
Evaluating a Gaze-Controlled Navigation Interface: A User-Centered Approach

Parastoo Azizinezhad1, Anirban Chowdhury1

Abstract— The design and acceptability of new products are
essential factors in their development, particularly for assistive
devices that users rely on for everyday tasks. Gathering user
feedback is vital to ensuring that these devices are intuitive,
simple to use, and not overwhelming. This study involved
19 participants who tested a newly developed gaze-controlled
interface, navigated through predefined paths, and completed
questionnaires. This study involved two predefined paths, with
participants navigating the first path twice before proceeding to
the second path. On average, participants reported low mental,
physical, and temporal demands. While younger participants
finished the tasks more quickly, participants over the age of
50 showed notable improvement in performance during the
second round, likely due to greater familiarity with the system,
suggesting that the interface is easy to learn. Furthermore,
a significant correlation was found between lap completion
time and self-reported mental demand (r = 0.609, p = 0.007),
indicating a connection between task performance and per-
ceived cognitive load. These results emphasize the importance
of designing assistive technology that is accessible and effective
for users of varying ages and abilities.

Index Terms— Gaze-Control, Mental Demand, Assistive
Technology

I. INTRODUCTION

While modern assistive technologies (ATs) have signif-
icantly enhanced the quality of life for individuals with
disabilities, the challenge of AT abandonment remains a
major obstacle to widespread and long-term adoption [1].
The World Health Organization projects that by 2030, nearly
2 billion people will require assistive devices [2]. This
report highlights the urgent need to reduce abandonment
rates in future AT developments. Traditionally, abandonment
has been attributed to factors such as physical comfort,
task efficiency, and ease of use. However, with the integra-
tion of artificial intelligence and robotics, new challenges
emerge—particularly in ensuring that these technologies can
effectively manage social interactions and adapt to users’
fluctuating cognitive load and fatigue levels [3].

Existing ATs often struggle to adapt to the ever-changing
conditions of human users, which reduces their overall
effectiveness. To enhance usability and long-term acceptance,
future ATs must be designed to dynamically adjust their
behavior in real time which ensures a seamless and intuitive
user experience. Developing a human-machine interaction
framework that prioritizes adaptability and responsiveness to
individual needs can significantly improve the suitability of
ATs, ultimately leading to broader adoption and increased
user satisfaction.

Research indicates that pupil dilation increases during
effortful decision-making which reflects heightened cognitive
load, which can significantly impact user performance [4]–
[8]. Moreover, pupil size’s rapid responsiveness to neural
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activity highlights its potential as a valuable physiological
measure for dynamically adapting assistive systems to users’
cognitive states and needs. Reducing cognitive load is crucial
in system design, particularly for assistive devices, as users
often rely on them for extended periods while manag-
ing health-related challenges [9]. Despite advancements in
human-computer interaction, there is still a significant gap in
developing adaptive systems that can dynamically adjust to
users’ cognitive workload. Gaze-controlled assistive devices,
utilizing eye-tracking technology, have been widely used to
support individuals with severe disabilities [10]–[12]. Eye-
tracking and pupillary responses have garnered attention
across fields such as education [13], psychology [14], [15],
marketing [16], and communication [17].

Self-reported measures are crucial in validating users’
perceptions, emotions, and overall evaluation of assistive
technologies, offering valuable insights into their experiences
and interactions with these systems. One widely used tool
for assessing task demands is the NASA Task Load Index
(NASA TLX) [18], [19], a standardized questionnaire em-
ployed in various studies to evaluate cognitive and physical
challenges [20]. The NASA TLX evaluates six key factors:
mental demand, physical demand, temporal demand, perfor-
mance, effort, and frustration, providing a comprehensive
understanding of the user experience during task completion.
Another widely used questionnaire in assistive technology
research is the Quebec User Evaluation of Satisfaction with
Assistive Technology (QUEST 2.0) [21], which assesses user
satisfaction across 12 key factors, such as safety, comfort,
durability, effectiveness, and ease of use [22]. Together, these
tools help provide a well-rounded understanding of the tasks’
demands and users’ satisfaction with the technology and
guide improvements and enhancements in assistive devices.

With the growing popularity of eye-tracking technol-
ogy, alongside other biosignal-based modalities for human-
computer interaction—such as brain-computer interfaces
(BCIs) [23], [24]—future research may explore the inte-
gration of eye-tracking with BCI in a hybrid-BCI archi-
tecture [25]. This fusion could enhance the adaptability
and responsiveness of assistive systems, enabling more effi-
cient and intuitive interaction for users with severe motor
impairments. Despite extensive research into autonomous
assistive technologies, their widespread adoption among
target users remains limited [26]. One critical factor in
improving user acceptance is recognizing and adapting to
dynamic changes in mental states during interactions with
these systems. Understanding these fluctuations in cognitive
load and emotional states can enhance the responsiveness
and overall effectiveness of assistive technologies, leading
to more intuitive and user-friendly experiences [27].

Eye-tracking has been extensively used in psychological
studies to understand human cognition and areas of interest.
Majaranta et al. [28] and Krafka et al. [29] explored its



TABLE I
STEPS FOR EACH MOVEMENT

Step Description

Lateral rotation
45◦ per action

using the left and right buttons

Linear movement
10 cm per action

using the forward and backward buttons

applications in providing insights into cognitive processes. In
the context of mental workload estimation, numerous studies
have focused on the relationship between pupil dilation and
cognitive load. Palinko et al. [30] and Ahmad et al. [31]
examined how pupil responses can serve as an indicator
of mental workload. Guo et al. [32] highlighted that time
pressure and system latency, alongside task specificity, influ-
ence mental workload, making gaze information, including
pupil diameter, a critical factor in workload estimation. Addi-
tionally, researchers have delved into alternative methods to
assess cognitive load, such as analyzing power and frequency
at the mean frequency, as shown by [33].

The influence of mental activities on pupil diameter is
well-documented. For example, Van Der Wel et al. [34]
found that increased mental load is generally associated with
pupil dilation, whereas fatigue leads to pupil constriction,
a finding supported by [35]. Furthermore, pupil diameter
has been used to differentiate cognitive processes, such
as decision-making and sustained attention that highlighted
its relevance in assessing user engagement and cognitive
states [36]. These findings underscore the potential of pupil
dilation as a valuable indicator for understanding mental
workload and cognitive focus, particularly in environments
with fluctuating cognitive demands.

This paper presents the results of a navigation experiment
conducted with a novel gaze-controlled interface. Nine-
teen healthy volunteers participated in the study, navigating
through two distinct paths. The subsequent sections provide
an overview of the methodology and system design, followed
by the experimental protocol. Section III presents the find-
ings, along with conclusions and recommendations for future
work.

II. MATERIAL AND METHODS

In this study, we utilized a mobile robot navigated through
an eye-tracking-based interface to evaluate its usability and
effects on pupil response. Additionally, we assessed self-
reported user experience using standardized questionnaires
such as NASA-TLX and Quest 2.0. This approach allowed
us to analyze both objective physiological changes and
subjective workload and satisfaction ratings and provided a
comprehensive understanding of the interface’s effectiveness.

A. System Design

A live video feed was centrally displayed on the interface.
It provides real-time visual feedback of the robot’s position
and its surrounding environment. This feed served as the
primary reference for participants and enabled them to ac-
curately navigate the robot by observing its movements and

Fig. 1. The image of Path 1, designed for the experiment. All participants
navigated this path twice.

adjusting their gaze-based commands accordingly. This real-
time feedback was crucial for maintaining spatial awareness
and ensuring precise control.

The eye-tracking system continuously monitored the par-
ticipant’s gaze and translated it into cursor movements on
the screen. This enables hands-free interaction. To issue
a command, the participant needed to fixate on a specific
button for at least 2 seconds, after which the system would
trigger the corresponding action. The ”dwell time” rule was
implemented for two key reasons:

1) To reduce errors caused by brief, unintentional eye
movements, preventing unintended commands.

2) To ensure each command was fully executed—such as
completing a 10 cm movement or a 45◦ turn—before
the robot processed a new input, maintaining smooth
and controlled navigation.

By implementing this approach, the system enhanced both
accuracy and user confidence, making gaze-based robot con-
trol more reliable and practical for real-world applications.

B. Experimental Protocol

A total of 19 healthy adults were recruited to participate in
the study. All participants provided written informed consent
before taking part, and the study was reviewed and approved
by the University of Essex Ethics Subcommittee 3 (Ref:
ETH2223-2300). To ensure consistency and reliability in the
results, participants with uncorrected vision problems were
excluded. This exclusion criterion was essential to minimize
potential confounding factors, such as variations in visual
acuity affecting eye-tracking accuracy or prior familiarity
with similar systems influencing performance.

Participants were asked to complete a navigation task that
involved two different routes:

• Path 1 (P1): This was the shorter path as shown in 1,
which was repeated twice (denoted P1R1 and P1R2)
to help participants become more familiar with the
interface. The challenge in this path arose during the
second half, where participants needed to focus on
determining the robot’s direction (right or left). This



Fig. 2. The image of the longer path (path 2) used for the experiment.

required concentration and careful decision-making, as
small errors could disrupt navigation.

• Path 2 (P2): This was the longer route as shown in 1,
designed to increase cognitive and physical fatigue by
incorporating several sharp turns and varying angles.
The intention behind this path was to provide a more
demanding task that pushed the participants’ endurance
and attention over a prolonged period.

Both paths were designed to align with the robot’s movement
limitations and ensured that the turns adhered to a 45◦ rota-
tion step, which is the maximum turn angle the robot could
perform accurately. The order of the paths was fixed (P1
first, followed by P2) to prevent any learning bias that might
arise if participants were exposed to the more difficult route
(P2) first. These design choices were carefully considered
to balance ease of use with progressively increasing task
complexity. This ensures participants had a fair opportunity
to learn and adjust to the system before encountering more
challenging tasks.

Before each trial, the eye tracker was calibrated using a
9-point setup to ensure accurate tracking of the participants’
gaze. Following calibration, participants were instructed to
guide the robot from a starting point to a designated end-
point and asked to keep the robot on track throughout
the navigation task. The task required participants to focus
on both the robot’s movement and maintaining its correct
direction, fostering active engagement. The system recorded
performance data in real-time, including metrics such as the
time taken to complete the task and the error rate (e.g., devi-
ations from the correct path or incorrect directional inputs).
Additionally, gaze tracking data was collected continuously
at a rate of 60 Hz which provides detailed information about
the participants’ gaze patterns during the task. This allowed
for an in-depth analysis of how participants interacted with
the interface, including how their gaze directed the robot’s
movements and whether any visual or cognitive challenges
arose during the navigation process.

After completing the navigation task, participants were
asked to fill out several questionnaires to provide feedback
on their experience. These included the NASA TLX, Quest

2.0, and a set of system feedback questions. The NASA
TLX was used to assess the mental and physical demands of
the tasks, helping to gauge how challenging the participants
found the navigation and control process. The Quest 2.0
questionnaire provided insights into the user experience,
specifically evaluating aspects like comfort and ease of use of
the interface. Participants were categorized into two groups
based on age: under 50 years old and over 50 years old.
Additionally, the participants were divided into two groups
based on their use of vision correction: those who wore
glasses or corrective lenses during the experiment and those
who did not. This categorization allowed for an analysis of
how factors like age and vision correction might influence
performance and user experience with the gaze-controlled
system. The summary of key details of the experimental
setup is shown in Table II.

By collecting both performance and gaze data, the study
sought to gain valuable insights into the relationship be-
tween user behavior and system efficiency, which are es-
sential for evaluating the usability and effectiveness of the
gaze-controlled robot interface. Additionally, by considering
various participant groups—categorized by age and vision
correction—the study aimed to understand the impact of
individual differences on task performance and overall user
satisfaction. This approach provided a more nuanced under-
standing of how diverse populations interact with the system,
highlighting potential variations in usability across different
user demographics.

III. EXPERIMENTAL RESULTS

As shown in Figure 3, familiarity with Path 1 yielded the
best results in reducing the completion time in the second
round for older participants, with a correlation coefficient of
r = 0.518 and a statistically significant p-value of 0.028.
This suggests that the repetition of the shorter route helped
older participants perform the task more efficiently, possibly
due to increased comfort and familiarity with the interface,
leading to quicker navigation times in the subsequent trial.
Such findings highlight the potential benefits of task repe-
tition in improving performance, particularly for users who



TABLE II
SUMMARY OF EXPERIMENTAL SETUP, DEVICES, AND DATA COLLECTION METHODS

Category Details

Device Eye-Tracking System: Tobii Pro Nano (60 Hz sampling rate)

Robot: Turtlebot Burger 3

Questionnaires NASA TLX: Measures mental and physical demand of tasks

Quest 2.0: Measures user experience, comfort, and usability of the system

System Feedback: Questions related to participant feedback on the system

Paths Path 1 (P1): Short path, repeated twice (P1R1, P1R2) for familiarization with the interface. Challenge in the
second half—requires concentration for right/left direction.

Path 2 (P2): Longer path, designed to increase fatigue with various turn angles and longer distance.

Task Details Navigation Task: Participants were asked to guide the robot from a starting point to a designated endpoint,
staying on track.

Data Collected: Performance data (time taken, error rate) and gaze tracking data (60 Hz rate) during real-time
task execution.

Participant Demographics Total Participants: 19 healthy adults

Exclusion Criteria: Participants with uncorrected vision problems.

Groups for Analysis Age Group: Under 50 years old, Over 50 years old.

Vision Correction Group: Participants who wore glasses or corrective lenses, and those who did not.

Calibration Process Eye Tracker Calibration: 9-point setup before each trial to ensure accurate gaze tracking.

Actions/Tasks Command Selection: Participants guided the robot by fixing their gaze on specific buttons for 2 seconds to issue
commands.

Turn Limitations: Robot movement aligned with 45◦ rotation step.

Fig. 3. The box plot presenting the difference of lap completion time of
round 2 and round 1 on the path 1 based on the age groups.

may take longer to adapt to novel control methods.
Figure 4 shows a significant correlation between lap

completion time and the self-reported mental demand on
the NASA TLX questionnaire (Mental Demand vs. Lap
Completion Time: r = 0.609, p = 0.007). The NASA
TLX scale ranges from −10 to +10, with −10 representing
very low demand and +10 indicating very high demand.
This suggests that as the mental demand reported by par-
ticipants increased, so did the time required to complete
each lap. The positive correlation highlights the cognitive
load involved in navigating the robot and it means that tasks
perceived as more mentally demanding may lead to longer
task completion times. This finding provides valuable insight

into how mental effort affects performance, especially when
interacting with a gaze-controlled interface.

Fig. 4. Lap completion times for Path 1 in Round 1, alongside participants’
self-reported mental demand ratings.

On average, participants reported that the system did not
induce much demand. The overall results from the NASA
TLX questionnaire are shown on Table III.

As mentioned in Table III, these negative values indicate
that participants did not perceive the task as particularly
demanding in terms of mental and physical effort. The
mental demand score of −4.44 suggests that users did not
find the task excessively mentally taxing, and the physical
demand score of −2.94 further supports that the gaze-
controlled system did not require significant physical effort.
The temporal demand score of −4.28 indicates that partic-



TABLE III
OVERALL RESULTS FROM NASA TLX QUESTIONNARIE.

Demand Values (−10 to 10)

Mental Demand −4.44

Physical Demand −2.94

Temporal Demand −4.28

Performance −5.39

Effort −1.22

Frustration −6.89

ipants did not feel rushed or under time pressure during
the task. The performance score of −5.39 suggests that,
although participants felt the system was somewhat effective,
there was still room for improvement in terms of achieving
optimal performance. Effort received the lowest score at
−1.22, implying that participants felt the system did not
require much effort to use, which is a positive indicator
for ease of use. However, frustration was the most negative
score at −6.89, highlighting that some participants might
have experienced frustration, possibly due to challenges in
interaction or occasional delays in command execution.

Overall, the results suggest that the system is fairly intu-
itive and low in demand in terms of cognitive and physical
effort, but there may be room for improvement in the perfor-
mance and frustration areas. It seems that participants valued
a system that was easy to use and did not require much
mental or physical effort, but there may have been some
usability challenges that contributed to frustration. Improving
the responsiveness of the system and ensuring that users have
more control could enhance the user experience and reduce
the frustration score.

Among the 12 items included in the Quest 2.0, participants
prioritized ’Comfort,’ ’Effectiveness,’ and ’Ease of Use’
as the most important features when selecting an assistive
device. These preferences suggest that users value devices
that not only provide optimal performance but also ensure a
high level of comfort and simplicity in their operation, which
is crucial for long-term use and user satisfaction.

In both age groups, participants showed improvement in
performance during the Path 1 on the second round, as
indicated by a reduction in lap completion times which is
shown in Figure 5. For the under-50 group, the average
completion time for Path 1, Round 1 was approximately 230
seconds, which decreased to around 200 seconds in Round
2, which reflects improved efficiency with practice. How-
ever, the under-50 group took approximately 500 seconds
to complete Path 2, which was a more challenging route
due to its length and various turns. For the over-50 group,
Path 1, Round 1 took significantly longer, with an average
completion time of about 550 seconds. In Round 2, there was
a noticeable improvement, as the completion time decreased
to approximately 400 seconds. Despite this improvement, the
over-50 group still performed considerably slower in Path 2,
which is taking around 1150 seconds to complete the more
complex route.

Figure 5 illustrates that while both age groups demon-
strated learning and adaptation between the first and second

Fig. 5. This plot illustrates lap completion times categorized by age
group, where 1 represents participants under 50 years old and 2 represents
participants over 50 years old.

rounds for Path 1, older participants faced more difficulty in
completing the longer and more intricate Path 2. This may
be due to various factors, such as the increased cognitive or
physical demands associated with navigating a more complex
route, which likely contributed to the longer completion
times for the over-50 group. Nonetheless, the improvement
between rounds indicates that both groups were able to adjust
and become more efficient with the system over time.

IV. CONCLUSION

This study highlights the importance of user-centered
design in the development of assistive technologies, with
a particular focus on gaze-controlled interfaces. Our find-
ings show that the proposed system successfully reduced
cognitive, physical, and temporal demands on users and
made it a promising tool for assistive navigation. Although
younger participants completed the tasks more quickly, older
participants demonstrated significant improvements in per-
formance during repeated trials (r = 0.518, p = 0.028)
which suggested that the system is intuitive and easy to
learn. Additionally, the significant correlation between lap
completion time and self-reported mental demand (r =
0.609, p = 0.007) emphasizes the influence of cognitive load
on navigation efficiency.

These results suggest that gaze-controlled interfaces have
strong potential as accessible and effective solutions for indi-
viduals in need of assistive technology. Future research will
focus on using the improved interface to control wheelchair
movement, with an emphasis on enhancing its adaptability
and long-term usability. Specifically, the integration of real-
time adjustments will be explored to further optimize the
user experience.
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