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Abstract

We propose a nonparametric portmanteau test for detecting changes in the uncondi-

tional mean of a univariate time series which may display either long or short memory.

Our approach is designed to have power against, among other things, cases where

the mean component of the series displays abrupt level shifts, deterministic trending

behaviour, or is subject to some form of time-varying, continuous change. The test we

propose is simple to compute, being based on ratios of periodogram ordinates, has a

pivotal limiting null distribution of known form which reduces to the multiple of a χ2
2

random variable in the case where the series is short memory, and has power against

a wide class of time-varying mean models. A Monte Carlo simulation study into the

finite sample behaviour of the test shows it to have both good size properties under

the null for a range of long and short memory series and to exhibit good power against

a variety of plausible time-varying mean alternatives. Because of its simplicity, we

recommend our periodogram ratio test as a routine portmanteau test for whether the

mean component of a time series can reasonably be treated as constant.
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1 Introduction

For many macroeconomic and financial time series the assumption that the mean of the series

is constant is unrealistic, and incorrectly specifying the mean component of the series to be

constant can have very serious consequences for the reliability of statistical modelling and

inference and for forecasts generated by the fitted model. Well known early contributions

include Perron (1989), who showed that an unmodelled abrupt level shift in the intercept or

abrupt change in the drift term render the familiar Dickey-Fuller unit root test unreliable,

resulting in spurious non-rejection of the unit root null hypothesis of unit root. Teverovsky

and Taqqu (1997) showed that an unmodelled level shift can generate properties similar

to long memory in a series that is otherwise weakly dependent. This phenomenon, also

known as spurious long memory in the applied literature, is widely documented for stock

market data in, inter alia, Lobato and Savin (1998), Mikosch and Stărică (2004), Diebold

and Inoue (2001), Granger and Hyung (2004), Perron and Qu (2010). Recent evidence of

possibly spurious long memory in macroeconomic and financial data is discussed in Iacone,

Nielsen and Taylor (2022). Implications of unmodelled breaks in the mean for forecasting are

considered in Clements and Hendry (1998).

These examples highlight the importance of testing whether the mean of a time series is

stable over the sample or not. The exogenous level shift model, in which the mean of the

process changes abruptly at some deterministic point in the sample, offers a very simple

representation of the instability, and it has the advantage of being relatively easy to analyse.

According to Aue and Horváth (2013) and Horváth and Rice (2014), tests for change points

in the mean of a series date back to the 1940s, and have been applied across a wide range of

fields, including climatology; see also Reeves et al. (2007). Wenger et al. (2019) provide a

comparison of some of the techniques that have been proposed to detect the presence of a

level shift in long memory series.

The abrupt, discontinuous, exogenous change in the mean implied by the level shift model

may occasionally be justified: for example the drop of the discharge from the Nile at Aswan
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might be due to the construction of a dam that was completed in 1902, although Cobb (1978)

warns that this change may also be due to other factors, such as a reduction in rainfall. In

most cases, however, it is more plausible that changes in the mean occur gradually over time.

This seems likely to be the case, for example, for the US inflation rate, which recorded a

moderate increase until the early 1980s, when the Volcker-Greenspan era of inflation rate

targeting by the U.S. Federal Reserve reversed the trend. A second limitation of the level

shift model is that conventional tests for the null hypothesis of a constant mean against

the alternative of a level break model have to assume a value for the maximum number of

potential breaks, and have limiting null distributions, and hence critical values, which depend

on this choice; see, for example, Bai (1999). A third drawback surrounds whether the breaks

in observed time series can reasonably be assumed to have been generated exogenously.

Given the likely drawbacks of the simple level shift model, it is not surprising that tests

have been developed in the literature which allow for a wider class of functional forms for the

mean under the non-constant alternative. Two notable such tests are the V S test of Giraitis,

et al. (2006), and the W test of Qu (2011). We contribute to this strand of the literature by

developing a new test for the null hypothesis that the unconditional mean of a univariate

time series process is constant, based on the ratio of selected ordinates of the periodogram of

the series. In particular, our proposed test exploits a key feature of a time-varying mean in

the frequency domain, namely, that its periodogram concentrates most of its power at the

lowest spectral frequencies. This phenomenon was originally noted by Künsch (1986) in the

context of small monotonic trends, but has also been discussed by Iacone (2010) for single

level shifts, McCloskey and Perron (2013) for multiple level shifts, Perron and Qu (2010)

for infrequent breaks, and Qu (2011) for smoothly varying trends. Taken together, these

cases constitute a wide range of plausible models for the trend component of a series. In

the presence of a time-varying mean of this kind, the periodogram diverges for some of the

lowest frequencies, while for a constant mean it does not, and this is the key feature that is

exploited in the diagnostic procedure we propose. While our null hypothesis of a constant
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mean is well specified, our alternative of a time-varying mean is necessarily more nebulous

and, hence, we view this as a portmanteau test for non-constancy in the mean.

Our proposed test can be validly used for both short and long memory series, the latter

provided the long memory parameter, denoted by δ, lies within the stationary and invertible

region, δ ∈ (−1/2, 1/2). Two versions of our test are proposed, one for the case where the

practitioner specifies a value of δ (e.g. δ = 0 such that the series is weakly autocorrelated), or

where δ is estimated from the data. In the latter case it is well known that a time-varying

mean will tend to cause an upward bias in standard estimators of δ which assume a constant

mean. To circumvent this we explore the use of trimmed estimates of δ in the construction of

our statistic. We show that, regardless of whether δ is known or estimated, our test statistic

has a well known pivotal limiting null distribution, which reduces to a multiple of a χ2
2

random variable when the data are short memory. The theoretical power properties of the

test are explored with theoretical conditions for consistency of the test provided. The finite

sample power properties of our proposed tests against a range of plausible time-varying mean

models is explored by Monte Carlo simulation. An empirical application of the tests to to

U.S. CPI inflation over the period 1970 to 2022 is also reported.

The remainder of the paper is organised as follows. In Section 2 we present the model

we consider for our testing problem and discuss a range of prototypical time-varying mean

models that have been considered in the literature. In Section 3 we introduce our proposed

portmanteau test for non-constancy of the mean. In Section 4 we derive its large sample

properties under suitable regularity conditions and discuss its large sample power properties.

Section 5 reports results from our Monte Carlo exercise exploring the finite sample size and

power properties of our proposed test. An application to U.S. CPI data is reported in Section

6. Section 7 offers some conclusions. An on-line Supplementary Appendix contains proofs of

our main results and additional Monte Carlo results.

We will use the following notational conventions throughout the paper: A := B and

B := A denote that A is defined by B; for a possibly random sequence, XT , and a deter-
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ministic sequence, fT , the notation XT = Oe(fT ) means that XT/fT convergences (either in

distribution or in probability) to a non-degenerate, non-zero random variable. The operator

⌊.⌋ denotes the integer part of its argument.

2 The Time-Varying Mean Model

We consider the univariate time series process, xt, satisfying the following decomposition,

xt = µt + ξt, t = 1, ..., T (1)

where µt is a potentially time-varying mean component and ξt is a zero-mean, fractionally

integrated process. The fractionally integrated component, ξt in (1), is defined by integrating

a weakly dependent, or I(0), process by the long memory parameter δ, δ ∈ (−1/2, 1/2).

More formally, let ηt be a zero-mean, stationary process with spectral density fηη(λ) that is

continuous, bounded, and bounded away from zero at all frequencies. Then,

ξt = ∆−δηt, δ ∈ (−1/2, 1/2) (2)

is a fractionally integrated process of order δ, denoted ξt ∈ I(δ).

Denoting ∆
(δ)
t := Γ (t+ δ) / (Γ (δ) Γ (t+ 1)), where Γ (·) is the Gamma function, such that

Γ (0) := ∞ and Γ (0) /Γ (0) := 1, then ξt =
∑t

s=−∞∆
(δ)
t−sηs, δ ∈ (−1/2, 1/2). The absence

of any truncation in the infinite MA representation entails that ξt is a Type 1 fractionally

integrated process, see Marinucci and Robinson (1999), and that it is stationary with spectral

density fξξ(λ) such that fξξ(λ) → Gλ−2δ as λ → 0+, for some G ∈ (0,∞). In the case

of a series, zt say, whose long memory parameter lay above 0.5, for example in the range

0.5 ≤ δ < 1.5, this series could be differenced prior to analysis, such that ∆zt := zt − zt−1

was assumed to satisfy the model in (1)-(2).

For our purposes, it is convenient to characterise the level term, µt, in (1) in terms of the

properties of its periodogram. To that end, for a generic sequence, {z1, ..., zT}, define the
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familiar Fourier transform,

wz(λ) :=
1√
2πT

T∑
t=1

zte
−iλt,

where i is the complex operator and λ ∈ (−π, π] is a user-chosen frequency, for which value

we can define the periodogram as

Izz(λ) := |wz(λ)|2.

Our focus is on testing the null hypothesis that µt is constant; that is,

H0 : µt = µ, t = 1, ..., T (3)

where µ is a fixed constant. To that end, consider the periodogram of {µ1, ..., µT}, Iµµ(λ),

at the Fourier frequencies, λj :=
2πj
T

for j = 1, ..., T − 1. Under H0 of (3), we clearly have

that Iµµ(λj) = 0, for all λj. While our null hypothesis is well specified, our alternative is

necessarily more nebulous, given our aim is to develop a portmanteau type test against

non-constancy in µt. However, and in order to motivate a class of alternatives that we would

ideally like our test to display power against, consider as motivation the class of time-varying

µt such that, on at least some j = o(T ), the periodogram diverges as T goes to infinity,

Iµµ(λj∗) → ∞ for some j∗ such that j∗ = o(T ) (4)

and, in general, satisfies the condition that

Iµµ(λj) = Op

(
(λj)

−2ϕj−1
)
, ϕ ∈ (0, 1/2]. (5)

Taken together, these two conditions entail that the periodogram concentrates nearly all of its

power in a band of frequencies which collapse towards the origin as the sample size diverges.

This situation is characteristic of a number of prototypical time-varying mean models that

have been considered in the literature. We now detail some leading examples of these.
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Example 1: Deterministic Level Shifts

µt = µ+
K∑
k=1

βkDUt(τ
∗
k ) (6)

where ∥β∥ > 0 for β := (β1, ..., βK)
′, and where DUt(τ) := I(t ≥ ⌊τT ⌋), with I(.)

denoting the indicator function, whose value is one when its argument is true and zero

otherwise; the values 0 < τ ∗1 < · · · < τ ∗K < 1 denote the location in the sample (as

fractions of the sample size, T ) where abrupt changes (of which there are at least one)

in the mean occur. ♢

Example 2: Smoothly Varying Trend

µt = µ+ βh(t/T ) (7)

where h(s) is a Lipschitz continuous function on [0, 1], h(s) ̸= h(r) for some s ≠ r, and

β ̸= 0. ♢

Example 3: Power Trend

µt = µ+ βtφ−1/2 (8)

for φ ∈ (0, 1/2), β ̸= 0. ♢

Example 4: Martingale Process

µt = µt−1 + βtϵt (9)

with βt i.i.d. Bernoulli(p), p = O(T−1), ϵt i.i.d. N(0,σ
2
ϵ ), βt and ϵt mutually independent

and σ2
ϵ > 0. ♢

The Deterministic Level Shifts model in Example 1 is very popular in econometrics,

possibly because it is relatively straightforward to establish asymptotic results for break
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location estimators and test statistics for the presence of breaks in this case. However, as

discussed in the Introduction, abrupt exogenous changes in the mean are often not plausible

in practice. The Smoothly Varying Trend model in Example 2 is a plausible model for many

time series in economics, climatology and other fields. It also includes conventional trend

models, such as linear and quadratic trend models as special cases. The definition we use in

Example 2 is taken from Qu (2011, pp.424-425). The same model is also considered in Giraitis

et al. (2006). Nonparametric, kernel-based, estimation of the smoothly varying trend model

in presence of long memory disturbances is discussed in Robinson (1997), with forecasting

from this model considered in Dalla et al. (2020). The Power Trend model in Example 3,

and the capacity of vanishing power trends of this kind to generate spurious evidence of long

memory, has been widely discussed in the literature; see, among others, Bhattacharya et

al. (1983), Teverovsky et al. (1986), and Giraitis et al. (2006). The Martingale Process in

Example 4, which allows changes in the mean to occur at random points in the sample, has

been considered in Diebold and Inoue (2001), Perron and Qu (2010), McCloskey and Perron

(2013) and Nyblom (1989), among others. Nyblom (1989), in particular, develops locally best

invariant tests for the null hypothesis that µt in (1) is constant against the alternative that

µt evolves according to Example 4, for the case where ξt in (1) is an IID Gaussian process.

Despite their apparently different functional forms, the models in Examples 1-4 are all

characterised by periodograms for which the bound in (5) holds: with ϕ = 1/2 for the Level

Break, Smoothly Varying Trend and Martingale Process examples, and ϕ = φ for the Power

Trend. Detailed treatments of these bounds are given in, among others: Iacone (2010),

Theorem 1, for the Level Shift and Power Trend models; Perron and Qu (2010), Proposition

3, for the Martingale Process; and Qu (2011), Lemma 1, for the Smoothly Varying Trend

model. We also refer to McCloskey and Perron (2013) and Leschinski and Sibbertsen (2018)

for a detailed discussion of these bounds. Some further properties for the periodograms of

these trend models are given in Lemma S.1 in the Supplementary Appendix.

The diverging property in (4) is straightforwardly established whenever exact orders can
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be established. This is shown to hold for the Deterministic Level Shift model in Leschinski

and Sibbertsen (2018) and also in Lemma S.1 in the Supplementary Appendix. For the

Martingale Process, this is shown in Proposition 3 of Perron and Qu (2010). In both of

these cases, the bound in (5) also holds as an exact, Oe, bound at at least some frequencies

in λ1, ..., λm, m/T → 0, and in particular it holds as Oe for λ1. For the Power Trend

model, the exact expression for the real and complex part of the Fourier transform can be

readily computed as a closed form formula for λ+ Tλ−1 → 0 from the limit in Lemma 3.2

of Robinson and Marinucci (2001), which again implies that the bound in (5) holds exactly.

Notice that the condition on λ does not allow for λ1; we will discuss this case in Lemma S.1

in the Supplementary Appendix. In all of these cases, the periodogram therefore diverges at

least for some frequencies. The case of the slowly varying trend is somewhat more delicate.

Qu (2011, p.425) argues that for this model the periodogram is diverging at least at some

ordinates; further discussion on this is also provided in Lemma S.1 in the Supplementary

Appendix.

3 A Periodogram Ratio Test of a Constant Mean

As anticipated in Section 2, the periodogram of a time-varying mean component, µt, that

satisfies the bounds in (4) and (5) has the property that it concentrates nearly all of its

spectral power at the lowest frequencies. Indeed, it was exactly this property that led Künsch

(1986) to propose ignoring the lowest frequencies when estimating features of ξt. The main

advantage of this procedure, often referred to in the literature as trimming, is that it does not

require the user to specify the nature of the contamination process, µt. In contrast, where

the unconditional mean is constant, the periodogram of µt has zero power at all frequencies.

Applications of trimming to estimate δ, the memory parameter of ξt, include Iacone (2010)

for the case of the local Whittle [LW] estimate, and McCloskey and Perron (2013) for the

case of the log-periodogram regression estimate. McCloskey and Hill (2017) and Dalla et

al. (2020) discuss trimmed LW estimation of a fully parametric model, and Christensen
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and Varneskov (2017) present an application of trimming in cointegration. Interestingly,

given that the contamination due to µt, when the bound in (5) holds, only affects the lowest

frequencies about zero, a judicious choice of the trimming parameter can result in little or no

deterioration in the asymptotic properties of the estimate of δ. On the other hand, Monte

Carlo simulation results in Iacone (2010) and McCloskey and Perron (2013) suggest that

where the mean is constant, so that µt = µ for all t, such that trimming is not necessary,

the estimate of δ from the trimmed loss function can have markedly larger variance than its

untrimmed counterpart.

In the light of the relative performance of the trimmed and untrimmed estimates of δ

discussed above, a diagnostic for the presence of a time-varying mean component in the

series would seem highly desirable for practitioners, and it is our aim in this paper to provide

a portmanteau test to do just that. If our proposed test rejects the null hypothesis of a

constant mean, then the practitioner should use a trimmed estimation procedure, while an

untrimmed estimate might reasonably be used otherwise. Conveniently, the rates in (4) and

in (5) provide a natural approach to design such a test based on the comparison of the value

of the periodogram where the signal arising from the time-varying mean is strongest, j∗ in

(4), against a set of values of the periodogram at higher band frequencies (though still within

a band that is degenerating to zero as T diverges), where the signal from the stochastic

component ξt should dominate. As we will see later in Section 4 when we establish the

consistency properties of our preferred test, for a wide range of the prototypical time-varying

mean examples given in the Introduction, the periodogram diverges at λ1.

Based on these considerations, our proposed test is based on the ratio of the first

periodogram ordinate of {xt} to the sum of a range of higher ordinates, the latter used to

standardise the numerator with respect to the long run variance of ηt, the I(0) component of

xt. Specifically, for a generic memory parameter d ∈ (−1/2, 1/2), our proposed portmanteau

test of a constant mean against the alternative of a non-constant mean rejects for large values
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of the ratio statistic,

R(d) :=
(λ1)

2dIxx(λ1)

(m− l + 1)−1
∑m

j=l(λj)2dIxx(λj)
. (10)

If it were known that ξt was integrated of order δ, then our test could be based on the

statistic, R(δ). For example, in many cases practitioners may have a plausible belief that

the series under analysis is weakly dependent, such that δ = 0. Where no such knowledge is

either held or assumed about δ, our test can be based on evaluating R(d) at an estimate of δ

obtained from the data, δ̂ say; in this case the test statistic of interest becomes R(δ̂). As we

will later show in Section 4, provided this estimate satisfies a minimal consistency rate, the

large sample behaviour of R(δ) and R(δ̂) will coincide.

Remark 1.

(i) The user-chosen tuning parameters, l and m in (10), satisfy the relation 1 < l < m < T/2.

We will refer to the set of periodogram ordinates used in the denominator of (10) as the

range, {l,m}. Formal rate conditions needed to hold on l and m for establishing the large

sample properties of the R(d) statistic in (10) and will subsequently be detailed in Section 4.

Notice that the denominator of R(d),

Ĝ(d) :=
1

m− l + 1

m∑
j=l

(λj)
2dIxx(λj) (11)

is an estimate of the long run variance of ηt, and it therefore standardises the numerator of

the statistic with respect to this variance. In the context of long run variance estimation, the

tuning parameters l and m are often referred to as the trimming and bandwidth parameters,

respectively. Such long run variance standardisation is a common feature of other tests in

this literature; see, for example, Lobato and Robinson (1998), Qu (2011), Iacone, Leyborne

and Taylor (2017), and Giraitis et al. (2006). Our choice of long run variance estimate,

motivated by our intention to create a portmanteau test for non-constancy of the mean, is,

however, innovative compared to the approach taken in these other papers, because they focus

on the behaviour of the long run variance estimators they propose only under the null and

specific local alternative models for µt. These estimates may well be inconsistent, or at least
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subject to a sizeable finite sample bias, for µt satisfying the bounds in (4) and (5). However,

with judicious selection of the range {l,m} in Ĝ(δ), we can estimate the long run variance

of ηt consistently even in presence of a time-varying mean; see, for example, Iacone (2010).

This is because the effect of the time-varying mean on Ĝ(δ) is reduced by the presence of the

damping factor j−1 in (5).

(ii) The role of the lowest frequency l used in constructing Ĝ(d) is seen to be of great

importance: a judicious choice of l exploits the contrasting characteristics of the periodogram

of the time varying component µt and of the stationary counterpart ξt at different frequencies.

A relatively small value for l is likely to be sufficient in practice, because the contribution of

the periodogram Iµµ(λj) vanishes very quickly as j increases for µt satisfying the bounds in

(4) and (5). The highest frequency, m, is more familiar in the literature, because it is widely

discussed in the context of estimation of a long run variance: consistent estimation requires

that m → ∞ at some rate as T → ∞, but in practice if m is chosen to be too large, the

curvature of the spectral density of ηt may affect the precision of the estimate of its long run

variance, so an inappropriate choice of m may result in a test with poor finite sample size

performance; see, among others, Abadir et al. (2009). In our case, however, an additional

consideration is necessary: in the presence of a time-varying mean the contribution of the

periodogram of Iµµ(λj) may be small, but yet non-zero, at some of the frequencies in the range

{λl, ..., λm}, and so a relatively large value for the bandwidth, m, is also important to render

the average contribution of Iµµ(λj) to Ĝ(d) asymptotically irrelevant. Intuitively, therefore, a

tension between the finite sample size and power of the test based on R(d) is to be anticipated

in respect of the choice of m. This will be explored further in our Monte Carlo simulation

study in Section 5.

Remark 2.

(i) The numerator in the R(d) statistic uses only the first periodogram ordinate, λ1. This is

motivated by arguments of parsimony related to our previous observations that many members

of the class of non-constant µt processes that we are looking to detect display their largest

periodogram ordinate at λ1. However, this is not always the case, and so a test which rejects

for large values of generalised version of the R(d) in (10) which includes the first q < l
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periodogram ordinates in the numerator, i.e.,

R(d) :=
q−1

∑q
j=1(λj)

2dIxx(λj)

(m− l + 1)−1
∑m

j=l(λj)2dIxx(λj)
, (12)

may potentially be more powerful than the test based on R(d) in cases where λ1 is not the

largest ordinate of the periodogram of µt. Here the truncation parameter, q, is assumed to be

independent of the data, although it could potentially be data-determined. The flip side, of

course, is that a test based on R(d) would be expected to less powerful than a test based on

R(d) in cases where λ1 is the largest ordinate of the periodogram of µt.

(ii) In the context of R(d) in (12), q is envisaged to be a relatively small fixed integer.

One could also consider a version of R(d) with q chosen to be sufficiently large such that

asymptotics in q could be justified; here we could consider a test which rejects for large values

of the statistic

R̃(d) :=
q−1/2

∑q
j=1 νj(λj)

2dIxx(λj)

(m− l + 1)−1
∑m

j=l(λj)2dIxx(λj)
(13)

where νj := ln(j) − 1
q

∑q
k=1 ln(k), q =

∑q
j=1 ν

2
j . When l = 1, q = m, the R̃(d) is the well

known LM statistic used to test the null hypothesis that xt ∈ I(d); see Lobato and Robinson

(1998) and Iacone, Nielsen and Taylor (2022). These choices of l and q would, however, be

inappropriate (in that power would be expected to be very low) for the problem of testing for

non-constancy in µt. Here choices of l > 1 and q ≪ m would be more appropriate.

Remark 3. A related statistic, used to test the null that a series is a stationary long

memory process against the alternative that it subject to spurious long memory induced by

the presence of either a smoothly varying trend or stochastic level shifts, of the form given

in Examples 2 and 4, respectively, in Section 2, is the W statistic proposed in Equation

(8) of Qu (2011,p.426). The W statistic is based on a first order expansion of the LW loss

function, and exploits the fact that the periodogram is diverging at a fast rate when µt is

subject to such changes. The W statistic differs from those we propose in that while it is

also formed from the periodogram ordinates of {xt} it is, in effect, a maximum CUSUM-type

procedure based on sequential partial sums formed from the first m̄ periodogram ordinates,

where m̄/T 1/2 → 0 as T → ∞, with the first CUSUM in the sequence based on the sum of

the first ⌊ε̄m̄⌋ ordinates, where ε̄ is a small number (Qu, 2011, recommends using ε̄ = 0.05
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if T < 500), and the last based on all m̄. In common with the statistic R̃(d) in (12), the

number of periodogram ordinates used in the numerator of W is an increasing function of

T . Qu’s W statistic needs to be evaluated based on the (untrimmed) LW estimate of the

long memory index, δ, even in situations in which δ might reasonably be assumed known.

Given that the LW estimate is known to suffer from potentially substantial upward biases for

some (unmodelled) time-varying µt processes (see, among others, Mc Closkey and Perron,

2013, and Iacone, 2010), not exploiting information about the order δ, or not trimming the

LW estimate, may incur a substantial loss in power in such cases. Moreover, the long run

variance estimator used in Qu’s W statistic uses all of the first m̄ periodogram ordinates,

rather than the trimmed version we use; cf. Remark 1.

4 Asymptotics for the Periodogram Ratio Statistic

In this section we will establish the large sample properties of the R(d) statistic of (10) for

both the case where d is a known index and where d is set equal to a consistent estimator of

δ. We will first establish the limiting null distribution of the statistic, before establishing

consistency against a class of time-varying µt processes.

To do so we need to set out some regularity conditions on the DGP given in (1)-(2). First,

for the I(0) component, ηt, we use the following set of conditions from Wu and Shao (2006):

Assumption A1. Let ηt := F (..., εt−1, εt), t ∈ Z, where εt are IID random variables and F

is a measurable function such that ηt is well-defined. For a random variable X write X ∈ Lp

if ∥X∥p = [E |X|p]1/p < ∞. Let F = (..., εt−1, εt), and define the projections Pk by PkX =

E(X|Fk)− E(X|Fk−1), X ∈ L1. Let ηt be such that ηt ∈ Lp∗ with p∗ > max(2, 2/(1 + 2δ)),

∥
∑∞

k=0Pkηt∥p∗ < ∞ and fηη(0) > 0.

Remark 4. Assumption A1 includes a very wide class of processes; see the discussion in

Wu and Shao (2006,pp.20-23), and the references therein. In particular, it includes linear

processes of the form ηt =
∑∞

j=1 ajεt−j as a special case. It also includes a large class of

nonlinear time series models, including bilinear models, threshold models and GARCH-type

models. The condition that ∥
∑∞

k=0Pkηt∥p∗ < ∞ is discussed in some detail on page 23 of
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Wu and Shao (2006) and serves to restrict the amount of dependence allowed in {ηt}; for

example, in the linear process case it imposes the usual absolute summability condition that∑∞
j=0 |aj| < ∞.

We complete the set of necessary regularity conditions with some additional conditions

related to the spectral density of ξt, fξξ(λ):

Assumption A2.

(i) There exists a G ∈ (0,∞) such that

fηη(λ) ∼ G as λ → 0+;

(ii) In a neighbourhood (0, ϵ) of the origin, fηη(λ) is differentiable and

d

dλ
lnfηη(λ) = O(λ−1) as λ → 0+.

Remark 5. In view of (2), Assumption A2 implies that fξξ(λ) ∼ Gλ−2δ as λ → 0+ and fξξ(λ)

is differentiable in a neighbourhood (0, ϵ) of the origin, with d
dλ
fξξ(λ) = O(λ−1−2δ) as λ → 0.

This is sufficient to allow us to establish bounds for the bias and covariances of the expected

periodogram on a band of frequencies degenerating to zero.

We are now in the position to state our main result, which provides the limiting null

distribution of the R(d) statistic of (10), both for the case where d is set equal to the true

long memory parameter, δ, and where it is set equal to a consistent estimate thereof.

Theorem 1. Let {xt} be defined as in (1) and (2) under H0 of (3), and let Assumptions A1

and A2 hold. Then provided the rate condition, l
m
+ m

T
→ 0 as T → ∞, holds:

(i)

R(δ)
d→
{
L1(δ)

2
+ L∗

1(δ)

}
Z2

1 +

{
L1(δ)

2
− L∗

1(δ)

}
Z2

2 =: R∞(δ) (14)
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where Z1, Z2 are independent, standard normal random variables, and where

Lj(d) :=
2

π

∫ ∞

−∞

sin2(λ/2)

(2πj − λ)2

∣∣∣∣ λ

2πj

∣∣∣∣−2d

dλ

L∗
j(d) :=

1

π

∫ ∞

−∞

sin2(λ/2)

(2πj − λ)(2πj + λ)

∣∣∣∣ λ

2πj

∣∣∣∣−2d

dλ;

(ii) For any δ̂ = δ +Op(T
−ϵ) for some ϵ > 0,

R(δ̂)−R(δ) = op(1). (15)

The results in (14) and (15) also hold under the alternative rate condition, 1
l
+ l

m
+ m

T
→ 0

as T → ∞.

Remark 6.

(i) The limiting distribution R∞(δ) in (14) appears in Hurvich and Beltrao (1993), who

established it for the case of linear Gaussian processes and this was extended to the case

of non-Gaussian linear processes in Terrin and Hurvich (1994). The result in part (i) of

Theorem 1 further extends this result to the case of non-linear processes satisfying Assumption

A1.

(ii) The result in part (ii) of Theorem 1 imposes a necessary rate of convergence on δ̂, although,

in contrast to the W statistic in Qu (2011), it does not constrain the practitioner to use the

LW estimator.

(iii) The limiting distribution R∞(δ) in (14) depends on the true long memory parameter, δ;

critical values from this distribution can be computed, for example, by using the formula in

Moschopoulos (1985), Equation (2.10). In the special case of δ = 0, the distribution in (14)

is one-half times a χ2
2 variate.

(iv) Under the conditions of Theorem 1, the limiting null distributions of R(δ) and R(δ̂)

coincide and can be straightforwardly obtained from the results given in Theorem 1 of Terrin

and Hurvich (1994). This limiting distribution has a rather involved form, other than in the

case where δ = 0 where it simplifies to a (2q)−1χ2
2q random variable.

(v) It can also be shown that under H0 of (3) and with some additional regularity conditions,

that the R̃(δ) statistic defined in (13) is such that R̃(δ)
d→ N(0, 1). The additional regularity
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conditions required on ξt are given in, for example, Shao and Wu (2007a, 2007b). The result

also requires the rate condition, (log(T ))3

q
+ q

T 2/3 → 0 as T → ∞, to hold on q. For R̃(δ̂)

the same limiting result holds as for R̃(δ), provided some further regularity conditions hold,

primarily that (δ̂ − δ) = Op(T
−α−ϵ) and T−αq1/2 → 0.

In Theorem 2 we next explore the class of models of time-variation in µt against which

the test based on R(δ) will deliver consistent inference; a discussion on how these results

extend to the case of the test based on the R(δ̂) statistic is subsequently given in Remark 9.

As we will show, consistency only holds for a subset of the set of µt processes that satisfy

the bounds given in (4) and (5). However, it is important to stress that even where formal

consistency is not established this does not mean that our proposed tests will have no power

to detect departures from the null hypothesis. This will be further explored in our finite

sample simulation study, the results from which are reported in Section 5.

Theorem 2. Let {xt} be defined as in (1) and (2) and let Assumptions A1 and A2 hold. If the

periodogram of µt satisfies the conditions that Iµµ(λ1) = Oe(T
2ϕ), Iµµ(λj) = Op(λ

−2ϕ
j j−1) for

j ≤ m, and
∑m

j=l λj
2δIµµ(λj) = Oe((T/l)

2(ϕ−δ)), then provided the rate condition 1
l
+ l

m
+m

T
→ 0

as T → ∞, holds:

(i) if ϕ > δ,

if T 2(ϕ−δ) m−1 l2(δ−ϕ) → ∞, R(δ) = Oe(ml2(ϕ−δ)) (16)

if T 2(ϕ−δ) m−1 l2(δ−ϕ) → 0, R(δ) = Oe(T
2(ϕ−δ)) (17)

(ii) if ϕ < δ, R(δ)
d→ R∞(δ).

Remark 7.

(i) The requirement that
∑m

j=l λj
2δIµµ(λj) = Oe((T/l)

2(ϕ−δ)) controls the allowable rate of

divergence of the denominator of R(δ), Ĝ(δ) of (11). This assumption automatically holds if

Iµµ(λj) = Oe(λ
−2ϕ
j j−1) for j ≤ m, as is the case for the martingale process in (9). The more

involved formulation of the rate conditions needed is to accommodate the level shift model in

(6). This is seen most clearly through the example of a single level shift at τ ∗ = 0.5: here it is
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straightforward to verify that Iµµ(λj) = Op(λ
−2ϕ
j j−1) holds, but with Iµµ(λj) = 0 for j even.

For the power trend (8) this requirement holds (with ϕ = φ) in view of the limit in Lemma

3.2 of Robinson and Marinucci (2001).

(ii) All of the stated rate conditions on Iµµ(λj) hold for both the level shift model in (6) and

for the martingale process in (9), in both cases with ϕ = 1/2, and also for the power trend

model in (8) (with ϕ = φ), see Lemma S.1.

(iii) In the case of the smooth trend model, the required order condition that Iµµ(λ1) = Oe(T )

is not exhaustive of all models of the form in (7). For example, the deterministic cosine trend

model µt = cos(2π2t/T ) has a spectral peak at λ2, but has zero spectral power at λ1. In order

to have power against such processes one could use tests based on either the R(δ) or R̃(δ)

statistics of (12) and (13), respectively.

(iv) In view of the low frequency approximation fξξ(λ) ∼ Gλ−2δ as λ → 0+, it is clear that

the power of the test based on the R(δ) statistic depends on the interplay between the bound

O
(
(λj)

−2ϕj−1
)
and λ−2δ

j . Larger values of δ, relative to ϕ, may serve to mask the presence

of time-variation in the mean, making its detection more difficult. This feature is common

for this class of testing problems; see, for example Theorem 1 of Iacone et al. (2017), and

Theorem 1 of Iacone et al. (2014) for the case of the single level break model. Indeed, if δ > ϕ,

then as part (ii) of Theorem 2 establishes, the asymptotic power of the test is equal to its

asymptotic size. For example the power trend model of (8), is not detectable whenever δ > φ.

However, low power in such situations is arguably less of a concern, because the distorting

effect of µt when estimating features of ξt is likely to be relatively weak.

Remark 8. The bounds in (16) and (17) are suggestive that power is increasing in both l and

m, the trimming and bandwidth parameters, respectively, used in the estimation of the long

run variance which forms the denominator of R(δ). Because the term Iµµ(λj) is decreasing in

j, eliminating the lowest frequencies by setting l > 1 reduces or removes contamination from

µt in this estimate. In view of (16) and (17), it might seem advisable to choose l and m as

large as possible. In practice, however, there are other factors to take into consideration. First,

the results are based on approximating the spectral density fηη(λ) as a constant, G, at low

frequencies but in reality fηη(λ) is unlikely to be constant for λ ≠ 0, and so the approximation

may be less reliable as λ moves away from the origin. Curvature in fηη(λ) may generate

a bias in the estimation of G, and this becomes more relevant when larger values of m are
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considered. A detailed discussion of this issue is given in Abadir et al. (2009), who recommend

using m = ⌊T 0.8⌋ for linear processes and, following Dalla et al. (2006), a smaller rate, such

as m = ⌊T 0.7⌋, for nonlinear processes. The trimming parameter, l, by removing the very

frequencies for which fηη(λ) is usually closest to G, may also amplify this bias. The impact

of the choice of l and m on the finite sample behaviour of the test will be explored further in

Section 5.

Remark 9. In the case where δ is estimated, provided δ̂ = δ + Op(T
−ϵ) for some ϵ > 0,

R(δ̂)−R(δ) = op(1), such that the results stated in Theorem 2 will still hold. Giraitis et al.

(2006) observe that the LW estimate satisfies this condition in the case of the smooth trend

model in (7) when δ is estimated based on the residuals from a nonparametric regression. In

cases where the characterisation in (5) allows for abrupt discontinuities, such as the level break

model in (6), the sufficient rate of convergence for δ̂ can be established using either trimmed

log-periodogram regression estimation (see McCloskey and Perron, 2013,pp.1201,1205) or

trimmed LW estimation (see, Iacone, 2010). We will explore the properties of the tests based

on untrimmed and trimmed LW estimates in our simulation study in Section 5.

In the case where {xt} is weakly dependent, such that δ = 0, if it holds that Iµµ(λ1) =

Oe(T ), an example of which is the Level Shift model of Example 1, then Theorem 2 yields

the corollary:

Corollary 1. Let {xt} be defined as in (1) and (2) with δ = 0, and let Assumptions A1 and

A2 hold. If µt is such that Iµµ(λ1) = Oe(T ) and Iµµ(λj) = Oe(λ
−1
j j−1), then provided the rate

condition 1
l
+ l

m
+ m

T
→ 0 as T → ∞, holds:

if
T

lm
→ ∞, R(0) = Oe(lm) (18)

if
T

lm
→ 0, R(0) = Oe(T ) (19)

It is also interesting to consider the power of R(δ) against level shifts of small magnitude.

For example, for weakly dependent processes (δ = 0) the Sup Wald test of Andrews (1993)

can detect deterministic level shifts of dimension βT = θT−1/2+ϵ for ϵ > 0, and this result

can be generalised to βT = θT−1/2+δ+ϵ for generic fractionally integrated processes; see for
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example Shao (2011) and Iacone et al. (2017). In this case, Iµµ(λ1) = Oe(T
2(δ−1/2+ϵ)λ−1

1 ),

Iµµ(λj) = Op(T
2(δ−1/2+ϵ)λ−1

j j−1) for some ϵ > 0.

Corollary 2. Let {xt} be defined as in (1) and (2) with µt = µ + βTDUt(τ
∗) such that

βT = θT−1/2+δ+ϵ, and ϵ so that m−1 T 2ϵ l2(δ−1/2) → 0. Provided either 1
l
+ l

m
+ m

T
→ 0 as

T → ∞, or 1
m
+ m

T
→ 0 as T → ∞, then R(δ) = Oe(T

2ϵ).

Remark 10. The rate at which the test statistic R(δ) diverges (the same rate applies to R(δ̂),

under the condition that δ̂ = δ + Op(T
−ϵ) for some ϵ > 0) in the presence of local breaks

coincides with that of the tests designed specifically for detecting level breaks in Shao (2011)

and Iacone et al. (2017).

5 Monte Carlo Study

In this section we report the results from a Monte Carlo study investigating the finite sample

size and power properties of the R(δ) and R(δ̂) statistics. In both our size and power studies

we consider samples of size T = 128 and T = 512. All reported situations were based on

10, 000 repetitions for T = 128, and 1, 000 replications for T = 512, and were performed in

Gauss 23 using the RNDN random number generator.

We consider both the case where the practitioner makes a choice for the value δ, say δ†,

and where δ is estimated from the data. In the former case, where the practitioner uses the

true value of δ, such that δ† = δ (eg if they rightly assume the data are weakly dependent,

where δ = 0), this allows us to explore the properties of our proposed tests uncontaminated by

the finite sample error in the estimation of δ. We also explore the impact of the practitioner

choosing a wrong value for δ such that δ† ̸= δ. In the case where δ is estimated we used the

trimmed LW estimate (restricted to the interval [−0.49, 0.49]),

δ̂ := arg min
d∈[−0.49,0.49]

ln

{
1

m∗ − l∗ + 1

m∗∑
j=l∗

λj
2dIxx(λj)

}
− 2d

1

m∗ − l∗ + 1

m∗∑
j=l∗

λj (20)

where l∗ and m∗ denote the trimming and bandwidth parameters used in the LW estimation.
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We set m∗ = ⌊T 0.65⌋, in view of the recommendations of Dalla et al. (2006) and Abadir et al.

(2007). We considered three possible values of l∗: l∗ = 1 (no trimming), l∗ = 2, and l∗ = 3.

We found that trimming can increase the variance of the estimate of δ under the null, causing

some finite sample size deterioration in the test. To control for this effect we use a parametric

bootstrap to generate critical values for our test, based on B = 999 bootstrap replications.1

Section 5.1 investigates the finite sample size properties of the R(δ) and R(δ̂) tests for

a variety of different ξt processes. Then in Section 5.2 we will investigate the finite sample

power properties of these tests in the case of a single deterministic level break. Following

up on the discussion in Section 4, in these first two sections we will explore, for a variety of

simulation DGPs, the size-power trade from the choices made for the trimming and bandwidth

parameters, l and m respectively, which feature in our proposed test statistic, providing some

empirical guidelines for choosing l and m in practice. Finally, Section 5.3 summarises the

results from a comparison of the finite sample size and power properties of our proposed tests,

based on our recommended tuning parameters, with some relevant tests in the literature.

5.1 Size Study

We generate simulation data according to (1)-(2) with µt = µ, t = 1, ..., T , setting µ = 0,

without loss of generality. In addition, for the stochastic component, ξt, we consider the

following range of simulation DGPs:

� DGP1: (NIID) ξt ∼ IIDN(0, 1)

� DGP2: (AR(1)) ξt = 0.5ξt−1 + εt, εt ∼ IIDN(0, 1),

� DGP3: (ARCH(1)) ξt ∼ NIID(0, σ2
t ), where σ2

t = 1 + 0.5ξ2t−1.

1 This was done as follows: (i) setting δ̄ to be equal to either δ† in the case where the practitioner specifies

a value for δ, or δ̂ the (trimmed or untrimmed, as relevant) LW estimate from the original data, generate B
T -dimensional I(δ̄) series, {x∗

t,i}, i = 1, ..., B, t = 1, ..., T , according to (1)-(2) with ξt ∼ IID N(0, 1) and,
µt = µ, t = 1, ..., T , setting µ = 0 (without loss of generality); (ii) for each bootstrap series, {x∗

t,i}, i = 1, ..., B,

calculate either the statistic R(δ†)i if δ̄ = δ†, or R(δ̃∗i )i if δ̄ = δ̂, where δ̃∗i is the LW estimate obtained from
{x∗

t,i}, in each case using the same values of l,m and, where relevant, l∗,m∗ as for the original statistic, R(δ̄);
(iii) arrange the B bootstrap statistics from step (ii) in ascending order, and denote by c̃v∗(0.05) the upper
5% quantile of this ordered sequence; (iv) reject H0 if R(δ̄) > c̃v∗(0.05).

20



� DGP4: (FGN(0.3)) ξt = (1− L)−0.3εt, with εt ∼ IIDN(0, 1)

� DGP5: (FGN(-0.3)) ξt = (1− L)0.3εt, with εt ∼ IIDN(0, 1)

DGP1 may be considered as a benchmark case where ξt is uncorrelated. DGP2, where ξt

follows an AR(1) process, allows us to investigate the effect of curvature in the spectrum,

relative to the benchmark case. DGP3, where ξt follows an ARCH(1) process, allows us to

study the impact of condtional heteroskedasticity. DGP1-DGP3 are all cases where δ = 0.

DGP4 and DGP5 are cases where ξt is a fractional Gaussian white noise processes with

δ = 0.3 (persistent long memory) and δ = −0.3 (anti-persistent long memory), respectively.

We report results for situations in which: (i) Table 2 - the user correctly sets δ† = δ the

true order of integration; (ii) Table 3 - the order of integration is estimated by (trimmed)

LW; (iii) Table 2 - the practitioner incorrectly sets δ† = 0 in the cases of DGP4 and DGP5

where δ = 0.3 and δ = −0.3, respectively. Results are reported for following values of l and

m: l = 2, l = 4 and l = 6 for the T = 128 case, and l = 2, l = 4 and l = 8 for the T = 512

case (except for DGP3-DGP5 where, in the interests of brevity, we only report results for

l = 4); m = ⌊T 0.5⌋, m = ⌊T 0.65⌋ and m = ⌊T 0.8⌋.

The main findings of these results can be summarised as follows:

(i) When the spectral density of ηt (recall ηt = ∆δξt) has no curvature, the test is well

sized in all cases. This includes the ARCH case (as well as the fractional Gaussian

noise cases). Knowledge of δ (or estimation of it) does not affect this result. The only

evident size distortions are seen in the case where the sample size is small (T = 128),

when δ = −0.3 and δ is estimated with trimming, in which case some mild oversize is

seen. These distortions are, however, not present for the larger sample size, T = 512.

(ii) When the spectral density of ηt has a curvature, DGP1, empirical size is seen to depend

on whether δ is known and on the value m chosen. In the case of known δ, size

distortions are larger when the value of m used in the test statistic is large; conversely,

in the case of estimated δ, the size distortion is smaller if m in the test statistic is large.
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Positive autocorrelation is associated with size inflation if δ is known, and size deflation

if δ is estimated. Other things equal, the size distortions are reduced for T = 512

vis-à-vis T = 128.

(iii) Incorrectly setting δ† = 0 when δ = 0.3 results in very large positive size distortions,

which get worse as T or m increase. Conversely, incorrectly setting δ† = 0 when

δ = −0.3 results in significant distortions below the nominal significance level.

(iv) Estimating δ using the LW estimate, or its trimmed version, results in broadly similar size

properties, other things equal. In other words, trimming does not appear to adversely

impact the finite sample size performance of the test relative to the untrimmed case.

5.2 Power Study: Single Level Shift Model

In this part of our exercise we generate simulation data according to (1)-(2) with ξt again

generated according to DGP1-DGP5. For the level component, µt, we now introduce a single

level break: µt = 0.5×DUt(0.5), so that the unconditional mean of xt abruptly changes from

0 to 0.5 half way through the sample.

We report results for situations in which: (i) Table 4 - the user correctly sets δ† = δ the

true order of integration; (ii) Table 5 - the order of integration is estimated by (trimmed)

LW; (iii) Table 4 - the practitioner incorrectly sets δ† = 0 in the cases of DGP4 and DGP5

where δ = 03 and δ = −0.3, respectively. The same values of l,m and l∗,m∗ are used as in

the results in Section 5.1, except that, to avoid repeating redundant information, we now

only report results for l = 4 for DGP1.

The main findings of these results can be summarised as follows:

(i) For given choices of m and l, the power of the tests are, other things equal, increased

for the larger sample size, T = 512, relative to the smaller sample size, T = 128, but are

decreasing with δ. The former reflects the consistency property of the tests established

in Section 4. The latter is also reflective of the consistency rate given in part (i) of
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Theorem 2 which predicts that power is an increasing function of (ϕ− δ) when ϕ > δ:

heuristically, one can think of this as a signal plus noise model, where the periodogram

of µt is the signal, and the spectral density of ξt is the noise, and so the larger is δ, the

larger is the confounding effect of ξt on the spectrum of xt.

(ii) For given T , the choice of m has a significant impact on power. When δ is known,

power is increasing in m. However, where δ is estimated, power appears to be highest

between m = 0.5 and m = 0.65 and then declines for larger values of m. The latter is

perhaps not surprising, as in these cases δ̂ is likely to be upward biased in finite samples

and, as the periodogram ordinates in the denominator are scaled by j2δ̂, a larger value

for δ̂ pushes the R(δ̂) towards zero, other things equal, thereby making it more difficult

to reject the null hypothesis. This effect can also be seen in the case of DGP5, where

δ = −0.3, by comparing the power when the user sets δ† = 0 with the case where they

(correctly) set δ† = −0.3.

(iii) The choice of l does not appear to have a significant impact on power.

(iv) Using trimming in connection with the LW estimate of δ is strongly improving for power

in cases where larger values of m are used in the R(δ̂) statistic, but less so otherwise.

Using a trimming parameter of l∗ = 2 delivers slightly superior power to using l∗ = 3.

Based on the finite sample size and power simulation results presented so far, we can

make some tentative recommendations on the values of the tuning parameters l,m, l∗, and

m∗ which feature in our proposed R(δ) and R(δ̂) statistics. First, in general, we recommend

the use of the test based on R(δ̂) rather than R(δ†), given the uncontrolled size distortions

that can occur when δ† ≠ δ. Second, for δ̂ we recommend using a trimmed LW estimate

with trimming parameter l∗ ≥ 2, and bandwidth m∗ = ⌊T 0.65⌋, the latter as recommended

by Dalla et al. (2006) and Abadir et al. (2007). For the numerator of the R(δ̂) statistic,

balancing size and power considerations, overall we recommend a bandwidth m of somewhere
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in the range [⌊T 0.50⌋, ⌊T 0.65⌋]. The choice of the trimming parameter, l, seems less crucial,

and we suggest considering a range of values of l: the simulations results presented suggest

using l = 2 for T = 128 and l = 4 for T = 512.

5.3 Additional Monte Carlo Results

In the last part of our Monte Carlo exercise, we ran a comparative study of the finite sample

size and power properties of the R(δ) and R(δ̂) tests against a set of benchmark tests from the

literature. For R(δ) and R(δ̂) we follow the recommended settings for the tuning parameters

given at the end of Section 5.2, setting m = ⌊T 0.55⌋. The comparator tests we considered are

the W test of Qu (2011), and the Tn(δ̂) test [denoted V S in what follows] of Giraitis et al.

(2006), both of which are designed to detect general forms of non-constancy in µt, allowing for

long memory in xt. We also consider the SW test of Iacone et al. (2014) which is designed

to detect a single deterministic level break in the presence of long memory. All of the tests

were run using the recommended settings given by the authors of the tests; further details on

these tests can be found in Section S.2 of the Supplementary Appendix where details of the

Monte Carlo designs considered and the results of the experiments can also be found.

Size properties against DGP1-DGP5 from Section 5.1 were investigated together with

power results against a variety of non-constant designs for µt. Here we provide a summary of

those findings as follows:

(i) The SW test has good size properties, both for the known and estimated δ cases. The

only exceptions occurs, as would be expected, in cases where the user specifies a value

for δ† which is different from the true value of δ. Even in such cases, however, the size

distortion is the smallest of the three tests, suggesting that the distorting effect due to

an imprecise estimate of δ is lowest for this test. This is confirmed by the performances

of the V S and W tests: the V S test is subject to some potentially large size distortion

even in the larger sample size, when δ is assumed known, at least when the spectral

density of ηt is subject to some curvature, as in the AR(1) case or when δ = 0.3. The
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size performance of the V S test is improved if the LW estimate is used, but is still

significantly over-sized for DGP4 where δ = 0.3. Finally, the results verify the invalidity

of the W test when based on an assumed (rather than estimated) value of δ, even where

the correct value of δ is assumed.

(ii) For any given combination of µt process, value of δ, and test, replacing δ with its

estimate always results in a loss of power. Increasing the sample size increases the

empirical power; however, the relative performance of the tests is not affected by T , in

the sense that the power ranking of the tests, for a given scenario, is essentially the

same for T = 128 and T = 512.

(iii) For abrupt level break models the power of the tests is increasing in β. We also find

that a break located in the middle of the sample (τ ∗ = 0.5) is more easily detected

than a late break (τ ∗ = 0.75). In the case where τ ∗ = 0.5, for both the case where δ is

known and where it is estimated, our proposed R tests, are very competitive on power

with the SW test, often displaying higher power than SW , but lag behind the power

of SW when τ ∗ = 0.75.

(iv) For smoothly varying trend models our proposed R tests are overall the best performing

on power, both for the case where δ is known and where it is estimated.

(v) In most cases the W test displays lower power, often significantly lower, than the other

tests. The only exception is for a martingale process where it is competitive with the

other tests on power, other than for the case where δ = 0 and T = 128.

(vi) Trimming of the LW estimate in general appears to increase the power of the R(δ̂) test,

albeit marginally.

25



6 Application to U.S. CPI Inflation

We apply our proposed R(δ̂) test to U.S. inflation over the period 1970–2022. Historically,

this period is characterised by different monetary policy regimes and changing underlying

conditions in both the financial markets and macroeconomic circumstances. The inflationary

burst brought on by the oil shocks of the 1970s was eventually curbed by the more aggressive

attitude to inflation control ushered in during the Volker-Greenspan era and the resulting, so-

called, Great Moderation. More recently, U.S. inflation has reverted to periods of instability,

most notably the 2008 financial crisis and recent international turmoil.

The inflation series is computed as the first differences of the (natural) logarithm of

monthly CPI, the Consumer Price Index for all Urban Consumers (all items in U.S. city

average), seasonally adjusted: series CPIAUCSL from the FRED database. The sample size

is T = 635. The plot of the series (in log-first differences) is given in Figure 1. This is scaled

by 1200 to be visually compatible with the measure of inflation that is commonly used. Also

depicted in red is a non-parametric estimate of the mean of the series computed over a rolling

window of width 12 months: this is at least suggestive of the presence of some time-variation

in the unconditional mean of the series across the sample.

Figure 1: U.S. Monthly CPI Inflation (seasonally adjusted), 1970-2022
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In Table 1 we report the outcomes of the R(δ̂) statistic, for a range of values of the

trimming and bandwidth parameters, l and m. The statistics were computed using either

the untrimmed LW estimate, denoted δ̂, or the trimmed LW estimate with l∗ = 2, denoted

δ̂2, and l∗ = 3, denoted δ̂3. In each case we used a bandwidth of m∗ = ⌊T 0.65⌋. Bold entries

denote cases where the outcome of the statistic exceeds the 5% bootstrap critical value (with

the bootstrap critical values calculated as outlined in footnote 1 with B = 999 bootstrap

replications). Missing entries are where we consider the range {l,m} to be too small to deliver

a reliable estimate of the long run variance.

Table 1: Application of R(δ̂) Tests to Monthly Seasonally Adjusted U.S. CPI

m 13 18 25 30 34 40 48 66
l ⌊T 0.4⌋ ⌊T 0.45⌋ ⌊T 0.5⌋ ⌊T 0.55⌋ ⌊T 0.6⌋ ⌊T 0.65⌋

Panel A: Untrimmed LW Estimate (l∗ = 1), δ̂ = 0.45

2 2.07 2.58 2.91 3.10 3.15 2.77 2.75 2.46
4 2.01 2.60 2.97 3.16 3.21 2.79 2.76 2.46
6 1.86 2.54 2.96 3.17 3.22 2.78 2.75 2.44
9 — 239 2.92 3.17 3.22 2.74 2.72 2.41
12 — — 5.44 5.15 4.79 3.44 3.24 2.64

Panel B: Trimmed LW Estimate (l∗ = 2), δ̂2 = 0.41

2 2.48 3.12 3.58 3.85 3.96 3.57 3.61 3.34
4 2.45 3.19 3.70 3.99 4.10 3.64 3.67 3.37
6 2.28 3.15 3.72 4.04 4.14 3.65 3.68 3.37
9 — 2.99 3.70 4.06 4.18 3.63 3.66 3.35
12 — — 7.13 6.82 6.40 4.70 4.47 3.74

Panel C: Trimmed LW Estimate (l∗ = 3), δ̂3 = 0.37

2 2.87 3.63 4.23 4.59 4.76 4.38 4.48 4.28
4 2.88 3.78 4.43 4.82 4.98 4.52 4.61 4.35
6 2.70 3.76 4.49 4.91 5.08 4.56 4.65 4.37
9 — 3.58 4.49 4.98 5.16 4.57 4.66 4.36
12 — — 8.89 8.58 8.11 6.05 5.80 4.96

As might be anticipated, given the apparent non-constancy of the unconditional mean in

27



Figure 1, trimming is seen to have a significant effect on the LW estimate of δ for the inflation

series. In particular, the LW estimate decreases as the amount of trimming increases, passing

from δ̂ = 0.45 when no trimming is used, to δ̂3 = 0.37 when l∗ = 3. Relatedly, we see that

the evidence against the null hypothesis that the unconditional mean of the inflation series is

constant across the sample is much higher when trimming with l∗ = 3 is used, compared to

the cases where no trimming or trimming with l∗ = 2 is used. The outcomes of the statistics

are also seen to be uniformly larger when l∗ = 3 than for the other cases, for given values of l

and m. For the case where we use the trimmed LW estimate with l∗ = 3 we see that we can

reject the null hypothesis for most of the values of l and m considered; indeed, for l = 12, we

can reject for all the values of m considered. However, it is also worth observing that for

our recommended tuning parameter settings of m = ⌊T 0.55⌋ and l = 4, we are able to reject

the null hypothesis of a constant mean, regardless of whether a trimmed or untrimmed LW

estimate is used.

7 Conclusions

We have developed portmanteau tests, based on ratios of the periodogram ordinates of the

series, for detecting general forms of non-constancy in the level component of a (possibly)

fractionally integrated time series process. The numerator contains low frequency ordinates

designed to become large when there is non-constancy in the level, our leading case being

where the statistic which includes only the lowest frequency ordinate in the numerator. The

denominators use higher frequency ordinates to the scale the numerator by an estimate of the

long run variance of the series. For this leading case, we have shown that the periodogram

ratio tests admit pivotal limiting distributions of a well known form under the null hypothesis

that the level of the series is constant across the sample and have also established consistency

against a wide class of time-varying mean components, including deterministic level shift

models, smoothly varying trend components, power trends, and martingales. A Monte Carlo

simulation study, again focussing on our leading case, showed that the test displays good
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finite sample size control and is very competitive on power with extant tests in the literature.

An empirical application to U.S. inflation suggests the presence of statistically significant

time-variation in the mean over the period 1970-1922.

We end with a suggestion for further research. Our recommended tests require the

practitioner to specify values for the bandwidth and trimming parameters used in constructing

the test statistic. While we have made recommendations for the values of these to use in

practical applications, it would also be worth exploring if data-based choices for these tuning

parameters, such as those discussed for the bandwidth in the context of estimating the

long memory parameter in Henry (2001), have the potential to improve the finite sample

performance of the tests.
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Table 2: Empirical Size of R(δ†). DGP1-DGP5.

T = 128 T = 512

m = T ⌊0.5⌋ m = T ⌊0.65⌋ m = T ⌊0.8⌋ m = T ⌊0.5⌋ m = T ⌊0.65⌋ m = T ⌊0.8⌋

DGP1, δ† = 0

l = 2 0.054 0.057 0.056 l = 2 0.050 0.047 0.052
l = 4 0.055 0.059 0.056 l = 4 0.048 0.050 0.049
l = 6 0.054 0.058 0.055 l = 8 0.048 0.049 0.053

DGP2, δ† = 0

l = 2 0.083 0.159 0.314 l = 2 0.058 0.095 0.210
l = 4 0.094 0.176 0.336 l = 4 0.059 0.098 0.212
l = 6 0.098 0.195 0.360 l = 8 0.061 0.100 0.222

DGP3, δ† = 0

l = 4 0.051 0.054 0.056 l = 4 0.052 0.054 0.061

DGP4, δ† = 0.3

l = 4 0.053 0.055 0.055 l = 4 0.048 0.051 0.051

DGP5, δ† = −0.3

l = 4 0.055 0.056 0.053 l = 4 0.046 0.040 0.040

DGP4, δ† = 0

l = 4 0.362 0.486 0.592 l = 4 0.450 0.609 0.726

DGP5, δ† = 0

l = 4 0.002 0.000 0.000 l = 4 0.000 0.000 0.000
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Table 3: Empirical Size of R(δ̂). DGP1-DGP5.

δ̂ δ̂2 δ̂3
(no trimming) (trimming, l∗ = 2) (trimming, l∗ = 3)

Panel A: T = 128

DGP l \ m T ⌊0.5⌋ T ⌊0.65⌋ T ⌊0.8⌋ T ⌊0.5⌋ T ⌊0.65⌋ T ⌊0.8⌋ T ⌊0.5⌋ T ⌊0.65⌋ T ⌊0.8⌋

2 0.053 0.053 0.050 0.059 0.063 0.062 0.066 0.071 0.074
1 4 0.050 0.053 0.049 0.058 0.063 0.062 0.070 0.074 0.077

6 0.049 0.053 0.050 0.058 0.063 0.062 0.070 0.074 0.077

2 0.011 0.008 0.043 0.013 0.014 0.021 0.012 0.013 0.019
2 4 0.010 0.008 0.045 0.012 0.014 0.021 0.012 0.014 0.019

6 0.011 0.009 0.047 0.013 0.014 0.022 0.012 0.013 0.019

3 4 0.050 0.049 0.047 0.056 0.058 0.058 0.066 0.073 0.076
4 4 0.046 0.043 0.047 0.053 0.055 0.051 0.057 0.057 0.054
5 4 0.051 0.054 0.057 0.072 0.081 0.095 0.081 0.094 0.110

Panel B: T = 512

DGP l \ m T ⌊0.5⌋ T ⌊0.65⌋ T ⌊0.8⌋ T ⌊0.5⌋ T ⌊0.65⌋ T ⌊0.8⌋ T ⌊0.5⌋ T ⌊0.65⌋ T ⌊0.8⌋

2 0.041 0.047 0.044 0.044 0.043 0.042 0.050 0.050 0.052
1 4 0.044 0.046 0.043 0.041 0.043 0.041 0.049 0.052 0.053

6 0.036 0.048 0.044 0.039 0.042 0.039 0.047 0.051 0.053

2 0.016 0.014 0.062 0.016 0.016 0.031 0.015 0.014 0.032
2 4 0.014 0.015 0.062 0.015 0.015 0.031 0.014 0.014 0.030

6 0.013 0.014 0.065 0.017 0.015 0.032 0.016 0.014 0.029

3 4 0.050 0.047 0.047 0.048 0.044 0.041 0.052 0.053 0.050
4 4 0.044 0.046 0.041 0.046 0.047 0.046 0.049 0.053 0.054
5 4 0.042 0.048 0.050 0.046 0.051 0.055 0.049 0.060 0.067
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Table 4: Empirical Power of R(δ†). DGP1-DGP5. Single Level Break.

T = 128 T = 512

m = T ⌊0.5⌋ m = T ⌊0.65⌋ m = T ⌊0.8⌋ m = T ⌊0.5⌋ m = T ⌊0.65⌋ m = T ⌊0.8⌋

DGP1, δ† = 0

l = 2 0.515 0.568 0.593 l = 2 0.992 0.997 0.998
l = 4 0.509 0.573 0.595 l = 4 0.993 0.998 0.998
l = 6 0.486 0.571 0.597 l = 8 0.994 0.997 0.998

DGP2, δ† = 0

l = 4 0.236 0.380 0.574 l = 4 0.594 0.716 0.879

DGP3, δ† = 0

l = 4 0.309 0.343 0.357 l = 4 0.875 0.891 0.904

DGP4, δ† = 0.3

l = 4 0.128 0.135 0.128 l = 4 0.182 0.196 0.194

DGP5, δ† = −0.3

l = 4 1.000 1.000 1.000 l = 4 1.000 1.000 1.000

DGP4, δ† = 0.0

l = 4 0.494 0.616 0.711 l = 4 0.697 0.811 0.877

DGP5, δ† = 0.0

l = 4 0.850 0.785 0.534 l = 4 1.000 1.000 1.000
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Table 5: Empirical Power of R(δ̂). DGP1-DGP5. Single Level Break.

δ̂ δ̂2 δ̂3
(no trimming) (trimming, l∗ = 2) (trimming, l∗ = 3)

Panel A: T = 128

DGP l \ m T ⌊0.5⌋ T ⌊0.65⌋ T ⌊0.8⌋ T ⌊0.5⌋ T ⌊0.65⌋ T ⌊0.8⌋ T ⌊0.5⌋ T ⌊0.65⌋ T ⌊0.8⌋

2 0.276 0.287 0.157 0.297 0.296 0.256 0.273 0.264 0.230
1 4 0.258 0.286 0.154 0.297 0.298 0.257 0.254 0.255 0.222

6 0.234 0.284 0.148 0.292 0.300 0.254 0.247 0.254 0.222

2 4 0.026 0.026 0.083 0.033 0.037 0.050 0.030 0.033 0.041
3 4 0.179 0.196 0.116 0.205 0.206 0.180 0.189 0.192 0.176
4 4 0.078 0.068 0.064 0.092 0.094 0.083 0.088 0.086 0.079
5 4 0.745 0.830 0.266 0.835 0.846 0.721 0.720 0.706 0.586

Panel B: T = 512

DGP l \ m T ⌊0.5⌋ T ⌊0.65⌋ T ⌊0.8⌋ T ⌊0.5⌋ T ⌊0.65⌋ T ⌊0.8⌋ T ⌊0.5⌋ T ⌊0.65⌋ T ⌊0.8⌋

2 0.878 0.895 0.540 0.891 0.895 0.770 0.850 0.833 0.688
1 4 0.867 0.895 0.534 0.887 0.895 0.771 0.836 0.829 0.688

6 0.845 0.886 0.526 0.884 0.885 0.767 0.824 0.829 0.681

2 4 0.170 0.189 0.393 0.200 0.217 0.309 0.170 0.173 0.252
3 4 0.663 0.688 0.442 0.682 0.695 0.577 0.641 0.634 0.517
4 4 0.127 0.131 0.113 0.138 0.141 0.170 0.158 0.163 0.160
5 4 1.000 1.000 0.621 1.000 1.000 0.998 1.000 1.000 0.987
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Abstract

This supplementary appendix contains two sections. Section S.1 provides proofs of the

technical results stated in the main paper. Section S.2 provides the additional Monte

Carlo results referred to in Section 5.3 of the main paper.



S.1 Proofs

We now provide derivations of the key large sample results stated in the paper, with accom-

panying regularity conditions where needed. In what follows we use C as generic notation for

a finite constant.

Lemma S.1. (i) If µt = µ+ βDUt(τ
∗), for j = o(T ),

Iµµ (λj) = T
β2

4π3
j−2 (1− cos (2πjτ ∗)) +O(

j

T
)

(ii) If µt = µ+βh(t/T ), where h(s) is a Lipschitz continuous function on [0, 1], h(s) ̸= h(r)

for some s ̸= r, and β ̸= 0, then Iµµ (λj) ≤ Cλj
−1j−1 for all j in {1, ..., ⌊T/2⌋}.

(iii) For µt as in part (ii), and such that 1/T
∑

µ2
t − (1/T

∑
µt)

2 → κ for some κ > 0,

there is a frequency λj, j ∈ {1, ..., ι} with 1/ι + ι/T → 0 as T → ∞ such that

Iµµ(λj) > CT 1−ϵ for some C > 0.

(iv) For µt = µ+ βtφ−1/2, with φ ∈ (0, 1/2), β ̸= 0, then Iµµ(λ1) = Oe(T
2φ).

Proof. (i) Using standard properties of trigonometric functions at frequencies λj we have that

wµ(λj) =
1√
2πT

 T∑
t=1

µe−iλjt +
T∑

t=⌊τ∗T ⌋+1

βe−iλjt

 = − 1√
2πT

β

⌊τ∗T ⌋∑
t=1

e−iλjt



Iµµ (λj) =
1

2πT
β2


⌊τ∗T ⌋∑

t=1

cos (λjt) + i

⌊τ∗T ⌋∑
t=1

sin (λjt)

+

⌊τ∗T ⌋∑
t=1

cos (λjt)− i

⌊τ∗T ⌋∑
t=1

sin (λjt)


and

2πT

β2
Iµµ (λj) =

⌊τ∗T ⌋∑
t=1

cos (λjt)

2

+

⌊τ∗T ⌋∑
t=1

sin (λjt)

2

.

Next, using standard trigonometric identities we have that

r∑
t=1

cos (θt) =
sin
(
r + 1

2

)
θ − sin

(
1
2
θ
)

2 sin
(
1
2
θ
) ,

r∑
t=1

sin (θt) =
cos
(
1
2
θ
)
− cos

(
r + 1

2

)
θ

2 sin
(
1
2
θ
)

S1



see Robinson (1995b), page 1845, and the reference therein to Zygmund (1977). Consequently,

(
r∑

t=1

cos (θt)

)2

+

(
r∑

t=1

sin (θt)

)2

=

(
sin
(
r + 1

2

)
θ
)2

+
(
sin
(
1
2
θ
))2 − 2

(
sin
(
r + 1

2

)
θ
) (

sin
(
1
2
θ
))(

2 sin
(
1
2
θ
))2

+

(
cos
(
r + 1

2

)
θ
)2

+
(
cos
(
1
2
θ
))2 − 2

(
cos
(
r + 1

2

)
θ
) (

cos
(
1
2
θ
))(

2 sin
(
1
2
θ
))2

=
1 + 1− 2 cos

((
r + 1

2

)
θ − 1

2
θ
)(

2 sin
(
1
2
θ
))2 =

2− 2 cos (rθ)(
2 sin

(
1
2
θ
))2

using the trigonometric identities, (cos(ω))2 +(sin(ω))2 = 1 and cos(α−ω) = cos(α) cos(ω) +

sin(α) sin(ω). Therefore, for λj = θ, ⌊τ ∗T ⌋ = r,

Iµµ (λj) =
β2

2πT

1− cos (⌊τ ∗T ⌋λj)

2
(
sin
(
1
2
λj

))2
=

β2

2πT

1(
1
2
λj

)2
(
1
2
λj

)2
2
(
sin
(
1
2
λj

))2 (1− cos (⌊τ ∗T ⌋λj))

= T
β2

4π3j2

(
1
2
λj

)2(
sin
(
1
2
λj

))2 (1− cos (⌊τ ∗T ⌋λj)) .

Finally, a standard Taylor series expansion for sin(λ) in a neighbourhood of 0 gives

sin(
1

2
λj) =

1

2
λj +O

(
(λj)

3
)
=

1

2
λj +O

(
(
j

T
)3
)

and

cos (⌊τ ∗T ⌋λj) = cos (τ ∗Tλj) + (τ ∗Tλj − ⌊τ ∗T ⌋λj) sin (⌊τ ∗T ⌋|mvtλj) = cos (τ ∗Tλj) +O(
j

T 2
)

where ⌊τ ∗T ⌋ ≤ ⌊τ ∗T ⌋|mvt ≤ τ ∗T , and we used the bounds sin (⌊τ ∗T ⌋|mvtλj) = O(1),

(τ ∗T − ⌊τ ∗T ⌋) = O( 1
T
).

(ii) This bound result is only stated to be local in Lemma 1 of Qu (2011), but using the

same arguments and the fact that (π/λj + 1) < 3π/λj is sufficient to establish the bound in
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general.

(iii) From

1

T

∑
t

(
µt − (1/T

∑
t

µt)

)2

= 2
1

T
2π

T/2∑
j=1

Iµµ(λj)

when T is even, and

1

T
2π

ι∑
j=1

Iµµ(λj) =
1

T
2π

T/2∑
j=1

Iµµ(λj)−
1

T
2π

T/2∑
j=ι+1

Iµµ(λj)

then
1

T
2π

ι∑
j=1

Iµµ(λj) = 1/2κ+ o(1) +O(ι−1). (S.1)

Notice that this implies that I(λj) is at least diverging with rate T/(ι1+ϵ). To see this, suppose

that it is not true, and max Iµµ(λj) < CT/(ι1+ϵ) This would imply that 1
T
2π
∑ι

j=1 Iµµ(λj) =

o(1), which would be in contrast with (S.1) so there must be a Iµµ(λj) which is at least

diverging with order T/(ι1+ϵ). The conclusion follows on taking ι = ⌊T ϵ/2⌋.

(iv) For j = 1, we can rewrite the periodogram as

Iµµ(λ1) =
1

2π
T 2φ


(

1

T

T∑
t=1

(t/T )φ−1/2 cos(2πt/T )

)2

+

(
1

T

T∑
t=1

(t/T )φ−1/2 sin(2πt/T )

)2


=
1

2π
T 2φ

{(∫ 1

0

sφ−1/2 cos(2πs)ds

)2

+

(∫ 1

0

sφ−1/2 sin(2πs)ds

)2
}

+ o(T 2φ)

using integral approximation.

Note: the exact bound for the periodogram of an abrupt change in the mean has previously

been presented in Leschinski and Sibbertsen (2018), using a different method of proof.

Proof of Theorem 1.

(i) Let Wδ+1(r) denote a Type I fractional Brownian motion, as defined in Mandelbrot and
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Van Ness (1968) and Marinucci and Robinson (1999), and define

Ŵδ+1(r) := Wδ+1(r)− rWδ+1(1)

κ(δ)2 := Γ (1− 2δ) / [(1 + 2δ) Γ (1 + δ) Γ (1− δ)]

Qδ (j) :=

{(
2πj

∫ 1

0

sin (2πjr) Ŵδ+1 (r) dr

)2

+

(
2πj

∫ 1

0

cos (2πjr) Ŵδ+1 (r) dr

)2
}
.

We will prove the result that

R(δ)
d→ (2π)2δκ(δ)Qδ(1) (S.2)

We establish this limiting result under the regularity conditions stated in Assumption A1,

but we note that this includes the possibility that ξt is a linear process, or indeed linear and

Gaussian, and so the expression also follows when ξt is a Gaussian linear process. Thus, the

expression in (S.2) is equivalent to the limit given in Hurvich and Beltrao (1993).

We discuss the limits for the numerator and the denominator in turn. First, for the

numerator, we note that, under Assumption A1, the FCLT

1

T 1/2+δ

⌊rT ⌋∑
t=1

ξt ⇒ (2πfηη(0))
(1/2) κ(δ)Wδ+1(r)

holds, where fηη(λ) is the spectral density of ηt; see Wu and Shao (2006). Notice that, strictly

speaking, Wu and Shao (2006) do not include the case where δ = 0 in the statement of their

Theorem 2.1; however the result for δ = 0 follows from Theorem 3 coupled with assumption

(ii), both of Wu (2007).

Next, the convergence result

2πT−2δIξξ(λj) ⇒ 2πfηη(0)κ(δ)
2Qδ(j) (S.3)

follows from Lemma 1 of Hualde and Iacone (2017). Noting that Ixx(λj) = Iξξ(λj), under the
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null hypothesis that µt is constant, we readily obtain from (S.3) that

(λ1)
2δIxx(λ1) ⇒ (2π)2δfηη(0)Qδ(1)κ(δ)

2.

Turning to the denominator, and recalling that Ixx(λj) = Iξξ(λj) under the null hypothesis,

we then establish that

1

m− l + 1

m∑
j=l

(λj)
2δIξξ(λj)

p→ fηη(0) (S.4)

as l/m+m/T → 0. For the linear case, under Assumption A2 the convergence in (S.4) follows

using the bounds in Theorem 2 of Robinson (1995a) and a law of large number argument

as in the proof of Theorem 1 of Robinson (1995b), pages 1636=1638. For the nonlinear

case, we note that Assumption A.1 in Lemma A.1 and Lemma A.2 of Shao and Wu (2007a)

corresponds to part (ii) of our Assumption A2. The other assumption made for Lemma

A.2 in Shao and Wu (2007a) is that
∑

k∈Z |γη(k)| < ∞. Using γη(k) =
∑

j∈ZE(Pjη0Pjηk),∑
k∈Z |γη(k)| ≤

∑
k∈Z
∑

j∈Z∥Pjη0∥2∥Pjηk∥2 by the Chauchy-Schwarz inequality, as in Lemma

A.1 of Shao and Wu (2007a), then
∑

k∈Z |γη(k)| < ∞ is implied by Assumption A1. Thus,

both the assumptions for Lemma A.2 of Shao and Wu (2007a) are met. The bounds in

Lemma A.2 of Shao and Wu (2007a) can be used in the same way as those of Theorem 2 of

Robinson (1995a), to obtain (S.4).

(ii) The replacement of δ by δ̂ is accounted for by using a mean value theorem expansion.

For the numerator, to establish (λ1)
2δ̂Iξξ(λ1)− (λ1)

2δIξξ(λ1) = op(1) it is sufficient to use a

mean value expansion T 2δ̂ around T 2δ up to the n-th term, n > 2/ϵ. The denominator can

be treated in a similar way.

Proof of Theorem 2.

Denoting w∗
ξ(λ) as the complex conjugate of wξ(λ) and Iµξ(λ) = wµ(λ)w

∗
ξ(λ) as the cross

periodogram, we can write

Ixx(λ) = Iµµ(λ) + Iµξ(λ) + Iξµ(λ) + Iξξ(λ).
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From the assumption on the order of I(λ1), the properties of the periodogram, and the

Cauchy Schwarz inequality, we have that

Iµµ(λ1) = Oe(T
2ϕ), Iξξ(λ1) = Oe(T

2δ), Iµξ(λ1) = Op(T
(ϕ+δ))

and so

λ2δ
1 Ixx(λ1) = λ2δ

1 Iµµ(λ1) + op(T
2(ϕ−δ)) if ϕ > δ

λ2δ
1 Ixx(λ1) = λ2δ

1 Iξξ(λ1) + op(1) if ϕ < δ

Similarly, 1
m−l+1

∑m
j=l λ

2δIξξ(λj) = G+ op(1), and

1

m− l + 1

m∑
j=l

λ2δ
j Iµµ(λj) = Oe(

1

m
T 2(ϕ−δ)

m∑
j=l

j2(δ−ϕ)−1). (S.5)

The latter is O((m/T )2(δ−ϕ)m−1) = o(1) if δ > ϕ. Otherwise, the bound in (S.5) is

Oe(T
2(ϕ−δ) m−1 l2(δ−ϕ)). In both cases, bounds for 1

m−l+1

∑m
j=l λ

2δ
j Iµξ(λj) follow from the

Cauchy Schwarz inequality. The result follows combining these bounds. For example, in the

ϕ = 0.5, δ = 0 case,

Iµµ(λ1) = Oe(T ), Iξξ(λ1) = Oe(1), Iµξ(λ1) = Op(T
1
2 )

1

m− l + 1

m∑
j=l

Iµµ(λj) = O(
1

m
T

m∑
j=l

j−2) = O(
T

lm
)

1

m− l + 1

m∑
j=l

Iξξ(λj) = Op(1)

1

m− l + 1

m∑
j=l

Iµξ(λj) = Op((
T

lm
)
1
2 )
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and so Iµµ(λ1) = Oe(T ), and hence

if
T

lm
→ ∞,

1

m− l + 1

m∑
j=l

Ixx(λj) = Oe(
T

lm
)

if
T

lm
→ 0,

1

m− l + 1

m∑
j=l

Ixx(λj) = Oe(1).

from which the result in Corollary 1 follows.

S.2 Additional Monte Carlo Results - Comparisons

with Extant Tests

In the last part of our Monte Carlo exercise, we have run a comparative study of the finite

sample size and power properties of the R(δ) and R(δ̂) tests against a set of benchmark

tests from the extant literature. In doing so, for R(δ) and R(δ̂) we follow the recommended

settings for the tuning parameters given at the end of Section 5.2, setting m = ⌊T 0.55⌋.

The two most natural comparator tests are the W test of Qu (2011), discussed in Remark

3, and the Tn(δ̂) test of Giraitis et al. (2006). The latter is a modification of the V/S test

of Giraitis et al. (2001) to allow for long memory in xt. Like the tests we propose, both of

these tests are designed to detect general forms of non-constancy in µt and allow for long

memory in ξt. A further test we compare against is the SW test of Iacone et al. (2014),

which is based on fixed-b asymptotics. The SW test, in contrast to our proposed tests and

the tests of Qu (2011) and Giraitis et al. (2006), is specifically designed to detect a single

deterministic level break. In a large Monte Carlo exercise, Wenger et al. (2019) find that the

SW test generally outperforms other available tests for a level shift in long memory series. It

therefore provides a useful benchmark for power in the single level shift case.

In what follows, we will refer to these three benchmark tests, with an obvious notation,

as W , V S, and SW . To distinguish between cases where δ is estimated and where it is not,

when evaluated at a user-chosen value of the long memory parameter, δ†, we denote these
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tests as W (δ†), V S(δ†) and SW (δ†), and we denote the corresponding tests based on an

estimate of δ as W (δ̂), V S(δ̂) and SW (δ̂). All of these tests require choices to be made of

tuning parameters: in all cases, we follow the recommended settings given by the authors

of the tests. In particular: for the W test the trimming parameter ε is set to 0.05 and the

highest frequency m, is set to ⌊T 0.7⌋, respectively; for the V S test the bandwidth parameter

is set as q = ⌊T 1/3⌋; finally for the SW test the scale parameter for the bandwidth is set as

b = 0.1.

All of the tests under consideration depend on δ: the SW and the V S for the selection of

the critical value (since the limiting null distribution depends on δ), and, in common with

our proposed tests, the V S and W tests for the computation of the test statistic. With the

exception of the W test, all of the tests can validly be computed at either a user specified

value δ† or at an estimate of δ. In the case of the W statistic of Qu (2011), the use of

the (untrimmed) LW estimate is crucial to the derivation of its limiting null distribution.

Where an estimate of δ is used, the SW and V S tests, like our R(δ̂) test, only require a

consistent (subject to minimum consistency rates) estimate of δ. In all of the cases where δ is

estimated we use the LW estimate of the form in (20) with m∗ = ⌊T 0.65⌋, except that for the

W test, for which, following the recommendation in Qu (2011), m∗ = ⌊T 0.7⌋ is used. As in

the experiments reported in Sections 5.1 and 5.2, we bound the support for the estimation of

δ to [−0.49, 0.49], except that for the V S test where we follow the authors’ recommendation

of [−0.45, 0.45].

In Table S.1, we first report the finite sample size properties of the tests against DGP1-

DGP5 from Section 5.1. The results for the W test under known δ are where we replace the

LW estimate δ̂ in the W statistic by δ†, noting that this test will not have the same limiting

null distribution as for the case where it is evaluated at the LW estimate.

From the results in Table S.1 we see that the SW test has good size properties, both for

the known and estimated δ cases. The only exceptions occurs, as expected, in cases where

the user specifies a value for δ† which is different from the true value of δ. Even in such cases,
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however, the size distortion is the smallest of the three tests, suggesting that the distorting

effect due to an imprecise estimate of δ is lowest for this test. This is confirmed by the

performances of the V S and W tests: the V S test is subject to some potentially large size

distortion even in the larger sample size, when δ is assumed known, at least when the spectral

density of ηt is subject to some curvature, as in the AR(1) case or when δ = 0.3. The size

performance of the V S test is improved if the LW estimate is used, but is still significantly

over-sized for DGP4 where δ = 0.3. Finally, the results verify the invalidity of the W when

based on an assumed value of δ, even where the correct value of δ is assumed.

Next we look at the finite sample power of these tests against a variety of time-varying

µt DGPs. We exclude W (δ†) from this analysis given its lack of size control. To do so, we

simulate data according to (1)-(2) with ηt ∼ IIDN(0, 1), for both δ = 0 and δ = 0.3. For

the time-varying mean component, µt, we considered a range of models, as follows. For the

case where δ = 0 we consider:

� DGP-P0. µt = 0, t = 1, ..., T ;

� DGP-P1. µt = βDUt(τ
∗), with β = 0.5 and τ ∗ = 0.5;

� DGP-P2. µt = βDUt(τ
∗), with β = 0.25 and τ ∗ = 0.5;

� DGP-P3. µt = βDUt(τ
∗), with β = 0.5 and τ ∗ = 0.75;

� DGP-P4. µt = β × ϕ(at) for at = t/T − 1/2 ∈ [−1/2, 1/2], where ϕ(a) is the pdf of a

standard normal, with β = 3;

� DGP-P5. µt = −β1(at)+β2×Φ(at) for at ∈ [−5, 5], where Φ(a) is the cdf of a standard

normal, with β1 = 1 and β2 = 0.25;

� DGP-P6. µt = βΦ(at) for at ∈ [−4, 0], with β = 1

� DGP-P7. µt =
1√
5

∑t
s=1 βsϵs where βt IID B(1, 6.10/T ), ϵt ∼ IIDN(0, 1), βt and ϵt

mutually independent, and where B(1, p) denotes a Bernoulli random variable that

takes the value 1 with probability p, and 0 with probability 1− p.
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For δ = 0.3 the same DGPs were used but the parameters β, β1 and β2 were each multiplied

by three, reflective of the fact that it is more difficult to detect non-constancy in µt for δ = 0.3

vis-à-vis δ = 0. We label these DGPs, DGP-P0*,...,DGP-P7* in the tables.

Plots of six of the non-constant specifications of µt, DGP-P1-DGP-P6, are graphed

in Figure S.1 (where the horizontal time axis is scaled to [0,1]), with the corresponding

periodograms of the µt component, for T = 128, graphed in Figure S.2.

Figure S.1: Plots of µt for DGP-P1-DGP-P6.

DGP-P0 sets µt to be a zero constant, and provides a size benchmark when comparing

the powers of the various tests. DGP-P1-DGP-P3 are single abrupt (deterministic) level shift

models, with varying break location and break magnitude parameters. DGP-P4-DGP-P6 are

models where µt displays a smoothly varying trend, of varying shape, over the sample. In

DGP-P7, µt follows a martingale process, specified such that when δ = 0 the signal-to-noise

ratio associated with µt coincides with that of model 1 of Qu (2011, p.430). We note that the

SW test is specifically designed to detect single abrupt level shifts and so would be expected

to be most competitive for DGP-P1-DGP-P3.
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Figure S.2: Plots of the periodograms of µt, λ1,...,λ⌊T 1/2⌋, T = 128, DGP-P1-DGP-P6

Results relating to the case where the practitioner correctly sets δ† = δ are reported in

Table S.2, while Table S.3 reports the corresponding results for the case where δ is estimated.

In the case of the R(δ̂) test we report results based on the LW estimate with either no

trimming (l∗ = 1) denoted R(δ̂), trimming with l∗ = 2 denoted R(δ̂2), and trimming with

l∗ = 3 denoted R(δ̂3). A summary of the findings from these results is provided in section 5.3

of the main text.
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Table S.1: Empirical Sizes of SW , W and V S Tests.

Panel A: Tests evaluated at δ†

T = 128 T = 512
SW (δ†) W (δ†) V S(δ†) SW (δ†) W (δ†) V S(δ†)

DGP1, δ† = 0 0.032 0.339 0.031 0.045 0.385 0.042
DGP2, δ† = 0 0.051 0.826 0.098 0.046 0.857 0.086
DGP3, δ† = 0 0.032 0.372 0.026 0.040 0.399 0.042
DGP4, δ† = 0.3 0.041 0.348 0.054 0.048 0.391 0.049
DGP5, δ† = −0.3 0.030 0.352 0.088 0.044 0.401 0.105
DGP4, δ† = 0 0.193 0.916 0.367 0.201 0.999 0.642
DGP5, δ† = 0 0.001 0.926 0.000 0.001 1.000 0.000

Panel B: Tests based on (untrimmed) LW estimate δ̂

T = 128 T = 512

SW (δ̂) W (δ̂) V S(δ̂) SW (δ̂) W (δ̂) V S(δ̂)

DGP1 0.032 0.009 0.013 0.043 0.024 0.022
DGP2 0.011 0.020 0.013 0.023 0.108 0.006
DGP3 0.033 0.009 0.014 0.043 0.028 0.020
DGP4 0.039 0.010 0.138 0.046 0.026 0.053
DGP5 0.021 0.017 0.028 0.038 0.026 0.048
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Table S.2: Empirical Power of R(δ), SW (δ) and V S(δ) Tests.

Panel A: δ = 0

T = 128 T = 512
R(δ) SW (δ) V S(δ) R(δ) SW (δ) V S(δ)

DGP-P0 0.057 0.032 0.031 0.050 0.045 0.042
DGP-P1 0.537 0.495 0.485 0.996 0.988 0.994
DGP-P2 0.170 0.137 0.128 0.584 0.519 0.575
DGP-P3 0.277 0.365 0.251 0.880 0.947 0.915
DGP-P4 0.071 0.037 0.043 0.119 0.053 0.101
DGP-P5 0.283 0.160 0.243 0.871 0.512 0.882
DGP-P6 0.235 0.170 0.114 0.764 0.621 0.526
DGP-P7 0.555 0.499 0.550 0.834 0.672 0.852

Panel B: δ = 0.3

T = 128 T = 512
R(δ) SW (δ) V S(δ) R(δ) SW (δ) V S(δ)

DGP-P0 0.055 0.041 0.054 0.047 0.048 0.049
DGP-P1* 0.632 0.607 0.625 0.923 0.846 0.900
DGP-P2* 0.218 0.184 0.211 0.371 0.307 0.362
DGP-P3* 0.314 0.451 0.298 0.643 0.703 0.582
DGP-P4* 0.078 0.003 0.078 0.087 0.007 0.086
DGP-P5* 0.364 0.185 0.376 0.666 0.263 0.638
DGP-P6* 0.304 0.204 0.164 0.532 0.326 0.290
DPG-P7* 0.540 0.447 0.511 0.732 0.488 0.684
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Table S.3: Empirical Powers of R(δ̂), R(δ̂2), R(δ̂3), SW (δ̂), W (δ̂) and V S(δ̂) Tests.

Panel A: δ = 0
T=128 T=512

R(δ̂) R(δ̂2) R(δ̂3) SW (δ̂) W (δ̂) V S(δ̂) R(δ̂) R(δ̂2) R(δ̂3) SW (δ̂) W (δ̂) V S(δ̂)

DGP-P0 0.051 0.059 0.067 0.032 0.009 0.013 0.051 0.043 0.053 0.043 0.024 0.022
DGP-P1 0.276 0.298 0.274 0.267 0.042 0.110 0.877 0.900 0.844 0.925 0.530 0.730
DGP-P2 0.115 0.124 0.129 0.089 0.015 0.029 0.391 0.401 0.361 0.399 0.126 0.228
DGP-P3 0.130 0.123 0.167 0.204 0.028 0.041 0.475 0.429 0.562 0.834 0.373 0.293
DGP-P4 0.062 0.070 0.078 0.034 0.008 0.015 0.105 0.101 0.106 0.047 0.033 0.043
DGP-P5 0.156 0.164 0.181 0.083 0.026 0.009 0.596 0.595 0.632 0.324 0.314 0.420
DGP-P6 0.142 0.152 0.162 0.110 0.014 0.024 0.543 0.546 0.529 0.477 0.131 0.153
DGP-P7 0.232 0.234 0.260 0.273 0.087 0.267 0.582 0.564 0.614 0.472 0.585 0.519

Panel B: δ = 0.3
T=128 T=512

R(δ̂) R(δ̂2) R(δ̂3) SW (δ̂) W (δ̂) V S(δ̂) R(δ̂) R(δ̂2) R(δ̂3) SW (δ̂) W (δ̂) V S(δ̂)

DGP-P0 0.047 0.055 0.055 0.039 0.010 0.138 0.049 0.046 0.053 0.046 0.026 0.053
DGP-P1* 0.271 0.293 0.244 0.405 0.193 0.825 0.538 0.582 0.511 0.696 0.324 0.911
DGP-P2* 0.114 0.134 0.126 0.118 0.035 0.383 0.224 0.251 0.225 0.230 0.083 0.366
DGP-P3* 0.092 0.087 0.136 0.276 0.134 0.659 0.204 0.202 0.303 0.528 0.229 0.683
DGP-P4* 0.059 0.068 0.070 0.036 0.012 0.176 0.077 0.080 0.080 0.054 0.034 0.091
DGP-P5* 0.155 0.171 0.192 0.105 0.090 0.611 0.344 0.370 0.405 0.169 0.209 0.649
DGP-P6* 0.152 0.178 0.179 0.129 0.035 0.373 0.325 0.357 0.344 0.233 0.081 0.316
DGP-P7* 0.290 0.178 0.174 0.305 0.503 0.764 0.463 0.411 0.423 0.348 0.607 0.764

Note: R(δ̂), R(δ̂2), and R(δ̂3) denote the R(·) test evaluated using the LW estimate with no trimming, trimming
with l∗ = 2, and trimming with l∗ = 3, respectively.
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