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Abstract

The rise of multi-chiplet integration challenges existing simula-
tors like gem5 [45] and GPGPU-Sim [37] for efficiently simulating
heterogeneous multiple-chiplet systems due to incapability to mod-
ularly integrate heterogenous chiplets, high synchronization over-
heads in parallel simulation, and high inter-chiplet communication
modeling overhead. To address these limitations, this paper intro-
duces LEGOSim, a unified parallel simulation framework capable
of flexibly integrating various open-source and in-house designed
chiplet simulators as processes in parallel simulation, referred to
as "simlets" with minimal modifications needed. It introduces a
three-stage simulation process that decouples chiplet simulation
from inter-chiplet communication modeling to mitigate the com-
munication modeling overhead. The framework also integrates
Network-on-Interposer (NolI) simulator for modeling inter-chiplet
communication, enabling accurate assessment of various intercon-
nection architectures’ performance. Furthermore, it employs an on-
demand synchronization protocol, ensuring synchronization only
occurs when necessary, thus reducing overhead while maintaining
correctness. Evaluated with diverse benchmarks, LEGOSim shows
high accuracy in simulating multi-chiplet architectures like SIMBA
[55] and a CiM-based accelerator [13], with average errors of 3.79%
and 3.94%, respectively. It significantly reduces synchronization
overhead by up to 99.9% compared to per-cycle synchronization
and by 66.1% compared to time quantum synchronization, with-
out synchronization errors. Five case studies show that LEGOSim
also provides precise system performance metrics and stall cause
reporting, simplifying tasks such as performance analysis and opti-
mization, and can be used for design space exploration of various
multi-chiplet systems.

Keywords

Simulator, architectural simulation, multi-chiplet system simula-
tion.

1 Introduction

As semiconductor technology approaches its physical limits, multi-
chiplet integration has become an essential design paradigm for
the post-Moore era. Compared to traditional monolithic chip ar-
chitectures, multi-chiplet systems package multiple heterogeneous
chiplets (such as CPUs, GPUs, NPUs, CiMs, etc.) into a single sys-
tem, which not only enhances computational performance but also
optimizes power consumption, reduces costs, and improves chip
yield. However, these highly integrated architectures also bring
unprecedented challenges in design space exploration, especially
in terms of the system-level simulation and evaluation.
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The challenges of architectural level multi-chiplet system simu-
lation include:

1. Lack of modular integration flexibility: Numerous simula-
tors have been developed to simulate individual components/chiplets
such as CPUs, GPUs, and Nols [2]- [66], as shown in Table 1. While
these simulators are highly detailed and accurate for their specific
targets, they lack the flexibility to be integrated into multi-chiplet
systems as they are not designed for modular integration.

2. Synchronization inefficiency: To overcome the slow simula-
tion speed problem of sequential simulation [22], parallel simulation
with per-cycle synchronization [9] and time quantum synchroniza-
tion [9] were proposed. However, per-cycle synchronization incurs
huge synchronization overhead, while time quantum improves
speed by relaxing the synchronization to be performed for each
time quantum and but degrades accuracy.

3. Overhead in modeling inter-chiplet communication:
Inter-chiplet communication modeling faces a trade-off between
accuracy and performance. For instance, gem5 incurs substantial
communication modeling overhead as the communication event
handling is performed sequentially. On the other hand, simplified
approaches compromise accuracy. For instance, Sniper uses queuing
theory based analytical model to replace detailed network modeling,
and trace based Nol-only simulation [11] ignores data dependency,
both of which lead to high errors when the system scale increases.

To address these challenges, we propose LEGOSim, a unified
parallel simulation framework for heterogeneous multi-chiplet sys-
tems, which is released in [6]. In LEGOSim, (1) the seamless in-
tegration of various chiplet simulators as modular simulator pro-
cesses (referred to as simlets) such as gem5, sniper, GPGPU-Sim,
etc. is enabled to flexibly model various multi-chiplet systems by
parallel simulation for the design space exploration purpose, (2)
an on-demand synchronization scheme is proposed to minimize
synchronization overhead in parallel simulation while keeping ac-
curacy, and (3) a simlet simulation and inter-chiplet communication
modeling decoupled simulation strategy is proposed to reduce inter-
chiplet communication modeling overhead.

The accuracy of LEGOSim has been validated with two pub-
lished works, SIMBA [55] and a compute-in-memory (CiM) based
accelerator architecture [13]. The simulation errors are below 10%,
confirming its fidelity.

LEGOSim is showcased by five case studies to help explore the
design space in multi-chiplet system design flows, including identi-
fying performance bottlenecks, and design space exploration for
inter-chiplet interconnection network and buffer size, inter-chiplet
network topology selection, memory interfaces, and inter-chiplet in-
terconnection protocols, demonstrating the versatility of LEGOSim
in multi-chiplet system design flows.

The contributions of this paper are as follows:
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Table 1: Summation of existing simulators. (Note: AI Acc stands for AI accelerator and CiM stands for compute-in-memory.)

Simulator Target Simulator Target  Simulator Target  Simulator Target

SimBricks [41] CPU gemb [45] GPU  ROCm [34] GPU __ SimpleSSD [30] _ SSD

Sniper [25] CPU MacSim [35] CPU Arbitor [27] Al Acc  SSDExplorer [66]  SSD

ZSim [53] CPU Manifold [60] GPU NeuroSim [17] Al Acc  BookSim [29] NoC

GPGPU-Sim [37] CPU/GPU  MGPU-sim [57] GPU Scale-Sim [52] Al Acc  Garnet [7] NoC

Graphite [46] CPU/GPU  Nsight Compute [40] GPU MNSIM 2.0 [65] CiM Noxim [16] NoC

Multi2Sim [58] CPU/GPU  Nsight Systems [40] GPU DRAMsim3 [42] DRAM  Ns-3 [15] NoC

Accel-Sim [32] GPU PPT-GPU [10] GPU Ramulator [36] DRAM  OMNeT++ [59] NoC

Beignet [26] GPU OpenVINO Toolkit [2] GPU MQSim-E [38] SSD LEGOSim CPU+GPU+NPU+...

e We propose an on-demand synchronization scheme
that triggers synchronization only during inter-chiplet com-
munication, reducing overhead by 99.9% compared to per-
cycle synchronization while preserving accuracy.

e We propose a three-stage decoupled simulation strat-
egy that decouples chiplet simulation from inter-chiplet
communication modeling, improving efficiency and accu-
racy.

o We propose a Unified Integration Interface (UII) to en-
able seamless integration of diverse simulators (e.g., gems5,
Sniper, GPGPU-Sim) into LEGOSim with parallel simula-
tion and minimal code changes.

o We implemented and open-sourced LEGOSim [6], in-
tegrating multiple simlets, and invite researchers to con-
tribute to design space exploration for multi-chiplet systems
with LEGOSim.

2 Background & Motivation

2.1 Limitations of Existing Simulators in
Modular Integration

In recent years, multi-chiplet architectures have been widely adopted
in high-performance computing (HPC) and Al chips due to their
superior scalability and energy efficiency. Notable examples in-
clude AMD’s Zen 5 [8] with modular CCD/IOD design, supporting
32-64 cores and delivering over 2 TFLOPS of computing power.
However, the design space exploration for such systems remains
highly challenging due to the vast configuration space and complex
interdependencies across interconnects, memory hierarchies, and
communication protocols. For instance, Intel’s Ponte Vecchio [28]
integrates 47 chiplets and over 100 billion transistors, with a design
cycle of a few years [4].

The limitations of existing simulators—especially their inability
to support modular integration and high synchronization over-
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Figure 1: Comparison of different synchronization mecha-
nisms. In Figure (c), x; and y; are the times at which inter-

chiplet communication requests are initiated.

head— exacerbates low efficiency in design space exploration. Nu-
merous simulators have been developed to simulate individual
components/chiplets such as CPUs, GPUs, and Nols [2]- [66], as
tabulated in Table 1, which unfortunately lack the flexibility to be
integrated to simulate heterogenous multi-chiplet systems. Modu-
lar simulators aim to integrate various components into a unified
framework. For example, SimBricks [41] can integrate multiple
simulators, but its complex integration mechanism results in low
simulation speed, and it cannot model inter-chiplet transmission.
ZSim [53] can efficiently simulate large-scale systems, but it has ac-
curacy issues in simulating multi-chiplet interconnection networks.
In addition, gem5-X [49] and its extended series (e.g., gem5-GPU
[48], gem5-AcceSys [44], gem5-SALAM [51], etc.) also attempt to
provide integration of CPUs, GPUs, memory models, and accel-
erators. However, these integrations require deep internal modifi-
cation of the simulators, and they are fixed architectures, instead
of modular integration of many other system architectures. SST
(Structural Simulation Toolkit [50]) is another modular framework
that supports integration across different simulation models and al-
lows component plug-ins. However, SST cannot model inter-chiplet
communication network and has significant simulation overhead
and complexity, and also needs significant code modification to
existing simulators.

2.2 Limitations of Existing Simulator
Synchronization Schemes

Synchronization overhead in parallel simulation remains a bot-
tleneck to simulate a large-scale system with dozens of chiplets
or a wafer scale computing system. Traditional synchronization
methods, including sequential simulation [22], per-cycle synchro-
nization [9], and time quantum synchronization [9] have following
limitations.

1) Sequential simulation. In sequential simulation (e.g., gem5
[45]), the simulation of each simlet (i.e., the simulation module of
an individual chiplet) and Network-on-Interposer (Nol) simulation
is performed sequentially, resulting in low utilization of computing
resources. Moreover, as the system size scales up, the simulation
time grows exponentially. Figure 2a further illustrates the execution
of sequential simulation, where the execution of simlets and Nol is
strictly sequential with no overlap, significantly limiting the simu-
lation efficiency. For example, with gem5 simulating one second of
a many-core system takes 1 and 10 weeks [18], making sequential
simulation impractical for large scale multi-chiplet systems.

2) Per-cycle synchronization. Parallel simulation improves ef-
ficiency compared to sequential simulation. Per-cycle synchronized
parallel simulation (e.g., parti-gem5 [18]) allows the simulation of
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(a) sequential simulation
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(b) per-cycle simulation

Figure 2: Simulation flow of sequential simulation and per-cycle synchronized parallel simulation.

multiple simlets to be executed in parallel and can overlap with the
simulation of Nol, as shown in Figure 1a. However, synchronization
is required in each simulation cycle, as shown in Figure 2b, leading
to significant synchronization overhead. Per-cycle synchronization
typically relies on shared memory, pipe communication, or file
systems in host machines which not only increases the synchro-
nization overhead but also causes serious performance bottlenecks,
especially when simulating large-scale systems. As shown in Fig-
ure 3, the synchronization overhead increases drastically with the
number of cores, making per-cycle synchronization infeasible for
large scale systems.

3) Time quantum synchronization. To mitigate the synchro-
nization overread in PC, Time Quantum (TQ), using a fixed time
window (such as in Zsim [53]), was proposed to reduce the number
of synchronizations, as shown in Figure 1b, but the size of the time
window (x) needs to be manually adjusted. A large time window
masks short-period cross-chiplet events (such as inter-chiplet data
transmission or synchronization for the benchmark/application
threads), leading to timing errors and low accuracy; on the other
hand, a small time window degrades to near per-cycle synchroniza-
tion, incurring huge simulation time.

As shown in Figure 3, we evaluate the above three synchroniza-
tion mechanisms. The experiment is conducted with three different
multi-/many-core configurations: 8 cores, 16 cores, and 32 cores,

8 cores 16 cores 32 cores
100 X
i X
75 % i i X 4
i X i —_— X
50 X X i X 5
25 X | RS

o

Error Rate (%)

B Simlet Time Sync Time mmm Nol Time

X Error Rate

Figure 3: Comparison of overheads of different synchroniza-
tion methods. Error is computed with respect to the sequen-
tial simulation.

using gemb5 [45] for sequential simulation and parti-gem5 [18] for
parallel simulation, modified to support both per-cycle synchro-
nization and TQ-x modes (where TQ-x refers to the time quantum
synchronization, i.e., synchronization per x cycles). As the number
of cores increases, sequential simulation becomes highly inefficient
and cannot scale to large systems. For the 16-core and 32-core
configurations, the synchronization overhead of per-cycle synchro-
nization increases rapidly. In particular, the synchronization time
occupies a large percentage (85% in the 32-core case) of the total
simulation time, significantly reducing overall simulation efficiency.
In contrast, TQ synchronization improves efficiency by increasing
the time window and reducing the frequency of synchronizations,
but comes at the cost of increased synchronization errors. For exam-
ple, with TQ—103 on the 32-core configuration, the synchronization
overhead is reduced by 99.9% compared to per-cycle synchroniza-
tion, but the error reaches 56%.

To address the above challenges, we propose on-demand syn-
chronization. A key observation in multi-chiplet system design is
that, inter-chiplet communication should be minimized by improv-
ing locality, as inter-chiplet communication latency is much higher
than on-chip (intra-chiplet) interconnections and inter-chiplet com-
munication bandwidth is much lower than on-chip (intra-chiplet)
interconnections [61]. Inspired by this observation, on-demand
synchronization performs synchronization only when communica-
tion occurs between chiplets, avoiding frequent synchronizations.
This allows simlets to run independently without unnecessary in-
teraction and stalls until inter-chiplet communications of other
simlets occur, significantly reducing synchronization overhead, as
shown in Figure 1c. This mechanism enables the system to maintain
high simulation accuracy while substantially improving simulation
efficiency.

Furthermore, inter-chiplet communication modeling poses a
trade-off between accuracy and efficiency. Oversimplified commu-
nication models fail to model system-level performance accurately,
while detailed modeling results in excessive simulation overhead,
increasing simulation time to impractical levels for large-scale multi-
chiplet systems. For instance, gem5 [45] incurs substantial commu-
nication overhead as all components (sim-objects) must commu-
nicate via port connections. Each communication is structured as
a pair of request and response events, managed by a centralized
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Figure 4: Overview of LEGOSim architecture and its compo-
nents.

event queue and processed sequentially. As a result, simulation
time escalates to days or weeks and in many cases the simulation
crashes due to out of memory for large scale systems which hin-
ders agile design space exploration [41]. In contrast, Sniper [25]
reduces communication overhead by using queueing model based
analytical modeling to replace detailed network transmission simu-
lation, which unfortunately leads to degraded simulation accuracy
as congestion cannot be faithfully modeled with correct timing.
Similarly, performing the NoI (Network-on-Interposer) only simu-
lation with traffic traces leads to low accuracy as data dependency
is not considered [11]. To address this challenge, we propose a
three-stage simulation mode, by decoupling NoI modeling from
chiplet simulation, allowing Nol simulation to be performed
separately after functional simulation, and integrating the inter-
chiplet communication delay in the final stage with correct timing
to ensure simulation accuracy. This method significantly reduces
inter-chiplet communication modeling while maintaining accuracy
and simulation efficiency.

3 LEGOSim Architecture and Design Principles

The design principles of LEGOSim are two key mechanisms. One is
on-demand synchronization to improve simulation efficiency, which
triggers synchronization only upon inter-chiplet communications,
thereby significantly reducing synchronization overhead. The other
is decoupling inter-chiplet communication from chiplet simulation,
which optimizes performance and fidelity.

3.1 Overview of LEGOSim

LEGOSim supports parallel simulation and breaks down the simula-
tion of a multi-chiplet system into the following three components,
as shown in Figure 4:

1)Heterogeneous Chiplet Simulation Units (Simlets): Dif-
ferent simlets (CPUs, GPUs, NPUs, CiMs, etc.) are independent
simulation processes in parallel simulation, each of which can be
existing open-source simulators (e.g., gem5 [45] or Sniper [25]
for CPU chiplets, GPGPU-Sim [37] for GPU chiplets, MNSIM [65]
for compute-in-memory chiplets, etc.). Simlets interact with each
other through a Unified Integration Interface (UII), which will be
described in Section 4.

2) Network-on-Interposer (Nol) Simulator: Used for mod-
eling the interconnection topologies of inter-chiplet network, to
accurately simulate inter-chiplet communication latency.

Table 2: Comparison of synchronization mechanisms

Sync Method Per-Cycle  Time-Quantum z‘gﬁgﬁﬁ;n d)
Frequency of Sync | Every cycle Every n cycles ((:)ori};nounnil;;r(;rclhlplet
Accuracy High Medium High
Overhead Very High Medium Very Low
Scalability Poor Moderate Good
Not Precise but ~ Trade-off between  Syncs only

otes costly speed and fidelity ~ when necessary

3) Global Manager (GM): Responsible for coordinating inter-
chiplet data synchronization, scheduling Nol simulation, and ex-
ecuting synchronization strategies. The GM employs on-demand
synchronization to minimize synchronization overhead while en-
suring simulation accuracy.

Simlets perform their respective chiplet simulation in parallel,
communicate and synchronize with the GM through the UIL while
the GM coordinates these simlets’ synchronization and data trans-
fers, ensuring the accuracy of the simulation. The Nol simulator sim-
ulates the communication behavior between chiplets and provides
the GM with communication delay of inter-chiplet data transfer,
thus enabling the GM to make correct synchronization decisions.

3.2 Decoupling Inter-chiplet Communication
Modelling from Chiplet Simulation

In traditional simulation, Nol simulation is interwoven with func-
tional simulation. To improve the simulation efficiency, LEGOSim
decouples Nol modeling, separating it from functional simulation,
and integrates inter-chiplet communication delay in the final stage
to ensure simulation timing accuracy. Figure 5 shows the simulation
workflow of LEGOSim, including the following three stages.

1) Stage 1: LEGOSim simulates the functional model of each
chiplet independently, while collecting inter-chiplet communica-
tion traffic traces. Each simlet executes functional simulation in-
dependently, advancing its local clock tick, ensuring that the func-
tional behavior of each chiplet is accurately modeled. Meanwhile,
all inter-chiplet communication events are recorded, including the
time of data packet injection into the inter-chiplet network as traf-
fic traces. They are crucial for the subsequent stage because they
will be used to analyze inter-chiplet communication delays. Inter-
chiplet communication traffic traces include timestamps of packet
injection, data packet size, source and destination chiplets, etc.
Since this stage does not perform any form of inter-simlet synchro-
nization, each simlet performs its simulation without considering
inter-chiplet communication delays or network congestion which
incurs no stalls. This decoupled design maximizes parallel simula-
tion efficiency and avoids additional synchronization overhead.

2) Stage 2: The inter-chiplet communication traffic traces col-
lected in the first stage are input into the Nol simulator for inter-
chiplet network interconnection modeling. In this stage, the Nol
simulator runs independently, modeling inter-chiplet communica-
tions, generating accurate delay results for each traffic flow. As a
comparison, conventional parallel simulation requires that each
simlet and Nol should be strictly synchronized and advance cycle by
cycle, and thus leads to huge synchronization and communication
overhead.
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Figure 5: Workflow of the three-stage decoupled simulation of LEGOSim.

3) Stage 3: The system integrates the execution time of simlets
and the inter-chiplet communication latency from the Nol simula-
tion in the second stage into the system-level simulation. The GM
uses these delay values to adjust the clock cycles of each simlet, en-
suring that the timing of inter-chiplet communication is accurately
modeled and the entire system simulation models the actual behav-
ior of the multi-chiplet system. Simlets re-execute their functional
and timing models, now incorporating inter-chiplet communication
delays. The GM coordinates the synchronization of all simlets, en-
suring that shared resource access and inter-chiplet communication
delays are correctly aligned. By integrating inter-chiplet commu-
nication delays in the final stage, LEGOSim achieves high-fidelity
simulation of the entire multi-chiplet system, accurately capturing
the functional behavior and timing characteristics of inter-chiplet
communications.

LEGOSim’s decoupling simulation strategy effectively addresses
the challenges of simulating complex multi-chiplet systems. By
decoupling the functional simulation of individual chiplets from de-
tailed modeling of inter-chiplet communication, LEGOSim achieves
both accuracy and efficiency.

3.3 On-Demand Synchronization Mechanism

Traditional synchronization methods in parallel simulation often
incur high computational overhead as shown in Table 2. Thus,
LEGOSim adopts an on-demand synchronization, allowing simlets
to run independently and synchronize only when inter-chiplet
communication occurs.

As shown in Figure 6, inter-simlet synchronization is coordinated
by the GM which is a controller thread/process. The workflow
follows these steps:

® Read/Write or Synchronization Request (Step 1): A simlet
generates a read/write request as well as a clock synchronization
request and sends it to the GM, which includes timing information,
i.e. the simlet’s local clock cycle, and this simlet stops advancing
its clock ticking and waits for the response from the GM.

@ Global Manager Handling Requests (Step 2): For read/write
requests, the GM pairs the data requester and responder between

simlets, following a producer-consumer model for ordered inter-
chiplet communication. For synchronization requests, the GM cal-
culates the next target clock cycle to be advanced for the simlet,
coordinating with other active simlets to maintain consistent tim-
ing across the system. In simulation stage 1, where inter-simlet
traffic delays are not known yet, the GM sets the clock cycle to
be advanced for the simlet to be the maximum cycle of the two
communicating simlets. In simulation stage 3, in contrast, the GM
takes into accounts Nol transmission latency from simulation stage
2. Here, the clock cycle to be advanced for the data-sending simlet
remains the maximum clock cycle of the two simlets, while the
data-receiving simlet’s clock cycle to be advanced is adjusted by
adding the corresponding Nol delay.

® Request Response (Step 3): After processing the request,
the GM returns a response to the simlet. For read/write requests,
this response indicates the readiness of the data transfer, allowing
the simlet to proceed with the requested inter-chiplet read or write
operation. For synchronization requests, this response specifies the
clock cycle to be advanced.

@ Data Transfer Execution/Clock Synchronization (Step 4):
Upon receiving the synchronization response, the simlet advances
its clock to the designated cycle. This step completes the clock
synchronization, ensuring that all simlets currently remain aligned
across the simulation. With synchronization confirmed, the simlet
performs the data transfer operation. This step may involve reading
or writing remote chiplet data according to the initial request.

By dynamically adjusting the synchronization points based on
actual inter-chiplet data exchange, the system achieves both high
simulation efficiency and accuracy.

4 Unified System Integration

The Unified Integration Interface (UIl) is a fundamental component
of the LEGOSim framework to support modular parallel simula-
tion. It is designed to provide a standardized framework for in-
tegrating diverse simulators—whether they model CPUs, GPUs,
DRAMs, or custom domain-specific accelerators (DSAs)— to simu-
late a multi-chiplet system in parallel. The UII abstracts simulator-
specific interfaces and harmonizes them under a unified API, provid-
ing benchmark/application-level APIs, system call mapping, data

523
524
525

526

528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580



588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

MICRO 2025, October 18-22, 2025, Seoul, Korea

@handling requests transmission latency 7,

e———w lime to start data transfer,

@handling requests clock synchronization

Time a

time to end data transfer

@sending read request D
Simlet 8 [
@ .
Global |waiting| Global |__| Global | ®resp
Manager pair | Manager Manager | permission !
SimletA |--
@sending write request

data
transfer

@ action:
data
transfer

(a) Workflow of the inter-simlet data transfer.

i i — .
Time

transmission latency 7,

SimletB --

ending syne reguest
sync
" @ :
Global |waiting| Global | | Global [Drespondipg the clock cycle
Manager [ pair | Manager Manager | to be adyanced

sync
imlet A .
(@sending sync request

S ——
(b) Workflow of the inter-simlet clock synchronization.

data

@action:sync .
transfer
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transfer management, and clock synchronization mechanisms. Fig-
ure 7 outlines its modules, which include:

1) Benchmark/Application-Level APIs and System Call Defini-
tion: The UII defines a standard set of benchmark-level APIs used
by chiplets for inter-chiplet communication and synchronization:
sendMessage() and receiveMessage(). When integrating a new sim-
let, these APIs must be mapped to the internal mechanisms of the
simulator as follows.

e For system-call based simulators (e.g., gem5 [45], Sniper
[25]), these APIs are implemented as custom syscalls (e.g.,
SYSCALL_REMOTE_READ and SYSCALL_REMOTE_WRIT
E) and processed by the syscall handling routine.

e For runtime-library-based simulators (e.g., GPGPU-Sim
[37]), these APIs are mapped to existing functions (e.g.,
cudaMemcepy()).

e For DSA simulators (e.g., Scale-sim [52]), these APIs are
embedded as function calls or files within the simulation
script.

2) Data Transfer Implementation: Data transfer between chiplets
in the UII is managed by functions such as sendSync(), receiveSync(),
write_data(), and read_data(). These functions coordinate data trans-
fer protocols with the GM and enable data transmission through
dedicated channels as follows.

e For CPU simulators (e.g., gem5 [45], Sniper [25]) , sendMes-
sage() / receiveMessage() are translated to be inter-simlet
data transmission in the syscall handling routines by file ex-
change, pipes, or shared memory in the host machine. Data
is transferred from and to this simlet’s internal simulated
memory.

e For GPU simulators (e.g., GPGPU-Sim [37]), additional
memory copy operations (e.g., cudaMemcpy()) are inserted
before/after calling sendSync() and receiveSync() to move
data between this simlet and others. These wrappers en-
sure that the GPU’s memory space remains consistent with
LEGOSim’s global model.

o For DSA simulators (e.g., Scale-sim [52]), UII writes inputs
to an interface file, executes the DSA script, then reads out-
put. sendMessage() is implemented by writing input data to
this file, or passing arguments to the Python configuration
function for the simlet. receiveMessage() reads output data
after simulation completes.

3) Clock Control: Given the diversity of simulation timing mod-
els, UII supports a flexible synchronization model to ensure that
heterogeneous simlets advance their respective local clock tick
correctly as follows.

o For cycle-accurate simulators (e.g., gem5 [45], GPGPU-Sim
[37]), their clock cycles are controlled. For example, gem5
uses an event-driven model of clock tick granularity, and
synchronization is managed by controlling tick. In GPGPU-
Sim, simulation progress is tracked using gpu_sim_cycle
and gpu_tot_sim_cycle. Clock ticking is controlled by these
variables in such simulators.

e For non-cycle-driven simulators (e.g., Sniper [25]), UIl in-
serts pseudo operations to artificially delay execution, such
as Sleep() to adjust the clock delay according to the syn-
chronization events.

e For DSA simulators (e.g., Scale-Sim [52]), which have no na-
tive clock or with simplified execution timeline: A block of
operations/computations is performed to obtain the execu-
tion time, which is reported to the GM for synchronization.

Below are examples of how it facilitates integration in Sniper
[25] , GPGPU-Sim [37] and Scale-Sim [52]:

Integration of Sniper [25]. Sniper, a CPU simulator, required
additional adaptation due to its non-cycle-driven execution. Custom
system calls are defined (SYSCALL_REMOTE_READ and SYSCALL_
REMOTE_WRITE) to map Sniper’s remote read/write operations to
UIl's sendMessage() and receiveMessage() functions. In the functional
model, these system call handling routine translates receiveSync(),
read_data(), sendSync(), and write_data() into inter-simlet message
passing. In the timing model, readSync() and writeSync() are used
for synchronization. However, since Sniper does not advance by
discrete clock cycles, a Sleep() function is inserted to adjust its

Benchmarks: API

iy

E ] 1 /\':—:'»' Global
i | Data Transfer | | Clock Adjustment |E Manager
AT e

Figure 7: Modules of the UIIL
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Table 3: Configurations used in the experiments.

Configurations Used in the Simulation

Sniper Configuration GPGPU-Sim Configuration MNSIM Configuration
Cores 8 x86_64 ISA # of SMs 80 Memristor Model RRAM
L1 D Cache 32KB, 8-way, 64B line, 4cycles, 1port Tensor Core 640 Weight Bit 8
L11 Cache 32KB, 4-way, 64B line, 4cycles Architecture  NVIDIA Volta (Titan V) | Crossbar Size 24
L2 Cache 256KB, 8-way, 64B line, 8cycles, 1port L1 Cache 32KB DSA
L3 Cache 8192KB, 16-way, 64B line, 30cycles, 4ports L2 Cache 4.5MB # of MACs 128
memory size 2GB Global Buffer 64 KB (SRAM)
Configurations of chiplet interposer
Interposer Chiplet
Capacity 1.81 x 10% J/(m> - K) | Area 2500 mm? Chiplet Pitch 10 mm
Heat Thermal .. X R . 2
Conductivity 35 /(m - K) Thickness 0.1 mm Capacitance Density 300 nF/mm'
Inter-chiplet Transmission Energy Consumption  1.17 PJ/bit

execution timing according to the target clock cycles to be advanced,
ensuring accurate synchronization.

Integration of GPGPU-Sim [37]. GPGPU-Sim is used to simu-
late NVIDIA GPU architectures and relies on the CUDA runtime
environment. Within the LEGOSim framework, its sendMessage()
and receiveMessage() functions are mapped to CUDA cudaMemcpy(),
facilitating data transfer between this simlet and others. In terms
of timing synchronization, GPGPU-Sim records local clock by gpu_
sim_cycle and gpu_tot_sim_cycle and updates them according to
the target clock cycles to be advanced.

Integration of SCALE-Sim [52]. SCALE-Sim is integrated into
LEGOsim as simlet through executing the corresponding python
script with designated chiplet identifiers, topology, the workload of
NPU as input parameters. As SCALE-Sim has only timing model,
the functional model is implemented in a dedicated C++ model.
It receives input through receiveMessage() and transmits output
via sendMessage() as wrappers. Upon completion of the simulation,
the wrapper proceeds reading the execution time from SCALE-
Sim’s output logs. This execution time will be added to the time
get from readSync() and sent to other chiplets through writeSync().
Data is received using receiveSync() and read_data() and sent using
sendSync() and write_data().

By standardizing APIs, inter-chiplet communication data man-
agement, and clock synchronization, the UIIl enables seamless in-
teroperability between diverse simlets, reducing integration com-
plexity.

5 Evaluation

5.1 Experimental Setup

The experiments were performed on a 20 cores Intel(R) Xeon(R)
Gold 6133 CPU with 2.50GHz and 512G main memory server. The
benchmarks include parallel convolution (conv) [39], breadth-first
search (BFS) [14], matrix multiplication (matmul) [12], MLP [64],
ResNet [24] and Transformer [23]. Following architectures were
configured in the experiments: CPU-4GPU-NPU-3CiM, CPU-20GPU-
15NPU, CPU-3GPU, CPU-DSA-CiM-7GPU, CPU-DSA-CiM-47GPU,
CPU-DSA-CiM-97GPU and CPU-20GPU-15NPU. Sniper [25], GPGPU-
Sim [37], a custom-developed simulator mimicking the architecture
of the Eyeriss NPU, SCALE-Sim, and MNSIM were used as sim-
lets for the CPU, GPU, domain-specific accelerator (DSA), NPU,
and compute-in-memory (CiM), respectively. These heterogeneous
multi-chiplet systems cannot be simulated by most of the existing

Table 4: Configurations of SIMBA and CIM-based Accelerator.

Multi-chiplet System Architecture

SIMBA CiM-based Accelerator
Number of PEs 16 Activation Buffer ~ 150KB
Technology 16 nm FinFET | CiM Array Size 144KB
Voltage 0.42-1.2V Clock Frequency ~ 100MHz

PE Clock Frequency  0.16-2.0 GHz | CiM Type ReRAM
Global PE . CiM Array

Buffer Size 64 KiB Performance 1024 MACs per cycle
Routers Per Die-to-die .
Global PE 3 Connections 1.2Gbps/link
NoC Bandwidth 68 GB/s/PE

Microcontroller RISC-V

simulators listed in Table 1, except for LEGOsim. The detailed con-
figurations of each simulator are provided in Table 2. Two memory
protocols were configured in these experiments: HBM3 and DDRS5,
both with capacity of 24GB [1] [3]. The thermal parameters of the
interposer, as well as the core area and pitch of chiplets, are listed
in Table 3.

The transmission delay between adjacent chiplets is composed
of the following three parts: 1) packetization and depacketization
times (the values are obtained from [54] and [43]); 2) the transceiver
latency (the values are obtained from [21] and [63]); and 3) the
interposer wire delay and power models adopted from [31].

The inter-chiplet network topologies used in the experiment
are mesh, meshLL (mesh with nodes (x,y) to node (x + 1, y + 1)
connected by a long serial link) [20], NVL (a fat tree mimicking the
NVlink structure), star, and torus.

5.2 Validating Simulation Accuracy and
Analyzing Synchronization Overhead

To validate the fidelity of the simulator, the 4-chiplet, 8-chiplet,
and 32-chiplet SIMBA [55] architectures, as well as the 4-chiplet,
5-chiplet, 9-chiplet, and 18-chiplet CiM-based accelerator [13], were
simulated. In the CiM-based accelerator, each chiplet has CiM units
using ReRAM, on-chip SRAM buffers, and high-speed interconnec-
tions. The chiplets’ configurations in SIMBA and the CiM-based
accelerator are detailed in Table 4.

The ResNet-50 benchmark runs on the 4-chiplet, 8-chiplet, and
32-chiplet SIMBA architecture, while the Tiny-Yolo [33] benchmark
runs on the 4-chiplet, 5-chiplet, 9-chiplet, and 18-chiplet CiM-based
accelerator to compare its performance with the reported data from
these two references.
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Figure 8: Inter-chiplet network topologies of the multi-chiplet architectures in experiments.

1) To quantify the simulation error of SIMBA architecture, the

error ¢ is defined as follows,
ez Tim = Trepl 1)
max{Tsim, Tref}

where Tsim and T, ¢ are simulated execution cycles and referenced
execution cycles in [55] respectively.

The ¢ were 2.52%, 3.51% and 5.35% for 4-chiplet, 8-chiplet,and 32-
chiplet systems respectively for the SIMBA simulation as illustrated
in Table 5, which are quite low.

Table 5: Simulation accuracy validation.

SIMBA Multi-chiplet Architecture

Architecture | 4-chiplet  8-chiplet  32-chiplet

£ (%) 2.52 3.51 535

CiM-based Multi-chiplet Accelerator

Architecture | 4-chiplet  5-chiplet  9-chiplet 18-chiplet
ey (%) 2.71 4.68 2.69 5.79

2) To quantify the simulation error of the Tiny-Yolo model run-
ning on the CiM-based accelerator architecture [13], simulation
error &, is defined as follows,

Ui —
£y = [Usim Uref| @)
max{Usims Uref}
where Usjy, and Uy, f are simulated computing utilization and ref-
erenced [13] computing utilization receptively.

The ¢, were 2.71%, 4.68% , 2.69% and 5.79% for 4-chiplet, 5-chiplet,
9-chiplet and 18-chiplet systems respectively for the CIM-based
accelerator as illustrated in Table 5, which are quite low. The low
errors validate the high fidelity of LEGOSim in accurately modeling
system performance.
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Figure 9: Comparison of synchronization event counts of PC,
TQ, and OD synchronization methods.

5.3 Synchronization Time Comparison

Figure 9 compares the time of the proposed on-demand synchroniza-
tion (OD) with per-cycle synchronization (PC) and time quantum
synchronization (TQ) to simulate a-64 core system running the
MLP benchmark. The synchronization time of the nine synchro-
nization algorithms is normalized to that of PC. The inter-chiplet
interconnection network topology is shown in the Figure 8a. TQ-x
refers to synchronization occurring every x cycles. The OD ap-
proach reduces synchronization time by 99.9%, 99.9%, 99.8%, 99.7%,
99.4%, 98.1%, 96.6%, and 66.1% compared to PC, TQ-2, TQ-22, TQ-23,
TQ—24, TQ—25, TQ—lOZ, and TQ—103, respectively. Notably, TQ—lO3
exhibits a high synchronization error, whereas OD achieves high
accuracy. The synchronization error quantifies the error with dif-
ferent synchronization methods w.r.t. PC, which is defined as:

T —Tpc|

max{Ty, Tpc} ®)

Esync =
where n € {TQ — x,0D}, x € {2,2%,23,2% 25,102, 10%}. Here, T, is
total execution time with synchronization algorithm n. Ty, is the
total execution time in PC synchronization. Esync are 0% for OD,
and 0%, 0.04%, 0.12%, 0.66%, 0.87%, 1.9%, 8.6%, and 37.9% for PC, TQ-
2, TQ-22, TQ-23, TQ-2%, TQ-2°, TQ-10%, and TQ-103, respectively.
These results indicate that as the synchronization interval in the TQ
algorithm increases, &sync also increases. In contrast, on-demand
synchronization exhibits the lowest overhead while maintaining
high accuracy.

Figure 10 shows the time breakdown of sequential simulation,
PC, and OD. The time of the three synchronization methods is
normalized to the total simulation time of sequential simulation. Se-
quential simulation exhibits the highest chiplet-simulation time. PC
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Figure 10: Simulation time comparison of three different
methods.
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reduces simulation time but incurs both the highest synchroniza-
tion time. In contrast, OD has the lowest synchronization overhead
and the lowest total simulation time.

Compared to the chiplet-simulation time in sequential simulation
and the synchronization time in PC, the chiplet-simulation and
synchronization time with OD are reduced by 61.9% and 98.1%,
respectively. Furthermore, the total simulation time of LEGOSim
is reduced by 61.4% and 56.7% compared to sequential simulation,
and per-cycle synchronized parallel simulation, respectively.

5.4 Scalability Analysis

LEGOSim can be used to simulate large-scale multi-chiplet systems
on a single server. Table 6 compares the simulation times of 10-
chiplet, 50-chiplet, and 100-chiplet systems, all running the same
input sized MLP benchmark. The simulation times are normalized
to that of the 100-chiplet system. All three systems adopt a mesh
inter-chiplet interconnection network topology. The 10-chiplet, 50-
chiplet, and 100-chiplet configurations are CPU-DSA-CiM-7GPU,
CPU-DSA-CiM-47GPU, and CPU-DSA-CiM-97GPU, respectively.
The simulation times of the 50-chiplet and 10-chiplet systems are
46.6% and 12.3% of the 100-chiplet system’s simulation time, re-
spectively. In contrast, existing simulator cannot flexibly simulate
heterogeneous multi-chiplet system up to 100 chiplets.

Table 6: Simulation time comparison

Architecture 10-chiplet 50-chiplet 100-chiplet
Norm. Time 0.12 0.47 1

6 Case Studies

6.1 Exploring the Design Space of On-chip
Buffer and Inter-chiplet Interconnection
Network

In the first case study, we conducted a design space exploration
(DSE) using LEGOsim. The experiment was configured on a CPU-
20GPU-15NPU architecture with a mesh topology as inter-chiplet
interconnection network, as illustrated in Figure 8d, where “C”, “G”
and “N” are CPU, GPU and NPU chiplets, respectively. The ResNet-
50 benchmark was the workload. In the baseline configuration, each
GPU chiplet has 50 Streaming Multiprocessors. The NPU chiplet
adopts the SIMBA architecture. Additional configuration details
are provided in Table 7. The NoI bandwidth of this multi-chiplet
architecture is 100 GB/s.

In this setup, the 36 chiplets are divided into four groups, with
each group computing one or two stages of ResNet-50. To identify
the performance bottlenecks of this architecture when running
ResNet-50, running the ResNet-50 benchmark to this multi-chiplet
system involves following three steps: allocating tasks to different
chiplets, inserting the inter-chiplet communication (using the API
functions defined in Section 4) and synchronization.

In the first step, tasks are assigned to different chiplets based on
their computational workloads. Layer res2[a-c]_branch2c, res[2-
5]a_branchl, res3[a-d]_branch2c, res4[a-f]_branch2c, and res5[a-
c]_branch2c of ResNet-50 are allocated to NPU chiplets. Other
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Table 7: Configurations of the CPU-20GPU multi-chiplet
systems

GPU chiplet CPU chiplet
# of SMs 50 # of Cores 8
Technology 4nm FinFET Technology 7nm FinFET
L1 Cache Size 128KB L1 Cache Size 512KB
Architecture  Nvidia Hopper | L2 Cache Size 4MB
L2 Cache Size 50MB L3 Cache Size 16MB
Frequency 2GHz Base Frequency 3.2GHz

layers are allocated to GPU chiplets. In Figure 8d, res1 through res5
correspond to stages 0 through 4, respectively. The CPU chiplet is
the manager, distributing computation tasks to other chiplets.

In the second step, the tasks running on the GPU chiplets are
programmed using CUDA. The tasks on the NPU chiplets are im-
plemented by configuring a CSV topology file in SCALE-Sim. This
topology file defines the layers of the workload. In SCALE-Sim, con-
volution layers and other operations that can be expressed in terms
of equivalent GEMM operations are described using the M, N, K
format in the workload topology. The tasks running on the CPU
chiplets are programmed using C++.

Table 8: Performance comparison

Computation Buffer access Nol
Norm. Time 0.34 0.72 1

As shown in Table 8, the Network-on-Interposer (Nol) latency
and on-chip buffer access time are identified as the performance
bottlenecks in this case. The times of computation, buffer access,
and Nol are normalized to that of NoI latency. For example, chiplet
(0,0) spent 35.6% and 42.9% time in buffer access and waiting for
the remote data access. The breakdowns of a few chiplets’ perfor-
mances, which are normalized to the Nol latency of chiplet (3,0),
are shown in Figure 11. In what follows, the on-chip buffer size
and Nol bandwidth are selected as design variables to reduce the
overall execution time.

To model the impact of on-chip buffer size and Nol bandwidth
w.r.t. execution time, LEGOsim is run with different configurations.
The following performance model is obtained using the maximum

likelihood method [47]:

T=d+exp(a—bln(I+1)—cln(B+1)) (4)
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Figure 11: Breakdown of the performances for selected
chiplets.
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Table 9: Configurations of reference architectures

Reference Reference
Power . .
A configurations 1 configurations 2
limit (W)
Buffer Nol Buffer Nol
size (MB) bandwidth size (MB) bandwidth
(GB/s) (GB/s)

6200 2 512 2 512

6300 8 512 10 512

6400 15 1024 17 1024

6500 23 1024 24 1024

6600 30 1024 33 1024

6700 40 2048 45 2048
1.00 ya— XX s o
[ S o] %] P q % X
£ 33 & £ e b K
Fo0.75 955 £ 19584 g oo oo
oot 24 R o ! K
3 955 K 9% 5% g oo
50.50 B & el s o oo
900 K2 K o o £
£ b ol s oo 8] K
5025 b b 5% s £ K
2 B K g B B £
00 9] K g oo <
0.00 io2old KX A\\KXX R A X

6200.0 6300.0 6400.0 6500.0 6600.0 6700.0

Power Limit (W)
Ref. configurations 1

I optimized results BEXA Ref. configurations 2

Figure 12: Execution time comparison by varying power bud-
gets.

where a, b, ¢ and d are regression coefficients and I, T, B are Nol
bandwidth, total execution time, and buffer size of each chiplet.
Eqn. 4 has a regression error of 8%.

To explore the design space, an optimization problem is defined
to minimize the execution time under power constraint with power
models adopted as in [62]. NSGA-II [19] is used to solve this prob-
lem. For comparison, two reference architectures listed in Table 9
are used. Figure 12 shows that, under different power budgets, the
proposed solution achieves the lowest execution time. For example,
it reduces execution time by 30% and 27% compared to reference
configurations 1 and 2 under a power budget of 6109 W, respectively.
Execution time of each configuration is normalized to that of the
maximum execution time of reference configurations 1 and 2. This
example shows that LEGOsim can be used to identify performance
breakdowns and bottlenecks, generate datasets with different con-
figurations for performance modeling, which is used in design space
exploration (i.e., optimizing performance under power constraints).

6.2 Alleviating Computation Bottlenecks Using
LEGOsim

In this case study, we demonstrate how LEGOSim can be used to
flexibly and accurately compare various multi-chiplet architectures
to identify and address computational performance bottlenecks
and trade-offs inherent to these architectures. Initially, a baseline
architecture CPU-4GPU-NPU-3CiM, connected via a 3 X 3 mesh
inter-chiplet network, was configured. This setup, referred to as
the CPU-4GPU-NPU-3CiM architecture, was tasked with running
the parallel convolution benchmark with a convolution matrix of
size 128 X 128 X 3, are shown in Figure 8b.

To analyze performance, a key metric is defined, 7(,, ) (com
putation-to-communication-latencyratioofchiplet(x, y)), as the
ratio of each chiplet’s execution time to its communication latency.

Figure 13 reveals that 7(( ), the computation-to-communication-
latency ratio of the GPU chiplet at (0,0), reaches the highest value
of 11.5. Indicating that the GPU chiplet at (0,0) is the bottleneck in
terms of computation.

To address this issue, we reconfigured the system by adding two
additional GPU chiplets and redistributing the workload previously
handled by GPU (0,0). After this adjustment, z(q o) is reduced to 7,
and the overall system execution time is decreased by 15%.

This case study highlights the effectiveness of LEGOSim for
evaluating the performance of different multi-chiplet architectures.

=0.39, n=160 cycle

Figure 13: Chiplet level task graph of the parallel convolution
benchmark with CPU-4GPU-NPU-CiM architecture, where
n is execution time.

6.3 Evaluating Different Inter-chiplet Network
Topology Configurations

For our first case study, LEGOSim was used to evaluate the impact of
different inter-chiplet network topologies on the multi-chiplet sys-
tem. Using the CPU-4GPU-DSA-CiM architecture, LEGOSim was
configured with various inter-chiplet network topologies, including
mesh, meshLL, NVL, and torus. These configurations were eval-
uated using benchmarks such as matmul, MLP, and Transformer,
with varying packet flit sizes.

Figure 14 compares the normalized execution times with dif-
ferent inter-chiplet network configurations. With a flit size of 4,
the matmul benchmark achieves the shortest execution time. The

Transformer Matmul

mesh mes\'\LL NVL  gtar  yorus mesh mes\'\LL NVL  gtar  yorus
(a) (b)
BFS MLP
@ 1.0 @ 1.0
;; 0.9 ;; 0.9
g 0.8 g 0.8
S0.7 207

mesh mes\‘\—‘— NVL  gtar

©  mm flit=2

torus

mesh meSh\—\— NVL  gtar

o flit=4 (@)

forus

Figure 14: The execution times of (a) Transformer, (b) Mat-
mul, (c) BFS, (d) MLP with different inter-chiplet network
configurations.
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execution times for the transformer, matmul, BFS, and MLP bench-
marks were reduced by 7%, 5.2%, 6.2%, and 5.6%, respectively, when
the flit size increases from 2 to 4.

A visualization tool for inter-chiplet traffic distribution of each
D2D interface is included in LEGOSim as shown in Figure 15.
Through this tool, researchers can observe the traffic volume at
each D2D interface and the number of packets transmitted between
chiplets, which can help researchers to find out the bottleneck of
the multi-chiplet system more easily.

14000
14000
o 12000 0 12000
10000 10000
1 1
8000 8000
< <
6000
5 6000 )
4000
3 2000 3 2000
. 0 0
0 1 2 3 0 1 2 3
Y Y

(a) mesh (b) meshLL

Traffic volume
Traffic volume

Figure 15: Inter-chiplet network traffic distribution of the
matmul benchmark with (a) mesh and (b) meshLL as inter-
chiplet network topologies.

6.4 Evaluating HBM3 vs. DDR5 in a
CPU-4DSA-4DRAM Multi-chiplet System

For this case study, we examine the impact of different memory
protocols (HBM3 versus DDR5) in the CPU-4DSA-4DRAM multi-
chiplet system, using ResNet-50 as benchmark, where a DDR DRAM
with 32 GB is connected to the memory controller in the CPU
chiplets. The inter-chiplet interconnection topology is mesh as
shown in Figure 8c where each DSA has a memory controller (MC)
and UCle is used as D2D communication protocol.

Figure 16a shows that the total execution cycle of the system
with HBM 3 is 39.1% lower than that of the system with DDR 5. The
significant performance improvement demonstrates that HBM 3 is
a superior choice for bandwidth-intensive workloads, particularly
for deep learning inference tasks. These results, obtained through
LEGOSim, reinforce its capability to accurately model memory
hierarchy trade-offs in multi-chiplet architectures, making it an
effective tool for guiding system design decisions.

6.5 Evaluating UCle vs. PCle in a
CPU-4DSA-4DRAM Multi-chiplet System

Beyond memory protocols, D2D interconnection technology plays
a pivotal role in determining overall system performance. This case
study evaluates the impact of adopting Universal Chiplet Intercon-
nection Express (UCle) [56] and Peripheral Component Intercon-
nection Express (PCle) [5] as the D2D communication protocol in a
1CPU-4DSA-4DRAM multi-chiplet architecture. The inter-chiplet
network topology is shown in the Figure 8c. LEGOSim was used to
model and analyze both configurations to assess their impact on
execution time, focusing on inter-chiplet interconnection protocol
and communication time within the multi-chiplet system.
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Figure 16b shows that the total execution time of the system
with UCle is 16.08% lower than that of the system with PCIe. These
improvements highlight UCIe’s ability to minimize interconnec-
tion latency, making it a more efficient solution for chiplet-based
architectures.

=
=

N

DDR5 HBM 3
(a) HBM 3 vs DDR 5

§

Norm. cycles

o

Norm. cycles

o

PCle UCle
(b) UClIe vs PCle

Figure 16: Performance comparision.

The findings further validate LEGOSim’s ability to model inter-
connection trade-offs, demonstrating its effectiveness in evaluating
chiplet design choices. By capturing the performance impact of
different interconnection technologies, LEGOSim proves to be a
valuable tool for optimizing next-generation multi-chiplet systems.

7 Conclusion

In this paper, we proposed LEGOSim, a modular and unified paral-
lel simulation framework tailored for heterogeneous multi-chiplet
systems. LEGOSim supports seamless integration of diverse simula-
tors (simlets) as processes in parallel simulation, enabling accurate
and flexible modeling. To address synchronization bottlenecks, on-
demand synchronization was proposed, where synchronization
occur only upon inter-chiplet communication to reduce synchro-
nization overhead in parallel simulatoin. A decoupled simulation
strategy was proposed to mitigate the inter-chiplet communication
modeling overhead by decoupling chiplet simulation from inter-
chiplet communication modeling. The Unified Integration Interface
(UII) was proposed as a standard interface, allowing existing sim-
ulators like gem5, Sniper, and GPGPU-Sim to be integrated with
minimal code changes to support parallel simulation. Experimen-
tal result shows that, LEGOSim has modeling errors of 3.79% and
3.94% when validating against SIMBA and a CiM-based accelerator,
indicating high fidelity. LEGOSim also decreases synchronization
overhead by 99.9% and 66.1% compared to per-cycle synchroniza-
tion and time quantum, respectively. LEGOSim was showcased
to analyze the performance bottleneck and perform design space
exploration for various multi-chiplet systems. LEGOSim was open
sourced, and hopefully can facilitate design space exploration for
future large-scale multi-chiplet systems.
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