
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

LEGOSim: A Unified Parallel Simulation Framework for
Multi-chiplet Heterogeneous Integration

MICRO 2025 Submission #NaN – Confidential Draft – Do NOT Distribute‼

Abstract
The rise of multi-chiplet integration challenges existing simula-
tors like gem5 [45] and GPGPU-Sim [37] for efficiently simulating
heterogeneous multiple-chiplet systems due to incapability to mod-
ularly integrate heterogenous chiplets, high synchronization over-
heads in parallel simulation, and high inter-chiplet communication
modeling overhead. To address these limitations, this paper intro-
duces LEGOSim, a unified parallel simulation framework capable
of flexibly integrating various open-source and in-house designed
chiplet simulators as processes in parallel simulation, referred to
as "simlets" with minimal modifications needed. It introduces a
three-stage simulation process that decouples chiplet simulation
from inter-chiplet communication modeling to mitigate the com-
munication modeling overhead. The framework also integrates
Network-on-Interposer (NoI) simulator for modeling inter-chiplet
communication, enabling accurate assessment of various intercon-
nection architectures’ performance. Furthermore, it employs an on-
demand synchronization protocol, ensuring synchronization only
occurs when necessary, thus reducing overhead while maintaining
correctness. Evaluated with diverse benchmarks, LEGOSim shows
high accuracy in simulating multi-chiplet architectures like SIMBA
[55] and a CiM-based accelerator [13], with average errors of 3.79%
and 3.94%, respectively. It significantly reduces synchronization
overhead by up to 99.9% compared to per-cycle synchronization
and by 66.1% compared to time quantum synchronization, with-
out synchronization errors. Five case studies show that LEGOSim
also provides precise system performance metrics and stall cause
reporting, simplifying tasks such as performance analysis and opti-
mization, and can be used for design space exploration of various
multi-chiplet systems.

Keywords
Simulator, architectural simulation, multi-chiplet system simula-
tion.

1 Introduction
As semiconductor technology approaches its physical limits, multi-
chiplet integration has become an essential design paradigm for
the post-Moore era. Compared to traditional monolithic chip ar-
chitectures, multi-chiplet systems package multiple heterogeneous
chiplets (such as CPUs, GPUs, NPUs, CiMs, etc.) into a single sys-
tem, which not only enhances computational performance but also
optimizes power consumption, reduces costs, and improves chip
yield. However, these highly integrated architectures also bring
unprecedented challenges in design space exploration, especially
in terms of the system-level simulation and evaluation.

MICRO 2025, October 18–22, 2025, Seoul, Korea
2025. ACM ISBN 978-X-XXXX-XXXX-X/XX/XX
https://doi.org/XXXXXXX.XXXXXXX

The challenges of architectural level multi-chiplet system simu-
lation include:

1. Lack of modular integration flexibility: Numerous simula-
tors have been developed to simulate individual components/chiplets
such as CPUs, GPUs, and NoIs [2]- [66], as shown in Table 1. While
these simulators are highly detailed and accurate for their specific
targets, they lack the flexibility to be integrated into multi-chiplet
systems as they are not designed for modular integration.

2. Synchronization inefficiency: To overcome the slow simula-
tion speed problem of sequential simulation [22], parallel simulation
with per-cycle synchronization [9] and time quantum synchroniza-
tion [9] were proposed. However, per-cycle synchronization incurs
huge synchronization overhead, while time quantum improves
speed by relaxing the synchronization to be performed for each
time quantum and but degrades accuracy.

3. Overhead in modeling inter-chiplet communication:
Inter-chiplet communication modeling faces a trade-off between
accuracy and performance. For instance, gem5 incurs substantial
communication modeling overhead as the communication event
handling is performed sequentially. On the other hand, simplified
approaches compromise accuracy. For instance, Sniper uses queuing
theory based analytical model to replace detailed networkmodeling,
and trace based NoI-only simulation [11] ignores data dependency,
both of which lead to high errors when the system scale increases.

To address these challenges, we propose LEGOSim, a unified
parallel simulation framework for heterogeneous multi-chiplet sys-
tems, which is released in [6]. In LEGOSim, (1) the seamless in-
tegration of various chiplet simulators as modular simulator pro-
cesses (referred to as simlets) such as gem5, sniper, GPGPU-Sim,
etc. is enabled to flexibly model various multi-chiplet systems by
parallel simulation for the design space exploration purpose, (2)
an on-demand synchronization scheme is proposed to minimize
synchronization overhead in parallel simulation while keeping ac-
curacy, and (3) a simlet simulation and inter-chiplet communication
modeling decoupled simulation strategy is proposed to reduce inter-
chiplet communication modeling overhead.

The accuracy of LEGOSim has been validated with two pub-
lished works, SIMBA [55] and a compute-in-memory (CiM) based
accelerator architecture [13]. The simulation errors are below 10%,
confirming its fidelity.

LEGOSim is showcased by five case studies to help explore the
design space in multi-chiplet system design flows, including identi-
fying performance bottlenecks, and design space exploration for
inter-chiplet interconnection network and buffer size, inter-chiplet
network topology selection, memory interfaces, and inter-chiplet in-
terconnection protocols, demonstrating the versatility of LEGOSim
in multi-chiplet system design flows.

The contributions of this paper are as follows:

1

https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

MICRO 2025, October 18–22, 2025, Seoul, Korea

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Table 1: Summation of existing simulators. (Note: AI Acc stands for AI accelerator and CiM stands for compute-in-memory.)

Simulator Target Simulator Target Simulator Target Simulator Target
SimBricks [41] CPU gem5 [45] GPU ROCm [34] GPU SimpleSSD [30] SSD
Sniper [25] CPU MacSim [35] CPU Arbitor [27] AI Acc SSDExplorer [66] SSD
ZSim [53] CPU Manifold [60] GPU NeuroSim [17] AI Acc BookSim [29] NoC
GPGPU-Sim [37] CPU/GPU MGPU-sim [57] GPU Scale-Sim [52] AI Acc Garnet [7] NoC
Graphite [46] CPU/GPU Nsight Compute [40] GPU MNSIM 2.0 [65] CiM Noxim [16] NoC
Multi2Sim [58] CPU/GPU Nsight Systems [40] GPU DRAMsim3 [42] DRAM Ns-3 [15] NoC
Accel-Sim [32] GPU PPT-GPU [10] GPU Ramulator [36] DRAM OMNeT++ [59] NoC
Beignet [26] GPU OpenVINO Toolkit [2] GPU MQSim-E [38] SSD LEGOSim CPU+GPU+NPU+...

• We propose an on-demand synchronization scheme
that triggers synchronization only during inter-chiplet com-
munication, reducing overhead by 99.9% compared to per-
cycle synchronization while preserving accuracy.

• We propose a three-stage decoupled simulation strat-
egy that decouples chiplet simulation from inter-chiplet
communication modeling, improving efficiency and accu-
racy.

• We propose a Unified Integration Interface (UII) to en-
able seamless integration of diverse simulators (e.g., gem5,
Sniper, GPGPU-Sim) into LEGOSim with parallel simula-
tion and minimal code changes.

• We implemented and open-sourced LEGOSim [6], in-
tegrating multiple simlets, and invite researchers to con-
tribute to design space exploration formulti-chiplet systems
with LEGOSim.

2 Background & Motivation
2.1 Limitations of Existing Simulators in

Modular Integration
In recent years, multi-chiplet architectures have beenwidely adopted
in high-performance computing (HPC) and AI chips due to their
superior scalability and energy efficiency. Notable examples in-
clude AMD’s Zen 5 [8] with modular CCD/IOD design, supporting
32-64 cores and delivering over 2 TFLOPS of computing power.
However, the design space exploration for such systems remains
highly challenging due to the vast configuration space and complex
interdependencies across interconnects, memory hierarchies, and
communication protocols. For instance, Intel’s Ponte Vecchio [28]
integrates 47 chiplets and over 100 billion transistors, with a design
cycle of a few years [4].

The limitations of existing simulators—especially their inability
to support modular integration and high synchronization over-

simlet A simlet B
100
101
102
103

cycle

100
101
102
103

cycle

(a) Per-cycle

Synchronization point

simlet A simlet B
100

100+2n

100+n

cycle

run run

run run

run run
100+3n

100

100+2n

100+n

cycle

100+3n

(b) Time quantum

x1

x3

x2

cycle
run

runrun

run

x4 run

y1

y3

y2

cycle

y4

simlet A simlet B

(c) On-demand

Figure 1: Comparison of different synchronization mecha-
nisms. In Figure (c), 𝑥𝑖 and 𝑦𝑖 are the times at which inter-
chiplet communication requests are initiated.

head— exacerbates low efficiency in design space exploration. Nu-
merous simulators have been developed to simulate individual
components/chiplets such as CPUs, GPUs, and NoIs [2]- [66], as
tabulated in Table 1, which unfortunately lack the flexibility to be
integrated to simulate heterogenous multi-chiplet systems. Modu-
lar simulators aim to integrate various components into a unified
framework. For example, SimBricks [41] can integrate multiple
simulators, but its complex integration mechanism results in low
simulation speed, and it cannot model inter-chiplet transmission.
ZSim [53] can efficiently simulate large-scale systems, but it has ac-
curacy issues in simulating multi-chiplet interconnection networks.
In addition, gem5-X [49] and its extended series (e.g., gem5-GPU
[48], gem5-AcceSys [44], gem5-SALAM [51], etc.) also attempt to
provide integration of CPUs, GPUs, memory models, and accel-
erators. However, these integrations require deep internal modifi-
cation of the simulators, and they are fixed architectures, instead
of modular integration of many other system architectures. SST
(Structural Simulation Toolkit [50]) is another modular framework
that supports integration across different simulation models and al-
lows component plug-ins. However, SST cannot model inter-chiplet
communication network and has significant simulation overhead
and complexity, and also needs significant code modification to
existing simulators.

2.2 Limitations of Existing Simulator
Synchronization Schemes

Synchronization overhead in parallel simulation remains a bot-
tleneck to simulate a large-scale system with dozens of chiplets
or a wafer scale computing system. Traditional synchronization
methods, including sequential simulation [22], per-cycle synchro-
nization [9], and time quantum synchronization [9] have following
limitations.

1) Sequential simulation. In sequential simulation (e.g., gem5
[45]), the simulation of each simlet (i.e., the simulation module of
an individual chiplet) and Network-on-Interposer (NoI) simulation
is performed sequentially, resulting in low utilization of computing
resources. Moreover, as the system size scales up, the simulation
time grows exponentially. Figure 2a further illustrates the execution
of sequential simulation, where the execution of simlets and NoI is
strictly sequential with no overlap, significantly limiting the simu-
lation efficiency. For example, with gem5 simulating one second of
a many-core system takes 1 and 10 weeks [18], making sequential
simulation impractical for large scale multi-chiplet systems.

2) Per-cycle synchronization. Parallel simulation improves ef-
ficiency compared to sequential simulation. Per-cycle synchronized
parallel simulation (e.g., parti-gem5 [18]) allows the simulation of

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

LEGOSim: A Unified Parallel Simulation Framework for Multi-chiplet Heterogeneous Integration MICRO 2025, October 18–22, 2025, Seoul, Korea

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Simulation
time

simlet 1

simlet 2

NoI
Simulator

Simlet
simulation

Inter-chiplet
communication

simulation

(a) sequential simulation

sync end Synchronization Barrier

simlet 1 simlet 2

one cycle
simulation time

sync start

NoI
Simulator

Simulation
time

sync end Synchronization Barrier

simlet 1 simlet 2

sync start

NoI
Simulator

sync end Synchronization Barrier

simlet 1 simlet 2

sync start

NoI
Simulator

sync end Synchronization Barrier

simlet 1 simlet 2

sync start

NoI
Simulator

sync end Synchronization Barrier

simlet 1 simlet 2

sync start

NoI
Simulator

simlet 1 simlet 2 NoI
Simulator

parallel
simulation

sync time

(b) per-cycle simulation

Figure 2: Simulation flow of sequential simulation and per-cycle synchronized parallel simulation.

multiple simlets to be executed in parallel and can overlap with the
simulation of NoI, as shown in Figure 1a. However, synchronization
is required in each simulation cycle, as shown in Figure 2b, leading
to significant synchronization overhead. Per-cycle synchronization
typically relies on shared memory, pipe communication, or file
systems in host machines which not only increases the synchro-
nization overhead but also causes serious performance bottlenecks,
especially when simulating large-scale systems. As shown in Fig-
ure 3, the synchronization overhead increases drastically with the
number of cores, making per-cycle synchronization infeasible for
large scale systems.

3) Time quantum synchronization. To mitigate the synchro-
nization overread in PC, Time Quantum (TQ), using a fixed time
window (such as in Zsim [53]), was proposed to reduce the number
of synchronizations, as shown in Figure 1b, but the size of the time
window (x) needs to be manually adjusted. A large time window
masks short-period cross-chiplet events (such as inter-chiplet data
transmission or synchronization for the benchmark/application
threads), leading to timing errors and low accuracy; on the other
hand, a small time window degrades to near per-cycle synchroniza-
tion, incurring huge simulation time.

As shown in Figure 3, we evaluate the above three synchroniza-
tion mechanisms. The experiment is conducted with three different
multi-/many-core configurations: 8 cores, 16 cores, and 32 cores,

Se
qu

en
tia

l

Per
-cy

cleTQ
-2

TQ
-10

TQ
10

2

TQ
10

3

Se
qu

en
tia

l

Per
-cy

cleTQ
-2

TQ
-10

TQ
10

2

TQ
10

3

Se
qu

en
tia

l

Per
-cy

cleTQ
-2

TQ
-10

TQ
10

2

TQ
10

3
0

25

50

75

100

Si
m

ul
at

io
n

Ti
m

e
(%

)

8 cores 16 cores 32 cores

0

20

40

Er
ro

r R
at

e
(%

)

Simlet Time Sync Time NoI Time Error Rate

Figure 3: Comparison of overheads of different synchroniza-
tion methods. Error is computed with respect to the sequen-
tial simulation.

using gem5 [45] for sequential simulation and parti-gem5 [18] for
parallel simulation, modified to support both per-cycle synchro-
nization and TQ-𝑥 modes (where TQ-𝑥 refers to the time quantum
synchronization, i.e., synchronization per x cycles). As the number
of cores increases, sequential simulation becomes highly inefficient
and cannot scale to large systems. For the 16-core and 32-core
configurations, the synchronization overhead of per-cycle synchro-
nization increases rapidly. In particular, the synchronization time
occupies a large percentage (85% in the 32-core case) of the total
simulation time, significantly reducing overall simulation efficiency.
In contrast, TQ synchronization improves efficiency by increasing
the time window and reducing the frequency of synchronizations,
but comes at the cost of increased synchronization errors. For exam-
ple, with𝑇𝑄−103 on the 32-core configuration, the synchronization
overhead is reduced by 99.9% compared to per-cycle synchroniza-
tion, but the error reaches 56%.

To address the above challenges, we propose on-demand syn-
chronization. A key observation in multi-chiplet system design is
that, inter-chiplet communication should be minimized by improv-
ing locality, as inter-chiplet communication latency is much higher
than on-chip (intra-chiplet) interconnections and inter-chiplet com-
munication bandwidth is much lower than on-chip (intra-chiplet)
interconnections [61]. Inspired by this observation, on-demand
synchronization performs synchronization only when communica-
tion occurs between chiplets, avoiding frequent synchronizations.
This allows simlets to run independently without unnecessary in-
teraction and stalls until inter-chiplet communications of other
simlets occur, significantly reducing synchronization overhead, as
shown in Figure 1c. This mechanism enables the system to maintain
high simulation accuracy while substantially improving simulation
efficiency.

Furthermore, inter-chiplet communication modeling poses a
trade-off between accuracy and efficiency. Oversimplified commu-
nication models fail to model system-level performance accurately,
while detailed modeling results in excessive simulation overhead,
increasing simulation time to impractical levels for large-scalemulti-
chiplet systems. For instance, gem5 [45] incurs substantial commu-
nication overhead as all components (sim-objects) must commu-
nicate via port connections. Each communication is structured as
a pair of request and response events, managed by a centralized

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

MICRO 2025, October 18–22, 2025, Seoul, Korea

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Simlet 1

Local
memory

Remote
read

module

UII

Global
Manager

NoI Simulator

Simlet 2

Local
memory

Remote
read

module

UII

Read requests

Read permission

Write request

Write permission

Traffic traces Communication delay

PIPE

Figure 4: Overview of LEGOSim architecture and its compo-
nents.

event queue and processed sequentially. As a result, simulation
time escalates to days or weeks and in many cases the simulation
crashes due to out of memory for large scale systems which hin-
ders agile design space exploration [41]. In contrast, Sniper [25]
reduces communication overhead by using queueing model based
analytical modeling to replace detailed network transmission simu-
lation, which unfortunately leads to degraded simulation accuracy
as congestion cannot be faithfully modeled with correct timing.
Similarly, performing the NoI (Network-on-Interposer) only simu-
lation with traffic traces leads to low accuracy as data dependency
is not considered [11]. To address this challenge, we propose a
three-stage simulation mode, by decoupling NoI modeling from
chiplet simulation, allowing NoI simulation to be performed
separately after functional simulation, and integrating the inter-
chiplet communication delay in the final stage with correct timing
to ensure simulation accuracy. This method significantly reduces
inter-chiplet communication modeling while maintaining accuracy
and simulation efficiency.

3 LEGOSim Architecture and Design Principles
The design principles of LEGOSim are two key mechanisms. One is
on-demand synchronization to improve simulation efficiency, which
triggers synchronization only upon inter-chiplet communications,
thereby significantly reducing synchronization overhead. The other
is decoupling inter-chiplet communication from chiplet simulation,
which optimizes performance and fidelity.

3.1 Overview of LEGOSim
LEGOSim supports parallel simulation and breaks down the simula-
tion of a multi-chiplet system into the following three components,
as shown in Figure 4:

1)Heterogeneous Chiplet Simulation Units (Simlets): Dif-
ferent simlets (CPUs, GPUs, NPUs, CiMs, etc.) are independent
simulation processes in parallel simulation, each of which can be
existing open-source simulators (e.g., gem5 [45] or Sniper [25]
for CPU chiplets, GPGPU-Sim [37] for GPU chiplets, MNSIM [65]
for compute-in-memory chiplets, etc.). Simlets interact with each
other through a Unified Integration Interface (UII), which will be
described in Section 4.

2) Network-on-Interposer (NoI) Simulator: Used for mod-
eling the interconnection topologies of inter-chiplet network, to
accurately simulate inter-chiplet communication latency.

Table 2: Comparison of synchronization mechanisms

Sync Method Per-Cycle Time-Quantum LEGOSim
(On-Demand)

Frequency of Sync Every cycle Every n cycles Only on inter-chiplet
communication

Accuracy High Medium High
Overhead Very High Medium Very Low
Scalability Poor Moderate Good

Notes Precise but
costly

Trade-off between
speed and fidelity

Syncs only
when necessary

3) Global Manager (GM): Responsible for coordinating inter-
chiplet data synchronization, scheduling NoI simulation, and ex-
ecuting synchronization strategies. The GM employs on-demand
synchronization to minimize synchronization overhead while en-
suring simulation accuracy.

Simlets perform their respective chiplet simulation in parallel,
communicate and synchronize with the GM through the UII, while
the GM coordinates these simlets’ synchronization and data trans-
fers, ensuring the accuracy of the simulation. The NoI simulator sim-
ulates the communication behavior between chiplets and provides
the GM with communication delay of inter-chiplet data transfer,
thus enabling the GM to make correct synchronization decisions.

3.2 Decoupling Inter-chiplet Communication
Modelling from Chiplet Simulation

In traditional simulation, NoI simulation is interwoven with func-
tional simulation. To improve the simulation efficiency, LEGOSim
decouples NoI modeling, separating it from functional simulation,
and integrates inter-chiplet communication delay in the final stage
to ensure simulation timing accuracy. Figure 5 shows the simulation
workflow of LEGOSim, including the following three stages.

1) Stage 1: LEGOSim simulates the functional model of each
chiplet independently, while collecting inter-chiplet communica-
tion traffic traces. Each simlet executes functional simulation in-
dependently, advancing its local clock tick, ensuring that the func-
tional behavior of each chiplet is accurately modeled. Meanwhile,
all inter-chiplet communication events are recorded, including the
time of data packet injection into the inter-chiplet network as traf-
fic traces. They are crucial for the subsequent stage because they
will be used to analyze inter-chiplet communication delays. Inter-
chiplet communication traffic traces include timestamps of packet
injection, data packet size, source and destination chiplets, etc.
Since this stage does not perform any form of inter-simlet synchro-
nization, each simlet performs its simulation without considering
inter-chiplet communication delays or network congestion which
incurs no stalls. This decoupled design maximizes parallel simula-
tion efficiency and avoids additional synchronization overhead.

2) Stage 2: The inter-chiplet communication traffic traces col-
lected in the first stage are input into the NoI simulator for inter-
chiplet network interconnection modeling. In this stage, the NoI
simulator runs independently, modeling inter-chiplet communica-
tions, generating accurate delay results for each traffic flow. As a
comparison, conventional parallel simulation requires that each
simlet and NoI should be strictly synchronized and advance cycle by
cycle, and thus leads to huge synchronization and communication
overhead.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

LEGOSim: A Unified Parallel Simulation Framework for Multi-chiplet Heterogeneous Integration MICRO 2025, October 18–22, 2025, Seoul, Korea

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

algorithm

application
level

...

... ...

CPU code 1 CPU code 2 GPU code 1 CiM

simulator
level simlet 1

CPU
simlet 2

CPU
simlet 3

GPU
simlet 4

CiM

Global Manager

PIPE

delay of each
traffic flow

Network-on-
Interposer

inter-simlet
traffics

stage 1

stage 2

stage 3

Simlet 1

UII

Simlet n

UII

Global Manager

read/write request

sync without
traffic delay

read/write request

inter-simlet Traffics

sync without
traffic delay

...

Simlet 1
UII

Simlet n

UII

Global Manager
read/write request

sync with
traffic delay

read/write request

sync with
traffic delay

...

Figure 5: Workflow of the three-stage decoupled simulation of LEGOSim.

3) Stage 3: The system integrates the execution time of simlets
and the inter-chiplet communication latency from the NoI simula-
tion in the second stage into the system-level simulation. The GM
uses these delay values to adjust the clock cycles of each simlet, en-
suring that the timing of inter-chiplet communication is accurately
modeled and the entire system simulation models the actual behav-
ior of the multi-chiplet system. Simlets re-execute their functional
and timing models, now incorporating inter-chiplet communication
delays. The GM coordinates the synchronization of all simlets, en-
suring that shared resource access and inter-chiplet communication
delays are correctly aligned. By integrating inter-chiplet commu-
nication delays in the final stage, LEGOSim achieves high-fidelity
simulation of the entire multi-chiplet system, accurately capturing
the functional behavior and timing characteristics of inter-chiplet
communications.

LEGOSim’s decoupling simulation strategy effectively addresses
the challenges of simulating complex multi-chiplet systems. By
decoupling the functional simulation of individual chiplets from de-
tailed modeling of inter-chiplet communication, LEGOSim achieves
both accuracy and efficiency.

3.3 On-Demand Synchronization Mechanism
Traditional synchronization methods in parallel simulation often
incur high computational overhead as shown in Table 2. Thus,
LEGOSim adopts an on-demand synchronization, allowing simlets
to run independently and synchronize only when inter-chiplet
communication occurs.

As shown in Figure 6, inter-simlet synchronization is coordinated
by the GM which is a controller thread/process. The workflow
follows these steps:

① Read/Write or Synchronization Request (Step 1): A simlet
generates a read/write request as well as a clock synchronization
request and sends it to the GM, which includes timing information,
i.e. the simlet’s local clock cycle, and this simlet stops advancing
its clock ticking and waits for the response from the GM.

②GlobalManagerHandlingRequests (Step 2): For read/write
requests, the GM pairs the data requester and responder between

simlets, following a producer-consumer model for ordered inter-
chiplet communication. For synchronization requests, the GM cal-
culates the next target clock cycle to be advanced for the simlet,
coordinating with other active simlets to maintain consistent tim-
ing across the system. In simulation stage 1, where inter-simlet
traffic delays are not known yet, the GM sets the clock cycle to
be advanced for the simlet to be the maximum cycle of the two
communicating simlets. In simulation stage 3, in contrast, the GM
takes into accounts NoI transmission latency from simulation stage
2. Here, the clock cycle to be advanced for the data-sending simlet
remains the maximum clock cycle of the two simlets, while the
data-receiving simlet’s clock cycle to be advanced is adjusted by
adding the corresponding NoI delay.

③ Request Response (Step 3): After processing the request,
the GM returns a response to the simlet. For read/write requests,
this response indicates the readiness of the data transfer, allowing
the simlet to proceed with the requested inter-chiplet read or write
operation. For synchronization requests, this response specifies the
clock cycle to be advanced.

④ Data Transfer Execution/Clock Synchronization (Step 4):
Upon receiving the synchronization response, the simlet advances
its clock to the designated cycle. This step completes the clock
synchronization, ensuring that all simlets currently remain aligned
across the simulation. With synchronization confirmed, the simlet
performs the data transfer operation. This step may involve reading
or writing remote chiplet data according to the initial request.

By dynamically adjusting the synchronization points based on
actual inter-chiplet data exchange, the system achieves both high
simulation efficiency and accuracy.

4 Unified System Integration
The Unified Integration Interface (UII) is a fundamental component
of the LEGOSim framework to support modular parallel simula-
tion. It is designed to provide a standardized framework for in-
tegrating diverse simulators—whether they model CPUs, GPUs,
DRAMs, or custom domain-specific accelerators (DSAs)— to simu-
late a multi-chiplet system in parallel. The UII abstracts simulator-
specific interfaces and harmonizes them under a unified API, provid-
ing benchmark/application-level APIs, system call mapping, data

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

MICRO 2025, October 18–22, 2025, Seoul, Korea

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Simlet B

Simlet A

Simlet B

Simlet A

PIPE
③responding
 permission

④ action:
data

transfer

Simlet B

transmission latency tx

data
transfer

time to start data transfer
time to end data transfer

Simlet A

Simlet B

Global
Manager

Global
Manager

Global
Manager

①sending write request

①sending read request

waiting
pair

②handling requests
Simulation

Time

②

(a) Workflow of the inter-simlet data transfer.

Simlet B

Simlet A

Simlet B

Simlet A

PIPE

Simlet B

④action:sync

④action:sync

transmission latency tx

data
transfer

③responding the clock cycle
to be advanced

sync

sync

Simlet A

Simlet B

Global
Manager

Global
Manager

Global
Manager

waiting
pair

Simulation
Time

①sending sync request

①sending sync request

②handling requests

②

clock synchronization

(b) Workflow of the inter-simlet clock synchronization.

Figure 6: Workflow of the inter-simlet synchronization.

transfer management, and clock synchronization mechanisms. Fig-
ure 7 outlines its modules, which include:

1) Benchmark/Application-Level APIs and System Call Defini-
tion: The UII defines a standard set of benchmark-level APIs used
by chiplets for inter-chiplet communication and synchronization:
sendMessage() and receiveMessage(). When integrating a new sim-
let, these APIs must be mapped to the internal mechanisms of the
simulator as follows.

• For system-call based simulators (e.g., gem5 [45], Sniper
[25]), these APIs are implemented as custom syscalls (e.g.,
SYSCALL_REMOTE_READ and SYSCALL_REMOTE_WRIT
E) and processed by the syscall handling routine.

• For runtime-library-based simulators (e.g., GPGPU-Sim
[37]), these APIs are mapped to existing functions (e.g.,
cudaMemcpy()).

• For DSA simulators (e.g., Scale-sim [52]), these APIs are
embedded as function calls or files within the simulation
script.

2) Data Transfer Implementation: Data transfer between chiplets
in the UII is managed by functions such as sendSync(), receiveSync(),
write_data(), and read_data(). These functions coordinate data trans-
fer protocols with the GM and enable data transmission through
dedicated channels as follows.

• For CPU simulators (e.g., gem5 [45], Sniper [25]) , sendMes-
sage() / receiveMessage() are translated to be inter-simlet
data transmission in the syscall handling routines by file ex-
change, pipes, or shared memory in the host machine. Data
is transferred from and to this simlet’s internal simulated
memory.

• For GPU simulators (e.g., GPGPU-Sim [37]), additional
memory copy operations (e.g., cudaMemcpy()) are inserted
before/after calling sendSync() and receiveSync() to move
data between this simlet and others. These wrappers en-
sure that the GPU’s memory space remains consistent with
LEGOSim’s global model.

• For DSA simulators (e.g., Scale-sim [52]), UII writes inputs
to an interface file, executes the DSA script, then reads out-
put. sendMessage() is implemented by writing input data to
this file, or passing arguments to the Python configuration
function for the simlet. receiveMessage() reads output data
after simulation completes.

3) Clock Control: Given the diversity of simulation timing mod-
els, UII supports a flexible synchronization model to ensure that
heterogeneous simlets advance their respective local clock tick
correctly as follows.

• For cycle-accurate simulators (e.g., gem5 [45], GPGPU-Sim
[37]), their clock cycles are controlled. For example, gem5
uses an event-driven model of clock tick granularity, and
synchronization is managed by controlling tick. In GPGPU-
Sim, simulation progress is tracked using gpu_sim_cycle
and gpu_tot_sim_cycle. Clock ticking is controlled by these
variables in such simulators.

• For non-cycle-driven simulators (e.g., Sniper [25]), UII in-
serts pseudo operations to artificially delay execution, such
as Sleep() to adjust the clock delay according to the syn-
chronization events.

• For DSA simulators (e.g., Scale-Sim [52]), which have no na-
tive clock or with simplified execution timeline: A block of
operations/computations is performed to obtain the execu-
tion time, which is reported to the GM for synchronization.

Below are examples of how it facilitates integration in Sniper
[25] , GPGPU-Sim [37] and Scale-Sim [52]:

Integration of Sniper [25]. Sniper, a CPU simulator, required
additional adaptation due to its non-cycle-driven execution. Custom
system calls are defined (SYSCALL_REMOTE_READ and SYSCALL_
REMOTE_WRITE) to map Sniper’s remote read/write operations to
UII’s sendMessage() and receiveMessage() functions. In the functional
model, these system call handling routine translates receiveSync(),
read_data(), sendSync(), and write_data() into inter-simlet message
passing. In the timing model, readSync() and writeSync() are used
for synchronization. However, since Sniper does not advance by
discrete clock cycles, a Sleep() function is inserted to adjust its

System Calls

SYNC Protocol Handling

Benchmarks：API

Data Transfer Clock Adjustment

Global
Manager

UII

System Calls

SYNC Protocol Handling

Benchmarks：API

Data Transfer Clock Adjustment

Global
Manager

UII

System Calls

Benchmarks：API

Data Transfer Clock Adjustment
Global

Manager

UII

Figure 7: Modules of the UII.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

LEGOSim: A Unified Parallel Simulation Framework for Multi-chiplet Heterogeneous Integration MICRO 2025, October 18–22, 2025, Seoul, Korea

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Configurations used in the experiments.

Configurations Used in the Simulation
Sniper Configuration GPGPU-Sim Configuration MNSIM Configuration
Cores 8 x86_64 ISA # of SMs 80 Memristor Model RRAM
L1 D Cache 32KB, 8-way, 64B line, 4cycles, 1port Tensor Core 640 Weight Bit 8
L1 I Cache 32KB, 4-way, 64B line, 4cycles Architecture NVIDIA Volta (Titan V) Crossbar Size 24
L2 Cache 256KB, 8-way, 64B line, 8cycles, 1port L1 Cache 32KB DSA
L3 Cache 8192KB, 16-way, 64B line, 30cycles, 4ports L2 Cache 4.5MB # of MACs 128
memory size 2 GB Global Buffer 64 KB (SRAM)

Configurations of chiplet interposer
Interposer Chiplet

Heat Thermal Capacity 1.81 × 106 J/(𝑚3 · K) Area 2500 mm2 Chiplet Pitch 10 mm
Conductivity 35 /(m · K) Thickness 0.1 mm Capacitance Density 300 nF/mm2

Inter-chiplet Transmission Energy Consumption 1.17 PJ/bit

execution timing according to the target clock cycles to be advanced,
ensuring accurate synchronization.

Integration of GPGPU-Sim [37]. GPGPU-Sim is used to simu-
late NVIDIA GPU architectures and relies on the CUDA runtime
environment. Within the LEGOSim framework, its sendMessage()
and receiveMessage() functions are mapped to CUDA cudaMemcpy(),
facilitating data transfer between this simlet and others. In terms
of timing synchronization, GPGPU-Sim records local clock by gpu_
sim_cycle and gpu_tot_sim_cycle and updates them according to
the target clock cycles to be advanced.

Integration of SCALE-Sim [52]. SCALE-Sim is integrated into
LEGOsim as simlet through executing the corresponding python
script with designated chiplet identifiers, topology, the workload of
NPU as input parameters. As SCALE-Sim has only timing model,
the functional model is implemented in a dedicated C++ model.
It receives input through receiveMessage() and transmits output
via sendMessage() as wrappers. Upon completion of the simulation,
the wrapper proceeds reading the execution time from SCALE-
Sim’s output logs. This execution time will be added to the time
get from readSync() and sent to other chiplets through writeSync().
Data is received using receiveSync() and read_data() and sent using
sendSync() and write_data().

By standardizing APIs, inter-chiplet communication data man-
agement, and clock synchronization, the UII enables seamless in-
teroperability between diverse simlets, reducing integration com-
plexity.

5 Evaluation
5.1 Experimental Setup
The experiments were performed on a 20 cores Intel(R) Xeon(R)
Gold 6133 CPU with 2.50GHz and 512G main memory server. The
benchmarks include parallel convolution (conv) [39], breadth-first
search (BFS) [14], matrix multiplication (matmul) [12], MLP [64],
ResNet [24] and Transformer [23]. Following architectures were
configured in the experiments: CPU-4GPU-NPU-3CiM, CPU-20GPU-
15NPU, CPU-3GPU, CPU-DSA-CiM-7GPU, CPU-DSA-CiM-47GPU,
CPU-DSA-CiM-97GPU andCPU-20GPU-15NPU. Sniper [25], GPGPU-
Sim [37], a custom-developed simulator mimicking the architecture
of the Eyeriss NPU, SCALE-Sim, and MNSIM were used as sim-
lets for the CPU, GPU, domain-specific accelerator (DSA), NPU,
and compute-in-memory (CiM), respectively. These heterogeneous
multi-chiplet systems cannot be simulated by most of the existing

Table 4: Configurations of SIMBAandCIM-basedAccelerator.

Multi-chiplet System Architecture
SIMBA CiM-based Accelerator
Number of PEs 16 Activation Buffer 150KB
Technology 16 nm FinFET CiM Array Size 144KB
Voltage 0.42–1.2 V Clock Frequency 100MHz
PE Clock Frequency 0.16–2.0 GHz CiM Type ReRAM
Global PE
Buffer Size 64 KiB CiM Array

Performance 1024 MACs per cycle

Routers Per
Global PE 3 Die-to-die

Connections 1.2Gbps/link

NoC Bandwidth 68 GB/s/PE
Microcontroller RISC-V

simulators listed in Table 1, except for LEGOsim. The detailed con-
figurations of each simulator are provided in Table 2. Two memory
protocols were configured in these experiments: HBM3 and DDR5,
both with capacity of 24GB [1] [3]. The thermal parameters of the
interposer, as well as the core area and pitch of chiplets, are listed
in Table 3.

The transmission delay between adjacent chiplets is composed
of the following three parts: 1) packetization and depacketization
times (the values are obtained from [54] and [43]); 2) the transceiver
latency (the values are obtained from [21] and [63]); and 3) the
interposer wire delay and power models adopted from [31].

The inter-chiplet network topologies used in the experiment
are mesh, meshLL (mesh with nodes (𝑥 ,𝑦) to node (𝑥 + 1, 𝑦 + 1)
connected by a long serial link) [20], NVL (a fat tree mimicking the
NVlink structure), star, and torus.

5.2 Validating Simulation Accuracy and
Analyzing Synchronization Overhead

To validate the fidelity of the simulator, the 4-chiplet, 8-chiplet,
and 32-chiplet SIMBA [55] architectures, as well as the 4-chiplet,
5-chiplet, 9-chiplet, and 18-chiplet CiM-based accelerator [13], were
simulated. In the CiM-based accelerator, each chiplet has CiM units
using ReRAM, on-chip SRAM buffers, and high-speed interconnec-
tions. The chiplets’ configurations in SIMBA and the CiM-based
accelerator are detailed in Table 4.

The ResNet-50 benchmark runs on the 4-chiplet, 8-chiplet, and
32-chiplet SIMBA architecture, while the Tiny-Yolo [33] benchmark
runs on the 4-chiplet, 5-chiplet, 9-chiplet, and 18-chiplet CiM-based
accelerator to compare its performance with the reported data from
these two references.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

MICRO 2025, October 18–22, 2025, Seoul, Korea

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

GPU GPU

GPU CPU

(a) CPU-3GPU

GPU GPU

GPU CPU

CIM CIM

GPU

NPU

CIM

(b) CPU-4GPU-NPU-3CIM

DRAM DRAM

DRAM DSA
(MC)

DRAM DSA
(MC)

DSA
(MC)

CPU

DSA
(MC)

(c) CPU-4DSA-4DRAM

G N N G N G

N G N G N G

G N G G N G

N G C G N G

G N G N G N

G G N G N G

stage 0&1

stage 2

stage 3

stage 4

y

x

(d) CPU-20GPU-15NPU

Figure 8: Inter-chiplet network topologies of the multi-chiplet architectures in experiments.

1) To quantify the simulation error of SIMBA architecture, the
error 𝜀 is defined as follows,

𝜀 =
|𝑇𝑠𝑖𝑚 −𝑇𝑟𝑒 𝑓 |

𝑚𝑎𝑥{𝑇𝑠𝑖𝑚,𝑇𝑟𝑒 𝑓 }
× 100% (1)

where𝑇𝑠𝑖𝑚 and𝑇𝑟𝑒 𝑓 are simulated execution cycles and referenced
execution cycles in [55] respectively.

The 𝜀 were 2.52%, 3.51% and 5.35% for 4-chiplet, 8-chiplet,and 32-
chiplet systems respectively for the SIMBA simulation as illustrated
in Table 5, which are quite low.

Table 5: Simulation accuracy validation.

SIMBA Multi-chiplet Architecture
Architecture 4-chiplet 8-chiplet 32-chiplet
𝜀 (%) 2.52 3.51 5.35
CiM-based Multi-chiplet Accelerator
Architecture 4-chiplet 5-chiplet 9-chiplet 18-chiplet
𝜀𝑢 (%) 2.71 4.68 2.69 5.79

2) To quantify the simulation error of the Tiny-Yolo model run-
ning on the CiM-based accelerator architecture [13], simulation
error 𝜀𝑢 is defined as follows,

𝜀𝑢 =
|𝑈𝑠𝑖𝑚 −𝑈𝑟𝑒 𝑓 |

𝑚𝑎𝑥{𝑈𝑠𝑖𝑚,𝑈𝑟𝑒 𝑓 }
(2)

where 𝑈𝑠𝑖𝑚 and 𝑈𝑟𝑒 𝑓 are simulated computing utilization and ref-
erenced [13] computing utilization receptively.

The 𝜀𝑢 were 2.71%, 4.68% , 2.69% and 5.79% for 4-chiplet, 5-chiplet,
9-chiplet and 18-chiplet systems respectively for the CIM-based
accelerator as illustrated in Table 5, which are quite low. The low
errors validate the high fidelity of LEGOSim in accurately modeling
system performance.

PC TQ-2 TQ-22
TQ-23

TQ-24
TQ-25

TQ-102
TQ-103

On-demand0.00

0.25

0.50

0.75

1.00

No
rm

. S
yn

c
Ti

m
e Norm. Sync Count sync (%)

0

20

40

sy
nc

 (%
)

00 0

Figure 9: Comparison of synchronization event counts of PC,
TQ, and OD synchronization methods.

5.3 Synchronization Time Comparison
Figure 9 compares the time of the proposed on-demand synchroniza-
tion (OD) with per-cycle synchronization (PC) and time quantum
synchronization (TQ) to simulate a-64 core system running the
MLP benchmark. The synchronization time of the nine synchro-
nization algorithms is normalized to that of PC. The inter-chiplet
interconnection network topology is shown in the Figure 8a. TQ-𝑥
refers to synchronization occurring every 𝑥 cycles. The OD ap-
proach reduces synchronization time by 99.9%, 99.9%, 99.8%, 99.7%,
99.4%, 98.1%, 96.6%, and 66.1% compared to PC, TQ-2, TQ-22, TQ-23,
TQ-24, TQ-25, TQ-102, and TQ-103, respectively. Notably, TQ-103
exhibits a high synchronization error, whereas OD achieves high
accuracy. The synchronization error quantifies the error with dif-
ferent synchronization methods w.r.t. PC, which is defined as:

𝜀𝑠𝑦𝑛𝑐 =
|𝑇𝑛 −𝑇𝑝𝑐 |

𝑚𝑎𝑥{𝑇𝑛,𝑇𝑝𝑐 }
(3)

where 𝑛 ∈ {𝑇𝑄 − 𝑥,𝑂𝐷}, 𝑥 ∈ {2, 22, 23, 24, 25, 102, 103}. Here, 𝑇𝑛 is
total execution time with synchronization algorithm 𝑛. 𝑇𝑝𝑐 is the
total execution time in PC synchronization. 𝜀𝑠𝑦𝑛𝑐 are 0% for OD,
and 0%, 0.04%, 0.12%, 0.66%, 0.87%, 1.9%, 8.6%, and 37.9% for PC, TQ-
2, TQ-22, TQ-23, TQ-24, TQ-25, TQ-102, and TQ-103, respectively.
These results indicate that as the synchronization interval in the TQ
algorithm increases, 𝜀𝑠𝑦𝑛𝑐 also increases. In contrast, on-demand
synchronization exhibits the lowest overhead while maintaining
high accuracy.

Figure 10 shows the time breakdown of sequential simulation,
PC, and OD. The time of the three synchronization methods is
normalized to the total simulation time of sequential simulation. Se-
quential simulation exhibits the highest chiplet-simulation time. PC

Sequential SimulationPer-cycle Sync Simulation Proposed Simulation0.00

0.25

0.50

0.75

1.00

No
rm

. T
im

e

Total Simulation Time
Sync Simulation Time

Chiplet-simulation Time
NoI-simulation Time

Figure 10: Simulation time comparison of three different
methods.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

LEGOSim: A Unified Parallel Simulation Framework for Multi-chiplet Heterogeneous Integration MICRO 2025, October 18–22, 2025, Seoul, Korea

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

reduces simulation time but incurs both the highest synchroniza-
tion time. In contrast, OD has the lowest synchronization overhead
and the lowest total simulation time.

Compared to the chiplet-simulation time in sequential simulation
and the synchronization time in PC, the chiplet-simulation and
synchronization time with OD are reduced by 61.9% and 98.1%,
respectively. Furthermore, the total simulation time of LEGOSim
is reduced by 61.4% and 56.7% compared to sequential simulation,
and per-cycle synchronized parallel simulation, respectively.

5.4 Scalability Analysis
LEGOSim can be used to simulate large-scale multi-chiplet systems
on a single server. Table 6 compares the simulation times of 10-
chiplet, 50-chiplet, and 100-chiplet systems, all running the same
input sized MLP benchmark. The simulation times are normalized
to that of the 100-chiplet system. All three systems adopt a mesh
inter-chiplet interconnection network topology. The 10-chiplet, 50-
chiplet, and 100-chiplet configurations are CPU-DSA-CiM-7GPU,
CPU-DSA-CiM-47GPU, and CPU-DSA-CiM-97GPU, respectively.
The simulation times of the 50-chiplet and 10-chiplet systems are
46.6% and 12.3% of the 100-chiplet system’s simulation time, re-
spectively. In contrast, existing simulator cannot flexibly simulate
heterogeneous multi-chiplet system up to 100 chiplets.

Table 6: Simulation time comparison

Architecture 10-chiplet 50-chiplet 100-chiplet
Norm. Time 0.12 0.47 1

6 Case Studies
6.1 Exploring the Design Space of On-chip

Buffer and Inter-chiplet Interconnection
Network

In the first case study, we conducted a design space exploration
(DSE) using LEGOsim. The experiment was configured on a CPU-
20GPU-15NPU architecture with a mesh topology as inter-chiplet
interconnection network, as illustrated in Figure 8d, where “C”, “G”
and “N” are CPU, GPU and NPU chiplets, respectively. The ResNet-
50 benchmark was the workload. In the baseline configuration, each
GPU chiplet has 50 Streaming Multiprocessors. The NPU chiplet
adopts the SIMBA architecture. Additional configuration details
are provided in Table 7. The NoI bandwidth of this multi-chiplet
architecture is 100 GB/s.

In this setup, the 36 chiplets are divided into four groups, with
each group computing one or two stages of ResNet-50. To identify
the performance bottlenecks of this architecture when running
ResNet-50, running the ResNet-50 benchmark to this multi-chiplet
system involves following three steps: allocating tasks to different
chiplets, inserting the inter-chiplet communication (using the API
functions defined in Section 4) and synchronization.

In the first step, tasks are assigned to different chiplets based on
their computational workloads. Layer res2[a-c]_branch2c, res[2-
5]a_branch1, res3[a-d]_branch2c, res4[a-f]_branch2c, and res5[a-
c]_branch2c of ResNet-50 are allocated to NPU chiplets. Other

Table 7: Configurations of the CPU-20GPU multi-chiplet
systems

GPU chiplet CPU chiplet
of SMs 50 # of Cores 8
Technology 4nm FinFET Technology 7nm FinFET
L1 Cache Size 128KB L1 Cache Size 512KB
Architecture Nvidia Hopper L2 Cache Size 4MB
L2 Cache Size 50MB L3 Cache Size 16MB
Frequency 2GHz Base Frequency 3.2GHz

layers are allocated to GPU chiplets. In Figure 8d, res1 through res5
correspond to stages 0 through 4, respectively. The CPU chiplet is
the manager, distributing computation tasks to other chiplets.

In the second step, the tasks running on the GPU chiplets are
programmed using CUDA. The tasks on the NPU chiplets are im-
plemented by configuring a CSV topology file in SCALE-Sim. This
topology file defines the layers of the workload. In SCALE-Sim, con-
volution layers and other operations that can be expressed in terms
of equivalent GEMM operations are described using the 𝑀, 𝑁,𝐾
format in the workload topology. The tasks running on the CPU
chiplets are programmed using C++.

Table 8: Performance comparison

Computation Buffer access NoI
Norm. Time 0.34 0.72 1

As shown in Table 8, the Network-on-Interposer (NoI) latency
and on-chip buffer access time are identified as the performance
bottlenecks in this case. The times of computation, buffer access,
and NoI are normalized to that of NoI latency. For example, chiplet
(0,0) spent 35.6% and 42.9% time in buffer access and waiting for
the remote data access. The breakdowns of a few chiplets’ perfor-
mances, which are normalized to the NoI latency of chiplet (3,0),
are shown in Figure 11. In what follows, the on-chip buffer size
and NoI bandwidth are selected as design variables to reduce the
overall execution time.

To model the impact of on-chip buffer size and NoI bandwidth
w.r.t. execution time, LEGOsim is run with different configurations.
The following performance model is obtained using the maximum
likelihood method [47]:

𝑇 = 𝑑 + 𝑒𝑥𝑝 (𝑎 − 𝑏 ln(𝐼 + 1) − 𝑐 ln(𝐵 + 1)) (4)

(0,
0)

(1,
1)

(2,
0)

(3,
1)

(4,
0)

(5,
0)

(0,
1)

(1,
0)

(2,
1)

(3,
0)

Chiplet #

0.00

0.25

0.50

0.75

1.00

No
rm

. T
im

e

Computation NoI Buffer access

Figure 11: Breakdown of the performances for selected
chiplets.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

MICRO 2025, October 18–22, 2025, Seoul, Korea

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 9: Configurations of reference architectures

Power
limit (W)

Reference
configurations 1

Reference
configurations 2

Buffer
size (MB)

NoI
bandwidth

(GB/s)

Buffer
size (MB)

NoI
bandwidth

(GB/s)
6200 2 512 2 512
6300 8 512 10 512
6400 15 1024 17 1024
6500 23 1024 24 1024
6600 30 1024 33 1024
6700 40 2048 45 2048

6200.0 6300.0 6400.0 6500.0 6600.0 6700.0
Power Limit (W)

0.00

0.25

0.50

0.75

1.00

No
rm

. E
xe

c.
 T

im
e

optimized results Ref. configurations 1 Ref. configurations 2

Figure 12: Execution time comparison by varying power bud-
gets.

where 𝑎, 𝑏, 𝑐 and 𝑑 are regression coefficients and 𝐼 , 𝑇 , 𝐵 are NoI
bandwidth, total execution time, and buffer size of each chiplet.
Eqn. 4 has a regression error of 8%.

To explore the design space, an optimization problem is defined
to minimize the execution time under power constraint with power
models adopted as in [62]. NSGA-II [19] is used to solve this prob-
lem. For comparison, two reference architectures listed in Table 9
are used. Figure 12 shows that, under different power budgets, the
proposed solution achieves the lowest execution time. For example,
it reduces execution time by 30% and 27% compared to reference
configurations 1 and 2 under a power budget of 6109W, respectively.
Execution time of each configuration is normalized to that of the
maximum execution time of reference configurations 1 and 2. This
example shows that LEGOsim can be used to identify performance
breakdowns and bottlenecks, generate datasets with different con-
figurations for performancemodeling, which is used in design space
exploration (i.e., optimizing performance under power constraints).

6.2 Alleviating Computation Bottlenecks Using
LEGOsim

In this case study, we demonstrate how LEGOSim can be used to
flexibly and accurately compare various multi-chiplet architectures
to identify and address computational performance bottlenecks
and trade-offs inherent to these architectures. Initially, a baseline
architecture CPU-4GPU-NPU-3CiM, connected via a 3 × 3 mesh
inter-chiplet network, was configured. This setup, referred to as
the CPU-4GPU-NPU-3CiM architecture, was tasked with running
the parallel convolution benchmark with a convolution matrix of
size 128 × 128 × 3, are shown in Figure 8b.

To analyze performance, a key metric is defined, 𝜏 (𝑥,𝑦) (com
putation-to-communication-latencyratioofchiplet(𝑥,𝑦)), as the
ratio of each chiplet’s execution time to its communication latency.

Figure 13 reveals that 𝜏 (0,0) , the computation-to-communication-
latency ratio of the GPU chiplet at (0,0), reaches the highest value
of 11.5. Indicating that the GPU chiplet at (0,0) is the bottleneck in
terms of computation.

To address this issue, we reconfigured the system by adding two
additional GPU chiplets and redistributing the workload previously
handled by GPU (0,0). After this adjustment, 𝜏 (0,0) is reduced to 7,
and the overall system execution time is decreased by 15%.

This case study highlights the effectiveness of LEGOSim for
evaluating the performance of different multi-chiplet architectures.

(1,2)
NPU

τ(1,2)=1.36, n=2502 cycle

(1,1)
CPU

τ(1,1)=0.36

(0,0)
GPU

τ(0,0)=11.5, n=374917 cycle

(0,1)
GPU

τ(0,1)=5.8, n=374917 cycle

(0,2)
GPU

τ(0,2)=5.8, n=374917 cycle

(1,0)
GPU

τ(1,0)=5.9, n=374917 cycle

(2,0)
CIM

τ(2,0)=0.38, n=153 cycle

(2,1)
CIM

τ(2,1)=0.42, n=145 cycle

(2,2)
CIM

τ(2,2)=0.39, n=160 cycle

Start End

825 cycle

64199 cycle
820 cycle 64199 cycle

814 cycle
63556 cycle

279 cycle
1279 cycle
208 cycle

206 cycle
206 cycle173 cycle173 cycle204 cycle

204 cycle

61762 cycle
808 cycle

Figure 13: Chiplet level task graph of the parallel convolution
benchmark with CPU-4GPU-NPU-CiM architecture, where
𝑛 is execution time.

6.3 Evaluating Different Inter-chiplet Network
Topology Configurations

For our first case study, LEGOSimwas used to evaluate the impact of
different inter-chiplet network topologies on the multi-chiplet sys-
tem. Using the CPU-4GPU-DSA-CiM architecture, LEGOSim was
configured with various inter-chiplet network topologies, including
mesh, meshLL, NVL, and torus. These configurations were eval-
uated using benchmarks such as matmul, MLP, and Transformer,
with varying packet flit sizes.

Figure 14 compares the normalized execution times with dif-
ferent inter-chiplet network configurations. With a flit size of 4,
the matmul benchmark achieves the shortest execution time. The

mesh meshLL NVL star torus
(a)

0.6
0.7
0.8
0.9
1.0

No
rm

. C
yc

le
s

Transformer

mesh meshLL NVL star torus
(b)

0.6
0.7
0.8
0.9
1.0

No
rm

. C
yc

le
s

Matmul

mesh meshLL NVL star torus
(c)

0.6
0.7
0.8
0.9
1.0

No
rm

. C
yc

le
s

BFS

mesh meshLL NVL star torus
(d)

0.6
0.7
0.8
0.9
1.0

No
rm

. C
yc

le
s

MLP

flit=2 flit=4

Figure 14: The execution times of (a) Transformer, (b) Mat-
mul, (c) BFS, (d) MLP with different inter-chiplet network
configurations.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

LEGOSim: A Unified Parallel Simulation Framework for Multi-chiplet Heterogeneous Integration MICRO 2025, October 18–22, 2025, Seoul, Korea

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

execution times for the transformer, matmul, BFS, and MLP bench-
marks were reduced by 7%, 5.2%, 6.2%, and 5.6%, respectively, when
the flit size increases from 2 to 4.

A visualization tool for inter-chiplet traffic distribution of each
D2D interface is included in LEGOSim as shown in Figure 15.
Through this tool, researchers can observe the traffic volume at
each D2D interface and the number of packets transmitted between
chiplets, which can help researchers to find out the bottleneck of
the multi-chiplet system more easily.

(a) mesh (b) meshLL

Figure 15: Inter-chiplet network traffic distribution of the
matmul benchmark with (a) mesh and (b) meshLL as inter-
chiplet network topologies.

6.4 Evaluating HBM3 vs. DDR5 in a
CPU-4DSA-4DRAMMulti-chiplet System

For this case study, we examine the impact of different memory
protocols (HBM3 versus DDR5) in the CPU-4DSA-4DRAM multi-
chiplet system, using ResNet-50 as benchmark, where a DDRDRAM
with 32 GB is connected to the memory controller in the CPU
chiplets. The inter-chiplet interconnection topology is mesh as
shown in Figure 8c where each DSA has a memory controller (MC)
and UCIe is used as D2D communication protocol.

Figure 16a shows that the total execution cycle of the system
with HBM 3 is 39.1% lower than that of the system with DDR 5. The
significant performance improvement demonstrates that HBM 3 is
a superior choice for bandwidth-intensive workloads, particularly
for deep learning inference tasks. These results, obtained through
LEGOSim, reinforce its capability to accurately model memory
hierarchy trade-offs in multi-chiplet architectures, making it an
effective tool for guiding system design decisions.

6.5 Evaluating UCIe vs. PCIe in a
CPU-4DSA-4DRAMMulti-chiplet System

Beyond memory protocols, D2D interconnection technology plays
a pivotal role in determining overall system performance. This case
study evaluates the impact of adopting Universal Chiplet Intercon-
nection Express (UCIe) [56] and Peripheral Component Intercon-
nection Express (PCIe) [5] as the D2D communication protocol in a
1CPU-4DSA-4DRAM multi-chiplet architecture. The inter-chiplet
network topology is shown in the Figure 8c. LEGOSim was used to
model and analyze both configurations to assess their impact on
execution time, focusing on inter-chiplet interconnection protocol
and communication time within the multi-chiplet system.

Figure 16b shows that the total execution time of the system
with UCIe is 16.08% lower than that of the system with PCIe. These
improvements highlight UCIe’s ability to minimize interconnec-
tion latency, making it a more efficient solution for chiplet-based
architectures.

DDR 5 HBM 30

1

No
rm

. c
yc

le
s

No
rm

. c
yc

le
s

(a) HBM 3 vs DDR 5

No
rm

. c
yc

le
s

PCIe UCIe0

1

No
rm

. c
yc

le
s

(b) UCIe vs PCIe

Figure 16: Performance comparision.

The findings further validate LEGOSim’s ability to model inter-
connection trade-offs, demonstrating its effectiveness in evaluating
chiplet design choices. By capturing the performance impact of
different interconnection technologies, LEGOSim proves to be a
valuable tool for optimizing next-generation multi-chiplet systems.

7 Conclusion
In this paper, we proposed LEGOSim, a modular and unified paral-
lel simulation framework tailored for heterogeneous multi-chiplet
systems. LEGOSim supports seamless integration of diverse simula-
tors (simlets) as processes in parallel simulation, enabling accurate
and flexible modeling. To address synchronization bottlenecks, on-
demand synchronization was proposed, where synchronization
occur only upon inter-chiplet communication to reduce synchro-
nization overhead in parallel simulatoin. A decoupled simulation
strategy was proposed to mitigate the inter-chiplet communication
modeling overhead by decoupling chiplet simulation from inter-
chiplet communication modeling. The Unified Integration Interface
(UII) was proposed as a standard interface, allowing existing sim-
ulators like gem5, Sniper, and GPGPU-Sim to be integrated with
minimal code changes to support parallel simulation. Experimen-
tal result shows that, LEGOSim has modeling errors of 3.79% and
3.94% when validating against SIMBA and a CiM-based accelerator,
indicating high fidelity. LEGOSim also decreases synchronization
overhead by 99.9% and 66.1% compared to per-cycle synchroniza-
tion and time quantum, respectively. LEGOSim was showcased
to analyze the performance bottleneck and perform design space
exploration for various multi-chiplet systems. LEGOSim was open
sourced, and hopefully can facilitate design space exploration for
future large-scale multi-chiplet systems.

References
[1] [n. d.]. HBM3 IP Technical Bulletin.

urlhttps://www.synopsys.com/designware-ip/technical-bulletin/hbm3-ip-
dwtb.html.

[2] [n. d.]. Intel Distribution of OpenVINO toolkit.
urlhttps://software.intel.com/en-us/openvino-toolkit.

[3] [n. d.]. SK Hynix Details Its DDR5-6400 DRAM Chip.
urlhttps://www.anandtech.com/show/13999/sk-hynix-details-its-ddr56400-
dram-chip.

[4] [n. d.]. The SR-71 of computing: Intel Ponte Vecchio retires after five years.
urlhttps://www.jonpeddie.com/news/the-sr-71-of-computing-intel-ponte-
vecchio-retires-after-five-years/.

[5] 2022. PCI Express Base Specification Revision 6.0 Version 1.0.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

MICRO 2025, October 18–22, 2025, Seoul, Korea

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

[6] 2025. LEGOSim. Link omitted to abide double-blind review policy; will be
available in the final version.

[7] Niket Agarwal, Tushar Krishna, Li-Shiuan Peh, and Niraj K Jha. 2009. GARNET:
a detailed on-chip network model inside a full-system simulator. In Proc. IEEE
Int’l Symp. Perform. Anal. Syst. Softw. 33–42.

[8] AMD. 2023. Zen 5 Architecture Overview. Whitepaper.
[9] H. Angepat, D. Chiou, and E. S. Chung. 2014. Simulator Background. Springer

International Publishing, 7–24.
[10] Yehia Arafa, Abdel-Hameed A Badawy, Gopinath Chennupati, Nandakishore

Santhi, and Stephan Eidenbenz. 2019. PPT-GPU: scalable GPU performance
modeling. IEEE Comput. Archit. Lett. 18, 1 (2019), 55–58.

[11] M. Badr and N. E. Jerger. 2014. SynFull: synthetic traffic models capturing cache
coherent behaviour. ACM SIGARCH Computer Architecture News 42, 3 (2014),
109–120.

[12] Grey Ballard, Christopher Siefert, and Jonathan Hu. 2016. Reducing communica-
tion costs for sparse matrix multiplication within algebraic multigrid. SIAM J.
Sci. Comput. 38, 3 (2016), 203–231.

[13] Jinshan Zhang Shunli Wang Xiaoyang Kang Lhua Zhang Mingyu Wang Bo Jiao,
Haozhe Zhu and Chixiao Chen. 2021. Computing utilization enhancement for
chiplet-based homogeneous processing-in-memory deep learning processors. In
Proc. Great Lakes Symp. VLSI. 241–246.

[14] A. Buluç and K. Madduri. 2011. Parallel breadth-first search on distributed
memory systems. In Proc. SC Conf. 1–12.

[15] G. Carneiro. 2010. NS-3: Network simulator 3. In UTM Lab Meeting. 4–5.
[16] Vincenzo Catania, Andrea Mineo, Salvatore Monteleone, Maurizio Palesi, and

Davide Patti. 2015. Noxim: an open, extensible and cycle-accurate network on
chip simulator. In Proc. IEEE Int’l Conf. Appl.-Specific Syst., Archit. Processors.
162–163.

[17] P. Y. Chen, X. Peng, and S. Yu. 2018. NeuroSim: a circuit-level macro model
for benchmarking neuro-inspired architectures in online learning. IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst. 37, 12 (2018), 3067–3080.

[18] J. Cubero-Cascante, N. Zurstraßen, and J. Nöller. 2023. parti-gem5: gem5’s Timing
Mode Parallelised. In Proc. Int’l Conf. Embedded Comput. Syst. 177–192.

[19] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation 6, 2
(2002), 182–197.

[20] Yinxiao Feng, Yuchen Wei, Dong Xiang, and Kaisheng Ma. 2024. Evaluating
chiplet-based large-scale interconnection networks via cycle-accurate packet-
parallel simulation. In Proc. USENIX Annu. Tech. Conf. 731–747.

[21] Yinxiao Feng, Dong Xiang, and Kaisheng Ma. 2023. Heterogeneous die-to-
die interfaces: enabling more flexible chiplet interconnection systems. In Proc.
IEEE/ACM Int’l Symp. Microarch. 930–943.

[22] J. J. Gómez-Hernández and E. F. Cassiraga. 1994. Theory and practice of sequen-
tial simulation. In Geostatistical Simulations Workshop. 111–124.

[23] Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and Salman Avestimehr. 2021.
PipeTransformer: Automated elastic pipelining for distributed training of trans-
formers. arXiv (2021).

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition.

[25] W. Heirman, T. Carlson, and L. Eeckhout. 2012. Sniper: scalable and accurate
parallel multi-core simulation. In Proc. Int’l Summer School Adv. Comput. Archit.
91–94.

[26] Intel. 2018. OpenCL Beignet Project. Technical Report. Intel.
[27] C. Jiang, A. Jayarajan, and H. Lu. 2023. Arbitor: a numerically accurate hardware

emulation tool for DNN accelerators. In Proc. USENIX Technical Conference. 519–
536.

[28] H. Jiang. 2022. Intel’s Ponte Vecchio GPU: Architecture, Systems Software. In
Proc. IEEE Hot Chips Symp. 1–29.

[29] Nan Jiang, George Michelogiannakis, Daniel Becker, Brian Towles, and William J
Dally. 2010. BookSim 2.0 user’s guide. Technical Report. Stanford Univ.

[30] M. Jung, J. Zhang, and A. Abulila. 2017. SimpleSSD: modeling solid state drives
for holistic system simulation. IEEE Computer Architecture Letters 17, 1 (2017),
37–41.

[31] MD Arafat Kabir and Yarui Peng. 2020. Chiplet-package co-design for 2.5D
systems using standard ASIC CAD tools. In Proc. Asia South Pac. Des. Autom.
Conf. 351–356.

[32] Mahmoud Khairy, Zhesheng Shen, Tor M Aamodt, and Timothy G Rogers. 2020.
Accel-sim: an extensible simulation framework for validated GPU modeling. In
Proc. ACM/IEEE Int’l Symp. Comput. Archit. 473–486.

[33] Ivan Khokhlov, Egor Davydenko, and Ilya Osokin. 2020. Tiny-YOLO Object
Detection Supplemented with Geometrical Data. arXiv.

[34] K. Shafie Khorassani, J. Hashmi, and C. H. Chu. 2021. Designing a ROCm-
aware MPI library for AMD GPUs: early experiences. In Proc. Int’l Conf. High
Performance Computing. 118–136.

[35] Hyesoon Kim, Jaekyu Lee, Nagesh B Lakshminarayana, Jaewoong Sim, Jieun
Lim, and Tri Pho. 2012. Macsim: a CPU-GPU heterogeneous simulation framework
user guide. Technical Report. Georgia Inst. Technol. 1–57 pages.

[36] Y. Kim, W. Yang, and O. Mutlu. 2015. Ramulator: a fast and extensible DRAM
simulator. IEEE Computer Architecture Letters 15, 1 (2015), 45–49.

[37] Chao-Lin Lee, Min-Yih Hsu, Bing-Sung Lu, Ming-Yu Hung, and Jenq-Kuen Lee.
2020. Experiment and enabled flow for GPGPU-sim simulators with fixed-point
instructions. J. Syst. Archit. 111 (2020), 101783.

[38] D. Lee, D. Hong, and W. Choi. 2022. MQSim-E: an enterprise SSD simulator. IEEE
Computer Architecture Letters 21, 1 (2022), 13–16.

[39] Sunwoo Lee, Dipendra Jha, Ankit Agrawal, Alok Choudhary, and Wei-keng Liao.
2017. Parallel deep convolutional neural network training by exploiting the
overlapping of computation and communication. In Proc. IEEE Int’l Conf. High
Perform. Comput. 183–192.

[40] M. Leinhauser, J. Young, and S. Bastrakov. 2021. Performance analysis of PICon-
GPU: particle-in-cell on GPUs using NVIDIA’s NSight systems and NSight compute.
Technical Report. Oak Ridge National Laboratory.

[41] H. Li, J. Li, and A. Kaufmann. 2022. Simbricks: end-to-end network system
evaluation with modular simulation. In Proc. ACM SIGCOMM Conf. 380–396.

[42] Shang Li, Zhiyuan Yang, Dhiraj Reddy, Ankur Srivastava, and Bruce Jacob. 2020.
DRAMSim3: a cycle-accurate, thermal-capable DRAM simulator. IEEE Comput.
Archit. Lett. 19, 2 (2020), 106–109.

[43] Xiaoyan Li, Zizheng Dong, and Shuaipeng Li. 2023. MUG5: Modeling of Universal
Chiplet Interconnect Express (UCIe) Standard Based on gem5. IEEE Int’l Conf.
ASIC (2023), 1–4.

[44] Q. Liu, M. Zapater, and D. Atienza. 2025. Gem5-acceSys: enabling system-level
exploration of standard interconnects for novel accelerators. arXiv (2025).

[45] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico
Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad Beckmann,
Srikant Bharadwaj, et al. 2020. The gem5 simulator: version 20.0+. arXiv Preprint
(2020).

[46] Jason E Miller, Harshad Kasture, George Kurian, Charles Gruenwald, Nathan
Beckmann, Christopher Celio, Jonathan Eastep, and Anant Agarwal. 2010.
Graphite: a distributed parallel simulator for multicores. In Proc. Int’l Symp.
High-Perform. Comput. Archit. 1–12.

[47] In Jae Myung. 2003. Tutorial on maximum likelihood estimation. J. Mathematical
Psychology 47, 1 (2003), 90–100.

[48] J. Power, J. Hestness, and M. S. Orr. 2014. gem5-gpu: a heterogeneous cpu-gpu
simulator. IEEE Computer Architecture Letters 14, 1 (2014), 34–36.

[49] Y. M. Qureshi, W. A. Simon, and M. Zapater. 2019. Gem5-x: a gem5-based system
level simulation framework to optimize many-core platforms. In Proc. Simulation
Conf. 1–12.

[50] A. F. Rodrigues, K. S. Hemmert, and B. W. Barrett. 2011. The structural simulation
toolkit. ACM SIGMETRICS Performance Evaluation Review 38, 4 (2011), 37–42.

[51] S. Rogers, J. Slycord, and M. Baharani. 2020. gem5-salam: a system architecture
for LLVM-based accelerator modeling. In Proc. Int’l Symp. Microarch. 471–482.

[52] Ananda Samajdar, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar
Krishna. 2018. Scale-sim: systolic CNN accelerator simulator. arXiv Preprint
(2018).

[53] D. Sanchez and C. Kozyrakis. 2013. ZSim: fast and accurate microarchitectural
simulation of thousand-core systems. ACM SIGARCH Comput. Archit. News 41, 3
(2013), 475–486.

[54] Fabian Schätzle, Carlos Falquez, and Stefan Heinen. 2024. Modeling methodol-
ogy for multi-die chip design based on gem5/SystemC co-simulation. In Proc.
Workshop on Rapid Simul. and Perform. Eval. for Design. 35–41.

[55] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian Zimmer,
Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,
Priyanka Raina, et al. 2019. Simba: Scaling Deep-Learning Inference with Multi-
Chip-Module-Based Architecture. In Proc. IEEE/ACM Int’l Symp. Microarchitec-
ture. 14–27.

[56] Debendra Das Sharma, Gerald Pasdast, Zhiguo Qian, and Kemal Aygun. 2022.
Universal Chiplet Interconnect Express (UCIe): an open industry standard for
innovations with chiplets at package level. IEEE Trans. Compon. Packag. Manuf.
Technol. 12, 9 (2022), 1423–1431.

[57] Yifan Sun, Trinayan Baruah, Saiful A Mojumder, Shi Dong, Xiang Gong, Shane
Treadway, Yuhui Bao, Spencer Hance, Carter McCardwell, Vincent Zhao, et al.
2019. MGPUSim: enabling multi-GPU performance modeling and optimization.
In Proc. Int’l Symp. Comput. Archit. 197–209.

[58] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli.
2012. Multi2Sim: a simulation framework for CPU-GPU computing. In Proc. Int’l
Conf. Parallel Archit. Compil. Tech. 335–344.

[59] A. Varga. 2010. OMNeT++. Springer Berlin Heidelberg, 35–59.
[60] Jun Wang, Jesse Beu, Rishiraj Bheda, Tom Conte, Zhenjiang Dong, Chad Kersey,

Mitchelle Rasquinha, George Riley, William Song, He Xiao, and other. 2014.
Manifold: a parallel simulation framework for multicore systems. In Proc. IEEE
Int’l Symp. Perform. Anal. Syst. Softw. 106–115.

[61] Xiaohang Wang, Yifan Wang, Yingtao Jiang, Amit Kumar Singh, et al. 2025. On
Task Mapping in Multi-chiplet Based Many-core Systems to Optimize Inter-and
Intra-chiplet Communications. IEEE Trans. Computers 74, 2 (2025).

[62] X. Wang, M. Xu, A. K. Singh, Y. Jiang, and M. Yang. 2025. On Optimizing Inter-
and Intra-Chiplet Interconnection Topologies for Robust Multi-Chiplet Systems.

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

LEGOSim: A Unified Parallel Simulation Framework for Multi-chiplet Heterogeneous Integration MICRO 2025, October 18–22, 2025, Seoul, Korea

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems (2025).
[63] Bingyi Ye, Kai Sheng, and Weixin Gai. 2023. A 2.29-pJ/b 112-Gb/s Wireline

Transceiver With RX Four-Tap FFE for Medium-Reach Applications in 28-nm
CMOS. IEEE J. Solid-State Circuits 58, 1 (2023), 19–29.

[64] H. Zhang. 2018. Distributed deep learning training with Horovod. arXiv (2018).
[65] Zhenhua Zhu, Hanbo Sun, Tongxin Xie, Yu Zhu, Guohao Dai, Lixue Xia, Dimin

Niu, Xiaoming Chen, Xiaobo Sharon Hu, Yu Cao, et al. 2023. MNSIM 2.0: a

behavior-level modeling tool for processing-in-memory architectures. IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst. 42, 11 (2023), 4112–4125.

[66] L. Zuolo, C. Zambelli, and R. Micheloni. 2017. Ssdexplorer: a virtual platform for
SSD simulations. Solid-State-Drives (SSDs) Modeling: Simulation Tools Strategies
(2017), 41–65.

13

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Limitations of Existing Simulators in Modular Integration
	2.2 Limitations of Existing Simulator Synchronization Schemes

	3 LEGOSim Architecture and Design Principles
	3.1 Overview of LEGOSim
	3.2 Decoupling Inter-chiplet Communication Modelling from Chiplet Simulation
	3.3 On-Demand Synchronization Mechanism

	4 Unified System Integration
	5 Evaluation
	5.1 Experimental Setup
	5.2 Validating Simulation Accuracy and Analyzing Synchronization Overhead
	5.3 Synchronization Time Comparison
	5.4 Scalability Analysis

	6 Case Studies
	6.1 Exploring the Design Space of On-chip Buffer and Inter-chiplet Interconnection Network
	6.2 Alleviating Computation Bottlenecks Using LEGOsim
	6.3 Evaluating Different Inter-chiplet Network Topology Configurations
	6.4 Evaluating HBM3 vs. DDR5 in a CPU-4DSA-4DRAM Multi-chiplet System
	6.5 Evaluating UCIe vs. PCIe in a CPU-4DSA-4DRAM Multi-chiplet System

	7 Conclusion
	References

