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Abstract—Human-robot interaction (HRI) based assistive de-
vices play a crucial role for individuals with severe disability,
significantly impacting their quality of life. A pivotal step towards
creating a more human-centric HRI involves gaining a thorough
understanding of the user’s mental load such as cognitive load,
stress, and fatigue, which can influence the performance of the
system. Previous studies have found pupil dilation as a potential
candidate for exploring mental workload. This paper explores
the impact of pupil diameter variation on performance during
an eye-tracking-based robot navigation task. Nineteen healthy
individuals participated in the experiment where they used eye-
gaze to activate different navigational buttons on a computer
screen to control the movement of a mobile robot on a predefined
trajectory for two rounds. The variation of pupil diameter
is correlated to various performance parameters such as lap
completion time and number of commands. Results show that
the difference between the Gaussian means of the pupil diameter
distribution during round1 and round2 is significantly correlated
(ρ = 0.5, p−value = 0.03) with the lap completion time while
the correlation with the number of commands is also found to
be strong (ρ = 0.45, p−value = 0.05). These quantifications of
pupil diameter variations with performance measures have the
potential to play a vital role in advancing the HRI systems as
they can be used to predict the performance variation in real-time
so that the HRI can be more responsive to the user’s changing
mental states, a key requirement for the practical usability and
acceptability of such systems as assistive technologies.

Index Terms—Pupil diameter, Eye-tracking, Assistive device

I. INTRODUCTION

This paper presents a novel user interface based on eye-
tracking technology designed for individuals facing severe
mobility challenges, particularly those with limitations in both
upper and lower body mobility. The primary objective is to
offer a control mechanism for their assistive devices, such
as powered wheelchairs or wheelchair-mounted robotic arms,
to facilitate their participation in daily activities. Besides the
physical capabilities of the assistive systems, the user interface
and the interaction experience with the technology play crucial
roles in shaping the overall user experience [1].

Despite considerable research into autonomous assistive
technologies, their widespread adoption among the target users
remains limited. Recognizing the importance of understanding
dynamic changes in mental states during interactions with

assistive technologies, it is vital to explore the potential for
adapting to variations in the user’s mental state. A deeper
understanding of these dynamic states can significantly im-
prove the effectiveness and responsiveness of assistive tech-
nologies [2].

Various assistive and autonomous wheelchairs have been
introduced, employing a variety of methods to interact and
receive commands from users. Common methods include elec-
troencephalogram (EEG), electromyogram (EMG), joystick,
eye-tracking, and graphical user interfaces (GUIs) [3]. Some
systems utilize a single method, while others combine multiple
methods to enhance performance and accessibility. RoboChair
[4], introduced in 1997, is an autonomous wheelchair equipped
with both a joystick for motion control and a GUI. A fusion of
eye-tracking and inertial-measurement-units (IMUs) was used
in a previous study by [5] for movement intention detection
for safer operation of lower-limb exoskeletons for mobility
assistance while Meena et al. developed a gaze-controlled
virtual keyboard for assisted learning of children with dyslexia
using eye-tracker among other modalities [6].

EEG signals are also used as a control modality in numerous
autonomous wheelchair projects, such as in [7]. Another
notable project, [8] utilized a hybrid brain-computer inter-
face (BCI) method incorporating EEG and electrooculogram
(EOG) to control a wheelchair-mounted robotic arm system.
However, the need for repeated calibration, higher user fatigue,
and inter-subject variability limits its practical uses.

Therefore it is more practical to use modalities such as
an eye-tracker for controlling mobility assistance devices for
people with both upper and lower limb disability. In [9], a
wheelchair-mounted robotic arm controlled by a screen-based
eye-tracker was introduced. The interface includes buttons and
options for controlling both the wheelchair’s movements and
the robotic arm. Similarly, [10] features a similar combination
of a robotic system, though with different control systems.

Moreover, eye-tracking finds various applications, particu-
larly in psychological studies, offering insights into human
cognition and points of interest [11], [12]. Mental workload
estimation has also been studied concerning pupil dilation
in many works [13], [14]. Guo et al. highlighted the in-



fluence of time pressure and latency on mental workload,
aside from factors such as task specificity, which is crucial
in the context of assistive devices. It was also noted that gaze
information, including pupil diameter, plays a significant role
in such mental workload estimation [15]. Rather than using
raw pupil diameter, researchers have also experimented with
the relationship between power and frequency at the mean
frequency to calculate cognitive load [16].

Mental activities are known to influence pupil diameter;
for example, increased mental load typically corresponds
with pupil dilation [17], while fatigue can lead to pupil
constriction [18]. Additionally, pupil diameter has been used
to differentiate cognitive processes, such as decision-making
and sustained focus, highlighting its role in understanding user
engagement and cognitive state [19].

Therefore, in this study, we asked whether the performance
variation of a user during a human-robot interaction (HRI) task
can be captured and quantified through the variation in pupil
diameter as an indirect estimate of mental workload, so that
future HRI systems can be responsive to the changing mental
state of the user. We investigate the variation in pupil diameter
as an indirect measure of mental workload during human-robot
interaction tasks. We analyze how this variation correlates
with various performance parameters, such as lap completion
time, number of commands issued, and average time taken to
select commands. Additionally, subjective measures of user
mental workload during task performance, as well as the
usability and acceptability of the system, are evaluated using
standard scales. The changes in pupil diameter as the user
controlled the motion of a mobile robot on a pre-defined
trajectory through their eye-gaze have been discussed in this
paper concerning various performance parameters such as lap
completion time, number of commands, and average time
to select the commands. Subjective measures of the mental
workload of the users performing the task and the usability
and acceptability of the system were also taken using standard
scales.

Following this introduction, the methodology section pro-
vides an in-depth look at the system design and experimental
protocol that underpin this study. The subsequent sections
delve into the results and discussion, highlighting key findings
through detailed graphs and analyses. The paper concludes
with a summary of insights and considerations for future work.

II. METHODOLOGY

A. System Description

The primary equipment utilized in this project is the Tobii
Pro nano eye-tracking device, boasting a 60Hz sampling rate.
This eyetracker is monitor-mounted and connected to a PC
for seamless integration. The User Interface displayed on
the monitor (Fig. 1) includes a live video stream at the
center of the screen, providing an enriched view of the path.
Additionally, the interface incorporates four control buttons
dedicated to robot movements. The inclusion of this live video
feed enhances user awareness of the path and task without
causing distraction from the available control options.

The system operates by moving the mouse cursor to the
corresponding gaze point. Upon hovering over a button, a
timer initiates. If the user maintains their gaze on the button for
the dwell time, currently set to 2 seconds, a click is registered.
Moving the cursor before the completion of the dwell time
terminates the timer. This mechanism enables the generation
of continuous commands, allowing the timer to make a click
at regular intervals as long as the cursor remains on the button.
This feature proves advantageous, particularly for issuing
continuous commands, especially during the navigation of
long, straight routes. We chose this dwell time of 2 seconds to
align with the average duration of our robot’s actions, aiming
to prevent conflicts between user commands and robot actions
while ensuring a smooth interaction experience.

Throughout the experiment, the system records the gaze
point on the screen and the pupil diameter for both eyes at
a 60Hz sampling rate, with corresponding timestamps. Addi-
tionally, user commands and their timestamps are recorded,
providing a comprehensive dataset for analysis.

The experiment employs a Turtlebot Burger as the mobile
robot, establishing wireless communication with the PC. The
robot publishes its motor speed based on generated commands,
enabling seamless movement along the predefined path. This
path, printed on A0 papers and covering approximately 2
square meters, provides intentional guidance with a balanced
distribution of right and left turns, including 45 and 90-degree
turns tailored to match the robot’s capabilities. The robot’s
movements are predefined as steps, with each command in-
structing the robot to move 10 cm or turn 45 degrees.

Fig. 1. A screenshot of the user interface and the path design.

B. Experiment Protocol

The experiment was conducted indoors under controlled
lighting conditions. Participants were seated in adjustable
computer chairs and instructed to customize the chair and
monitor settings based on their preferences, following the
eye-tracker’s posture guide. Before each round, the system
underwent calibration for each user, ensuring an optimal
distance and posture with the eye-tracker. Then participants
were advised to maintain the prescribed posture throughout
the experiment recording.



Fig. 2. A participant using the device during the experiment.

Participants were instructed to complete two rounds of the
designated path, with all eye-tracker readings, time stamps,
and commands recorded in a file. Performance analysis was
conducted based on these recordings. The first measure con-
sidered was the number of corrections made during the ex-
periment, calculated by counting direct changes from left to
right, forward to backward, and vice versa. Lap completion
time and the average command selection were also measured
to assess performance. Additionally, changes in pupil diameter
were recorded during the experiment at a 60Hz sampling rate
for both eyes.

During participant recruitment, factors such as experience
with eye-tracking software and biologically controlled soft-
ware were controlled by ensuring a diverse pool of participants
with varying levels of familiarity. The NASA Task Load Index
(NASA TLX) [20] served as a crucial tool to capture partic-
ipants’ self-reflective feedback on task load, complemented
by additional questions about their overall system experience.
Participants rated their task load across six domains: frustra-
tion, effort, performance, temporal demand, physical demand,
and mental demand.

Furthermore, in conjunction with the NASA TLX, par-
ticipants provided insights into the user acceptability and
usability of the system. To evaluate this aspect, the Questbec
User Evaluation of Satisfaction with Assistive Technology
(Quest 2.0) and Unified Theory of Acceptance and Use
of Technology (UTAUT) questionnaires were administered.
The experiment also incorporated acceptability and usability
questionnaires to gather feedback on the interface and its
potential enhancements. Throughout the experimental phase,
valuable recommendations and suggestions were gathered to
guide future improvements in the adaptive system.

C. Participants information

At this stage, data were collected from 19 participants,
involving healthy adults across diverse age groups who were
invited to participate in the experiment. Approximately 21% of
the participants were over the age of 60. 42% of participants
wore glasses during the experiment. Ethical approval for the
experiment was granted by the University of Essex Ethics
Subcommittee 3 (ERAMS Reference code: ETH2223-2300)
and all subjects gave informed consent.

III. RESULTS AND DISCUSSION

To gain a comprehensive understanding of the interaction
and its outcomes, we are focused on analyzing the overall
changes and characteristics of pupil dilation, along with their
corresponding performance measures, for each participant.
Additionally, we are examining the questionnaire results.

Performance measures include total lap competition time,
which is the total time that participants took to complete the
lap from the start to finish. Another performance measure is
the Average selection time, which is the average of duration
between the commands generated by the user in the lap.
The number of commands issued during the lap is also used
as a performance indicator throughout the experiment. The
number of commands serves as a critical metric reflecting the
efficiency, cognitive load, error rate, and time efficiency of user
interactions with the system. Higher command counts may
indicate challenges in task completion, increased cognitive
load, higher error rates, and longer completion times.

The Gaussian distribution reveals that 50% of participants
exhibit more dilation in the left pupil rather than the right,
while approximately 37% show dilation in the right pupil dur-
ing the recordings. Additionally, there were instances where
participants displayed overlapping or similar pupil diameters.

Table. I provides an overall view of the data collected during
the experiment. The ’Minimum’ column displays the minimum
pupil value recorded among the participants, and similarly, the
’Maximum’ column shows the maximum value. The ’Mean’
columns present the average mean values for each eye during
the rounds, and the ’Standard Deviation’ column represents
the average of standard deviations.

TABLE I
MINIMUM AND MAXIMUM PUPIL IN THE DATA, ALONG WITH AVERAGE

MEAN AND AVERAGE STANDARD DEVIATION OF EACH PUPIL IN THE
ROUNDS.

Minimum Maximum Mean Standard deviation
Round 1 Left Pupil 0.8998 5.0078 3.2477 0.1808
Round 1 Right Pupil 0.9412 5.2929 3.1883 0.1871
Round 2 Left Pupil 0.9951 5.0728 3.2 0.1748
Round 2 Right Pupil 0.8621 5.2542 3.1533 0.1799

Fig. 3 illustrates key performance metrics across different
rounds and this figure presents the Lap completion time, the
total number of commands issued, and the average selection
time in each case. The box plots reveal the distribution and
variance within each round and provide insight into trends
or changes in performance as rounds progress. By comparing



Fig. 3. The box plots representing the Lap completion time, total number of
commands, and average selection time for each round.

these metrics, we can observe variations in user efficiency
and responsiveness, and it indicates potential improvements
or fatigue factors that might affect task completion over time.
After the first round, participants demonstrated noticeable
improvement across all key performance metrics—Lap com-
pletion time, total number of commands, and average selection
time— which is indicating an adaptation period where they
became familiar with the system’s functionality. This learning
effect suggests that initial exposure to the interface helps users
internalize the command structure and interaction flow and as a
result, it leads to more efficient task performance in subsequent
rounds, faster lap completions, fewer command inputs, and
reduced time for each selection. This trend highlights the
intuitive nature of the system, as users can quickly gain
proficiency with minimal rounds, a positive sign of usability
and user-friendly design.

Fig. 4. The average selection time for each round for each participants.

Fig. 4 shows the average selection time during the rounds
for each participant. The difference the time between the
rounds has been used as a performance measure in Fig. 10.
The performance measures, as illustrated in Figure 3, exhibit
overall improvement in Round 2. A noticeable decrease is
observed in lap completion time, average selection time, and
the number of commands.

However, for around 15% of participants there has been a
slight increase in the average selection time (Fig. 4) while
for lap completion time (Fig. 5) the figure is around 10% of

Fig. 5. The total lap completion time for each round for each participants.

Fig. 6. The graphs shows the total number of commands generated by
participants during each round.

participants. Around 42% of participants show a slight increase
in the total number of commands in round 2 however the
improvement for the rest of the participants has been more
significant (shown in Fig. 6).

Fig. 6 shows the total number of commands that have been
produced by participants during the rounds. The difference
between the value in round 2 and round 1 has been used as
an indication of performance measure in Fig. 8.

Fig. 7. This plot shows the gaussian distribution of P07’s Right pupil during
round 1 and 2. The difference between the mean values in the Gaussian
distribution is shown in the plot.

Fig. 7 shows an example of gaussian distribution in right
pupil data for participant number 7. The red lines show the
peaks of the Gaussian distribution (mean). The difference



between these lines is used to calculate the difference between
means which has been used in Figs. 8-9.

Fig. 8. scatter plot and linear regression analysis will be conducted to
examine the difference between the mean pupil sizes of Round 2 and Round
1, correlating these differences with number of commands selected in round
2.

Fig. 9 depicts a linear relationship between the difference in
the mean of the Gaussian distribution for right pupil diameter
from Round 1 to Round 2 and the lap completion time of
Round 2. The graph illustrates that individuals exhibiting
increased dilation in their right eye tend to spend more time
completing the second lap. This finding underscores a potential
correlation between pupillary responses and task performance.

Fig. 9. A scatter plot and linear regression analysis is conducted to examine
the difference between the mean pupil sizes of Round 2 and Round 1,
correlating these differences with Lap 2 completion time.

Similarly, a comparable outcome is evident in Fig. 8,
wherein the difference in mean right pupil diameter is ex-
amined concerning the average selection time between com-
mands. The graphical representation suggests that participants
with an elevated right pupil diameter exhibit longer pauses
between issuing commands. This observation may provide
further insights into the potential role of pupillary dynamics in
influencing the temporal aspects of participants’ interactions
with the system.

It is interesting to note that approximately 10% of partici-
pants experienced an increase in lap completion time during
Round 2 compared to Round 1. Additionally, around 21%
of participants demonstrated an extended average duration
between their commands in Round 2 as opposed to their per-

formance in Round 1. These findings underscore the variability
in participants’ task performance, shedding light on individual
differences in adapting to the system or task demands.

Analysis of the collected data from each round reveals an
interesting trend which is the participants with a lower mean
pupil diameter tend to spend more time completing the lap,
while those with a higher mean pupil diameter complete the
lap sooner. However, these participants didn’t report a high
mental load or fatigue in the questionnaires.

In Fig. 10, the difference between the average time spent
between each command and the variation in the total number
of commands between Round 2 and Round 1 is illustrated.
Importantly, participants who demonstrated a slower pace in
issuing commands during the second round tend to generate
fewer commands in Round 2 as opposed to Round 1. This
observation implies a potential relationship between the par-
ticipants’ command generation speed and the overall number
of commands executed, emphasizing the increased effort and
precision invested in decision-making during the second lap.

Fig. 10. A scatter plot projecting the relation between The difference between
the average selection time and the difference in the number of total commands
generation during R2 and R1.

A. Subjective measures

In terms of participant feedback, a predominant concern has
emerged regarding the predefined steps for robot movement
and the use of a mobile robot instead of an actual wheelchair.
Some participants have expressed that the fixed dwell time
of 2 seconds is perceived as excessively long. Additionally,
participants reported blinking less while concentrating on the
buttons, leading to tiredness.

While all demands (physical, mental, and temporal) were re-
ported to be low, physical demand was perceived as harder by
most participants. The primary causes of high physical demand
were reported as eye tiredness and maintaining posture. The
challenge of distinguishing the robot’s direction was attributed
to mental demand. These valuable insights will be considered
while changing the mobile robot paradigm into the actual
powered wheelchair paradigm with an adaptive HRI interface.
Additionally, we will implement a new adaptive setting to
directly address these concerns and improve the overall user
experience.



Regarding the interpretation of the results, tiredness and
increased mental demand contribute to decreased performance
outcomes. However, an alternative perspective is proposed
based on observations of lower button selection time, total
completion time, number of commands, and mean pupil di-
ameter in Round 2. This suggests that participants may have
become more familiar with the task and its requirements,
resulting in reduced mental workload and improved perfor-
mance. The decrease in lap time and pupil diameter could
be attributed to participants’ increased efficiency and reduced
cognitive effort in Round 2, possibly due to learning effects
or task familiarity developed during Round 1. Therefore,
while tiredness and mental demand may still play a role, the
influence of participants’ familiarity with the task should also
be considered in interpreting the results.

Consistent with previous findings, this experiment revealed
similar trends in pupil diameter. During Round 1, when most
participants interacted with the system for the first time, pupil
diameter was generally larger, indicating a higher cognitive
load. By Round 2, the diameter decreased, likely reflecting
reduced cognitive load due to increased familiarity with the
system and some degree of fatigue. Interestingly, participants
who improved their performance metrics tended to show
increased pupil diameter in subsequent rounds, whereas those
who reported feeling fatigued exhibited lower pupil diameters.

B. Future Work
In our forthcoming study, we plan to delve deeper into

the analysis of command generation and its correlation with
pupil response during decision-making, alongside examining
blinking frequency. Moreover, the future study will encompass
a more comprehensive analysis of the data, with a specific
focus on scrutinizing the intervals between each command
to elucidate the intricacies of the decision-making process.
Additionally, the investigation will center on the detailed
examination of pupil dilation changes at each step, providing
a nuanced understanding of the cognitive dynamics involved.

IV. CONCLUSION

The paper primarily highlights the impact of the pupil
diameter variation on the performance of an HRI system. The
results show for the first time that there is a strong correlation
between the difference in the Gaussian mean of the pupil
diameter between the two rounds of the same HRI task on the
various performance parameters of the HRI. The importance of
the study lies in the fact that such measures of pupil diameter
variation may act as the indirect measure of the users’ mental
state and can be used to adapt the HRI system parameters
in real-time for optimal performance which can play a major
role in advancing the usability and acceptability of HRI based
assistive technologies in the society.
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