or B-splines directly to sparse, noisy, and incomplete

point clouds, typical of real-world scans, is inherently challenging. Traditional explicit

methods often struggle with non-uniform sampling densities and measurement noise,

which can lead to poorly fitted surfaces or topological artefacts [39].

Recent learning-based approaches attempt to address these issues by leveraging

data-driven priors. For instance, Yuan et al. [178] introduce PCN (Point Completion

Network), a probabilistic framework that models the uncertainty in point cloud data,

enabling more robust surface reconstruction in the presence of noise and outliers by

completing partial point clouds. Another pioneering work in this area is PointCleanNet

[111], which directly operates on point clouds to remove noise and outliers. It employs

a spatial transformer network to orient local patches into a canonical representation

before a PointNet-based architecture classifies points as either inliers or outliers.

To better preserve sharp features, which are often smoothed out during denois-

ing, EC-Net [177] was proposed as an edge-aware consolidation network. It uses a

regression-based approach to recover point positions relative to detected edges, which

is particularly important for explicit models where feature definition is critical. Other

methods have focused on unsupervised learning to avoid the need for paired clean and

noisy training data. Total Denoising [43] operates on the principle that denser point

clusters are more likely to represent the true underlying surface, though it can struggle

to retain fine geometric details. More recent gradient-based approaches, such as Score-

Denoise [83], frame the problem as learning the gradient of the log-probability of the

clean data distribution, allowing noisy points to be moved towards higher probability

regions.

The research gap in this area remains significant, particularly for applications re-

quiring high-fidelity reconstruction from limited data, such as in autonomous vehicles,

medical imaging, and mobile AR/VR systems. Novel approaches that integrate statisti-
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cal priors with geometric constraints show promise in addressing these challenges.

Computational Efficiency for Explicit Models

Explicit surface reconstruction methods, particularly those involving complex mesh

operations or iterative fitting of parametric surfaces, can be computationally intensive.

Processing large-scale point clouds or refining high-resolution meshes using traditional

approaches like Poisson Surface Reconstruction [55] or the Ball-Pivoting Algorithm

[5] can become prohibitively expensive. Optimizing knot placement or control point

positions for B-spline and NURBS surfaces over large datasets also presents significant

computational demands [179, 180].

Several strategies have emerged to improve computational efficiency. Hierarchi-

cal data structures, such as octrees and kd-trees, enable efficient spatial queries and

localized processing. Wu et al. [163] propose Adaptive Multi-Resolution Reconstruc-

tion, a multi-resolution approach that adaptively refines the reconstruction based on

local geometric complexity, reducing computational overhead in regions with simple

geometry.

Parallelization and GPU acceleration have also proven effective in scaling reconstruc-

tion algorithms. In recent researches, learning-based methods exploit GPU acceleration

to achieve real-time performance, with Liu et al. [80] reporting reconstruction speeds

orders of magnitude faster than traditional methods with their GPU-Accelerated Recon-

struction.

Neural network-based optimizations have also emerged as powerful tools for im-

proving computational efficiency. Thomas et al. [139] introduce KPConv (Kernel Point

Convolution), providing flexible and deformable convolution operations for point

clouds that significantly reduce computational overhead while preserving geometric

details. Similarly, Wang et al. [156] propose Dynamic Graph CNN with optimized

graph construction algorithms that achieve state-of-the-art performance on 3D shape

analysis tasks while reducing computational complexity compared to traditional point

processing methods.

For B-spline specific optimizations, Wang and Zheng [147] present a parallel and

adaptive surface reconstruction method based on implicit PHT-splines (Polynomial

splines over Hierarchical T-meshes). Their approach leverages parallel computing
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architectures to efficiently handle large-scale point cloud data, demonstrating signifi-

cant speed improvements over sequential implementations while maintaining surface

quality.

The integration of machine learning with traditional geometric processing has also

yielded promising results. Li et al. [68] propose SO-Net (Self-Organizing Network),

a permutation-invariant architecture for point cloud processing that hierarchically

extracts features from point clouds using self-organizing maps. This approach achieves

competitive performance while requiring significantly less computation time than

previous methods, particularly for large point sets.

Despite these advancements, computational efficiency remains a critical challenge,

particularly for resource-constrained devices and real-time applications. The optimiza-

tion of algorithms for specific hardware architectures and the development of adaptive,

incremental reconstruction methods represent promising research directions.

Topology Handling in Explicit Representations

Accurately capturing and representing complex topologies is a fundamental challenge

for explicit methods. Objects with intricate features, thin structures, holes, handles, or

self-intersections can be difficult to represent faithfully with standard mesh structures or

single parametric patches. Traditional parametric approaches often assume simple, disk-

like topology, limiting their direct applicability to complex real-world objects without

sophisticated patch decomposition or trimming strategies. Ensuring mesh connectivity

is correct, manifold, and free of defects requires careful algorithmic design and often

post-processing.

Several approaches address topology handling in explicit reconstruction. Podolak

and Rusinkiewicz [106] introduce Atomic Volumes, a topology-invariant representation

that can recover complex structures.

The integration of topological data analysis with deep learning provides powerful

tools for handling complex geometric structures. For instance, [8] introduced Topolog-

yNet, which leverages persistent homology to extract topological features from 3D

biomolecular structures. These features are then used by a convolutional neural net-

work to predict molecular properties, such as protein-ligand binding affinities. While

not a surface reconstruction method, TopologyNet demonstrates how topological priors
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can create robust representations for geometric deep learning, a concept relevant to

topology-aware reconstruction.

Recent advancements leverage graph-based representations for topology inference.

Wang et al. [149] introduce Pixel2Mesh, generating 3D mesh models from single RGB

images using graph convolutional networks that maintain topological consistency

during mesh generation. This approach has been extended in Pixel2Mesh++ [148],

which improves topological accuracy for complex objects.

For CAD-specific topology handling, Yin et al. [170] present a NURBS-based au-

tomated model generation approach that preserves topological features essential for

engineering applications. Their method adaptively handles complex topological con-

straints while ensuring manufacturability of the reconstructed models.

Learning-based approaches have shown particular promise for complex topology

inference. Tang et al. [134] propose a skeleton-bridged deep learning method for gener-

ating meshes with complex topologies from single RGB images, effectively handling

objects with holes, handles, and non-manifold structures that challenge traditional

approaches.

For point cloud-based reconstruction with challenging topologies, Qin et al. [110]

develop a mass-driven topology-aware curve skeleton extraction method for incomplete

point clouds. Their approach robustly infers topological structure even from partial

observations, facilitating complete surface reconstruction from incomplete data.

Neural implicit functions have also demonstrated effectiveness in handling complex

topologies. Williams et al. [160] present a deep geometric prior for surface recon-

struction that naturally accommodates arbitrary topological structures without explicit

topology specification. Similarly, Michalkiewicz et al. [89] introduce implicit surface

representations as layers in neural networks, enabling end-to-end learning of complex

topological structures directly from data.

For Bézier patch-based reconstruction, a critical challenge involves determining

the appropriate patch layout and connectivity to accurately represent the underlying

topology. This challenge becomes particularly evident when reconstructing objects

with sharp features or varying curvatures, where a single patch representation may be

insufficient.
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2.3.3 Applications and Domain-Specific Solutions

Explicit surface reconstruction methods find applications across diverse domains, each

with specific requirements and constraints. This section explores domain-specific appli-

cations and tailored solutions that leverage the strengths of explicit representation.

CAD/CAM Applications

Computer-Aided Design (CAD) and Computer-Aided Manufacturing (CAM) represent

primary application domains for explicit surface reconstruction, particularly for reverse

engineering and quality control. These applications demand high precision, editability,

and compatibility with industry-standard workflows.

For quality control applications, Jiang et al. [51] demonstrate PointGroup, an auto-

mated inspection system that reconstructs manufactured parts as parametric surfaces,

enabling precise comparison with design specifications. The system leverages Bézier

patches to represent complex surface features, providing intuitive visualization of

deviations.

Recent advancements in machine learning have enhanced CAD/CAM applications

by automating feature recognition and parameter estimation. Sharma et al. [121] intro-

duce CSGNet, a deep learning framework that identifies CAD features from raw point

clouds, facilitating automatic generation of parametric models. These approaches signif-

icantly reduce the manual effort required in traditional reverse engineering workflows.

Interactive Modeling

Interactive modeling applications leverage the intuitive controllability of explicit surface

representations, enabling users to refine and manipulate reconstructed geometries.

These applications span various domains, from digital content creation to medical

image analysis.

In the context of digital content creation, Takayama et al. [128] introduce GeoBrush, a

system for interactive patch-based modeling, allowing artists to create and edit complex

surfaces through intuitive manipulation of control points. This approach demonstrates

the potential of parametric representations in creative workflows, where artistic control

and expressiveness are paramount.
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Recent developments in mixed reality have expanded the scope of interactive model-

ing. Newcombe et al. [95] demonstrate KinectFusion, a real-time surface reconstruction

and editing in immersive environments, enabling intuitive spatial interaction with

digital models. These advancements highlight the potential of explicit representations

in human-computer interaction, particularly for spatial computing applications.

Interactive systems for parametric surface editing have seen significant advance-

ments in usability. Duncan et al. [21] present Interchangeable Components for Hands-

On Assembly Based Modelling, a system that enables intuitive physical interaction

with digital B-spline surfaces through tangible interfaces. This approach bridges the

gap between physical and digital modeling paradigms, making parametric surface

manipulation more accessible to non-expert users.

For collaborative environments, Pena-Rios et al. [103] introduce a framework for

mixed agents in virtual observation lenses for immersive learning, enabling multiple

users to collaboratively edit and refine parametric surface models in shared virtual

spaces. Their approach integrates fuzzy logic systems [102] to handle ambiguity in user

interactions, improving the robustness of collaborative editing sessions.

Learning-based approaches have also enhanced interactive modeling capabilities.

Liu et al. [77] present an Interactive 3D Modeling system with a Generative Adversar-

ial Network that learns from user interactions to suggest plausible completions and

modifications to partial models. This approach reduces the manual effort required for

complex modeling tasks while preserving user control over the final result.

For architectural applications, interactive furniture layout systems by Merrell et

al. [176] and Yu et al. [86] demonstrate how constraint-based interactive systems can

incorporate design guidelines into the modeling process, ensuring that user-created

models satisfy domain-specific requirements while maintaining creative freedom.

The research challenges in interactive modeling include balancing automation with

user control, ensuring real-time performance, and developing intuitive interaction

metaphors. Bézier patch-based approaches offer promising solutions due to their

compact representation and intuitive control mechanisms, though challenges remain in

handling complex topologies and ensuring smooth transitions between user edits.
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2.4 Implicit Reconstruction and View Synthesis

The faithful representation and rendering of 3D shapes and scenes is a fundamental

goal in computer vision and graphics. Traditional methods often rely on discrete

representations like meshes, voxels, or point clouds. Recently, representing scenes using

continuous functions learned implicitly from data by neural networks has emerged

as a powerful alternative paradigm [165]. An implicit neural representation typically

defines a function fθ : R3 → Rk, parameterized by network weights θ, that maps

a 3D coordinate p ∈ R3 to a property value (e.g., occupancy, signed distance, color,

density). These representations offer advantages in memory efficiency, the ability to

represent arbitrary topologies without fixed resolution limits, and the potential to

capture fine details. This section reviews key developments in this area, focusing on

methods relevant to 3D reconstruction, charting the progression from foundational

geometric representations to the influential Neural Radiance Field (NeRF) framework,

and discussing challenges and solutions involving priors, efficiency, and fidelity, which

motivate the contributions presented later in this thesis.

2.4.1 Foundational Neural Implicit Representations

Early works focused primarily on representing 3D geometry implicitly. Occupancy

Networks [87] pioneered learning a continuous function fθ(p) ∈ [0, 1] representing

the occupancy probability at point p, with the surface implicitly defined as the 0.5-

level set {p | fθ(p) = 0.5}. While versatile, extracting features from raw point clouds

for occupancy prediction proved challenging. Convolutional Occupancy Networks

(ConvONet) [104] addressed this by integrating convolutional encoders, leveraging

their ability to extract robust local features from structured inputs like projected point

clouds, leading to improved reconstruction, particularly from noisy data. Subsequent

refinements like Dynamic Plane ConvONets [75] and Sign-Agnostic CONet [135] further

enhanced feature extraction and handled ambiguities in local predictions, respectively.

Representing geometry using Signed Distance Functions (SDFs) offered an alter-

native with useful properties, such as providing surface normals via the gradient.

Here, fθ(p) predicts the shortest distance to the surface, with the sign indicating in-

side/outside. DeepSDF [99] demonstrated learning continuous SDFs conditioned on
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latent shape codes, enabling shape completion and representation by leveraging strong

learned shape priors. To improve SDF learning directly from point clouds without

requiring pre-trained shape spaces, methods like Neural-Pull [84], which pulls query

points towards the surface, and Neural-IMLS [157] / Deep Implicit MLS [78], which

adapt moving least-squares principles, were developed to handle noisy and unoriented

point clouds. MeshSDF [114] explicitly connected implicit SDFs back to meshes via

a differentiable iso-surface extraction layer, facilitating integration with mesh-based

pipelines.

Other important developments include architectural innovations and alternative

formulations. Implicit Geometric Regularization [34] used the Eikonal loss (||∇f || = 1)

to encourage learned functions to behave like true SDFs. SIRENs [124] employed

periodic activations (sin(x)) enabling MLPs to represent fine details more effectively

than standard ReLU networks, addressing the spectral bias problem but requiring

careful initialization. Local Deep Implicit Functions (LDIF) [31] offered accuracy and

compactness by decomposing space into locally learned functions. Neural Kernel Fields

[159, 46] achieved scalable, state-of-the-art reconstruction by framing the problem

through learned kernel ridge regression.

Concurrent to these reconstruction-focused methods, early generative models like

IM-NET [14] also explored learning implicit fields, typically by training autoencoders

or GANs on shape collections to learn a latent space from which new implicit shapes

could be generated.

2.4.2 Neural Radiance Fields (NeRF) for Geometry and Appearance

A significant breakthrough unifying geometry and appearance representation for photo-

realistic rendering was Neural Radiance Fields (NeRF) [90]. NeRF models a scene using

a continuous 5D function fθ : (x,d)→ (c, σ), parameterized by an MLP, that maps a 3D

coordinate x and viewing direction d to an emitted RGB color c and volume density σ.

Rendering involves querying fθ along camera rays and compositing the outputs using

differentiable volume rendering:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, where T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)



50 Literature Review and Technical Foundations

Optimization minimizes the photometric error between rendered and ground truth

pixels. While primarily demonstrated for view synthesis, the learned density field σ

implicitly encodes the scene geometry. However, the original NeRF faced significant

challenges: extremely slow training and rendering due to dense MLP queries, difficulty

in extracting high-quality geometry from the density field, and a per-scene optimization

process limiting generalization. Subsequent work has largely focused on addressing

these limitations.

Extensions for Efficiency and Scalability

Numerous works targeted NeRF’s efficiency. Some focused on faster network inference

(FastNeRF [30]) or replaced the MLP with explicit data structures. These explicit

structures include sparse voxel grids (Plenoxels [173]), which can be directly optimized

for super-fast convergence [126], or point-based features (Point-NeRF [166]). Mip-NeRF

[4] addressed aliasing and scale ambiguity issues by rendering anti-aliased conical

frustums instead of rays, improving detail preservation. Instant-NGP [93] introduced

multi-resolution hash grids, enabling dramatically faster training by allowing a smaller

MLP to query spatially hashed features. This technique, along with tensor factorizations

like TensoRF [10], proved highly influential in reducing memory and computation.

Other strategies involve distributing the network, such as KiloNeRF [112], which uses

thousands of small MLPs for faster rendering.

Hierarchical representations have also been crucial for scalability and managing

levels of detail. Early hybrid methods like OctNetFusion [115] fused depth data into an

octree-guided implicit representation. More recent works like OctField [133], PlenOc-

trees [174], and Neural Geometric Level of Detail [129] use octrees to efficiently manage

large scenes. For very large-scale environments, decomposition approaches like Block-

NeRF [130] and CityNeRF [164] model scenes as collections of individual NeRFs. Fourier

features [132] remained important for detail across many of these methods. Relatedly,

3D Gaussian Splatting (3DGS) [56] emerged, using an explicit set of optimizable 3D

Gaussians to achieve state-of-the-art real-time rendering, representing a shift towards

explicit-hybrid approaches.
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Improving Surface Reconstruction from Radiance Fields

Directly extracting accurate surfaces from NeRF’s density σ proved difficult. To bridge

NeRF’s rendering quality with the geometric definition of SDFs, NeuS [150] reformu-

lated volume rendering using an underlying SDF network fθ(x). By deriving density

from the SDF such that it concentrates near the zero-level set, NeuS produces weights

peaked at the surface, enabling high-quality surface extraction via Marching Cubes with-

out explicit mask supervision. This combination proved powerful for reconstruction.

NeuS2 [155] integrated hash encodings for significant speedups, making SDF-based

neural rendering more practical.

2.4.3 Incorporating Priors and Handling Sparsity

Implicit methods, especially NeRF-based ones optimized via photometric loss, often

struggle with sparse input views or noisy data, leading to geometric artefacts or incom-

plete reconstructions. Incorporating prior knowledge can regularize the optimization

and improve robustness. Such priors can be integrated explicitly via encoders, which

carries a trade-off between feature compression and information loss, or implicitly

through architectural choices and regularization losses.

Depth and Geometric Priors

Explicit depth or geometric cues provide strong supervisory signals. MINE [69] used

MPI concepts for depth-aware NeRF, while DS-NeRF [19] directly used sparse SfM

depth as supervision. RegNeRF [96] regularized the learned geometry and appear-

ance to improve interpolation from sparse views. Priors on geometric properties like

symmetry can also be incorporated; SNeS [48] leverages symmetry for neural surface

reconstruction from incomplete data. For surface methods, SparseNeuS [81] used aux-

iliary geometry encoding volumes. Depth-NeuS [50] incorporated depth consistency

losses. NeuRIS [146] leveraged estimated surface normals within the loss to better recon-

struct poorly textured regions where photometric loss is ambiguous. Ray-ONet [6] used

ray intersection features. Intrinsic Neural Fields [60] applied geometric regularization

(Laplace-Beltrami) for better texture. Furthermore, leveraging strong structural priors,

such as Manhattan-world assumptions, can significantly improve scene representation
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and completion from sparse inputs [37].

Object-Centric, Patch-Based, and Generalization Priors

Other priors operate at the object level or aim for better generalization across scenes.

ShaRF [113] and AutoRF [94] used object-centric formulations for single-view NeRF.

Kulkarni et al. [61] predicted ray distances. Patch-based rendering [125] and view

interpolation (IBRNet [153]) improved generalization by reasoning locally or from

nearby views. Methods like PixelNeRF [175] enabled generalization by conditioning

the implicit network on image features extracted from the input views. CompNVS [72]

introduced a composable approach for novel view synthesis to improve generalization

across scenes, supervising scene codes with RGB-D data.

Semantic Priors

Beyond purely geometric priors, semantic understanding of the scene can also guide

reconstruction. Semantic NeRF [181] incorporates semantic segmentation labels into

the radiance field, allowing rendering of semantic maps alongside color and geometry.

Panoptic Neural Fields [62] further extend this to instance-level understanding, repre-

senting each object instance with its own latent code, enabling instance segmentation

and manipulation within the neural field representation. Integrating such semantic

knowledge can help resolve ambiguities and improve the coherence of complex scene

reconstructions.

Meta-Learning and Learned Initializations

Meta-learning offers ways to learn priors over function spaces or optimization processes

themselves, often improving convergence or few-shot adaptation. MetaSDF [123]

learned SDF priors for reconstruction from partial data. Learned initializations [131]

significantly speed up optimization by providing better starting weights. Higher-Order

Function Networks [91, 158] and Deep Meta Functionals [76] learned mappings from

inputs to implicit network weights. Curriculum DeepSDF [20] used curriculum learning.

These highlight learning priors *about* the models or learning process.
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2.4.4 Challenges Specific to Implicit Representations

While implicit neural representations have shown remarkable progress, several key

challenges specifically related to their formulation and optimization persist, motivating

ongoing research and the work presented in this thesis. These challenges, distinct from

but related to the general issues outlined in Section 2.2, primarily concern achieving high

fidelity, managing computational costs associated with neural networks, and ensuring

effective learning and generalization.

Representation Fidelity and Detail in Implicit Fields

Capturing fine geometric details and high-frequency appearance accurately within

continuous implicit functions remains a central challenge. Standard MLP architectures

often exhibit a spectral bias, favouring lower frequencies and struggling to represent

sharp edges or intricate textures. While techniques like Fourier features [132], periodic

activations (SIRENs [124]), and style integration [98] help, there is often a trade-off

between representing fine details and ensuring global coherence or avoiding overfitting

to noise. Strong priors, while helpful for robustness, can lead to over-smoothed results,

losing important high-frequency surface components. To address this, hybrid repre-

sentations aim to combine the advantages of implicit functions with explicit surface

meshes. A prominent example, Deep Marching Tetrahedra (DMTet)[122], leverages

a deformable tetrahedral grid to define an implicit SDF, which is then converted to

an explicit mesh via a differentiable marching tetrahedra layer. This allows for direct

optimization of surface geometry, enabling the model to synthesize fine details with

fewer artifacts than methods that only regress an implicit function [122]. Other hybrid

approaches [27] and techniques for improved mesh extraction [12, 114] also offer partial

solutions. Addressing this balance motivates exploring alternative paradigms, such as

incorporating user guidance for selective refinement, as investigated in the SeedNet

framework (Section 3.1 in Chapter 3).

Computational Efficiency of Neural Fields

Implicit methods rely on neural networks, whose training and inference can be com-

putationally demanding. Original NeRF required extensive training time and slow
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rendering due to dense queries per ray [90]. While the approaches detailed in Section

2.4.2, such as hash grids (Instant-NGP [93]) and explicit data structures (Plenoxels [173],

3DGS [56]), have dramatically reduced training and rendering times, the computational

demands (memory footprint, training cost, inference latency for network-based meth-

ods) remain significant, especially for large scenes or on resource-constrained devices.

Research continues into sparse representations, efficient sampling strategies, network

pruning/distillation, and hardware acceleration [63]. Integrating priors strategically, as

explored in NeuLap (Chapter 3), can also improve convergence efficiency.

Generalization and Few-Shot Learning for Implicit Models

Many implicit methods, particularly early NeRF variants, are optimized per-scene,

lacking the ability to generalize to new scenes without retraining. Achieving effec-

tive generalization, especially when learning from only a few input views (few-shot

reconstruction), is a major challenge. As discussed in Section 2.4.3, progress relies

on developing architectures that can condition effectively on input views or features

(e.g., PixelNeRF [175]), using robust regularization techniques specifically designed for

few-shot scenarios (e.g., RegNeRF [96]), or leveraging meta-learning to learn adaptable

priors over shapes or scenes (e.g., MetaSDF [123]). While powerful, meta-learning is

often constrained by the network’s capacity to learn a sufficiently general yet strong

prior, and the bi-level optimization can be demanding and sensitive to the task distribu-

tion. Balancing prior strength with fidelity to observed data is critical. A fundamental

challenge in prior integration is preventing the prior from over-constraining the model,

which can suppress fine details and lead to results that are plausible but not faithful to

the input data. This motivates research into dynamic strategies where the influence of a

prior guiding signal changes or decays during the inference process. Such an approach

could provide strong regularization initially and then progressively allow the network

to fit the fine-grained details, a concept explored later in this thesis (Chapter 3).

2.4.5 Generative and Interactive Implicit Models

Beyond reconstructing existing scenes, implicit representations facilitate generative

modeling [14, 88, 70]. Recent advances, particularly using diffusion models [107, 168],

enable compelling text-to-3D generation. Furthermore, the inherent limitations of
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purely automated reconstruction, particularly in ambiguous or data-sparse scenarios,

motivate research into interactive models. While most research pursues full automation,

enabling a human-in-the-loop (explored in Section 3.1 of Chapter 3) allows for targeted

refinement and control, addressing ambiguities or enforcing specific constraints not

easily captured by automated priors alone.

This review highlights the rapid evolution of implicit neural representations, from

foundational geometric methods to sophisticated radiance fields capable of photorealis-

tic rendering and detailed reconstruction. Key challenges remain in fidelity, efficiency,

and generalization, driving research towards better architectures, prior integration, and

interactive paradigms, setting the stage for the specific contributions of this thesis. For

comprehensive surveys, readers are referred to [137, 138], [165], [28], and [101].

2.5 General-Purpose Frameworks for Deep Spatial Learn-

ing

While the previous sections focused on explicit and implicit representations primar-

ily for reconstruction and view synthesis, deep learning offers a broader range of

frameworks applicable to diverse 3D spatial data types and tasks. Processing 3D data,

whether unstructured point clouds, regular voxel grids, or structured meshes, presents

unique challenges related to representation choices, computational scale, efficiency, and

the need for appropriate spatial inductive biases (discussed generally in Section 2.2).

This section reviews fundamental architectural paradigms developed to address these

challenges for tasks like classification, segmentation, detection, and completion on vari-

ous 3D data formats [3]. Understanding these general-purpose frameworks provides

context for many methods in the field and informs the design of novel approaches.

This section is intentionally selective, focusing on the general-purpose frameworks

most relevant to the research presented in this thesis, rather than providing an exhaus-

tive survey of the entire field.

2.5.1 Architectural Paradigms for 3D Deep Learning

Several dominant architectural paradigms have emerged, each tailored to specific

strengths and weaknesses of different 3D representations and incorporating different
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inductive biases.

Point Cloud Networks and Convolutional Approaches

Point clouds, as raw, unstructured sets of points P ⊂ R3, lack explicit topology and

are unordered. A key challenge is designing networks that are permutation-invariant,

meaning the output is independent of the order of points in the input set. PointNet [108]

pioneered this using shared Multi-Layer Perceptrons (MLPs) applied independently to

each point, followed by a symmetric aggregation function (e.g., max-pooling) to pro-

duce a global feature vector, effectively achieving permutation invariance. PointNet++

[109] addressed PointNet’s limitation in capturing local structures by introducing a

hierarchical architecture. It recursively applies PointNet-like modules to local neigh-

bourhoods sampled at different scales (using techniques like Farthest Point Sampling

and ball queries), enabling the learning of features that capture both local geometric

details and global context, reflecting a hierarchical inductive bias.

Many subsequent works focused on defining convolution-like operations directly on

point clouds. Examples include PointCNN [71], Pointwise CNNs [45], Relation-Shape

CNN [79], and Geo-CNN [65]. PointConv [161] used MLPs to learn weighting and

density functions for aggregation. KPConv [139] proposed deformable kernel points

adaptable to local geometry. DGCNN [156] dynamically constructed local graphs. Other

approaches like SO-Net [68] used self-organizing maps, while PCPNet [36] focused on

learning local shape properties. FoldingNet [167] proposed a point cloud auto-encoder

using a graph-based deformation approach. These methods aim to leverage the success

of 2D CNNs by adapting convolutional principles to the irregular structure of point

clouds.

Voxel-Based and Hierarchical Methods

Representing 3D data on regular volumetric grids (voxels) allows the direct applica-

tion of standard 3D Convolutional Neural Networks (CNNs), leveraging their strong

performance in image analysis. Early works like 3DShapeNets [162] and VoxNet [85]

demonstrated this for shape classification and retrieval. Methods like 3D-R2N2 [16]

used recurrent 3D CNNs to integrate information from multiple views for reconstruc-

tion. However, the primary challenge of voxel representations is their cubic complexity
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in memory and computation with respect to resolution, limiting their practical appli-

cation to relatively low-resolution grids. To address this scalability issue, sparse voxel

representations and associated sparse convolution operations [33, 15] were developed,

focusing computation only on non-empty voxels, making deeper networks and higher

effective resolutions feasible.

Hierarchical data structures like octrees provide an alternative, adaptive approach to

partitioning 3D space, offering better memory efficiency for many geometries than dense

grids. OctNet [116], O-CNN [152], and Octree Generating Networks [136] introduced

methods for applying convolutions or generating data directly on octree structures.

These methods naturally incorporate a hierarchical inductive bias, enabling deeper

networks on higher-resolution data compared to dense voxel approaches.

Attention Mechanisms and Transformers in 3D

The success of Transformers [142] in NLP, driven by the self-attention mechanism,

spurred interest in applying them to 3D data. Self-attention allows models to capture

long-range dependencies by computing pairwise interactions between all elements

in a set, offering adaptive receptive fields unlike fixed-kernel convolutions. This is

appealing for 3D data where global context and relationships between distant parts

can be important. Furthermore, attention mechanisms are inherently permutation

equivariant, making them suitable for point clouds, as demonstrated by Set Transformer

[67] and Point Cloud Transformer (PCT) [38].

However, the standard self-attention mechanism has quadratic complexity O(n2)

with respect to the number of input elements n, making it computationally expensive for

large point clouds or high-resolution voxel grids. This motivates research into efficient

attention variants or applying attention within more structured representations.

As will be explored in Chapter 3, applying attention mechanisms within hierarchical

structures like octrees offers a promising direction. An octree provides an efficient,

adaptive representation, and its structure allows for:

• Multi-scale Attention: Applying attention both within levels (capturing local

context) and across levels (propagating global information).

• Implicit Positional Encoding: Leveraging the tree structure’s inherent spatial

information.
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• Efficiency: Potential for sparse attention mechanisms that exploit the hierarchy,

mitigating the quadratic complexity of dense attention.

This combination aims to leverage the expressive power of attention for capturing

complex dependencies while retaining the efficiency and multi-scale benefits of hierar-

chical representations, motivating the development of frameworks like the Attention

Propagation method proposed in this thesis.

Graph Neural Networks (GNNs)

Graph Neural Networks (GNNs) provide another general framework, applicable when

3D data can be represented as a graph (e.g., meshes [41, 23], or point clouds where

neighbourhood graphs are constructed). GNNs operate by passing messages between

connected nodes, iteratively updating node features based on their local neighbourhood

[59]. Different GNN variants use different message passing and aggregation functions,

such as graph attention (GAT [143]), relational convolutions (R-GCN [119]), continuous

B-Spline kernels (SplineCNN [24]), hierarchical pooling (DiffPool [171]), or U-Net like

structures (Graph U-Nets [26]) [163, 182]. GNNs offer flexibility in handling irregular

structures but rely on the meaningful definition of graph connectivity. Unsupervised

GNNs like Variational Graph Auto-Encoders [58], Deep Graph Infomax [144], and

GraphTER [29] also contribute to representation learning.

2.5.2 Learning Strategies and Outlook

Beyond core architectures, various learning strategies enhance the capabilities of these

frameworks. Self-supervised learning aims to learn meaningful representations from

unlabeled 3D data [118, 42, 11], reducing reliance on large annotated datasets. Few-shot

learning methods tackle scenarios with very limited labeled data. Knowledge distilla-

tion can compress large models for efficient deployment. These strategies, combined

with the architectural paradigms discussed, continue to push the boundaries of what is

possible with deep learning on 3D spatial data, enabling applications from autonomous

driving and robotics to virtual reality and digital twins.
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2.6 Summary and Research Gaps

This chapter has presented a comprehensive review of the literature in 3D reconstruction

and spatial learning. We began by establishing fundamental concepts in Section 2.1,

including diverse data representations (point clouds, meshes, implicit fields, etc.) and

the challenges inherent in processing 3D data (Section 2.2), such as handling sparsity,

noise, computational scale, and ensuring geometric fidelity.

We then surveyed explicit reconstruction methods (Section 2.3), particularly para-

metric approaches like B-spline and NURBS surfaces, which offer compact and editable

representations crucial for CAD but face challenges in topology handling and fitting

to imperfect data. Next, we explored the rapidly evolving field of implicit neural rep-

resentations (Section 2.4), from foundational methods like DeepSDF and Occupancy

Networks to the influential NeRF framework and its derivatives (e.g., NeuS) that

unify geometry and appearance modeling. We highlighted their strengths in topology

flexibility and detail capture but also noted challenges in surface extraction quality, com-

putational cost, and robustness to sparse inputs. Finally, we reviewed general-purpose

deep learning frameworks (Section 2.5) applicable across 3D tasks, including point

cloud networks (PointNet++), voxel-based CNNs, hierarchical methods (OctNet), and

the growing use of attention mechanisms and GNNs.

This review reveals several persistent challenges and research opportunities:

• Efficiency and Scalability: Processing large-scale 3D data and training complex

neural fields remain computationally expensive, despite advances like hash grids

and sparse structures. There is a need for more efficient architectures and training

strategies, particularly for real-time and interactive applications.

• Geometric Fidelity and Detail Preservation: Achieving high-fidelity reconstruc-

tions that accurately capture sharp features and fine details, especially with im-

plicit methods prone to over-smoothing or requiring dense data, remains difficult.

Balancing fidelity with robustness is key.

• Robustness to Imperfect Data: Handling sparse, noisy, and incomplete input

data, common in real-world scenarios, continues to be a major hurdle for both

explicit fitting and implicit optimization methods.
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• Integration of Priors and User Control: Effectively incorporating geometric

priors (e.g., smoothness, planarity) or semantic knowledge to guide reconstruction

is crucial, especially with limited data. Furthermore, enabling intuitive user

interaction for refinement and control offers a way to overcome limitations of fully

automated methods.

• Generalization and Adaptability: Many state-of-the-art methods, particularly

neural fields, require per-scene optimization. Developing frameworks that gener-

alize well to unseen data or adapt quickly with limited examples is essential for

broader applicability.

• Robustness and Quality of Parametric Reconstruction: Enhancing the robustness

and topological handling of explicit parametric methods, like Bézier patch recon-

struction, especially from noisy inputs, remains an important goal for applications

demanding editable, structured outputs.

• Hierarchical and Multi-Scale Reasoning: Effectively capturing and propagating

information across different scales within 3D data is crucial for understanding

both local details and global structure, motivating research into architectures like

hierarchical attention mechanisms.

These identified gaps directly motivate the research objectives of this thesis. Objec-

tive 1, enhancing parametric reconstruction quality, addresses the limitations discussed

in Section 2.3 and is realized in the research presented in Section 3.3 in Chapter 3.

Objective 2, addressing the need for user control, motivates the interactive SeedNet

framework presented in Section 3.1 in Chapter 3, building on insights from Sections 2.3

and 2.4. Objective 3, improving the efficiency and fidelity of neural fields, tackles

challenges from Section 2.4 and inspires the NeuLap approach presented in Section 3.2

in Chapter 3. Finally, Objective 4, developing scalable and adaptive frameworks, con-

nects to challenges in Sections 2.2 and 2.5 and motivates the exploration of hierarchical

attention mechanisms presented in Section 3.4 in Chapter 3.
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Proposed Methods for 3D Reconstruction

This chapter presents the core methodological contributions of this thesis, detailing

four novel deep learning approaches for 3D reconstruction. These methods addresses

the challenges discussed in Chapter 2, including representation, user interaction, and

computational efficiency.

3.1 Seed-Net: Interactive Refinement with Human Feed-

back

SeedNet addresses the challenge of balancing fidelity to input data with the general-

ization capability of learned priors in 3D reconstruction. The method aims to prevent

over-interpolation from averaged training data, thereby preserving details while infer-

ring global structures. This is achieved through a combination of interactive human

guidance and attention mechanisms. A human-in-the-loop (HITL) approach is moti-

vated by the limitations of fully automated, prior-guided reconstruction methods. These

methods can be over-constrained by learned priors, leading to results that are overly

influenced by the global features of the training data or that suppress unique local de-

tails. This can manifest as over-smoothed regions or the loss of specific, high-frequency

features that are critical for a particular application. By introducing human guidance,

the reconstruction process can be locally steered, allowing users to inspect the initial

output and selectively refine areas where the automated reconstruction is insufficient.
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To validate the demand for such interactive control, a preliminary user study was

conducted, targeting professionals in relevant fields. The study involved 40 participants

from the game development industry and 7 from the XR (Extended Reality) industry.

Within the game industry cohort, a significant portion (17 out of 40) felt that current

implicit reconstruction methods did not align well with their established modeling

workflows and thus did not provide further feedback. However, of the remaining

23 interested participants, a strong majority (17 out of 23) expressed a clear desire for

manual control over the generation process to refine the results. In the XR industry, 4 out

of 7 participants also indicated a positive inclination towards having such interactive

refinement capabilities. While the scale of this user study is limited, the feedback

strongly suggests a practical need for user-controllable tools that bridge the gap between

automated reconstruction and manual artistic control, empowering users to preserve

essential details and correct prior-induced artifacts.

SeedNet offers two main advantages:

1. Independence from pre-trained networks for initial OctTree construction from

input, enhancing generalizability, especially with noisy or out-of-distribution data

that might disrupt OctTree generation.

2. Introduction of human interaction to guide reconstruction, focusing efforts on

parts critical for downstream tasks.

SeedNet utilizes a sparse grid representation for efficient 3D scene encoding and

manipulation. Human guidance provides cues for selective refinement in specific

regions, allowing desired details to be represented within their local coordinate systems.

Attention mechanisms applied over human guidance and 3D space, enable heuristic

refinement across the entire scene. This approach preserves fine-grained details and

considers local structures and symmetry priors, enhancing the accuracy and realism of

the implicit reconstruction.

The core insight is that the surfaces of most man-made 3D objects consist of pre-

dominantly low-frequency signals with scattered high-frequency details, such as edges

and corners. Interactive guidance enables users to specify these high-frequency details,

which are then used to heuristically infer improvements for the overall reconstruction.

Users can iteratively refine reconstructions by selecting "seeds" (local areas for refine-
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ment). The model re-samples these areas at higher resolution and encodes the result

using an improved projection method. During decoding, each re-sampled encoding

combines with feature codes from the sparse grid to predict values for query points.

These predictions are merged by calculating attention weights relative to the seed’s

encoding and the feature code at the query point.

3.1.1 Human-in-the-loop Pipeline Design

The general pipeline for deep learning-based 3D reconstruction involves an encoder

network (Encg) that maps input data (e.g., a point cloud) into a latent code C. For local

encoders (e.g., grid-based), this results in multiple latent codes ci for each region i, pos-

sibly with a global feature code cg, denoted as C = {c1, ..., cn, cg}. Surface reconstruction

from a Deep Implicit Function (DIF) typically involves sampling query points Q ⊂ R3.

For each query point q ∈ Q, a latent code cq is derived from C and q’s position. A

decoder then evaluates the scalar field value yq:

yq = f(cq, q) (3.1)

SeedNet introduces human interaction by allowing users to iteratively select po-

sitions, termed seeds, for refinement. The system re-samples data around each seed

to refine the reconstruction based on the encoded local information, then an attention-

based mechanism, informed by learned priors of 3D scenes, enables each seed to

contribute globally. For example, in reconstructing a meeting room, a seed placed on a

chair should ideally contribute to refining all chairs in the scene.

Let S be the set of seeds, with each seed s ∈ S defined by parameters like position,

re-sampling radius, method, and pose. An initial latent code cs for the seed is derived

from the original encoded global input. A seed encoder, Encl, then processes each s ∈ S

with its corresponding cs to produce the final seed code zs = Encl(cs, s) ∈ Z.

With global encoding C from Encg and seed encodings Z from Encl, the field value

yqs for a query point q and a seed s is:

yqs = F (cq, zs, q) (3.2)

This can be viewed as cq 7→ (zs 7→ (q 7→ y)), where cq generates a function mapping seed

information to a querier for each seed.



64 Proposed Methods for 3D Reconstruction

To enable global contributions, learned priors are essential. An affine transformation

matrix T q
s (output by an MLP receiving (zs, cq, q)) projects the query point q to the seed’s

local space:

yqs = F (cq, zs, T
q
s × q) (3.3)

The affine transformation matrix T q
s , learned by an MLP, is the core mechanism designed

to address coordinate ambiguity. By projecting the query point q into the seed’s local

coordinate system, the decoder F can operate in a canonical space. This helps decouple

the local refinement from its global position and orientation. This process allows the

network to implicitly learn local symmetries, contributing to translation and rotation

invariance to a large extent. However, full equivariance is not formally guaranteed

by this design alone. Its effectiveness depends on the diversity of the training data.

The model’s robustness is therefore enhanced by standard data augmentation, such as

random transformations applied during the base network’s training.

Alternatively, for SDF-based models, a deformation approach might be suitable:

yqs = F (cq, G(zs, cq, q)) (3.4)

where G is a learnable function deforming the prediction from Equation 3.1 based on

seed s. Equation 3.3 is often more suitable for occupancy fields.

3.1.2 Differentiable Feedback Layer

To combine predictions from multiple seeds into a unified outcome, a contribution

value (attention weight) λq
s is computed for each query point q and seed s by a learnable

function A(cq, zs, q) 7→ λq
s. These weights are normalized using a softmax operation

across all seeds for a given query point, yielding λ̇q
s. The combined prediction for the

approach in Equation 3.3 is:

yq =
∑
s∈S

λ̇q
sF (cq, zs, T

q
s × q) (3.5)

And for the deformation approach (Equation 3.4):

yq = F (cq,
∑
s∈S

λ̇q
sG(zs, cq, q)) (3.6)

While not explicitly formulated as a standard Transformer attention, the mechanism

here shares the core concept. Given a query point q, we can conceptualize:
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• The Query Qq derived from the query point position q and its global context

feature cq.

• The Keys Ks derived from each seed’s latent code zs (and potentially its position/-

context).

• The Values V s as the individual implicit field predictions yqs = F (cq, zs, T
q
s × q)

generated by each seed-specific path.

The learnable function A computes compatibility scores between the query Qq and keys

Ks to produce the weights λq
s. The subsequent softmax normalization and weighted

sum (Equation 3.5) effectively perform the attention mechanism, combining the values

V s based on query-key compatibility.

A key advantage is that inference for each seed is individual. The computational

cost for the main inference grows linearly with the number of seeds. During interaction,

previously computed results for existing seeds do not need re-inference; only the

combination and new seed outputs are computed.

3.1.3 Training Process

The training process for SeedNet, particularly the Seed-ConvONet implementation,

involves two main stages:

1. Global Network Pre-training/Loading: First, a base global reconstruction net-

work (e.g., ConvONet) is trained on the target dataset or a pre-trained version is

loaded. This network provides the initial global scene encoding (C) and a baseline

reconstruction (ŷqg).

2. Seed Network Training: Second, the seed-specific components (Encl, F or G,

transformation MLP, attention function A) are trained. During this stage, for each

training sample, K points are randomly selected from the input point cloud to act

as seeds. The seed encoder Encl and the seed decoder (F or G) are shared across

all seeds. The network is trained to minimize a combined loss function:

Ltotal = αLglobal + βLlocal

where Lglobal is the reconstruction error calculated after combining the predictions

from all seeds and the global network (using Equation 3.7), and Llocal is the sum or
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average of reconstruction errors for each seed’s individual prediction (ŷqs) before

combination. In our experiments, both α and β were set to 1.

It is important to note that the human interaction aspect of SeedNet, specifically the

selection of seeds for refinement, occurs after the network has been fully trained. No

further network training or fine-tuning is performed during the interactive refinement

phase.

3.1.4 Progressive Refinement Strategy

This section demonstrates an implementation adapting SeedNet to the Convolutional

Occupancy Network (ConvONet) [104] for interactive 3D scene reconstruction from

point clouds. ConvONet encodes input point clouds into feature grids using a U-Net

architecture to capture multi-scale features. For a query point q, its feature vector cq is

interpolated from the grid, and a decoder outputs an occupancy value yq = Dec(cq, q).

ConvONet’s detail reconstruction ability is tied to grid resolution (voxel or tri-planar),

with computational complexity scaling as O(N3) or O(N2) respectively, potentially

limiting performance on large scenes with fine details.

Encoding Seeds in Seed-ConvONet

Seeds are defined as spherical regions of fixed radius r. Local point clouds within a

seed are encoded by:

1. Performing PCA on points within the seed to estimate a normal ns for the local

patch. PCA is used here to estimate the dominant orientation (normal) of the local

surface patch within the seed’s radius. This assumes that at the scale of a seed,

the local geometry is often convex and as a part of a larger surface that can be

reasonably projected onto a plane. The estimated normal ns is then used to orient

the 2D projection grid for the seed encoder, allowing the CNN to process the local

geometry in a consistent, view-independent manner relative to the local surface.

2. Creating a planar grid aligned with ns.

3. Projecting points onto this grid, encoding their signed distances.

4. Applying a small CNN to the projected grid to produce seed code zs.
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This method is motivated by the observation that fine-grained details are often convex

and aligned with local parent structures, allowing for precise yet computationally

efficient 2D convolution-based encoding. A seed is described by (xs,ns), where xs

includes global position and local grid position. Fourier Positional Encoding [90] is

applied to seed and query point positions. A three-layer MLP generates the seed

descriptor s from (xs,ns). Figure 3.2 illustrates this re-sampling process.

Figure 3.1: Conceptual illustration of the SeedNet pipeline options. Left: Scalar value

prediction per seed, combined via weighted average. Right: Deformation prediction

per seed, with a single decoder for the final result.

Seed-wise Reconstruction and Combination

An MLP generates the transformation (Tq
s from (s, cs) and (q, cq), where cq is the

ConvONet feature for query q. A decoder network then learns both the occupancy

yqs = f(cq, zs, ϕ(T
q
s × q)) (where ϕ is Fourier Positional Encoding) and the attention

weight λq
s = a(cq, zs, ϕ(T

q
s × q)). The final reconstruction combines these predictions

with the original ConvONet output (ŷqg) using a constant weight λq
g (before softmax) for

the base reconstruction:

yq =
ŷqge

λq
g +

∑
s∈S ŷ

q
se

λq
s

eλ
q
g +

∑
s∈S e

λq
s

(3.7)

This iterative approach benefits from caching. When new seeds are added at step t, the

computationally expensive per-seed outputs ŷqs and attention logits λq
s for the existing

seeds from step t − 1 are be cached. Only the outputs for the new seeds need to be

computed. The final combination (Equation 3.7) involves recalculating the softmax
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Figure 3.2: Seed-based re-sampling and encoding process for Seed-ConvONet. Points

near the seed are projected onto a PCA-derived planar grid. A CNN encodes point

distances and plane pose into a seed code.

denominator with the new λq
s values and performing the weighted sum, which is

significantly faster than recomputing all individual seed predictions.

3.1.5 Experimental Validation

Experiments were conducted to evaluate Seed-ConvONet against a mixed dataset

comprising synthetic data [104] and real-world scans from the ScanNet dataset [17].

The datasets were split into 70% for training, 10% for validation, and 20% for testing.

Key aspects analyzed:

1. Reconstruction Accuracy: Metrics included Volumetric Intersection-over-Union

(IoU), Chamfer-L1 distance, and normal consistency, following [87]. Two seed

sampling strategies were evaluated:

• Random Sampling: K seeds were placed at locations chosen uniformly at

random from the input point cloud.

• Heuristic Sampling (results marked with * in Table 3.1): This strategy aimed to

mimic informed user interaction by placing seeds in potentially high-detail

regions. The algorithm involved:
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(a) Calculating local position variation for points in the input cloud (e.g.,

variance of neighbour positions within a small radius).

(b) Identifying candidate seed locations corresponding to points with high

local variation.

(c) Selecting the top K candidate locations while enforcing a minimum

distance constraint between selected seeds to ensure diversity and avoid

redundant sampling on the same local feature.

2. GPU Memory Cost: Compared memory efficiency for different configurations

(number of seeds, seed code length).

3. Ablation Study: Investigated the contributions of query point transformation (Tq
s)

and Fourier positional encoding.

Seed-ConvONet with a 163 3D grid was tested with 4, 8, 16, and 32 seeds (seed

code lengths 16, 32, 64), compared against ConvONet (163 baseline and 323 high-res

reference). Results indicated that Seed-ConvONet (163) with ≥ 8 seeds (code length

64, heuristic sampling) could outperform ConvONet (323) in terms of IoU and normal

consistency, while using less GPU memory.

Table 3.1 summarizes these findings.

The benchmarking focuses on ConvONet because SeedNet is designed as a plug-

gable module that can be integrated with similar occupancy-based networks. The

primary goal is not to outperform all state-of-the-art automatic methods, but rather

to demonstrate the value of incorporating human interaction. The comparison is not

entirely direct, as SeedNet’s performance is augmented by user guidance. However,

the results clearly show that by mimicking human interaction through heuristic seed

placement, the corresponding model (163 Seed-ConvONet) achieves significantly better

outcomes than its automatic baseline and can surpass a higher-resolution version (323

ConvONet). This highlights the substantial impact of targeted user refinement and

demonstrates the value of incorporating user priors for detail enhancement.

Qualitative Results

Figure 3.3 provides a visual comparison of the reconstruction quality. The images

demonstrate that Seed-ConvONet successfully leverages sparse user-provided seeds
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to reconstruct finer details and correct geometric inaccuracies present in the baseline

model. For the qualitative results, the seeds are manually picked based on the initial

reconstruction result for each scene, with up to 3 seeds selected per scene to mimic the

user interaction. The position of each seed is visually indicated by a cross of the straight

lines of the same color in the ’Ours’ (with seed) row of the figure, illustrating the area of

local refinement.

Specifically, the seed placement and its effects for each scene are as follows:

• Scene 1: The seeds are placed at the thin cylinder of the lamp and on the surface of

the wardrobe. This configuration enables the model to restore the thin cylindrical

structure of the lamp and to fill the hole on the wardrobe’s surface, demonstrating

the ability of Seed-ConvONet to correct both fine and coarse geometric errors

through targeted refinement.

• Scene 2: A seed is placed on the chair to smoothen its flat surfaces. Notably, the

influence of this seed extends beyond the immediate vicinity, contributing to the

refinement of the entire scene, which highlights the global effect of local user

guidance in the SeedNet framework.

• Scene 3: Three seeds are placed at the back of the chair, the top of the lamp, and

one of the legs of the table. This arrangement results in higher surface accuracy

across these features, underscoring the effectiveness of multi-seed guidance for

challenging regions.

• Scene 4: One seed is placed on the chair and another on the wardrobe, aiming to

fix the hole on the wardrobe’s surface and to refine the edges of the chair. However,

the refinement does not completely resolve the surface defect, and the chair is not

significantly improved. This case illustrates a limitation of the current approach,

where seed placement does not always guarantee successful correction, further

research may be needed to stabilize the outcome.

• Scene 5: Two seeds are placed on the lamp, successfully restoring the thin cylindri-

cal structure. This demonstrates the model’s capacity to recover delicate geometric

details when provided with appropriate user guidance.
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For instance, across the various scenes, details like the legs and backrests of chairs

and the structure of lamps are visibly improved. This highlights the effectiveness of the

interactive refinement approach in enhancing local geometric fidelity.

The mean inference time for ConvONet is 7574 ms on a single NVIDIA RTX 3090

GPU, while SeedNet requires 7632 ms for the initial reconstruction. Each additional

seed update incurs a mean update time of 1132 ms, demonstrating the efficiency of

interactive refinement in SeedNe.

Figure 3.3: Qualitative results of Seed-ConvONet on five scenes. Each column represents

a synthetic scene. For each, we show: input point cloud (top), baseline ConvONet

reconstruction (middle), and our refined result (bottom).

Scene 1 Scene 2 Scene 3 Scene 4 Scene 5

Input

Baseline

Ours

Ablation Study and Complexity Analysis

To further elucidate the contributions of key architectural components in Seed-ConvONet,

we conducted an ablation study focusing on two mechanisms: Fourier positional encod-

ing and the query point transformation (PT). Figure 3.4 summarizes the results of this

analysis.

The results demonstrate that both positional encoding and point transformation

significantly enhance reconstruction quality. Specifically, the inclusion of point trans-
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Figure 3.4: Ablation study of Seed-ConvONet: Impact of positional encoding (PE) and

point transformation (PT) on reconstruction accuracy.

formation yields a notable improvement in Intersection-over-Union (IoU) and normal

consistency, while positional encoding further refines the model’s ability to capture

fine geometric details. The combination of both mechanisms achieves the best overall

performance, underscoring their complementary roles in the SeedNet architecture.

3.1.6 Conclusion and Future Work

SeedNet introduces a paradigm for 3D reconstruction by incorporating human inter-

action into the inference process. It allows users to iteratively refine reconstructions

by selecting "seeds", offering potential for adaptability to diverse tasks. However, key

limitations were identified:

• Interference with Global Output: Local seed reconstructions can interfere with

the global output, potentially causing inconsistencies.

• Competitiveness: While innovative, the reconstruction quality might not always

match state-of-the-art fully automatic methods without careful seed placement.

Potential future improvements:

• Enhanced Integration Mechanisms: More sophisticated attention or adaptive

weighting to balance local/global contributions.

• Optimized Seed Placement: Algorithms to suggest optimal seed locations.
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• Decoupled Seed Reconstructor Training: Training global and local (seed-specific)

reconstructors separately and then combining them, potentially using transfer

learning and distillation. This could address training instability where global

encoder error signals dominate local ones.

• Over-fitting Seed Reconstructors for Detail: Intentionally over-fitting local seed

reconstructors during inference time to input details in the seed’s vicinity to better

preserve high-frequency signals, which are often filtered out by networks aiming

for generalization.

• Simplified Seed Encoders: Moving away from complex projection-based seed

encoders (like PCA-derived planes) as they introduce restrictive local assumptions.

Further research is needed to validate these potential improvements and benchmark

against newer, rapidly evolving reconstruction paradigms.

3.2 NeuLap: Enhancing Neural Fields via Laplacian Priors

Implicit neural representations have shown remarkable results in 3D reconstruction and

view synthesis. However, they often require extensive training time and substantial

input data; a traditional NeRF model is trained from scratch for each new scene and

requires hundreds of images from different views. This section introduces NeuLap, a

novel approach to address these limitations by integrating geometric priors into the

training process of neural implicit fields, specifically targeting SDF-based representa-

tions like NeuS. The goal is to guide the corresponding network to converge with fewer

views and training steps while preserving the quality of the reconstructed surfaces.

NeuLap aims to improve computational efficiency by finding a novel way of integrating

geometric priors into the training process. The core idea is to leverage the Laplacian of

the signed-distance field (SDF) around the surface as a supervisory signal. This signal

guides the neural network to learn geometrically plausible surfaces more rapidly and

with fewer views. We demonstrate NeuLap’s effectiveness by integrating it into the

NeuS framework [150], showing accelerated convergence and improved reconstruction

quality. The proposed method involves rendering an additional channel representing

the Laplacian of the implicit surface. A denoising network then refines this rendered
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Laplacian. The difference between the rendered and denoised Laplacian provides an

error signal. This error signal, carrying the learnt geometric prior from the denoising

network, is combined with the primary task’s loss function. This approach avoids

direct encoding of low-dimensional priors into high-dimensional signals. The priors

are termed "low-dimensional" because geometric features like smoothness or curvature,

when represented by a global or patch-wise regularizer, can be conceptualized as a

more compressed form of information compared to the per-point detail captured by

high-dimensional neural network weights or a full point cloud. Instead, it integrates

prior information into the error propagation process. The Laplacian was chosen due to

its properties: it is numerically sparse near surfaces, zero on flat areas, and its extrema

highlight edges and corners. Furthermore, the projected Laplacian of an implicit field is

view-independent, providing a stable geometric signature.

3.2.1 Geometry-aware Training Framework

The NeuLap framework augments an existing implicit neural representation based on

SDF, such as NeuS, to incorporate geometric priors effectively. The overall pipeline

is illustrated in Figure 3.5. It consists of two main stages. First, a denoising network,

denoted as Ψ, is pre-trained to refine noisy Laplacian images. During the reconstruction

process, the augmented implicit neural representation, Φ, is trained for the given scene.

During the training of Φ, it renders both the standard output (e.g., RGB image) and an

additional Laplacian image L̂. This rendered Laplacian image L̂ is then processed by

the pre-trained and frozen denoising network Ψ to produce a refined version L̇. The

discrepancy between L̂ and L̇ forms an additional loss term. This loss term guides Φ to

learn surfaces consistent with the geometric priors encoded in Ψ.

We formalize images of size w × h as either data A or functions A(x, y) mapping

2D positions to channel values. I denotes a ground-truth RGB image. N represents

a ground-truth normal image, L is the corresponding ground-truth Laplacian image.

Rendered images are denoted with a hat, e.g., Î, N̂ , and L̂. Images processed by the

denoising network are marked with a dot, e.g., L̇. The implicit neural representation

network is denoted as function Φ and the denoising network as function Ψ.

The NeuS framework, chosen as the testbed, represents surfaces as the zero-level set
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Figure 3.5: The pipeline of NeuLap. Orange boxes denote data, purple boxes denote

trainable modules, and blue boxes denote non-trainable modules. The process involves:

I. Training a denoising network Ψ using rendered Laplacian images with and without

noise. II. Training an augmented implicit neural representation Φ that renders a Lapla-

cian image L̂. This L̂ is denoised by Ψ into L̇, and the difference guides the training of

Φ alongside the primary task loss.
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of a Signed Distance Function (SDF), f(p). Its rendering equation is:

C(o, v) =

∫ +infty

0

w(t)c(p(t), v)dt (3.8)

where C(o, v) is the color for a ray with origin o and direction v, w(t) is a weighting

function, and c(p(t), v) is the color at point p(t). To obtain surface normals, the gradient

of the SDF,∇f(p), is required. This can be approximated using finite differences:

∇f(p) ≈
(
f(p+∆x)− f(p−∆x)

2∆x
,
f(p+∆y)− f(p−∆y)

2∆y
,
f(p+∆z)− f(p−∆z)

2∆z

)
(3.9)

The augmented NeuS network is modified to render a normal image N̂ by inte-

grating estimated normals near the surface. The normal rendering equation can be

approximated as:

N̂ (o, v) =

∫ +infty

0

Wϵ(f(p(t)))∇f(p(t))dt (3.10)

Here, Wϵ(s) is a weighting function that peaks at s = 0 (i.e., on the surface f(p(t)) = 0).

It is defined as a Gaussian probability density function with zero mean and a small

standard deviation ϵ:

Wϵ(s) =
1

ϵ
√
2π

exp

(
− s2

2ϵ2

)
(3.11)

By decreasing ϵ during training, the rendered normal image becomes progressively

sharper. The rationale for decreasing ϵ is that as training progresses, the underlying

SDF representation f(p) becomes more accurate and its zero-level set becomes more

concentrated around the true surface. Initially, a larger ϵ allows the weighting function

Wϵ to integrate information from a wider, less certain region around the estimated

surface. As the SDF refines, a smaller ϵ focuses the integration onto this more accurately

localized surface, leading to sharper details in the rendered normal map when the SDF

itself is reliable.

3.2.2 Laplacian Constraint Integration

The core of NeuLap is the integration of a Laplacian-based geometric constraint. This

involves generating Laplacian images, training a network to denoise them, and incorpo-

rating this into the main network’s loss.
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Laplacian Image Generation from Normals

Given an SDF query function F : R3 → R, its Laplacian is:

∇2F (p) =
∂2F (p)

∂x2
+

∂2F (p)

∂y2
+

∂2F (p)

∂z2
(3.12)

In our framework, the rendered normal image N̂ (x, y) (either in world or camera space)

is used to approximate the Laplacian image of the SDF projected onto the camera

plane. The Laplacian is approximated by convolving the rendered normal image. This

approach is chosen over direct computation from the SDF (e.g., using second-order

finite differences) primarily for practical compatibility with the data generation process

for the denoising network Ψ. General-purpose renderers for creating synthetic training

scenes are often mesh-based and can readily provide ground-truth normal images.

However, they typically do not directly output Laplacian images of an underlying

implicit field. Thus, synthesizing noisy and clean (ground-truth) normal images and

then converting both to Laplacian images via a consistent convolution process (Equation

3.13) ensures that the denoising network is trained on data that aligns with what the

main reconstruction network Φ will produce during its own training. The conversion

from normal image to Laplacian image is achieved by convolving each channel of the

normal image with the following kernel:

KL =


0 0.5 0

0.5 0 −0.5

0 −0.5 0

 (3.13)

The results from the three channels (assuming normals are 3D vectors) are summed and

normalized (e.g., divided by 3) to obtain the final 2D Laplacian image L̂. This projected

Laplacian is view-independent and sparse, capturing essential surface characteristics.

The process is visualized in Figure 3.6.

Denoising Network Training

A denoising network Ψ is crucial for generating the supervisory signal. In our imple-

mentation, we use a U-Net architecture for Ψ. To train Ψ, a dataset of noisy Laplacian

images (L̂noisy) and their corresponding clean ground-truth Laplacian images (Lgt) is

required. This dataset is synthesized by:
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(a) Normal Map (b) GT Laplacian (c) Noisy Laplacian (d) Denoised Laplacian

Figure 3.6: Visualization of the Laplacian conversion and denoising process across

multiple examples. For each row, from a source (a) normal map, we can derive a (b)

ground truth (GT) Laplacian. During training, the reconstruction network produces a

noisy normal map, which results in a (c) noisy Laplacian. The denoising network Ψ

takes this as input and produces a clean (d) denoised Laplacian, which provides the

supervisory signal.
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1. Rendering ground-truth normal images Ngt from procedurally generated 3D

scenes.

2. Adding synthetic noise to Ngt to create noisy normal images N̂noisy. This mimics

the output of a partially trained Φ.

3. Converting bothNgt and N̂noisy to their respective Laplacian images, Lgt and L̂noisy,

using the convolution method described above (Equation 3.13).

The U-Net Ψ is then trained to take L̂noisy as input and output a denoised version L̇ that

tries to match Lgt.

The input to the U-Net is structured to leverage contextual information from tempo-

rally adjacent frames. Specifically, for a target Laplacian image Lt ∈ RW×H×CL (where

CL is the number of channels for the Laplacian, typically CL = 1), two neighboring

Laplacian images, Ln1 and Ln2, from adjacent camera viewpoints or time steps are also

provided, along with their respective camera poses Pt, Pn1, Pn2. The processing at the

initial stage of the U-Net encoder is as follows:

1. Pose Augmentation: Each Laplacian image Li (for i ∈ {t, n1, n2}) is augmented

with its corresponding camera pose Pi. The pose is transformed into a per-pixel

feature representation P ′
i ∈ RW×H×CP , where CP is the dimensionality of the pose

features. The global camera pose Pi for each image is represented as a 6D vector,

comprising the 3D camera position and a 3D representation of its orientation. This

vector is broadcast across the spatial dimensions of the image to create a per-pixel

feature map P ′
i ∈ RW×H×6, making the pose feature dimensionality CP = 6.

2. Target Image Feature Extraction: The augmented target image L′′
t is processed by

a convolutional layer, ConvA, to produce initial feature maps Ft = ConvA(L
′′
t ) ∈

RW ′×H′×CF .

3. Neighboring Images Feature Extraction and Aggregation:

(a) The augmented neighboring images L′′
n1 and L′′

n2 are processed by another

convolutional layer, ConvB. This layer is designed to generate richer feature

representations, for instance, by having its output possess CN channels, where

CN might be configured to be larger than CF , in our case, we chose CN =
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2 · CF . We denote Fn1 = ConvB(L
′′
n1) ∈ RW ′×H′×CN and Fn2 = ConvB(L

′′
n2) ∈

RW ′×H′×CN .

(b) To ensure invariance to the order of the two neighboring images, their feature

maps are aggregated using an element-wise max-pooling operation, inspired

by PointNet [108]:

Fn = max(Fn1, Fn2) ∈ RW ′×H′×CN

4. Feature Concatenation for U-Net Input: The feature maps from the target image

path, Ft, and the aggregated neighboring image path, Fn, are concatenated along

their channel dimension:

Fconcat = concat(Ft, Fn) ∈ RW ′×H′×(CF+CN )

This concatenated feature map Fconcat then serves as the input to the subsequent

layers of the U-Net’s encoder-decoder structure.

Integration with NeuS Training during Reconstruction

Once Ψ is trained, its weights are frozen. During the training of the augmented NeuS

network (Φ) in the reconstruction step, in each step:

1. Φ outputs an RGB image Î and a normal image N̂ .

2. N̂ is converted to a Laplacian image L̂.

3. L̂ is fed into Ψ, which outputs the denoised Laplacian image L̇.

The Laplacian loss is then defined as the difference between the rendered and denoised

Laplacians:

LLap =
1

m

∑
k

R(L̂k, L̇k) (3.14)

where m is the number of samples/pixels, andR is a difference metric, typically L1 loss,

to align with NeuS. This Laplacian loss is combined with the original NeuS loss:

L = LNeuS + ηLLap (3.15)

The weight η for the Laplacian loss is annealed during training, for example, using an

exponential decay: ηt = γηt−1, where γ ∈ (0, 1).
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The rationale for annealing the Laplacian loss weight η is to manage the influence

of the geometric prior throughout the training process. Initially, when the main re-

construction network Φ is poorly initialized and its output is very noisy, the denoised

Laplacian L̇ from Ψ provides a strong and valuable guiding signal towards geometri-

cally plausible surfaces. As training progresses and Φ begins to learn the scene structure

more accurately from the input views, its own rendered Laplacian L̂ becomes more

reliable. Decreasing η over time reduces the reliance on the external prior. This allows

the network to fit the observed data more closely and avoids potential over-smoothing

or being overly constrained by a prior that, while generally beneficial, might not per-

fectly capture all the fine details of the specific scene being reconstructed. It represents

a trade-off between adherence to the learned geometric regularities and fidelity to the

input images.

3.2.3 Sharp Feature Preservation

A key advantage of using the Laplacian of the implicit field is its inherent ability to

represent and thus help preserve sharp geometric features. The Laplacian operator

responds strongly to rapid changes in the field, which correspond to high-curvature

regions like edges and corners. On flat or smoothly curving surfaces, the Laplacian

tends to be small or zero. Specifically, for an SDF, the Laplacian relates to the sum of

principal curvatures (mean curvature, up to a factor).

By guiding the reconstruction with a denoised Laplacian target, the network is

encouraged to form well-defined structures where the Laplacian is significant (edges,

corners) and smooth regions where it is minimal. This property makes the Laplacian

prior particularly effective for reconstructing objects with both planar surfaces and

sharp details, without explicit feature detection mechanisms.

3.2.4 Experiment Results and Analysis

The efficacy of NeuLap is evaluated through a series of experiments on various datasets

and compared against baseline methods. The evaluation focuses on three key aspects:

reconstruction and view synthesis quality, robustness under challenging conditions,

and computational efficiency.
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Experimental Setup

Datasets The Laplacian denoising network Ψ was trained on the Hypersim dataset

[117], a large-scale synthetic dataset of indoor scenes rendered as multi-view images

including both RGB and normal images. Scanned datasets were avoided for training

Ψ to prevent learning scanner-specific noise patterns. For evaluating the augmented

NeuS (Φ with NeuLap), we used a separate split of Hypersim for view synthesis tasks

to prevent data leakage. Reconstruction accuracy was evaluated on ScanNet [17]. The

Synthesis-NeRF dataset [90] was used to test out-of-distribution (OOD) performance.

Baselines Baselines for comparison include the original NeuS [150] and NeuRIS [146].

Results are presented for these methods with and without the NeuLap augmentation.

Table 3.2 also includes a "NeRF" column for context, representing a foundational baseline

in neural rendering, though direct comparison requires care as discussed in Section

3.2.4.

Noise Simulation for Denoiser Training The noise generation process for training

the denoising network Ψ is designed to mimic artifacts from partially trained implicit

networks:

1. Apply Gaussian blur with random radius to the ground-truth normal image to

mimic the noise from an non-converged implicit network.

2. Add 3D fractal Perlin noise of random strength/frequency, projected onto the

camera plane to mimic the distortion during convergence and high-frequency

positional encoding effects.

3. Add white noise of random strength.

This creates a dataset of noisy normal images N̂noisy which are then converted to noisy

Laplacian images.

Evaluation Metrics The quality of the 3D reconstruction is evaluated using several

standard metrics, based on the reconstructed point cloud C and the ground-truth point

cloud C∗. These metrics are defined as follows:
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• Accuracy (Acc.): The average distance from each reconstructed point to its nearest

neighbor in the ground-truth cloud, defined as meanc∈C(minc∗∈C∗ ∥c− c∗∥). Lower

values indicate that the reconstruction is closer to the true surface.

• Completeness (Comp.): The average distance from each ground-truth point to its

nearest neighbor in the reconstructed cloud, defined as meanc∗∈C∗(minc∈C ∥c∗−c∥).

Lower values indicate that the reconstruction covers the ground-truth object more

thoroughly.

• Precision (Prec.): The fraction of reconstructed points for which the distance to

the nearest ground-truth point is less than a threshold τ (e.g., 5 cm). It measures

the fidelity of the reconstruction. Higher is better.

• Recall: The fraction of ground-truth points for which the distance to the nearest

reconstructed point is less than the threshold τ . It measures how much of the

ground truth is captured. Higher is better.

• F-score: The harmonic mean of Precision and Recall, calculated as 2 · Prec.·Recall
Prec.+Recall . It

provides a single score that balances precision and recall. Higher values are better.

Quantitative Evaluation

The quantitative impact of NeuLap was assessed across several benchmarks.

Table 3.2 presents a comprehensive comparison of our method against several state-

of-the-art 3D reconstruction techniques on the ScanNet dataset. The evaluation is based

on multiple standard metrics: Accuracy (Acc.), Completeness (Comp.), Precision (Prec.),

Recall, and F-score. Our method (referred to as "Ours") consistently outperforms other

baselines, including COLMAP [120], NeuralRecon [127], NeRF [90], NeuS [150], and

NeuRIS [146], across all reported metrics, demonstrating its superior reconstruction

quality.

Robustness to OOD and Limited Data Table 3.3 presents results on the Synthesis-

NeRF dataset (OOD) and on ScanNet with 50% of the training data, now evaluated

using F-score. These experiments demonstrate NeuLap’s ability to stabilize performance

under challenging conditions. With only half the data, the F-score for both NeuS and

NeuRIS is improved with the NeuLap prior, suggesting it is particularly helpful when



84 Proposed Methods for 3D Reconstruction

data is scarce. In the OOD scenario, NeuLap brings notable improvements for NeuRIS,

although it slightly degrades performance for NeuS, suggesting the learned prior may

not generalize perfectly across all architectures.

Ablation Study

To validate the contributions of the key components within the NeuLap framework, we

conduct an ablation study using NeuRIS as the baseline. We analyze the impact of the

denoising network’s architecture, specifically its use of neighboring frames and pose

information. We compare our full model against several variants:

• Baseline: The original NeuRIS model without any Laplacian-based guidance.

• Full NeuLap: The proposed method with all components, applied to NeuRIS. This

includes the U-Net denoiser that uses the target frame, two neighboring frames,

and their corresponding camera poses.

• w/o Neighboring Frames: The denoising network Ψ is trained and evaluated

using only the single target Laplacian image, without temporal context from

adjacent views.

• w/o Pose Information: The denoising network Ψ operates on Laplacian images

alone, without the camera pose features concatenated to the input.

• Laplacian Regularization: Instead of using a learned denoising network, we

apply a simple L1 regularization directly on the rendered Laplacian image (λ||L̂||1),

encouraging sparsity. This tests the benefit of a learned prior versus a generic one.

The results, presented in Table 3.4, are evaluated on the ScanNet dataset using the

F-score metric.

The results from this study are expected to show that each component contributes

positively to the final performance, with the full model achieving the best reconstruc-

tion quality. This would validate our design choices for the geometry-aware training

framework.
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Qualitative Evaluation

In addition to quantitative metrics, visual inspection of the reconstructed geometry

provides critical insight into the benefits of NeuLap. Qualitative comparisons on a

simple and a complex scene from ScanNet are shown in Figure 3.7 and Figure 3.8,

respectively. For each scene, we compare the reconstruction from the baseline NeuRIS

model against our NeuLap-augmented version and the ground truth.

The visual results highlight the contributions of the Laplacian prior. When used

together with the NeuRIS model, the NeuLap augmentation provides key refinements

that bring the results closer to the ground truth. For instance, in the simpler scene

(Figure 3.7), the prior visibly improves the reconstruction by sharpening edges and

flattening large planar surfaces like the ground and walls (View 1). In areas with more

complex geometry (Views 2 and 3), the prior enhances the definition and correctness

of the structure. This targeted improvement is also evident in the complex scene

(Figure 3.8), where NeuLap helps produce more coherent and detailed surfaces. The

prior effectively guides the network to refine the geometry, reducing subtle surface

noise and preventing the over-smoothing of sharp features, leading to a more faithful

representation of the underlying geometry.

Discussion of Results

The experimental results demonstrate the general effectiveness of the NeuLap prior.

However, some specific outcomes warrant further discussion. One notable observa-

tion from Table 3.2 is that the baseline NeRF model achieves a higher F-score than the

baseline NeuS model (0.455 vs. 0.412) on the ScanNet dataset. While NeuS produces

reconstructions with higher accuracy (0.107 vs. 0.162), indicating that the extracted

surfaces are closer to the ground truth where they exist, it struggles with completeness

(0.122 vs. 0.066). This discrepancy may be attributed to the fundamental differences in

their underlying representations when applied to complex indoor environments. NeuS,

being based on a Signed Distance Function (SDF), is optimized to learn continuous,

watertight surfaces. This property is advantageous for clean object-centric reconstruc-

tions but can be a limitation in cluttered and geometrically complex indoor scenes like

those in ScanNet, which often feature thin structures, disconnected elements, and back-

ground clutter. The strict SDF assumption can lead NeuS to produce overly smoothed
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Figure 3.7: Qualitative comparison of reconstruction results on a simple scene. We

show the Ground Truth, the reconstruction from baseline NeuRIS, and the result from

our NeuRIS+Lap. NeuLap yields smoother surfaces and better preservation of sharp

geometric features.
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Figure 3.8: Qualitative comparison of reconstruction results on a complex scene. We

show the Ground Truth, the reconstruction from baseline NeuRIS, and the result from

our NeuRIS+Lap. NeuLap helps produce more coherent and detailed surfaces, leading

to more complete reconstructions.
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or incomplete surfaces in these challenging regions. In contrast, NeRF’s volumetric

representation is more flexible and does not impose a strict surface constraint. It can

more effectively capture volumetric details and non-watertight geometry, leading to

better completeness and recall, which in turn results in a higher overall F-score. This

highlights a key trade-off: NeuS provides higher fidelity on well-defined surfaces, while

NeRF offers more robust coverage of complex scene content. It is important to note that

subsequent SDF-based methods like NeuRIS have already addressed this limitation,

achieving a significantly higher F-score than NeRF (0.691 vs. 0.455) by better handling

indoor scene complexities. Our NeuLap augmentation pushes this further, improving

both NeuS and NeuRIS to achieve state-of-the-art results that combine high accuracy

and completeness.

3.2.5 Conclusion and Future Work

This work proposed NeuLap, a novel method for integrating structural priors into

implicit neural field training. By training a denoising network for Laplacian images

and using its output as a supervisory signal, surface information is encoded as a

geometric prior. This prior guides the training of the implicit reconstruction network

via an auxiliary loss term. NeuLap effectively addresses the challenge of coupling

reconstruction with priors by integrating information into the error function itself.

Experimental results, while needing further quantitative data on acceleration, suggest

that NeuLap can improve reconstruction quality and stabilize performance, particularly

with limited data or in OOD scenarios.

Several avenues for future research emerge from this work:

1. Investigating more advanced models than a simple U-Net for denoising Laplacian

images, potentially leveraging the sparse nature of these images.

2. Developing more sophisticated algorithms to mimic or directly sample the noise

characteristics of partially trained implicit reconstruction networks for better

denoiser training.

3. Extending the NeuLap methodology to other implicit reconstruction and view

synthesis frameworks beyond NeuS.
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These questions offer promising directions for further advancing efficient and robust

3D neural reconstruction.

3.3 Partitioned Grid Representation for Parametric Sur-

faces

3.3.1 Problem Statement

Reconstructing 3D shapes from point clouds into parametric surfaces is crucial for

CAD applications. However, existing methods often struggle with noisy input data or

produce representations that lack topological guarantees or are difficult to edit. This

section introduces a method aimed at generating a structured, topologically informed

intermediate representation based on a partitioned grid, which can facilitate the sub-

sequent fitting of parametric surface patches. The goal of this research is to create a

framework that is robust to noise and can capture the coarse topology of the input shape

and make it easier for generating parametric surfaces suitable for CAD applications.

3.3.2 Proposed Method: Grid Partitioning Network

The proposed method utilizes a deep neural network to infer a partitioned 3D grid

structure that approximates the input point cloud’s topology. This grid serves as an

intermediate representation for subsequent parametric surface fitting.

The process involves distinct stages for training and inference.

Training Stage

Given an input training pair (X, Y ), where X ∈ RN×3 is a noisy point set and Y ∈ RM×6

is a corresponding dense, denoised point set with normals (pi, ni), the network is trained

as follows:

1. Orientation Normalization: Both X and Y are rotated using a Spatial Transformer

Network [49] to align them with a canonical orientation. This minimizes the pro-

jection error of points in Y onto the principal axes defined by T = {±e1,±e2,±e3}.

Let the transformed sets be X ′ and Y ′.
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2. Supervisory Signal Generation (Target Grid Construction): The supervisory

signal Y ′ is used to define a target grid structure (P,O).

• Points in Y ′ are grouped based on their normal vector’s alignment with the

axes in T = {±e1,±e2,±e3}. The group index k for a point with normal n is

determined using Equation 3.16.

k = argmax
j∈{1..6}

(Tj · n) (3.16)

• For each group Gk, points are projected onto the corresponding axis direc-

tion. Kernel Density Estimation (KDE) with Gaussian kernels is applied to

the projected positions. Local maxima of the estimated density define the

positions of orthogonal planes along that axis. This approach is preferred

over K-Means clustering, which struggled with uneven plane distributions

(e.g., closely spaced planes for detailed areas vs. distant planes for smooth

regions). The set of all inferred planes defines the target grid boundaries P .

• These planes P partition the 3D space into a set of grid cells V. An occupancy

vector O ∈ {0, 1}|V| is determined by checking which grid cells contain points

from Y ′. Soft occupancy Osoft ∈ [0, 1]|V| can also be used.

3. Network Architecture and Loss: The input X ′ is processed by an encoder network

(e.g., PointNet++ [109] or PointConv [161] ) to produce a latent code Z. An MLP

decoder with two heads takes Z as input:

• Head 1: Predicts the plane parameters P̂ (linear output).

• Head 2: Predicts the cell occupancy Ô (sigmoid output).

The network is trained by minimizing a combined loss:

L = λpLp + λoLo

where Lp = MSE(P, P̂ ) is the plane position loss and Lo = CrossEntropy(O, Ô)

is the occupancy loss. λp and λo are weighting factors.

Inference Stage

During inference, given a new input point cloud Xtest:
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1. Xtest is normalized using the learned Spatial Transformer Network.

2. The normalized point cloud X ′
test is fed through the trained encoder-decoder

network.

3. The network outputs the predicted grid structure (P̂ , Ô). This structure represents

the inferred topology and coarse geometry of the input shape.

Reconstruction into Parametric Surfaces

The inferred grid structure (P̂ , Ô) serves as a scaffold for generating the final parametric

surface representation. This reconstruction is a post-processing step performed during

inference. The process consists of initializing and refining a network of Bèzier patches:

1. Cubic Bèzier Patch Initialization: Each external facet of an occupied grid cell

(where Ô > threshold) is converted into a cubic Bèzier patch. The initial control

points are derived from the grid vertices. Crucially, the connectivity of the patches

is inherited from the grid, meaning adjacent patches share control points along

their common edges. This ensures an initial C0 continuity across the surface.

2. Iterative Fitting to Point Cloud: The control points of the patch network are then

iteratively optimized to fit the input point cloud Xtest. The objective is to minimize

the Chamfer-L1 distance between points sampled from the Bèzier surfaces and

the input cloud. During each optimization step:

• A dense set of points is sampled from the current Bèzier surfaces.

• The Chamfer-L1 distance to Xtest is computed.

• The gradient of the distance with respect to the control point positions is

calculated. This gradient indicates the direction to move each control point

to reduce the fitting error.

• Control points are updated according to the gradient. Shared control points

receive a combined update, maintaining surface continuity.

This iterative process typically converges within 1.2 seconds, resulting in a fitted para-

metric surface that captures the geometry of the input data while respecting the topology

defined by the grid.
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3.3.3 Experiments and Results

Experimental Setup

We evaluated the Grid Partitioning Network on the ShapeNetCore dataset [9] . We used

the official train-test split of ShapeNetCore, and reserved 10% of the training set for

validation. The primary metric used for evaluating the final fitted surface quality is

the Chamfer Distance (CD) between the reconstructed surface points and the ground

truth point cloud Y . We compare against AtlasNet [35] as a baseline for patch-based

reconstruction.

Intermediate Results: Grid Topology

Figures 3.9 to 3.14 show examples of the intermediate grid structure (P̂ , Ô) generated

by the network during inference. The input point cloud (Xtest) is shown alongside

the visualized occupied grid cells. These results demonstrate the network’s ability to

capture the coarse topology of various shapes, such as chair structures (Figure 3.9) and

tables (Figure 3.11). However, challenges remain for highly complex topologies (e.g.,

Figure 3.10). Note that the visualized planes P̂ may not perfectly align with the surface;

their role is primarily to define the grid structure. The occupancy Ô determines the

shape’s structure within that grid.

Figure 3.9: Example of the inferred grid topology for a chair. Left: Input point cloud

(Xtest). Right: Visualized occupied grid cells based on (P̂ , Ô). The grid captures the

overall structure, including the ring shape of the arms.
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Figure 3.10: Example of a more complex chair structure where the inferred grid topology

struggles to capture all details accurately.

Figure 3.11: Example of the inferred grid topology for a table.

Figure 3.12: Another example of the inferred grid topology for a table.
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Figure 3.13: Example of the inferred grid topology for a desk.

Figure 3.14: Example of the inferred grid topology for a basin.

Experiment Results: Surface Reconstruction

Table 3.5 presents the Chamfer Distance results after fitting cubic Bèzier patches (see

Section 3.3.2) and compares them to AtlasNet. The "Grid-NxNxN" notation indicates

the resolution of the partitioning grid inferred by the network. The number of resulting

surface patches varies depending on the inferred occupied grid cells but is implicitly

controlled by the grid resolution N. For instance, Grid-7x7x7 implies a maximum

potential of 6× 72 = 294 faces per axis pair, though the actual number is determined by

Ô.

3.3.4 Analysis and Discussion

The proposed Grid Partitioning Network offers a method for inferring a topologically

aware structure from point clouds, which serves as an intermediate step towards

parametric surface reconstruction. The desired key advantage lies in generating a

structured representation that implicitly defines patch connectivity, The intermediate

results (Figures 3.9-3.14) show promise in capturing coarse topology. Quantitative
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results (Table 3.5) indicate that higher grid resolutions (e.g., 7x7x7) achieve competitive

Chamfer Distance compared to the AtlasNet baseline, suggesting the derived cubic

Bèzier surfaces can effectively approximate the target shapes.

However, limitations identified during development:

• Detail Representation: The current approach of deriving patches from grid facets

can lead to blocky intermediate representations and potentially oversmoothed

final surfaces after Bèzier fitting, especially when compared to methods directly

optimizing patch layouts. Fine details might be lost.

• Grid Resolution Sensitivity: Performance is sensitive to the chosen grid resolu-

tion (N). A low N might miss details, while a high N increases complexity and

does not guarantee better topological accuracy, as seen in failure cases (Figure

3.10).

• Limited OOD Generalization: The performance on OOD categories (*cel., *wat.)

degrades compared to in-distribution categories (Table 3.5). This suggests the fixed

orthogonal partitioning struggles with significantly different shape structures not

seen during training. The reliance on axis-aligned partitioning might be too

restrictive.

• Intermediate Representation Quality: While the topology is often captured,

the exact placement of the inferred planes P̂ might not be optimal, potentially

requiring significant refinement during the final Bèzier fitting stage. Comparison

with alternative intermediate representations, such as learned cuboid abstractions,

is warranted in future work.

Future work should focus on adaptive grid structures, investigating alternative

post-processing methods for surface generation (e.g., differentiable marching cubes),

and incorporating geometric priors or regularizers during network training or patch

fitting to improve the quality and CAD-suitability of the final parametric surfaces.

3.4 Hierarchical Attention Propagation in Octrees

This section introduces a novel hierarchical attention mechanism tailored for OctTrees.

It is designed to generate powerful multi-scale features for 3D deep learning tasks.
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While the method is general-purpose, this chapter focuses on its application to implicit

3D reconstruction, where high-quality feature representations are crucial for recovering

detailed geometry from sparse or noisy input. Our approach facilitates efficient feature

learning and propagation. It addresses key challenges in processing extensive and

complex 3D spatial data. We begin by discussing the motivation for this architecture

within the context of reconstruction. We then define the problem and detail the proposed

method.

3.4.1 Motivation and Background

Implicit 3D reconstruction methods have shown great success in representing complex

topologies. However, their effectiveness heavily relies on the quality of the underlying

feature representations. These features must capture both fine-grained local geometry

and broader global context from sparse inputs. The processing of 3D spatial data to

extract such features presents unique challenges, including managing computational

complexity and capturing multi-scale geometric details. Traditional deep learning

models often struggle with the irregular structure of 3D data. Attention mechanisms,

particularly transformers, have shown immense success in other domains. They can

model long-range dependencies and adaptively focus on relevant information. Ap-

plying attention to hierarchical 3D structures like OctTrees is a promising direction.

OctTrees offer an efficient and adaptive representation of 3D space. They concentrate

computation where detail is present. However, naively applying dense attention to all

nodes or voxels in 3D is often intractable. This is due to the cubic growth in data points

and quadratic complexity of attention. Our work explores how to effectively integrate

attention mechanisms within the OctTree framework. This allows for scalable and pow-

erful feature learning in 3D. While attention on OctTrees is not entirely new, the specific

implementation details and architectural goals are crucial differentiators. For instance,

models like OctFormer [151] also leverage Octrees, but their primary goal is to solve

an efficiency challenge for tasks like segmentation and detection. OctFormer partitions

point clouds into local windows that contain a fixed number of points, enabling efficient

batch processing for localized attention. Its attention mechanism is therefore primarily

constrained within these local windows.

In contrast, our method is designed for implicit 3D reconstruction and focuses on
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building a global understanding of the geometry through explicit cross-scale informa-

tion flow. Instead of localized window-based attention, we use iterative bottom-up

aggregation and top-down refinement passes that operate over the entire OctTree

structure. This message-passing strategy is designed to build a deep contextual under-

standing by propagating information across the full hierarchy, which fundamentally

differs from OctFormer’s localized attention approach.

The subsequent paragraphs briefly review fundamental concepts. These concepts

underpin our approach to attention in OctTrees.

Knowledge Representation and Message Propagation

Neural networks learn by transforming input data through layers of neurons. This pro-

cess can be viewed as extracting, filtering, and reorganizing components of information.

Deep learning models use cascaded structures for knowledge representation, with each

layer extracting features and passing them to the next. Traditional architectures often

have limited information aggregation scopes. They also tightly couple data represen-

tation with specific neuron indices, while vector-based knowledge representation and

message passing offer more flexibility. Concepts are encoded as vectors, allowing richer

representations. Message passing enables dynamic information flow between neuronal

units. While CNNs and GCNs pass information along explicit local links, offering

efficiency, they make strong local assumptions. Transformers use vector representation

and self-attention for message passing. They implicitly generate a soft graph, allowing

long-range information flow.

Rationale for OctTree-based Transformers

OctTrees provide an efficient, adaptive, and hierarchical 3D data representation. This

structure aligns well with multi-scale processing capabilities of transformers. The hi-

erarchy can be leveraged for sparse attention, reducing the computational load. This

combination promises scalability for large and complex 3D scenes. OctTrees inherently

encode positional information, potentially simplifying or enhancing positional encod-

ing, and their adaptive resolution matches the transformer’s ability to focus attention.

This enables contextual understanding at multiple scales simultaneously. Principles

developed for OctTrees can generalize to other tree-based data structures, providing a
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novel approach to attention in processing tree-structured data.

3.4.2 Problem Statement

The primary task addressed in this section is high-fidelity 3D shape reconstruction

from point cloud. We frame this as learning an implicit function, such as an occupancy

field, which requires rich feature descriptors at any queried 3D location. The input

to our system is a point cloud of a 3D scene, which is first converted into an OctTree

structure. The core problem is to develop an efficient and powerful mechanism to

compute and refine feature representations for each node in this OctTree. These features

must capture both local geometric details and global contextual information from the

input data. The output is a hierarchical feature grid, embodied by the OctTree, where

each node stores a rich feature vector. For the task of reconstruction, these features can

be interpolated to provide a feature vector for any continuous 3D coordinate, which is

then decoded into an occupancy value. While our experimental validation focuses on

reconstruction, the resulting feature hierarchy is general-purpose and can be readily

applied to other downstream tasks like semantic segmentation or object detection. It

may also be generalized to other tree-based data structures. The overall goal is to achieve

state-of-the-art representation quality while maintaining computational tractability for

large-scale scenes.

3.4.3 Proposed Method: Hierarchical Attention Propagation

We propose a hierarchical attention mechanism operating on OctTrees. This method

integrates the strengths of OctTree data structures with attention-based message passing.

The core idea is a two-pass process: bottom-up aggregation and top-down refinement.

This facilitates comprehensive information flow across different scales of the OctTree.

Multi-scale Feature Learning

Initial OctTree Construction and Leaf Node Encoding The process begins by con-

structing an OctTree from the input 3D scene data. For very large scenes, the overall

space is first divided into a grid, with each cell of this grid then represented by an

individual OctTree. This partitioning facilitates manageable processing and allows for



3.4 Hierarchical Attention Propagation in Octrees 99

interactions at the root levels of these Octrees, contributing to a global scene under-

standing. Within each OctTree, each node represents a spatial region, and leaf nodes

represent the finest level of detail. To capture local geometric features at the leaf level,

we employ Point Convolution. Specifically, we can use operations like PointConv [161].

The features from raw point cloud data within each leaf node are aggregated. This

aggregation, typically mean pooling, produces an initial latent code for each leaf node.

Fourier Position Encoding To enhance the model’s understanding of spatial rela-

tionships, we use Fourier position encoding. The spatial coordinates (x, y, z) of each

OctTree cell (or node center) are mapped to a higher-dimensional space. This encoding

is expressed as:

γ(x, y, z) = [ sin(20πx), cos(20πx), ..., sin(2N−1πx), cos(2N−1πx), sin(20πy), cos(20πy), ..., sin(2N−1πy), cos(2N−1πy), sin(20πz), cos(20πz), ..., sin(2N−1πz), cos(2N−1πz)]

(3.17)

Here, N is the number of frequency bands. This encoding provides a rich, continuous

representation of position. It is concatenated with the cell’s feature vector. This provides

explicit spatial context to the model.

Cross-scale Information Flow

Bottom-Up Attention Propagation Information propagates from leaf nodes towards

the root in a bottom-up manner. For each parent node at depth d, its latent code z
(d)
(...,i)

is computed by an attention-weighted aggregation of its children’s latent codes z(d+1)
(...,i,j),

stated in equation 3.18.

z
(d)
(...,i) =

7∑
j=0

αijz
(d+1)
(...,i,j) (3.18)

The attention weights αij are computed using scaled dot-product attention. Query q
(α)
i

and key k
(α)
j vectors are derived from node features:

q
(α)
i = Wqz

(d)
(...,i)

k
(α)
j = Wkz

(d+1)
(...,i,j)

(3.19)

Wq and Wk are learnable weight matrices. Notably, the value vector V (typically Wvz) is

omitted in this formulation. Instead, the children’s latent codes z(d+1)
(...,i,j) are used directly

as the values. This design choice means the attention weights αij are applied directly to



100 Proposed Methods for 3D Reconstruction

the input features from the layer below. The purpose is to maintain a more direct linear

combination of the source features, weighted by their relevance, rather than combining

transformed value vectors. The attention weights are computed as:

αij =
exp(q

(α)
i

T
k
(α)
j /
√
dk)∑7

j′=0 exp(q
(α)
i

T
k
(α)
j′ /
√
dk)

(3.20)

where dk is the key vector dimensionality. This pass aggregates short-range spatial

information up the tree. Each node thus obtains a latent code as a weighted combination

of its children’s codes, where the weights are learned through the attention mechanism.

Top-Down Refinement A top-down pass refines node representations to incorporate

broader context (mimicking long-range attention). Starting at the root, a new latent

code ζ(0) is inferred for the root node using a similar attention mechanism with different

projection matrices W
(ζ)
q ,W

(ζ)
k . The difference ∆z(0) = z(0) − ζ(0) is calculated. This

difference is propagated down the tree. For a parent node at level d with difference

∆z
(d)
(...,i), the difference propagated to its child j is:

∆z
(d+1)
(...,i,j) = αij∆z

(d)
(...,i) (3.21)

Here, αij are the attention weights from the bottom-up pass. Child node latent codes

are updated:

z
(d+1)
(...,i,j) ← z

(d+1)
(...,i,j) +∆z

(d+1)
(...,i,j) (3.22)

This recursive process allows global refinements to propagate throughout the OctTree.

Iterative Refinement The bottom-up and top-down passes can be iterated multiple

times. This allows for more complex information flow and potentially more robust

representations. Let Zk denote the set of all node features at the beginning of iteration

k. One full iteration (bottom-up pass followed by a top-down pass) constitutes a

transformation F , such that Zk+1 = F(Zk). The function F is deterministic for fixed

model weights (e.g., Wq,Wk).

During the bottom-up pass, parent features z(k+1),BU
p are computed based on atten-

tion over child features z
(k)
cj . The queries qp = Wqz

(k)
p and keys kcj = Wkz

(k)
cj make the

attention weights α
(k)
p,cj dependent on Zk. The update is z

(k+1),BU
p =

∑
j α

(k)
p,cjz

(k)
cj . The

top-down pass then uses these fresh z(k+1),BU features and α(k) weights to compute
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corrections and update nodes to Zk+1. This entire transformation F is continuous but

highly non-linear.

A formal proof of convergence of the sequence Zk to a unique fixed point Z∗ (where

Z∗ = F(Z∗)) is mathematically challenging for such a general non-linear iterative

scheme. It would typically require showing that F is a contraction mapping in a

suitable metric space, which is not straightforward without specific constraints on the

learned weights or feature distributions.

However, several aspects are noteworthy:

• The softmax function ensures attention weights sum to one for each parent over

its children, making the bottom-up feature aggregation a weighted average, which

can have stabilizing effects.

• In practice, similar iterative processes in graph neural networks are often run

for a fixed, small number of iterations. The model weights are trained end-to-

end through the unrolled iterations, learning to make this fixed number of steps

effective for the downstream task.

• Alternatively, iteration continues until an empirical convergence criterion is met,

such as the change ∥Zk+1 − Zk∥ falling below a threshold, or a maximum number

of iterations is reached. This is to balance refinement quality with computational

cost and to mitigate potential over-smoothing, where features might become too

similar with excessive iterations.

The focus is on achieving useful representations within a practical number of steps,

as shaped by the learning process of the overall model.

Algorithmic Summary The complete process is summarized in Algorithms 1, 2, and

3. The main algorithm outlines the overall iterative refinement, while the subsequent

algorithms detail the bottom-up aggregation and top-down refinement passes.
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Algorithm 1: Overall OctTree Attention Propagation
Input : 3D scene data (e.g., point cloud)

Output : OctTree with refined node representations

1 octree← ConstructInitialOctTree(scene) ;

2 foreach leafNode in octree.leaves do

3 leafNode.latentCode← PointConvolutionFeatures(leafNode.points) ;

4 leafNode.latentCode← Concatenate(leafNode.latentCode,

FourierEncode(leafNode.position)) ;

5 end foreach

6 for iteration from 1 to maxIterations do

7 octree← BottomUpPass (octree);

8 octree← TopDownPass (octree);

9 if ConvergenceCriterionMet() and iteration > 1 then

10 break ;

11 end if

12 end for

Algorithm 2: Bottom-Up Attention Pass
Input : OctTree with node representations

Output : OctTree with updated parent representations and attention weights

1 Function BottomUpPass(octree)

2 for level from octree.depth - 1 down to 0 do

3 foreach parentNode in octree.nodesAtLevel(level) do

4 children← parentNode.children ;

5 qparent ←Wq · parentNode.latentCode ;

6 kchildren ←Wk · childrenLatentCodes ;

7 α← Softmax(qTparent · kchildren/
√
dk) ;

8 parentNode.attentionWeights← α;

9 parentNode.latentCode←
∑

j(α[j] · children[j].latentCode) ;

10 return octree;
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Algorithm 3: Top-Down Refinement Pass
Input : OctTree from bottom-up pass

Output : OctTree with refined node representations

1 Function TopDownPass(octree)

2 for level from 0 to octree.depth - 1 do

3 foreach parentNode in octree.nodesAtLevel(level) do

4 if level = 0 then

5 qroot ←W
(ζ)
q zroot ;

6 kroot ←W
(ζ)
k zroot ;

7 attentionroot ← Softmax(qroot · kTroot/
√
dk) ;

8 ζroot ← attentionroot · zroot ;

9 parentNode.deltaZ← parentNode.latentCode - ζroot ;

10 children← parentNode.children ;

11 αparent ← parentNode.attentionWeights;

12 for i from 0 to children.length - 1 do

13 children[i].deltaZ← αparent[i] · parentNode.deltaZ ;

14 children[i].latentCode← children[i].latentCode +

children[i].deltaZ ;

15 return octree;

Attention Mechanism Design

Core Tree-based Attention Principles Tree-based structures offer a middle ground

between dense global attention and strictly local operations. Message passing occurs

both within levels (implicitly) and across levels (explicitly). The linearity of the attention

mechanism is key. It allows messages (feature transformations or refinements) to be

propagated across levels. This effectively covers node-node relationships spanning

different parts of the tree. This recursive message passing can approximate full attention

with significantly reduced complexity. For an OctTree of k levels with m children per

node (typically m = 8), the total number of nodes is N = O(mk) in the worst case.

Dense attention would require O(N2) = O(m2k) pairwise computations. Our approach

processes each parent-children group independently, requiring O(m2) attention compu-

tations per parent node. With approximately N/m parent nodes across all levels, the
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total complexity becomes O(N ·m) = O(mk+1), which is significantly more tractable

than the quadratic scaling of dense attention.

Multi-head Attention Support The proposed attention mechanism can be extended

to multi-head attention. This enhances the model’s capacity to capture diverse rela-

tionships from different perspectives. In this extension, each head h would have its

own learnable projection matrices for query, key, and value. Specifically, for each head

h, input features z are projected to qh = W h
q z, kh = W h

k z, and importantly, vh = W h
v z.

The use of per-head value projections (W h
v ) is a standard component of multi-head

attention. It allows each head to transform the input features into a value representation

tailored to its specific focus. This is a generalization from the simplified description

in the bottom-up pass (Section 3.4.3), where raw child features were used directly as

values to illustrate a direct linear combination.

Attention is then computed in parallel for each head h, typically as:

outputhi =
∑
j

αh
ijv

h
j

where αh
ij are the attention weights computed by head h. The outputs from all NH heads,

{outputhi }
NH
h=1, are usually concatenated and then linearly projected by a matrix WO to

produce the final combined output for the node:

outputi = WO(concat(output1i , ..., outputNH
i ))

This process effectively combines information from different learned representation

subspaces. It results in multiple distinct attention weight sets (one αh per head for

each parent-child group) and potentially allows for more complex and nuanced refined

representations (ζ) during the top-down pass if multi-head is applied there too. This

combines information from different representation subspaces.

3.4.4 Experimental Evaluation and Results

Our method is evaluated on the task of 3D shape reconstruction from sparse point clouds.

We compare our approach against established baselines on a standard benchmark

dataset. The evaluation focuses on assessing the quality of the reconstructed geometry,

both quantitatively and qualitatively.



3.4 Hierarchical Attention Propagation in Octrees 105

Experimental Setup

Dataset We conduct our experiments on the ScanNet v1 and v2 datasets [17]. ScanNet

is a large-scale dataset of 3D scans of indoor scenes, providing a standard benchmark

for reconstruction tasks. For each scene, we use an input point cloud of 16,384 points

sampled from the ground truth surface.

Metrics To quantitatively evaluate reconstruction quality and efficiency, we employ

several standard metrics:

• Efficiency Metrics: We measure the peak GPU Memory usage during training, the

number of Training Iterations required to reach an F-Score of 0.7 on the validation

set, and the per-scene Inference Time.

• Geometric Metrics: We compute Intersection over Union (IoU) on a 2563 voxel

grid, Chamfer-L1 distance, Normal Consistency (the cosine similarity between sur-

face normals of the reconstruction and ground truth), and F-Score (at a threshold

of 5cm).

Implementation Details Our model is implemented in PyTorch and trained on a

single NVIDIA RTX 3090 GPU. The OctTree structure is built up to a maximum depth

of 8 for our model variations. The feature dimension d for the latent codes in our

hierarchical attention model is set to 128. For our ablation studies, we evaluate models

with the number of attention heads NH ∈ {1, 2, 4, 8} and the number of refinement

iterations Niter ∈ {1, 2, 4, 8}. Our main reported model for ablations uses NH = 4 heads

and Niter = 4 iterations.

Attention Block Implementation Our hierarchical attention mechanism is built upon

the multi-head attention block described above. For a model with latent feature di-

mension d = 128 and NH heads, the dimension for each head is dh = d/NH . Each

attention block, whether for bottom-up aggregation or top-down refinement, consists

of three linear projection matrices: Wq, Wk, and WO, all of dimension d× d. The input

features are projected to generate queries and keys. As noted in Section 3.4.3, the value

vectors are the children’s latent codes themselves, omitting a projection matrix Wv to

maintain a direct combination of source features. After the scaled dot-product attention,
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the outputs of all heads are concatenated and passed through the final projection WO.

The weights of the attention block are shared across all nodes within a single pass (i.e.,

one set of weights for the bottom-up pass, and another for the top-down pass). This

weight sharing makes the model parameter-efficient, regardless of the OctTree’s depth

or complexity.

Comparison with Baselines

Baseline Method We compare our method primarily against Convolutional Occu-

pancy Networks (ConvONet) [104]. ConvONet is a powerful and widely-used method

for 3D reconstruction that leverages convolutional features on a 3D grid to predict im-

plicit occupancy fields. We use the 3D grid-based version of ConvONet with a feature

grid resolution of 643 as a strong baseline. A higher resolution version of ConvONet

could not be trained on our hardware due to GPU memory constraints. This compari-

son serves to demonstrate the advantage of our approach in achieving competitive or

superior reconstruction quality with greater resource efficiency.

Quantitative Results Table 3.6 presents the quantitative comparison of our method

against the ConvONet baseline. The results highlight a crucial trade-off between

computational efficiency and geometric accuracy.

Our model with a shallow OctTree (Depth 3) achieves geometric quality on par

with ConvONet-Grid643. It produces a better F-Score and a lower Chamfer-L1 distance

with a comparable IoU, while consuming only about half the GPU memory (11.8G vs

21.7G). This demonstrates that our method can match the performance of a standard

grid-based approach with significantly higher memory efficiency, albeit with slightly

slower training convergence (260k vs 230k iterations).

When using a deeper OctTree (Depth 5), our model substantially outperforms the

baseline across all geometric metrics, achieving an IoU of 0.817 (a 13% relative im-

provement) and an F-Score of 0.912 (an 11% relative improvement). This superior

performance is achieved while still using less GPU memory than the 643 ConvONet

baseline (19.2G vs 21.7G). However, this highlights an important trade-off between

computational space and time. The improved accuracy and memory efficiency come at

the cost of a significantly longer training period and a moderately increased inference
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time.

The Depth 5 model requires more than double the training iterations of ConvONet

(510k vs 230k) to reach the baseline F-Score, which suggests that our model is more

challenging to optimize and converges more slowly. This slower convergence may stem

from several factors. First, the iterative bottom-up and top-down refinement process

creates a deep computational graph, making gradient propagation difficult, similar to

training very deep recurrent networks. Second, the extensive weight sharing of the

attention blocks, while parameter-efficient, requires the model to learn a single, highly

generalized set of parameters that must function across diverse scales and geometries,

which can complicate the optimization landscape.

Despite the longer training time, the memory savings are critical for scalability.

The baseline ConvONet could not be trained at a higher resolution (e.g., 1283) on our

hardware due to its prohibitive memory requirements, which scale cubically. This

underscores the key advantage of our OctTree-based attention mechanism: it provides a

scalable path to higher resolutions and more detailed reconstructions that are infeasible

for dense grid-based methods under typical hardware constraints. Our approach

effectively focuses computation only where detail exists, creating a more favorable

trade-off between final performance and resource consumption, particularly when

memory is the primary bottleneck.

Qualitative Results Figure 3.15 shows a qualitative comparison of the reconstructions

on two scenes from the ScanNet dataset. The visual results corroborate our quantitative

findings. Our method, produces reconstructions that is qualitatively competitive to the

baseline. This demonstrates the effectiveness of our hierarchical attention mechanism

in building rich feature representations that translate to higher-quality geometry.

Ablation Studies

To validate the design choices of our proposed method, we conduct several ablation

studies on both the shallow (Depth 3) and deep (Depth 5) model configurations.

Ablation on Core Mechanisms To validate the key components of our architecture,

we perform an ablation study that builds up our model step-by-step. Table 3.7 shows

the impact of the aggregation mechanism, the top-down propagation pass, and iterative
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Ground Truth ConvONet Ours

Figure 3.15: Qualitative comparison of 3D reconstructions on two ScanNet scenes (rows).

Columns show the Ground Truth mesh, the result from the ConvONet baseline, and

our method’s reconstruction.

refinement. We start with two simplified baselines. The "No Attention" model replaces

our attention-based aggregation with a simple mean pooling in the bottom-up pass.

The "Attention (Bottom-up only)" model uses our attention mechanism for aggregation

but omits the top-down propagation pass. This can be conceptualized as a model

before any full refinement iterations are performed. The results clearly show that each

component provides a significant performance boost. Moving from a simple pooling

to our attention mechanism provides a notable gain (e.g., F-Score from 0.520 to 0.690

for Depth 5), demonstrating the benefit of learned, adaptive aggregation. Adding the

top-down pass ("1 Iteration") further improves the score (to 0.724), confirming the value

of propagating global context back down the tree. Finally, increasing to four iterations

yields the largest performance leap (to 0.912), highlighting that repeated cross-scale

information flow is critical for building high-quality feature representations.

Effect of Multi-Head Attention We also study the impact of the number of attention

heads (NH) on performance. Table 3.8 shows that across both depths, increasing the

number of heads from 1 to 4 yields a consistent improvement. This suggests that multi-
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ple heads help the model to jointly attend to information from different representation

subspaces, as intended. Using 8 heads provides no further benefit and degrades per-

formance in both configurations. This is likely because the feature dimension per head

becomes too small to capture complex relationships effectively. Based on this, we use

NH = 4 for our final model configuration.

3.4.5 Further Enhancements and Considerations

Theoretical Considerations

Several theoretical aspects warrant further investigation:

Expressiveness Analysis The expressiveness of hierarchical attention compared to

full dense attention needs rigorous analysis. While our method reduces computational

complexity, it’s important to characterize what types of spatial relationships can be

captured through the tree-structured message passing versus direct pairwise attention.

Positional Encoding Requirements The choice of positional encoding (Fourier vs.

learned vs. tree-structure-aware) significantly impacts the model’s ability to distin-

guish spatial relationships. The current Fourier encoding may not fully capture the

hierarchical nature of the OctTree structure.

Gradient Flow Properties The iterative nature of the algorithm raises questions about

gradient flow during back-propagation. Deep iteration might lead to vanishing or

exploding gradients, similar to issues encountered in very deep recurrent networks.

Predicting Extra Leaf Nodes

To handle incomplete or corrupted input data, a mechanism can predict and add leaf

nodes. A small neural network operates on the refined latent codes of existing leaf

nodes. It outputs a probability p for subdivision and eight vectors {vi}8i=1. If p > 0.5, the

node is divided. The new children’s latent codes zi are derived from the parent’s code

zparent and the predicted vectors: zi = zparent ⊙ vi. This adaptively refines the OctTree

structure.
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Integration with Vector-Neurons for SO(3) Equivariance

For rotation equivariance, integration with Vector-Neurons [18] is possible. Latent codes

become sets of 3D vectors (e.g., k/3 vectors for a k-dim code). Standard dot products in

attention are replaced with Vector-Neuron dot products. Linear transformations use

Vector-Neuron equivariant layers. The refinement network for predicting nodes would

also use Vector-Neurons.

Future Work and Broader Applications

Looking ahead, several avenues for future work are promising. The immediate next

step is a more extensive empirical validation for the reconstruction task, benchmark-

ing against a wider array of state-of-the-art implicit reconstruction methods beyond

ConvONet. This will provide a more comprehensive understanding of the model’s

performance and limitations in this context.

A significant future direction is to leverage the general-purpose nature of the learned

feature representations. As designed, the hierarchical attention mechanism is not task-

specific. Applying the model as a feature-encoding backbone for tasks like 3D semantic

segmentation and object detection would be a crucial step. Success in these areas would

validate the approach not just as an effective component for implicit reconstruction,

but as a foundational and versatile architecture for a wide range of 3D understanding

problems.

3.4.6 Conclusion

This section detailed a hierarchical attention propagation mechanism for OctTrees. The

method combines the structural efficiency of OctTrees with the expressive power of

attention. While demonstrated on the task of implicit 3D reconstruction, where it

achieves competitive results with high parameter efficiency, the architecture itself is

designed to be a general-purpose feature learner. We have presented a framework

for multi-scale feature learning and cross-scale information flow, discussed potential

enhancements, and validated its effectiveness. The proposed approach stands as a

promising direction for robust, efficient, and scalable 3D spatial data processing, with

potential applications spanning from reconstruction to semantic understanding.
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3.5 Chapter Summary

Where the previous chapter focused on methods producing explicit, parametric surface

representations, such as the grid-based partitioning approach for generating Bézier

patches (Section 3.3), this chapter delves into three distinct methodologies for enhancing

implicit 3D reconstruction. By incorporating various forms of prior knowledge and

structural biases, each approach addresses fundamental challenges in fidelity, computa-

tional efficiency, and scalability. These contributions offer unique solutions that advance

the capabilities of neural implicit representations.

In Section 3.1, we introduced Seed-Net, a framework that integrates human intelli-

gence directly into the reconstruction pipeline. By allowing users to interactively place

"seeds" in regions requiring refinement, Seed-Net leverages explicit human priors to

correct artifacts and recover fine-grained details that are often lost or over-smoothed by

fully automated methods. The core mechanism uses an attention-based propagation

scheme, enabling local corrections to inform and improve related structures throughout

the entire scene. This human-in-the-loop approach demonstrates the value of combining

machine-level generalization with human-level domain expertise, bridging the gap

between automated reconstruction and manual artistic control.

Then we presented NeuLap, which shifts from explicit human guidance to an im-

plicit, learned geometric prior. NeuLap introduces a novel training paradigm that uses

the Laplacian of the implicit surface as a supervisory signal. A pre-trained denoising

network refines the rendered Laplacian map, and the difference between the raw and

denoised maps provides an auxiliary loss. This geometric prior encourages the network

to learn smoother surfaces and preserve sharp features, significantly accelerating conver-

gence and improving reconstruction quality, particularly under data-scarce conditions.

This method showcases how priors can be effectively integrated into the optimization

process itself, guiding the network towards more plausible geometric outcomes.

In Section 3.4, a more foundational architectural approach with the Hierarchical

Attention Propagation mechanism for OctTrees was explored. Rather than injecting

priors through interaction or loss functions, this method provides a powerful, multi-

scale feature representation backbone. By employing iterative bottom-up aggregation

and top-down refinement passes with a sparse attention mechanism, the model effi-
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ciently captures both local geometric details and long-range contextual dependencies

within the data. This architecture provides a scalable and parameter-efficient way to

build rich feature hierarchies, forming a robust foundation upon which high-fidelity

implicit reconstruction and other 3D understanding tasks can be built.

These three contributions illustrate a spectrum of strategies for improving 3D recon-

struction. From the direct intervention of Seed-Net, to the learned geometric constraints

of NeuLap, and finally to the inherent structural advantages of the hierarchical attention

architecture, this chapter highlights the critical role of priors in pushing the boundaries

of what is achievable with deep learning over spatial data. Each method offers a dif-

ferent trade-off between user effort, data requirements, and computational structure,

providing a versatile toolkit for tackling diverse reconstruction challenges.
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Model IoU Chamfer-L1 Normal IoU* Chamfer-L1* Normal*

Baseline

ConvONet-163 0.845 0.046 0.872 0.845 0.046 0.872

With seed-code length 16

4 Seeds-163 0.841 0.046 0.840 0.853 0.044 0.875

8 Seeds-163 0.846 0.045 0.852 0.861 0.044 0.884

16 Seeds-163 0.864 0.044 0.887 0.868 0.043 0.886

32 Seeds-163 0.865 0.044 0.885 0.867 0.043 0.883

With seed-code length 32

4 Seeds-163 0.851 0.045 0.877 0.872 0.044 0.887

8 Seeds-163 0.874 0.044 0.897 0.890 0.043 0.893

16 Seeds-163 0.883 0.043 0.924 0.893 0.042 0.936

32 Seeds-163 0.886 0.043 0.922 0.893 0.042 0.937

With seed-code length 64

4 Seeds-163 0.872 0.044 0.884 0.891 0.042 0.939

8 Seeds-163 0.894 0.042 0.940 0.896 0.042 0.939

16 Seeds-163 0.895 0.042 0.941 0.896 0.041 0.941

32 Seeds-163 0.895 0.042 0.941 0.896 0.042 0.941

High resolution reference

ConvONet-323 0.891 0.044 0.936 0.891 0.044 0.936

Table 3.1: Experiment results on integrating SeedNet into Convolutional Occupancy

Network, with Uniform Seed Sampling and Heuristic Seed Sampling. The metrics

column headings with * state for the results of heuristic seed sampling. The original

baseline
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Table 3.2: Quantitative comparison of 3D reconstruction quality on the ScanNet dataset.

Metrics include Accuracy (Acc.), Completeness (Comp.), Precision (Prec.), Recall, and

F-score. Acc./Comp. are measured in cm. Best results are highlighted.

Method Acc.(↓) Comp.(↓) Prec.(↑) Recall(↑) F-score(↑)

COLMAP [120] 0.061 0.089 0.642 0.571 0.604

NeuralRecon [127] 0.041 0.091 0.753 0.575 0.652

NeRF [90] 0.162 0.066 0.375 0.579 0.455

NeuS [150] 0.107 0.122 0.450 0.380 0.412

NeuS+Lap 0.093 0.102 0.521 0.440 0.477

NeuRIS [146] 0.054 0.052 0.720 0.665 0.691

NeuRIS+Lap 0.040 0.046 0.775 0.745 0.759

Table 3.3: Reconstruction F-score Comparison (higher is better) on OOD (Synthesis-

NeRF) and Lack-of-Data (50% ScanNet) Scenarios. Best results per model pair high-

lighted.

Model Nerf-Synthetic (OOD) 50% ScanNet Data (Lack-of-Data)

NeuS 0.551 0.351

NeuS+NeuLap 0.513 0.423

NeuRIS 0.410 0.612

NeuRIS+NeuLap 0.490 0.633

Table 3.4: Ablation study of NeuLap components on the ScanNet dataset, using NeuRIS

as the baseline. Performance is measured by mean F-score (higher is better).

Method F-score

Baseline (NeuRIS) 0.691

Laplacian Regularization (L1) 0.693

NeuLap (w/o Pose Info) 0.720

NeuLap (w/o Neighboring Frames) 0.745

Full NeuLap (on NeuRIS) 0.759
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Table 3.5: Chamfer Distance (×103, lower is better) comparison on ShapeNet categories.

Results are shown for surfaces derived from the inferred partitioned grid by fitting

cubic Bèzier patches (see Section 3.3.2), compared to AtlasNet. OOD categories marked

with *.
Method pla. ben. cab. car cha. mon. lam. spe. fir. cou. tab. mean *cel. *wat.

AtlasNet (25 patches) 0.97 1.33 1.66 1.94 1.58 1.12 1.75 2.01 1.01 1.25 1.21 1.44 1.42 1.33

AtlasNet (125 patches) 1.03 1.32 1.54 1.92 1.46 1.19 1.78 2.23 0.84 1.32 1.44 1.46 0.89 1.34

Grid-3x3x3 2.31 2.20 2.19 2.08 1.76 1.99 2.15 2.29 1.85 1.58 1.74 2.01 2.43 2.21

Grid-5x5x5 2.10 2.05 2.00 1.95 1.65 1.85 2.00 2.10 1.70 1.50 1.65 1.81 1.92 1.81

Grid-7x7x7 1.50 1.45 1.25 1.75 1.25 1.30 1.58 1.95 1.20 1.20 1.15 1.42 1.87 1.98

Table 3.6: Quantitative comparison for 3D shape reconstruction on the ScanNet dataset.

Our method is compared against a strong grid-based baseline. We report efficiency

metrics (GPU Memory, Training Iterations, Inference Time) and geometric quality

metrics. ↑ indicates higher is better, ↓ indicates lower is better. Best results on geometric

metrics are in bold.
Method GPU Mem (G) ↓ Train Iters (K) ↓ Infer Time (s) ↓ IoU ↑ Chamfer-L1 ↓ Normal Cons. ↑ F-Score ↑

ConvONet-Grid643 [104] 21.7 230 8.16 0.722 0.075 0.877 0.820

Ours (Depth 3) 11.8 260 9.13 0.721 0.069 0.804 0.832

Ours (Depth 5) 19.2 510 12.2 0.817 0.042 0.903 0.912

Table 3.7: Ablation study on the core mechanisms of our method. We report F-Score on

the ScanNet validation set with a fixed 4 attention heads. The "No Attention" uses mean

pooling in the bottom-up pass instead of our attention mechanism. The 0 iter performs

the bottom-up pass only, without the top-down propagation pass, and n-iters performs

n iterations of the bottom-up and top-down passes.

Method F-Score (Depth 3) ↑ F-Score (Depth 5) ↑

No Attention 0.450 0.520

0 iter 0.510 0.690

1 iter 0.542 0.724

2 iter 0.600 0.780

4 iter (Ours) 0.832 0.912

8 iter 0.831 0.821
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Table 3.8: Ablation study on the number of attention heads (NH). We report F-Score on

the ScanNet validation set with a fixed 4 iterations.

NH F-Score (Depth 3) ↑ F-Score (Depth 5) ↑

1 0.821 0.901

2 0.829 0.908

4 (Ours) 0.832 0.912

8 0.817 0.889
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Conclusion and Future Directions

This chapter summarizes the key contributions and findings of the thesis. It provides

a brief overview of the research objectives, the proposed solutions, and the results

obtained. The research journey began with an exploration of explicit, parametric

reconstruction methods, encountered fundamental challenges that led to a strategic

pivot towards implicit representations, and culminated in the development of a novel,

general-purpose backbone for 3D spatial learning.

4.1 Summary of Contributions and Findings

This thesis presents a trajectory of research that navigates the complex landscape of

3D reconstruction. Our investigation commenced with explicit, parametric methods

and progressively transitioned towards more robust and scalable implicit and general-

purpose learning frameworks.

The initial exploration, proposed in Section 3.3, focused on explicit, parametric

surface-based reconstruction. We investigated methods to generate partitioned de-

forming boxes directly from point clouds, aiming for structured, CAD-like outputs.

However, this path revealed obstacles in robustly inferring topology and connectivity

from unstructured data. Upon this critical finding, we shifted our focus to implicit

representations.

The research then pivoted to prior-guided implicit 3D reconstruction, as presented

in Chapter 3. This chapter introduced two novel methods that leverage different forms
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of prior knowledge. Seed-Net introduced a human-in-the-loop pipeline, enabling user-

controllable refinement through interactive "seed" points. This work demonstrated how

explicit, sparse user feedback can be differentiably integrated to guide the optimization

of a neural field, achieving significant improvements in local detail. NeuLap incorpo-

rated a learned geometric prior by using the surface Laplacian as a supervisory signal

during training. By penalizing deviations from a denoised Laplacian map, NeuLap

accelerates convergence and enhances the preservation of sharp geometric features,

improving reconstruction quality from limited data. Finally, In Section 3.4 of Chap-

ter 3, we addressed the need for a more foundational and scalable architecture for 3D

deep learning. We introduced a Hierarchical Attention Propagation mechanism for

OctTrees, a general-purpose backbone for learning over large-scale spatial data. By

combining bottom-up feature aggregation and top-down information propagation with

a sparse attention mechanism, this architecture efficiently captures both local details

and global context. Its strong performance and memory efficiency provide a powerful

foundation for a wide range of 3D tasks, including high-fidelity reconstruction.

4.2 Revisiting Research Objectives

The contributions of this thesis directly address the research objectives set out in Chap-

ter 1.

1. To Enhance 3D Parametric Reconstruction from Noisy Inputs: This objective

was the focus of our initial research (Section 3.3 in Chapter 3). While a robust, end-

to-end solution was not achieved, the investigation partially fulfilled this objective

by identifying the theoretical and practical barriers of explicit parametric methods,

thereby providing more insights that guided the subsequent, more successful

research directions.

2. To Enable User-Controllable Refinement in Implicit 3D Reconstruction: This

objective was met by the development of Seed-Net (Section 3.1 in Chapter 3). Its

interactive refinement mechanism provides a direct and intuitive way for users

to guide the reconstruction process, effectively integrating human intelligence to

enhance geometric precision where it is most needed.
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3. To Improve the Computational Efficiency of Implicit Neural Representations:

NeuLap (Chapter 3) has addressed this objective. By integrating a geometric

prior, it accelerates the training of neural fields, leading to faster convergence

and state-of-the-art results without requiring architectural changes to the baseline

implicit model.

4. To Propose a General-Purpose 3D Learning Framework that is Scalable and

Adaptive for Complex Scenes: The Hierarchical Attention OctTree (Chapter 3)

satisfies this objective. It provides a scalable and efficient backbone that excels at

processing large-scale 3D data, outperforming strong baselines and demonstrating

its capability as a foundational architecture for various 3D understanding tasks.

4.3 Limitations and Future Directions

While this thesis advances the field of 3D spatial learning, it also opens up new avenues

for future research. We identify the following limitations and corresponding directions

for future work:

• End-to-End Differentiable Parametric Reconstruction: The challenges encoun-

tered in differentiable topological inference in explicit reconstruction remain a

significant open problem. Future work could explore novel representations or

learning paradigms, such as reinforcement learning or graph neural networks, to

tackle the challenge of joint topology and geometry optimization in an end-to-end

differentiable manner.

• Generality of Learned Priors: The geometric prior in NeuLap is learned from

a dataset of synthetic scenes, which may not generalize perfectly to all types of

shapes or artifacts. Future work could explore online or self-supervised meth-

ods for learning priors directly from the input data, potentially leading to more

adaptive and robust guidance signals.

• Broader Applications of the Attention-in-OctTree Backbone: The Hierarchical

Attention OctTree was primarily evaluated on reconstruction tasks. Its powerful

multi-scale feature learning capabilities make it a strong candidate for a wide array

of other 3D tasks, such as semantic and instance segmentation, object detection,
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and scene flow estimation. Systematically adapting and evaluating the backbone

for these applications is a promising research direction.

4.4 Concluding Remarks

The research presented in this thesis has navigated the evolving landscape of deep

learning for 3D reconstruction. From the structured ambition of parametric modeling

to the flexible power of implicit fields and the scalable architecture of attention-based

OctTrees, this work has contributed novel methods, critical insights, and a powerful

general-purpose framework. The journey underscores a key lesson: that progress in 3D

spatial learning requires not only algorithmic innovation but also a deep understanding

of the fundamental trade-offs between explicit structure and implicit flexibility. The

contributions herein provide both practical tools and conceptual frameworks that

will, we hope, inspire future explorations in the quest to teach machines to see and

understand our three-dimensional world.
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