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Resource Allocation in SCMA-Empowered
Multi-UAV Transmission System

Saumya Chaturvedi, Zilong Liu, Vivek Ashok Bohara, Anand Srivastava, Pei Xiao

Abstract—This research work examines the utilization of
sparse code multiple access (SCMA) in improving downlink
communication for multiple unmanned aerial vehicles (UAVs)
network, whereby SCMA is a disruptive multiple access
technique for future massive machine-type communications
(mMTC). The goal is to maximize the sum-rate of the ground
users by optimizing the UAV three-dimensional deployment
location, user-UAV association, SCMA subchannels, power and
bandwidth allocation. Due to the complex and non-convex
nature of the formulated optimization problem, obtaining the
global optimal solution is infeasible. To address this problem, we
propose to decompose the overall problem into four manageable
subproblems and solve them sequentially. The user clustering
and UAV deployment problem are tackled using a modified K-
means algorithm, while the three proposed methods leveraging
the channel state information and frequency reuse address the
subchannel assignment subproblem. Further, iterative heuristic
algorithms are then developed to optimize power and bandwidth
allocation, thereby improving both sum-rate and the outage
performance. The simulation results demonstrate significant
performance improvements with the proposed methodologies,
highlighting the potential of SCMA-assisted UAV networks over
traditional orthogonal multiple access techniques.

Index Terms—Probabilistic line-of-sight channel model, re-
source allocation, sparse code multiple access (SCMA) tech-
nique, sum-rate, unmanned aerial vehicles (UAV) communica-
tions.

I. INTRODUCTION

The widespread integration of fifth-generation (5G) com-
munication systems has motivated global researchers toward
the development of sixth-generation (6G) wireless systems,
engaging both academia and industries [1]. In the realm of
6G, the objective is to enhance data services to progressively
meet the stringent quality-of-service (QoS) requirements,
encompassing aspects such as data rate, reliability, latency,
connection density, spectrum efficiency, energy efficiency,
and more. In particular, 6G will continue to deal with an
explosive growth of the Internet of Things (IoT) devices.
The number of mobile users and Internet-enabled devices is
projected to exceed 40 billion in the coming years [2]. Such

Saumya Chaturvedi, Vivek Ashok Bohara, and Anand Srivastava are with
Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), 110020,
India (e-mail: {saumyac, vivek.b, anand}@iiitd.ac.in). Zilong Liu is with
the School of Computer Science and Electronics Engineering, University of
Essex, U.K. (e-mail: zilong.liu@essex.ac.uk). Pei Xiao is with Institute of
Communication Systems (ICS), 5GIC & 6GIC, University of Surrey, UK
(e-mail: p.xiao@surrey.ac.uk).
The work of Z. Liu was supported in part by the UK Engineering and
Physical Sciences Research Council under Grants EP/X035352/1 (“DRIVE”)
and EP/Y000986/1 (“SORT”), and by the British Council under Grant
UKIERI-SPARC/01/22.

an overwhelming demand for massive connectivity drastically
calls for high spectrally efficient multiple access schemes [3].

In recent times, unmanned aerial vehicles (UAVs) have
been utilized in various applications, including but not limited
to goods delivery, rapid rescue operations, traffic surveillance,
etc. [4]. Among numerous applications, the usage of UAVs
in communications is particularly compelling. Thanks to
their agility and maneuverability, UAVs can improve the
likelihood of establishing line-of-sight (LoS) connectivity
with the ground users (GUs) [5]. In challenging geographical
conditions, UAVs can be used as aerial base stations (BSs)
or relays to facilitate recovery of communication.

Conventional orthogonal multiple access (OMA) schemes
face limitations in supporting efficient communication be-
tween UAVs and mMTC devices on the ground. In contrast,
non-orthogonal multiple access (NOMA) techniques have
been a focal point of extensive research due to their ability to
support a greater number of simultaneously serviced devices,
reducing latency, while achieving higher data rate [3].

The fundamental concept of NOMA is to accommodate
a large number of devices by non-orthogonally overload-
ing resource elements (REs). NOMA is mainly classified
into code-domain NOMA (CD-NOMA) and power-domain
NOMA (PD-NOMA). PD-NOMA involves assigning varied
power levels to multiple GUs depending on their channel
conditions and spatial locations [6]. In CD-NOMA, on the
other hand, each of the user is allocated a unique codebook
(CB) or signature sequence. In this paper, we are interested
in sparse code multiple access (SCMA) which is one of the
prominent CD-NOMA schemes. SCMA is a technique that
utilizes multidimensional CBs to enhance multiuser capacity
and connectivity [7]. In SCMA, each user directly maps its
input bits to a codeword drawn from its associated CB. This
approach extends the aspects of code division multiple access
(CDMA) to multi-dimensional domain [8]. In field trials,
SCMA has demonstrated significant performance enhance-
ments, offering up to three times the system throughput while
maintaining link performance as of OMA [9]. The SCMA
system differs from other communication system. At the
receiver, the CB sparsity can be fully exploited by utilizing
message passing algorithm (MPA) to perform decoding with
low complexity. The coding gain and constellation shaping
gain in SCMA leads to outstanding bit error rate (BER)
and sum-rate performances [10], [11]. Moreover, various
low-complexity decoding schemes have been proposed in
literature for static [12] and mobile scenario [13]. Building
on these advancements, this work examines SCMA’s role
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in a multi-UAV network, focusing on efficient resource
management to evaluate its performance benefits.

A. Related Works

The recent development of the integration of NOMA with
UAV has led to several works in the literature, as discussed in
Table I. For example, the paper [14] presented a large-scale
multi-UAV NOMA framework using stochastic geometry, ad-
dressing UAV-centric offloading and user-centric emergency
services under imperfect successive interference cancellation
(SIC) conditions. The paper [15] worked on optimizing UAV
precoding in uplink NOMA cellular-connected UAV net-
works to maximize sum-rate and mitigate interference using
SIC. The authors in [16] worked on a cellular-connected
aerial user equipment (AUE) periodically transmitting to a
BS for surveillance or monitoring applications. Here, PD-
NOMA was utilized for simultaneous transmission from the
AUE and GU for an efficient spectrum usage, while AUE
moving along a given trajectory.

In [17], an uplink relay based multi-UAV system was
presented, for IoT applications in disaster scenario. The study
in [18] analysed the capacity of full-duplex (FD) NOMA-
UAV networks through a moment generating function (MGF)
approach. Dang et al. [19] studied the throughput of a
NOMA-aided cognitive radio (CR) system with multiple
UAVs as relays. The paper [20] proposed secure transmis-
sion schemes for UAV-NOMA networks, optimizing UAV
placement, power allocation, and beamforming to protect
users against eavesdropping under single and multiple secure
user scenarios. The authors in [21] worked on multi-UAV
uplink network in which authorized UAVs executed NOMA
transmission amidst the existence of eavesdropping UAVs.

It is noted that NOMA becomes helpful in utilizing the
UAVs features, even for single antenna GUs. In NOMA-
assisted multi-UAV networks, researchers have worked on
different optimization variables such as user clustering and
association [22]–[24], scheduling [25], UAVs placement [22],
[26]–[28], power allocation [22]–[25], [27], [28], UAVs tra-
jectories [23] and subchannel assignment [27]. Various per-
formance objectives have been improved, including capacity
[17], [22], [27]–[30], energy efficiency (EE) [25], [31]–[33],
uplink energy minimization [23] and delay [34].

The work in [23] studied the joint optimization of user
pairing, UAV trajectories, association between user and
UAV, and power allocation for NOMA-aided multi-UAV
uplink networks. The study in [25] focused on a NOMA-
enabled multi-UAV-assisted IoT system, optimizing schedul-
ing, power allocation, and UAV trajectories to improve
throughput and EE. The study in [26] proposed a multi-
UAV coverage scheme aimed at maximizing the average
UAV capacity while ensuring full GU coverage. In [28],
the three-dimensional (3D) deployment of UAV and user
power allocation were optimized to maximize the sum rate.
In [27], the system capacity was maximized in a NOMA
multi-UAV IoT uplink framework through joint optimization
of subchannel assignment, transmit power for IoT sensors,
and UAV altitudes. In [24], a multi-UAV-assisted IoT sensor

system with NOMA was optimized to maximize the total
utility of IoT sensor bit rates.

In [31], the EE was maximized in a NOMA-enabled UAV
network, where multiple UAVs equipped with multiple anten-
nas concurrently served towards energy receivers (ERs) and
information receivers (IRs). In [32], the study investigated the
optimization of 3D deployment of multiple UAVs, resource
allocation, and association of UAV users within a NOMA-
assisted mobile edge computing (MEC) uplink network.
Similarly, [33] examined the EE of a UAV-enabled NOMA-
MEC framework, where multiple UAVs functioned as edge
servers to support computational tasks for GUs.

In [35], the authors proposed a cooperative NOMA scheme
to mitigate severe interference for a cellular-UAV integrated
uplink network. The authors in [36] and [37] also worked on
cooperative multi-UAV NOMA frameworks, where the for-
mer optimized the distribution of multi-user detection tasks
among UAVs to maximize sum-rate, while the latter em-
ployed index modulation to avoid error-prone SIC decoding.
In [38], NOMA-enabled multi-UAV caching framework was
proposed to minimize the content retrieval delay using deep
reinforcement learning (DRL) approach. A comprehensive
overview of RL techniques for enhancing autonomy and
optimizing decision-making in multi-UAV networks, with
applications in resource allocation, trajectory planning, and
network management is presented in the survey paper [39].

The authors in [40] introduced the aerial intelligent re-
flecting surface (AIRS)-assisted mmWave networks, which
involved equipping each BS with an AIRS swarm to en-
hance the area spectral efficiency (ASE) and coverage in
the downlink communications. In [41], RSMA-based mul-
ticast communication was studied for a satellite and aerial-
integrated network (SAIN) to enhance sum rate for content
delivery scenario. The authors in [42] and [43] worked on
improving the system secrecy EE (SEE) in a multibeam
satellite systems.

B. Motivations and Contributions

The literature review above indicates that NOMA-aided
UAV systems can provide enhanced QoS. However, the
existing works predominantly concentrate on the PD-NOMA
scheme. The efficacy of PD-NOMA in supporting UAV com-
munications can not be assured because of several factors.
Firstly, the reliance on a flawless decoding technique at the
receiver, such as successive interference cancellation (SIC),
raises concerns as its feasibility may need to be guaranteed in
complex wireless channels. Secondly, PD-NOMA relies on a
near-far user pairing strategy, where one user experiences
a strong channel while the other has a weaker channel.
With appropriate power allocation, this approach enables
PD-NOMA to achieve performance gains over OMA. How-
ever, the pairing process introduces significant complexity,
particularly in dynamic environments. In contrast, SCMA
does not require near-far user pairing to achieve superior
performance compared to OMA. SCMA enables multiple
users to efficiently share a resource block, eliminating the
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TABLE I
COMPARISON OF THE PROPOSED WORK WITH PRIOR UAV-NOMA STUDIES

Reference UAV
Position

User-UAV
Association

Subchannel
Allocation

Power
Allocation

Bandwidth
Allocation Objective

[16]
UAV

Height and
Trajectory

✗ ✗ ✗ ✗
Analyzed the rate coverage probability in a cellular

AUE network.

[17] ✓ ✗ ✗ ✓ ✗
Maximized uplink capacity in a UAV-based IoT

network using NOMA, with UAVs collecting data and
relaying to the terrestrial BS.

[22] ✓ ✗ ✗ ✓ ✗
Maximize throughput for UAVs-assisted FD NOMA

system based cellular network.

[23] UAV
trajectories ✓ ✗ ✓ ✗

Minimize energy consumption while ensuring
successful data transmission to UAV-BSs.

[24] ✓ ✓ ✗ ✓ ✗ Maximize the sum utility of bit rates of all IoT sensors.

[25] UAV
trajectory ✗ ✗ ✓ ✗

Proposed a NOMA-enabled multi-UAV-enabled IoT
system to enhance user capacity and UAV EE.

[26] ✓ ✗ ✗ ✗ ✗
Developed multi-UAV coverage scheme to maximize

capacity while ensuring coverage for all GUs.

[27] ✓ ✗ ✓ ✓ ✗
Maximized capacity of multi-UAV enabled IoT NOMA

uplink transmission system for LoS channel.

[28] ✓ ✗ ✗ ✓ ✗
Maximized network sum-rate with UAVs using OMA

across and NOMA within sub-clusters.

[30] ✓ ✗ ✗ ✗ ✗
Maximized the sum log-rate utility for NOMA-UAV

BSs.

[31] ✓ ✗ ✗ ✓ ✗
Maximized EE in single and multi UAV-NOMA

network to serve both IRs and ERs in downlink and
uplink.

[32] ✓ ✓ ✗ ✓ ✗
Maximized EE in a NOMA-assisted MEC uplink

network.

[33] UAV
trajectory ✗ ✗ ✓ ✗

Worked on multi-UAV-assisted NOMA integrated MEC
network for task offloading.

[34] ✗ ✗ ✗ ✓ ✗
Formulated a min-max delay optimization problem for
NOMA-enabled multiple UAV emergency networks.

[35] ✗ ✗ ✗ ✓ ✗
Maximized weighted sum-rate using NOMA for uplink
cooperative NOMA for cellular-connected UAV under

strong LoS A2G channels.

[40] ✗ ✓ ✗ ✗ ✗
Evaluated the ASE and coverage probability of
large-scale AIRS-assisted mmWave networks.

[44] ✗ ✗ ✓ ✓ ✗
Maximize the downlink rate in a multi-UAV multi
carrier (MC)-NOMA network with relay UAVs and

distance-dependent path loss.

Proposed
work ✓ ✓ ✓ ✓ ✓

Maximization of sum-rate for a SCMA based
multi-UAV network under probabilistic path-loss

channel model.

need for complex pairing mechanisms and overcoming a key
challenge of PD-NOMA.

To the best of our understanding, limited research has
been undertaken to explore the potential performance en-
hancements in UAV networks networks facilitated by SCMA

[45]–[48]. SCMA presents a promising alternative due
to its enhanced robustness and flexibility in diverse and
dynamically changing environments [49]. Additionally, it
reduces the dependency on precise power control, which is a
critical requirement in traditional PD-NOMA systems.While
SCMA renders the connectivity problem, high interference
necessitates the sophisticated management of resources to
obtain desired QoSs. This work investigates the potential of
SCMA in UAV-assisted communication networks by address-
ing several key challenges. First, UAV deployment optimiza-
tion plays a critical role in enhancing SCMA performance.
It requires balancing signal strength with inter- and intra-
UAV interference. To optimize this, a modified K-means
algorithm is employed for 2D UAV positioning, helping

to improve SCMA performance and reduce interference.
Second, interference management is particularly challenging
due to SCMA’s resource block structure, where subchan-
nels are assigned to serve multiple users, and each user
utilizes multiple subchannels for communication. This user-
subcarrier mapping becomes even more complex in multi-
UAV networks, where the interactions between UAVs and
users significantly impact both inter- and intra-UAV interfer-
ence.

In this context, it is crucial to carefully manage the
allocation of REs by selecting the appropriate subset of REs
for each UAV in order to mitigate interference. Once the
subset of REs is determined, the next step involves allocating
subchannels from this subset to the users associated with
the UAV to minimize interference and optimize system
performance. Finally, the optimal allocation of bandwidth
and power for each subchannel is crucial for improving
system performance, as these resources are interdependent.
Thus, the development of efficient algorithms is crucial to
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overcome these challenges and maximize the potential of
SCMA in UAV-enabled communication systems. The primary
contributions of the proposed work are:

• We investigate a multi-UAV downlink system where
UAVs, supported by SCMA, function as aerial BSs to
serve GUs. Unlike conventional approaches, our work
jointly optimizes key system parameters, including UAV
3D deployment, user clustering, UAV-user association,
subchannel assignment, power allocation, and band-
width allocation, to maximize the sum rate.

• To handle the complexity of the formulated mixed-
integer nonconvex optimization problem, we propose
a novel decomposition strategy, dividing it into four
interrelated subproblems. Unlike existing works that
address these aspects separately, our framework ensures
coordinated optimization across multiple dimensions:

– For UAV 2D deployment, we use a modified K-
means algorithm to ensure equitable user allocation
and balanced resource utilization. For UAV altitude
optimization, we apply golden section search (GSS)
to optimize the UAV heights.

– We introduce three frequency reuse-based subchan-
nel assignment schemes designed to mitigate both
intra-UAV and inter-UAV interference, improving
spectral efficiency.

– We propose iterative algorithms for power and
bandwidth allocation, specifically designed to en-
hance outage performance while maintaining effi-
cient resource distribution.

• The simulation results show that the proposed resource
allocation schemes enhance multi-UAV SCMA perfor-
mance, outperforming the benchmark schemes in terms
of sum rate and outage performance.

The paper is organized as follows: Section II presents
the multi-UAV SCMA system model and discuss the formu-
lated optimization problem. Section III presents the proposed
solution to the optimization problem. Section IV presents
and analyzes the simulation results. Section V provides the
conclusion. In this paper, scalars, vectors, and matrices are
denoted by regular, bold lowercase, and bold uppercase
letters, respectively. The set of real, binary, and complex
numbers are denoted by R, B and C, respectively. The natural
logarithm of x is denoted as log(x), and the absolute value
of a complex number x is represented by |x|.

II. SYSTEM MODEL AND OPTIMIZATION PROBLEM
FORMULATION

A. System Model

As shown in Fig. 1, an SCMA-aided downlink network is
considered, with multiple hovering UAVs working as aerial-
BSs, serving a total of M single-antenna users over Knet
REs. Let the set of UAVs, users and total network REs
be denoted as N = {1, 2, · · · , N},M = {1, 2, · · · ,M}
and Knet = {1, 2, · · · ,Knet}, respectively. The assumption
is made that the users are stationary, and their locations
are known by a control center. Let the locations of user

𝑥𝑈𝐴𝑉
𝑛 ,  𝑦𝑈𝐴𝑉

𝑛 ,  h𝑛

𝑥𝑗, 𝑦𝑗

y

x

z
UAV

Ground 
devices

Devices

Sub- 
channels

Fig. 1. Multi-UAV SCMA system model with ground devices communi-
cating over multiple sub-channels. For the sake of clarity, only five devices
subchannel allocation are shown.

m ∈ M and UAV n ∈ N be denoted by xm = (xm, ym)
and ln = (xuav

n , yuav
n , huav

n ), respectively.
Due to the limited UAV coverage, we assume that each

UAV can serve (M/N) devices. If M is not a multiple of
N , each UAV serves either ⌊M/N⌋ or ⌈M/N⌉ devices. It is
assumed that, K orthogonal subchannels are allocated to each
UAV-BS, where K < Knet. Let Jn represent the number of
users served by the nth UAV, such that M =

∑N
n=1 Jn and

the corresponding set is denoted as Jn such that Jn1∩Jn2 =
∅,∀n1, n2 ∈ N , n1 ̸= n2.

1) A2G Channel Model: Thanks to UAV’s agile moving
nature, it is assumed that LoS connections can be kept for
most devices. Nevertheless, potential disruptions in UAV-
to-ground device connections may arise due to blockages,
particularly in urban areas. Consequently, we are exploring
a probabilistic LoS channel model that incorporates both the
LoS and non-LoS (NLoS) components, contingent upon the
specific environment in which the UAV is deployed [4]. The
LoS probability between the mth user and the nth UAV-BS
is expressed as [50]:

PL
m[n] =

1

1 + ae−b(θn
m−a)

, (1)

where, the constants a and b are dependent on the envi-
ronmental conditions [51]. The symbol θnm represents the
elevation angle, measured in degrees, indicating the angle
from the mth user to the nth UAV-BS. It is given as
θnm = ( 180π )tan−1(

huav
n

rnm
), where rnm indicates the 2D distance

from the nth UAV-BS to the mth user. In a corresponding
manner, NLoS probability is PNL

m [n] = 1 − PL
m[n]. Further,

the path loss for the LoS and NLoS components are: [50]

PLLoS
m [n] =

(
4πfcd

n
m

c

)α

ηLoS, (2)

PLNLoS
m [n] =

(
4πfcd

n
m

c

)α

ηNLoS, (3)

where α represents the path loss exponent, dnm represents the
3D distance from the nth UAV-BS to the mth user and c is
the speed of light. The path loss coefficients for the LoS and
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TABLE II
KEY MATHEMATICAL NOTATIONS AND DESCRIPTIONS

Notation Description

M Total network users

N Total network UAVs

Knet Total network subchannels

xm 2D location of the mth user

ln 3D location of the nth UAV

Jn Count of users served by UAV n

K Count of subchannels allocated to each UAV-BS

θnm Elevation angle from mth user to UAV-BS n

rnm 2D distance between UAV-BS n and mth user

PL
m[n] LoS link probability between mth user and

UAV-BS n

PNL
m [n] NLoS link probability between mth user and

UAV-BS n

PLLoS
m [n] LoS component Path loss

PLNLoS
m [n] NLoS component Path loss

gn,k,m Channel gain between UAV n and mth user on
subchannel k

fm,n,k Subchannel assignment of the kth subchannel to
user m by nth UAV

pn,k,j Power allocated by UAV n to user j on sub-
channel k

I intra
n,k,j Intra-UAV interference faced by the jth user

associated with nth UAV on the kth subchannel

I inter
n,k,j Inter-UAV interference faced by the jth user

associated with nth UAV on the kth subchannel

γn,k,j SINR of jth user associated with nth UAV at
the kth subchannel

cn,j Binary variable to indicate the association be-
tween user j and UAV n

vni,k bandwidth allocation factor of the k-th subchan-
nel in the nith UAV subgroup

NLoS paths are represented by ηLoS and ηNLoS . The average
path loss between the mth user and the nth UAV is:

Ln,m = PL
m[n] PLLoS

m [n] + PNL
m [n] PLNLoS

m [n].

Considering small-scale fading, the channel gain between
UAV n and mth user at subchannel k is given by:

gn,k,m = Hn,k,m . 10−Ln,m/10, (4)

where Hn,k,m denotes the fading coefficient between UAV n
and user m at the kth subchannel [52]. Table II summarizes
the primary notations and their respective descriptions.

2) SCMA Data Transmission Model: In SCMA, binary
data are directly mapped to complex multidimensional code-
words selected from the associated CB. The codewords are
sparse complex vectors characterized by a predetermined
dv non-zero values, where K > dv . The enhancement of
SCMA’s performance compared to other NOMA schemes
relies on the careful design of these sparsely structured CBs.
The CB of a user is distinctly defined by its pattern of
sparsity. In SCMA, the CB design requires determining the
optimal mapping matrix T∗, and multidimensional constel-

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10

k1 k2 k3 k4 k5

UNs

RNs

Fig. 2. An SCMA 5 × 10 factor graph with df = 4 and dv = 2, where
circle denotes the user nodes and square denotes the resource nodes.

lation A∗, respectively. The j-th user CB with dimensions
K × M̂ can be given by:

CBj = Tj∆jAMC, ∀j = 1, · · · , J, (5)

where Tj ∈ BK×dv signifies the mapping matrix, ∆j

signifies the jth user constellation operator, and AMC signifies
the mother constellation. The mapping matrix Tj is chosen
so that jth user is activated only on a particular set of REs.
Moreover, it is crucial to take into account key performance
indicators (KPIs) like Euclidean distance, kissing number
(both Euclidean and Product), and diversity order when
designing AMC.

SCMA is characterized by its sparse CBs, with user-
RE associations represented through a bipartite factor graph
(BFG). In a regular BFG, every user node (UN) connects
to dv resource nodes (RNs), and conversely, every RN is
connected to df UNs. Fig. 2 demonstrates the RE-user
association for a 5×10 SCMA block by a BFG, where each
circle denote UN and square box denote RN. In this graph,
the first RN is connected to the first four UNs, signifying
that these users share the first RE. Alternatively, it can be
represented by a factor graph matrix (FGM) F5×10 with
elements fk,j , where k ∈ {1, . . . , 5} and j ∈ {1, . . . , 10} [7].
In a 5×10 SCMA block, ten users data is transmitted through
five subchanels, resulting in an overloading factor equal to
10/5 = 2. The jth column of the FGM is fj = diag(TjTT

j ).
The F5×10 FGM corresponding to the BFG depicted in Fig.
2 is given as [53]

F5×10 =



1 1 1 1 0 0 0 0 0 0

1 0 0 0 1 1 1 0 0 0

0 1 0 0 1 0 0 1 1 0

0 0 1 0 0 1 0 1 0 1

0 0 0 1 0 0 1 0 1 1

 . (6)

Let (n, j) denote the index of the jth user associated with
nth UAV. The central controller allocates K subchannels
to each UAV. Thus, UAVs are assumed to share some
of the spectrum, whereby each UAV employs SCMA to
provide data services to the GUs. The received signal at
subchannel k is affected by both inter-UAV interference and
intra-UAV interference. Here, the variable fm,n,k indicates
the association of device m with the nth UAV on the kth
subchannel. If device m1 associated with UAV n1 shares
subchannel k with device m2 associated with UAV n2,
then fm1,n1,k = fm2,n2,k = 1, meaning that inter-UAV
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interference exists between the two users. Also, if two users
associated with the same UAV share the same sub-channel,
then there exists intra-UAV interference between them. Let
pn,k,j be the power allocated by the nth UAV to the jth user
on kth subchannel. Hence, the received signal at the (n, j)
user is:

yn,j =

Knet∑
k=1

cn,jgn,k,jfn,k,jxn,k,j︸ ︷︷ ︸
Desired signal

+

Knet∑
k=1

∑
i∈Jn
i ̸=j

cn,ign,k,ifn,k,ixn,k,i

︸ ︷︷ ︸
Intra-group interference

+
∑
n′∈N
n′ ̸=n

Knet∑
k=1

Jn′∑
i=1

cn′,ign′,k,ifn′,k,ixn′,k,i

︸ ︷︷ ︸
Inter-group interference

+wn,j︸︷︷︸
Noise

. (7)

Therefore, the decoding signal-to-interference-plus-noise
ratio (SINR) for user (n, j) at subchannel k is:

γn,k,j =
gn,k,jpn,k,j

I intra
n,k,j + I inter

n,k,j + vni,kσ
2
, (8)

where

I intra
n,k,j =

∑
i∈Jn
i̸=j

cn,i||gn,k,i||2fn,k,i pn,k,i,

I inter
n,k,j =

∑
n′∈N
n′ ̸=n

Jn′∑
i=1

cn′,i||gn′,k,i||2fn′,k,i pn′,k,i

where σ2 represents the variance of additive white Gaussian
noise (AWGN). Here, we present a binary variable cn,j to
indicate the association between user j and UAV n. The
variable cn,j is set to 1 if

∑K
k=1 fn,k,j ≥ 1, indicating user

j is associated with UAV-BS n; otherwise, cn,j = 0. The
bandwidth allocation factor for subchannel k in the nith UAV
subgroup is denoted as vni,k. Thus, the data rate of user (n, j)
is Rn,j =

∑K
k=1 vni,klog2(γn,k,j).

B. Problem Formulation

We aim to maximize the sum rate by jointly optimizing the
UAV 3D deployment L = {ln,∀n ∈ N}, user associations
C = {cn,j ,∀n ∈ N , j ∈ J }, subchannel assignments
F = {fn,k,j ,∀n ∈ N , k ∈ K, j ∈ Jn}, power allocation
P = {pn,k,j ,∀n ∈ N , k ∈ K, j ∈ Jn} and bandwidth
allocations V = {vni,k,∀ni ∈ Ni, k ∈ Knet}. Let G =
{gn,k,m,∀n ∈ N , k ∈ K,m ∈ M} denotes the channel
gain matrix, and S = {γn,k,j ,∀n ∈ N , k ∈ K, j ∈ Jn}
denotes the SINR matrix. The joint optimization problem is

mathematically expressed as follows:

P(1) : max
L,C,F,P,V

N∑
n=1

Jn∑
j=1

Rn,j (9a)

(9b)
s.t. 0 ≤ xuav

n , yuav
n ≤ lmax, Hmin ≤ huav

n ≤ Hmax, ∀n ∈ N ,
(9c)

cn,m ∈ {0, 1}, ∀ n ∈ N ,m ∈ M, (9d)⌊
M

N

⌋
≤

Jn∑
m=1

cn,m ≤
⌈
M

N

⌉
,∀n ∈ N (9e)

N∑
n=1

cn,m = 1,∀m ∈ M (9f)

fn,k,j ∈ {0, 1}, ∀ n ∈ N , k ∈ K, j ∈ Jn, (9g)
Knet∑
k=1

nnz(F(n, k, :) = K, ∀ n ∈ N , (9h)

Fn,j ̸= Fn,j′ , ∀ n ∈ N , j ̸= j′ ∈ Jn, (9i)
Jn∑
j=1

fn,k,j ≤ df , ∀ n ∈ N , k ∈ K, (9j)

K∑
k=1

fn,k,j ≤ dv, ∀ n ∈ N , j ∈ Jn, (9k)

pn,k,j ≥ 0, ∀ n ∈ N , k ∈ K, j ∈ Jn, (9l)
K∑

k=1

Jn∑
j=1

fn,k,jpn,k,j ≤ Ptot, ∀ n ∈ N , (9m)

Knet∑
k=1

vni,k = Knet, ∀ ni ∈ Ni, (9n)

where Ptot signifies the overall allocated transmit power
for communication at each of the UAV-BS. Constraint (9c)
indicates that the UAV-BSs 2D coordinates are inside the
maximum defined length lmax in which the users are located
and their height lie between Hmin and Hmax. Constraints (9d)
and (9g) indicate that cn,m and fn,k,j have binary values,
respectively. Constraint (9e) is imposed to guarantee that
each of the UAV-BS offers services to an equivalent number
of GUs. Constraint (9f) specifies that each user is serviced
by precisely single UAV-BS. Constraint (9h) specifies that
each of the UAV-BS employs K number of subchannels.
Constraint (9i) ensures that the FGM designed for each group
should not have any identical columns. Constraint (9j) indi-
cates that maximum df number of users can communicate
over each subchannel, while constraint (9k) signifies that each
user is active over dv subchannels. Constraint (9m) specifies
that power allocated to the users among all subchannels
should be less or equal to Ptot. Constraint (9n) denotes that
the sum of the bandwidth allocation factor is Knet for each
UAV subgroup.

However, solving the optimization problem P(1) is chal-
lenging, as these optimization variables exhibit high coupling,
and the objective function is neither concave nor convex
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concerning these variables. Additionally, the association and
FGM design introduces binary variables, thus bringing inte-
ger constraints into (9d)-(9k). As a result, problem P(1) con-
stitutes a mixed-integer non-convex optimization problem,
making the search for a globally optimal solution challenging
[54].

III. PROPOSED SOLUTION

To compute a suboptimal solution of P(1), we decom-
pose the overall problem into four subproblems and solve
them sequentially. Initially, we determine the UAV-BS–user
associations and UAV-BS 3D placements. Subsequently, we
execute the subchannel allocation to all the UAV-BSs of the
network with a priority on minimizing interference. Further,
the powers allocated to each user at each active subchannel
are optimized. Finally, bandwidth allocation is done for each
subchannel such that the total bandwidth allocated to each
UAV subgroup is fixed. This problem transformation and
solution approach is shown by Fig. 3.

A. Users clustering and UAVs deployment

For a given F, P and V, the joint UAV placement and user
clustering problem becomes

P(A1) : max
L,C

fA1(L,C) =

N∑
n=1

Jn∑
j=1

Rn,j (10a)

s.t. (9c), (9d), (9e), (9f). (10b)

To address problem P(A1), we decompose it into two distinct
components: (1) the identification of UAV 2D deployment
locations and users clustering, (2) the determination of UAV-
BSs altitude. The mathematical expression for the first com-
ponent, involving users clustering and UAV 2D deployment,
is as follows:

P(SP1) : min
xuav
n ,yuav

n ,cn,m

N∑
n=1

M∑
m=1

cn,mrnm (11a)

s.t. 0 ≤ xuav
n , yuav

n ≤ lmax, (11b)
(9d), (9e), (9f). (11c)

In the subproblem P(SP1), the cost function is defined as the
summation of the Euclidean distances between the GUs and
their respective associated UAV-BSs. The minimization of
this cost function holds significant importance, as shorter 2D
distances correspond to higher channel gains, consequently
leading to enhanced data rates for the users. As the users’ lo-
cations are known, the K-means algorithm effectively clusters
users based on their 2D distances from cluster centers. We use
a modified K-means clustering algorithm to approximately
balance user distribution across N groups while minimizing
the cost function, assuming identical payload characteristics
and transmit power for all UAV-BSs [55].

Input Parameters  
(User locations, CSI)

User Clustering & UAV Deployment

SCMA User-UAV Multiple  
Subchannel Assignment

User-UAV  Multiple Subchannel Power 
Allocation (Iterative)

User-UAV Multiple Subchannel Bandwidth 
Allocation (Iterative)

Improved Sum-rate and  
outage performance

Non-convex  
Problem  (1)𝒫

Problem  
Transformation

Four  
Sub-Problems

Fig. 3. Schematic representation of the proposed problem transformation
and solution approach.

With given UAVs 2D location and their association, the
optimization problem of the UAVs’ altitudes is expressed as:

P(SP2) : max
huav
n

N∑
n=1

Jn∑
j=1

Rn,j (12a)

s.t. Hmin ≤ huav
n ≤ Hmax. (12b)

Given the impact of LoS and NLoS components on channel
gain, problem P(SP2) is still nonconvex. To address this, we
employ the GSS method to optimize the altitude of the nth
UAV [56]. We sequentially explore the optimal altitude of
each UAV to derive a suboptimal solution for subproblem
P(SP2). After determining the altitudes for all UAVs, the
sum-rate is updated. This iterative process continues until
convergence of the objective function is achieved.

B. Designing Factor graph matrix

With known L,C,V, and P, the optimization problem
P(1) is reformulated as:

P(A2) : max
F

fA2(F) =
N∑

n=1

Jn∑
j=1

Rn,j (13a)

s.t. (9h), (9i), (9j), (9k). (13b)

To solve the problem P(A2), we introduce three heuristic
algorithms to design F.

1) CSI-based continuous Subchannel allocation (CCSA)
scheme: In Algorithm 1, we first find out the UAV which is
closest to origin. Let the location of UAV closest to origin is
ln′ , n′ ∈ N . Calculate the distance of all other UAVs except
n′ UAV, i.e., ln, n ∈ N \ {n′} from ln′ . Sort the distance
in ascending order and store the indices of corresponding
UAVs as t. Let an denotes the beginning index for subchannel
allocation of the nth UAV, and en = an + K designates
its endpoint. For instance, with (an, en) = (2, 2 + K),
subchannels from k = 2 to k = K + 2 are assigned to
the nth UAV. The start-end indicator of n′th UAV will be



8

Algorithm 1: The CSI-based continuous subchannel
allocation (CCSA) scheme for designing F for multi-
UAV SCMA network

Inputs:
L, d́, Jn,Knet,K, df , dv,G.
Output:
F.

1: The subchannel end indicator is eń = Knet − (ń− 1)d́.
This will continue until K ≤ eń ≤ K + d́.

2: UAVs are divided into Ni number of sub-groups each
having maximum no UAVs. Assume that the set of UAVs
belonging to ith sub-group is Ni.

3: for each subgroup Ni do
4: Find the UAV which is closest to origin and allocate the

starting K number of suchannels to n′th UAV. Let the
location of UAV closest to origin is ln′ , n′ ∈ Ni.

5: Calculate distance between ln, {n ∈ Ni \ {n′}} and ln′ .
6: Sort the distance in descending order and store the

indices of corresponding UAVs as t.
7: The subchannels end indicator follows

eń = Knet − (ń− 1)d́,∀ ń = 1 : no − 1 ∈ t. Similarly,
the start indicator becomes ań = eń −K.

8: for n̆ = 1 : no do
9: Calculate the average RMS value, r from G with

respect to each user and sort them in the descending
order. Save the indices of corresponding users in J̆n̆.

10: for ĭ = 1 : J̆n̆ do
11: if

∑Jn̆
j=1 Fk,j ≤ df , ∀ an̆ ≤ k ≤ en̆ or Fn̆,i ̸= Fn̆,j

then
12: Identify the highest dv values from the column

of G corresponding to index r(n̆, ĭ).
13: For dv selected values in Step 12, the

corresponding indices in Fn̆ are assigned a value
of one.

14: Assign zero to the (n̆, ĭ)th column in G.
15: else
16: Proceed with similar Steps 12-14 for the indices

corresponding to the subsequent dv largest values.
17: end if
18: end for
19: end for
20: end for

(a1, e1) = (1,K), i.e., k = 1 : K subchannels are allocated
to n′th UAV. So, the end indicator will follow an arithmetic
progression as eń = Knet − (ń − 1)d́, where d́ is the shift
in the subchannel for each UAV. This will continue until
K ≤ eń ≤ K + d́. Thus, out of N UAVs, subchannel
allocation is done in a group of every no = Knet−eń

d́
+ 2

UAVs. In this manner, the start-end indication of subchannel
allocation for each UAV is done.

Subsequently, the root mean square (RMS) of G is com-
puted for each user and sorted in the descending order. The
process of RE allocation is initiated with the user holding
the maximum of the RMS values. For the chosen user, we
select dv REs with the maximum SINR and allocate these to
the respective user. This process is iteratively applied for all
users in a sequential manner, following the descending order
of RMS values. As the assignment of REs progresses for
the GUs, complying with the (9i), (9j), and (9k) constraints
becomes increasingly challenging. In such instances, the

algorithm sequentially selects the next dv REs with the
highest CSI values until all specified constraints are satisfied.
Consequently, the proposed algorithm prioritizes assigning
subchannels to users based on favorable CSI, while taking
into account the SCMA FGM constraints.

2) SINR-based continuous Subchannel allocation (SCSA)
scheme: In this scheme, the start-end indicator for sub-
channel allocation and dividing the UAVs into subgroups
is done in the same manner as in CCSA scheme. In this
scheme, we go one step further and allocate the subchannels
to users based on SINR. For each subgroup of UAV, we begin
with an initial matrix Fini, which is an all-ones matrix of
size K × Jn. Subsequently, we calculate the SINR matrix
SK×Jn

= (γk,j)K×J for first UAV of this subgroup consid-
ering only intra-UAV interference, where γk,j is as shown
in (8). Following this, the RMS of S is computed for the
users and subsequently organized in the decreasing order. The
allocation of RE begins with the user holding the maximum
of all the RMS values. Next, the steps similar to Steps 12-16
are followed as in Algorithm 1. The difference here is that
instead of G, the REs are allocated based on SINR matrix S,
considering the constraints in (9i), (9j), (9k). This procedure
is further repeated for other UAVs of the subgroup, where
inter-UAV interference is now considered in computing S
from the clusters for which the FGM is already designed.

3) CSI-based Flexible Subchannel allocation (CFSA)
scheme: In the above two schemes, we used start to end in-
dicator to allocate the continuous subchannels for each UAV.
In this scheme, we flexibly allocate K < Knet subchannels
to each UAV. Here, we consider inclusion of Knet −K zero
rows as a constraint in designing FGM. Next, the RMS of G
is calculated concerning the users and subsequently arranged
in the decreasing order. The allocation of RE is initiated from
the user with the maximum of the RMS values. For each of
the chosen user, we choose dv REs with the maximum CSI
values and allocate these REs to the respective user. This
process continues until the number of non-zero rows in FGM
reaches K. Once K subchannels are occupied, the rest of
the highest dv number of CSI values are chosen among only
these already occupied subchannels. As the number of users
increases, meeting the constraints outlined in (9i), (9j), and
(9k) becomes progressively challenging. In such scenarios,
the selection of the next dv REs corresponding to the next
highest CSI values continues iteratively until all specified
constraints are satisfied. Thus, in the proposed scheme, the
subchannels are flexibly chosen based on available CSI
values.

C. Power Allocation

For the given L, C, F, V, the optimization problem P(1)
is expressed as:

P(A3) : max
P

fA3(P) =
N∑

n=1

Jn∑
j=1

Rn,j (14a)

s.t. (9l), (9m). (14b)
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Algorithm 2: The Power allocation algorithm for
SCMA-assisted multi-UAV network

Inputs:
Jn,Knet,K, df , dv, SN×Knet×Jn ,FN×Knet×Jn ,RN×Knet×Jn .
Output: P.

1: for each subgroup Ni do
2: for n = 1 : no do
3: Sort the rate of all the users in the descending order

and store their indices.
4: The user set is partitioned into two equal sub-groups:

first sub-group consists of high data rate users, i.e.,
SGhigh and second sub-group consists of low data rate
users, i.e., SGlow.

5: For each user, sort the SINR values on the active
subchannels
in ascending order.

6: while SRii
n − SRii−1

n ≥ ϵ, pn,k,j ≥ pmin and
Pii
n ≤ Ptot do

7: For the first sub-group SGhigh, the power at small
SINR channel is updated as pik,j − pak,j and at
large SINR channels as pik,j + pak,j .

8: For the second sub-group SGlow, the power at small
SINR channel is updated as pik,j − pbk,j and at
large SINR channels as pik,j + pbk,j .

9: Update the scaling factors paii
k,j = paii−1

k,j +

paii−1
k,j /2 and pbiik,j = pbii−1

k,j + pbii−1
k,j /2.

10: end while
11: end for
12: end for

Here, addressing subproblem P(A3) presents a challenge
due to its non-convexity, and the computational complexity
involved in determining the optimal solution is prohibitive.
To effectively address the optimization problem P(A3), we
introduce a heuristic power allocation algorithm outlined in
Algorithm 2. This algorithm is structured to allocate power
among users over the active subchannels, prioritizing those
with better rate values. After solving problem P(A2), we get
the rate for each group of users with uniform power alloca-
tion. We sort the rate of users of each group in the descending
order. With computation of F in previous subsection, we also
identify the active user-subchannel pairs. Each group of users
are partitioned into two sub-groups: one with low data rate
users and the other with high data rate users. Let pik,j be the
initial power allocated to the jth user at the kth subchannel.
Since SINR is known for each user at each subchannel, we
can also group the subchannels in low, moderate and high
SINR subchannels for each user. Let pak,j and pbk,j be the
power scaling factors for the low and high data rate users,
respectively. We initiate the power allocation by assigning
the power of pik,j − pak,j to low SINR subchannels and
pik,j + pak,j to high SINR subchannels for the low data
rate user sub-group. Analogously, for the high data rate user
sub-group, low SINR subchannels are allocated the power of
pik,j−pbk,j , while large SINR subchannels receive the power
of pik,j+pbk,j . Let SRii

n =
∑Knet

k=1

∑Jn

j=1 R
i
n,k,j be the sum-

rate and P ii
n =

∑K
k=1

∑Jn

j=1 fn,k,jpn,k,j be the total power
of the nth cluster users at ith iteration. The values of pak,j
and pbk,j are iteratively updated until fractional increase in

Algorithm 3: The Non-uniform bandwidth allocation
for multiple UAV SCMA network

Inputs: Knet,RN×Knet×Jn .
Output: V.

1: for each subgroup Ni do
2: From R, sort the rate of all the users in the ascending

order. Find the indices of ua number of users with lowest
data rate and save
it in the set Ua.

3: For each user in the set Ua, find the subchannels with
maximum data rate and store them in the set K. Find the
unique subchannels among K and save them in Ks and
remaining subchannels are stored in Kr .

4: Let Ks be number of unique subchannels and
Kr = Knet −Ks

be number of remaining subchannels.
5: while

Rii
min −Rii−1

min ≥ ϵ′,SRii
n − SRii−1

n ≥ ϵ, and Krfac
Kr

≥ υ do
6: for k = 1 : Ks do
7: Rii(n,Ks(k), :) = sa Rii−1(n,Ks(k), :)
8: end for
9: Update Ksfac = saKs and Krfac = Knet −Ks.

10: for k = 1 : Kr do
11: Rii(n,Kr(k), :) =

Krfac
Kr

Rii−1(n,Kr(k), :)
12: end for
13: Update the scaling factor as saii = saii−1 + saii−1

2
.

14: end while
15: end for

sumrate is above 1% and allocated power at for each user is
above the minimum power pmin required at each subchannel.

D. Non-uniform Bandwidth allocation

For the given L, C, F, P, the optimization problem P(1)
is reformulated as:

P(A4) : max
V

fA4(V) =

N∑
n=1

Jn∑
j=1

Rn,j (15a)

s.t. (9n). (15b)

We propose Algorithm 3 to adjust the bandwidth of each
subchannel with the aim of maximizing the sumrate and also
improve the minimum user data rate. In this algorithm, for
each subgroup of UAVs, we compute the data rate of all
the associated users. Next, we find ua number of users with
lowest data rates and save them in the set Ua. For these low
data rate users, we find the subchannels with maximum data
rate and store them in the set K. The unique subchannels
are stored in Ks and remaining subchannels are stored in
Kr. Next, the bandwidth associated with subchannels in Ks

are scaled by a factor of sa. The remaining subchannels are
scaled by the factor Krfac

Kr
, where Krfac = Knet − Ks. The

factor sa is updated by sa = sa+ sa
2 until fractional increase

in minimum rate Rmin and sum-rate is above their defined
threshold values and Krfac

Kr
≥ υ, where υ is the threshold

ratio for the bandwidth allocation.

E. Complexity

Now, we will delve into the computational complex-
ity of the proposed resource allocation algorithms. The
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complexity of UAV deployment and user association is
O(M⌈(M/N)⌉L1 + L

′

1log2([hmax − hmin]/ϵ)), where L1

denotes the number of iterations required for UAV 2D de-
ployment and user association, L

′

1 is the number of iterations
for GSS method and ϵ is the search accuracy in GSS method
[56].

The computational complexity of subchannel allocation
using CCSA scheme is O(Ni((no−1)a1+noJK)), where a1
denotes the complexity of computing the start-end indicator
for each UAV as shown in Step 7 of Algorithm 1. The
computational complexity of SCSA scheme is O(Ni((no −
1)a1 + noa2JK)), where a2 denotes the complexity of
computing the SINR matrix for each UAV. Next, the compu-
tational complexity of CFSA scheme is O(Ni(noJa3Knet)),
where a3 denotes the complexity of finding the maximum dv
number of subchannels with highest CSI values, considering
Knet −K zero rows among total Knet rows.

The algorithmic time complexity for Algorithm 2 is
O(NinoL2a4), where L2 is the number of iterations for
power allocation and a4 is the complexity to compute Steps
7-9 in each iteration. The computational complexity of Al-
gorithm 3 is O(NiL3(Ks + Kr)), where L3 represents the
number of iterations for bandwidth allocation.

IV. RESULTS AND DISCUSSION

This section presents and discusses the simulation results
to demonstrate the effectiveness of the proposed resource
allocation algorithms. The simulation setup comprises of five
UAV-BSs serving 50 GUs distributed over 1000 m × 1000
m area. The simulation parameters are: α = 2.4, ηLoS = 3
dB, ηNLoS = 23 dB, a = 11.95 and b = 0.136. The initial
transmit power of each UAV is distributed equally among all
the served users. Two benchmark schemes are considered for
comparative analysis [57]:

• OMA: In this scheme, all the UAVs serve the GUs in
orthogonal time slots of equal size, but they share the
same frequency band. Thus, the users face only the inter-
UAV interference in this case. The rate achieved by the
(n, j)th user is

ROMA
n,j =

1

Jn
log2

(
1 +

||gn,k,j ||2Ptot

I inter
n,k,j + σ2

)
(16)

• Interference Free (IF): In this approach, each UAV
serves GUs in orthogonal time slots and is allocated
orthogonal frequency bands. Thus, the users do not face
any interference and all UAVs operate with maximum
transmit power. The rate achieved in IF case by the
(n, j)th user is:

RIF
n,j =

1

NJn
log2

(
1 +

||gn,k,j ||2Ptot
σ2

N

)
(17)

Fig. 4 shows the 3D deployment of five UAV-BSs along-
side the locations of 50 GUs for SCMA, OMA and PD-
NOMA schemes. Users associated with distinct UAVs are
represented by varying colors, and the color of the associated
UAV-BS corresponds to that of its users. Each UAV-BS is

Fig. 4. 3D placement of five UAVs serving 50 users.
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(a) CCSA scheme
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(b) SCSA scheme
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(c) CFSA scheme
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Fig. 5. Sum-rate versus UAV transmit power (a) CCSA (b) SCSA (c) CFSA
based FGM, ‘Uni’ denotes uniform, ‘Alloc’ denotes allocated power from
Algorithm 2 and ‘Non-uni’ denotes the non-uniform bandwidth allocation
from Algorithm 3. Subfigure (d) shows the sum-rate performance for
proposed SCMA based schemes, static FGM, OMA and IF schemes.
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(c) CFSA scheme
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Fig. 6. CDF plot for multi-UAV SCMA network for (a) CCSA (b) SCSA
(c) CFSA based FGM, ‘Uni’ denotes uniform, ‘Alloc’ denotes allocated
power from Algorithm 2 and ‘Non-uni’ denotes the non-uniform bandwidth
allocation from Algorithm 3. Subfigure (d) shows the CDF plot for proposed
SCMA based schemes, static FGM, OMA and IF schemes.

positioned at the geometric center of its designated cluster in
2D space. The altitude of each UAV is fine-tuned utilizing
the GSS scheme to enhance the overall sum-rate.

Fig. 5 illustrates the sum-rate performance with respect
to the increase in transmit power of each UAV. In Fig.
5 (a), the F matrix is designed using CCSA scheme as
discussed in Algorithm 1. Then, we have shown the impact
of power allocation and non-uniform bandwidth allocation
from Algorithm 2 and Algorithm 3, respectively. It is noted
that by introducing the proposed schemes gradually, the sum-
rate of the overall network improves significantly. In Fig. 5
(b) and (c), the F matrix is designed using SCSA scheme
and CFSA scheme, respectively. Again, for the resulting F
matrix in both cases, we have shown the impact of power
allocation and non-uniform bandwidth allocation. Fig. 5 (d)
illustrates the sum-rate performance for the proposed SCMA
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Fig. 7. Sum-rate performance as the altitude of UAVs varies, where ‘Uni.’
represents uniform, ‘Alloc.’ represents the allocated, ‘Non-uni’ represents
non-uniform SBs allocation.
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and benchmark schemes. Here, SCMA F static denotes
the static FGM for all clusters with uniform power and
bandwidth allocation to all users. It is apparent that the
sum-rate performance experiences a significant enhancement
with the increase in the transmit power for all the proposed
algorithms.

Fig. 6 depicts the cumulative distribution function (CDF)
of the network sum-rate with respect to IF, OMA, and
different SCMA schemes. In Fig. 6 (a), the F matrix is
designed using CCSA scheme and then power allocation
and bandwidth allocation is done using Algorithm 2 and
Algorithm 3, respectively. It is noteworthy that the gradual
implementation of the proposed resource allocation schemes
significantly improves the network’s sum-rate. In Fig. 6 (b)
and (c), the F matrix is designed using SCSA scheme and
CFSA scheme, and in both cases, we have shown the impact
of power allocation and non-uniform bandwidth allocation.
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Fig. 6 (d) illustrates the CDF curves for the proposed SCMA
and the benchmarking schemes. It is noteworthy that the
benefits derived from the proposed methodologies exhibit
stability, with the depicted curves maintaining consistent
alignment with their corresponding counterparts in Fig. 5.

Fig. 7 illustrates the sum-rate performance with varying
UAV altitudes for the proposed SCMA resource allocation
algorithms and the benchmarking schemes. The plot reveals
an initial increase followed by a subsequent decrease in the
total sum-rate as the altitude increases in all the multiple
access schemes, excluding IF. Therefore, optimizing the
height of each UAV is a crucial factor to significantly enhance
the overall network performance. Fig. 8 illustrates the outage
performance of the proposed SCMA resource allocation
algorithms in comparison with the benchmarking schemes.
Here, the network is said to be in outage if the average
minimum user rate of each cluster is less than 0.01 bps/Hz.
This shows that, with the implementation of the proposed
algorithms, both the sum-rate and outage performance of the
network improves.

V. CONCLUSION

This work presents resource allocation schemes aimed
to maximize the sum-rate in a SCMA-aided multiple UAV
downlink system, addressing challenges related to inter-UAV
and intra-UAV interferences. We have worked on the joint
optimization of UAV-users association, UAV-BSs 3D deploy-
ment, multiple subchannels assignment, power allocation and
bandwidth allocation to improve the network performance.
We have decomposed the formulated optimization problem
into four tractable subproblems and then solve them se-
quentially. The simulation results demonstrate that optimiz-
ing subchannel allocation, power allocation, and bandwidth
allocation in a multi-UAV SCMA system can significantly
enhance the achieved sum rate. The findings also indicated
that 1) minimizing interference requires efficient subchannel
assignment, 2) network performance benefits from balanced
power allocation, and 3) optimizing bandwidth allocation
helps in improving outage performance. In this work, we
investigated the resource management in multi-UAV network,
but UAVs face a challenge of limited energy problem. To
further improve the network performance, the problem of
energy consumption and channel estimation in the considered
SCMA-assisted UAV networks are interesting topics for
future work.
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