23
24
25
26
27
28
29

39
40
41
42
43
44

LEGOSim: A Unified Parallel Simulation Framework for
Multi-chiplet Heterogeneous Integration

MICRO 2025 Submission #NaN — Confidential Draft - Do NOT Distribute!!

Abstract

The rise of multi-chiplet integration challenges existing simula-
tors like gem5 [45] and GPGPU-Sim [37] for efficiently simulating
heterogeneous multiple-chiplet systems due to incapability to mod-
ularly integrate heterogenous chiplets, high synchronization over-
heads in parallel simulation, and high inter-chiplet communication
modeling overhead. To address these limitations, this paper intro-
duces LEGOSim, a unified parallel simulation framework capable
of flexibly integrating various open-source and in-house designed
chiplet simulators as processes in parallel simulation, referred to
as "simlets" with minimal modifications needed. It introduces a
three-stage simulation process that decouples chiplet simulation
from inter-chiplet communication modeling to mitigate the com-
munication modeling overhead. The framework also integrates
Network-on-Interposer (NolI) simulator for modeling inter-chiplet
communication, enabling accurate assessment of various intercon-
nection architectures’ performance. Furthermore, it employs an on-
demand synchronization protocol, ensuring synchronization only
occurs when necessary, thus reducing overhead while maintaining
correctness. Evaluated with diverse benchmarks, LEGOSim shows
high accuracy in simulating multi-chiplet architectures like SIMBA
[55] and a CiM-based accelerator [13], with average errors of 3.79%
and 3.94%, respectively. It significantly reduces synchronization
overhead by up to 99.9% compared to per-cycle synchronization
and by 66.1% compared to time quantum synchronization, with-
out synchronization errors. Five case studies show that LEGOSim
also provides precise system performance metrics and stall cause
reporting, simplifying tasks such as performance analysis and opti-
mization, and can be used for design space exploration of various
multi-chiplet systems.

Keywords

Simulator, architectural simulation, multi-chiplet system simula-
tion.

1 Introduction

As semiconductor technology approaches its physical limits, multi-
chiplet integration has become an essential design paradigm for
the post-Moore era. Compared to traditional monolithic chip ar-
chitectures, multi-chiplet systems package multiple heterogeneous
chiplets (such as CPUs, GPUs, NPUs, CiMs, etc.) into a single sys-
tem, which not only enhances computational performance but also
optimizes power consumption, reduces costs, and improves chip
yield. However, these highly integrated architectures also bring
unprecedented challenges in design space exploration, especially
in terms of the system-level simulation and evaluation.

MICRO 2025, October 18-22, 2025, Seoul, Korea
2025. ACM ISBN 978-X-XXXX-XXXX-X/XX/XX
https://doi.org/XXXXXXX.XXXXXXX

The challenges of architectural level multi-chiplet system simu-
lation include:

1. Lack of modular integration flexibility: Numerous simula-
tors have been developed to simulate individual components/chiplets
such as CPUs, GPUs, and Nols [2]- [66], as shown in Table 1. While
these simulators are highly detailed and accurate for their specific
targets, they lack the flexibility to be integrated into multi-chiplet
systems as they are not designed for modular integration.

2. Synchronization inefficiency: To overcome the slow simula-
tion speed problem of sequential simulation [22], parallel simulation
with per-cycle synchronization [9] and time quantum synchroniza-
tion [9] were proposed. However, per-cycle synchronization incurs
huge synchronization overhead, while time quantum improves
speed by relaxing the synchronization to be performed for each
time quantum and but degrades accuracy.

3. Overhead in modeling inter-chiplet communication:
Inter-chiplet communication modeling faces a trade-off between
accuracy and performance. For instance, gem5 incurs substantial
communication modeling overhead as the communication event
handling is performed sequentially. On the other hand, simplified
approaches compromise accuracy. For instance, Sniper uses queuing
theory based analytical model to replace detailed network modeling,
and trace based Nol-only simulation [11] ignores data dependency,
both of which lead to high errors when the system scale increases.

To address these challenges, we propose LEGOSim, a unified
parallel simulation framework for heterogeneous multi-chiplet sys-
tems, which is released in [6]. In LEGOSim, (1) the seamless in-
tegration of various chiplet simulators as modular simulator pro-
cesses (referred to as simlets) such as gem5, sniper, GPGPU-Sim,
etc. is enabled to flexibly model various multi-chiplet systems by
parallel simulation for the design space exploration purpose, (2)
an on-demand synchronization scheme is proposed to minimize
synchronization overhead in parallel simulation while keeping ac-
curacy, and (3) a simlet simulation and inter-chiplet communication
modeling decoupled simulation strategy is proposed to reduce inter-
chiplet communication modeling overhead.

The accuracy of LEGOSim has been validated with two pub-
lished works, SIMBA [55] and a compute-in-memory (CiM) based
accelerator architecture [13]. The simulation errors are below 10%,
confirming its fidelity.

LEGOSim is showcased by five case studies to help explore the
design space in multi-chiplet system design flows, including identi-
fying performance bottlenecks, and design space exploration for
inter-chiplet interconnection network and buffer size, inter-chiplet
network topology selection, memory interfaces, and inter-chiplet in-
terconnection protocols, demonstrating the versatility of LEGOSim
in multi-chiplet system design flows.

The contributions of this paper are as follows:

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

107

116

https://doi.org/XXXXXXX.XXXXXXX

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

MICRO 2025, October 18-22, 2025, Seoul, Korea

Table 1: Summation of existing simulators. (Note: AI Acc stands for AI accelerator and CiM stands for compute-in-memory.)

Simulator Target Simulator Target Simulator Target Simulator Target

SimBricks [41] CPU gemb [45] GPU ROCm [34] GPU __ SimpleSSD [30] _ SSD

Sniper [25] CPU MacSim [35] CPU Arbitor [27] Al Acc SSDExplorer [66] SSD

ZSim [53] CPU Manifold [60] GPU NeuroSim [17] Al Acc BookSim [29] NoC

GPGPU-Sim [37] CPU/GPU MGPU-sim [57] GPU Scale-Sim [52] Al Acc Garnet [7] NoC

Graphite [46] CPU/GPU Nsight Compute [40] GPU MNSIM 2.0 [65] CiM Noxim [16] NoC

Multi2Sim [58] CPU/GPU Nsight Systems [40] GPU DRAMsim3 [42] DRAM Ns-3 [15] NoC

Accel-Sim [32] GPU PPT-GPU [10] GPU Ramulator [36] DRAM OMNeT++ [59] NoC

Beignet [26] GPU OpenVINO Toolkit [2] GPU MQSim-E [38] SSD LEGOSim CPU+GPU+NPU+...

e We propose an on-demand synchronization scheme
that triggers synchronization only during inter-chiplet com-
munication, reducing overhead by 99.9% compared to per-
cycle synchronization while preserving accuracy.

e We propose a three-stage decoupled simulation strat-
egy that decouples chiplet simulation from inter-chiplet
communication modeling, improving efficiency and accu-
racy.

o We propose a Unified Integration Interface (UII) to en-
able seamless integration of diverse simulators (e.g., gems5,
Sniper, GPGPU-Sim) into LEGOSim with parallel simula-
tion and minimal code changes.

o We implemented and open-sourced LEGOSim [6], in-
tegrating multiple simlets, and invite researchers to con-
tribute to design space exploration for multi-chiplet systems
with LEGOSim.

2 Background & Motivation

2.1 Limitations of Existing Simulators in
Modular Integration

In recent years, multi-chiplet architectures have been widely adopted
in high-performance computing (HPC) and Al chips due to their
superior scalability and energy efficiency. Notable examples in-
clude AMD’s Zen 5 [8] with modular CCD/IOD design, supporting
32-64 cores and delivering over 2 TFLOPS of computing power.
However, the design space exploration for such systems remains
highly challenging due to the vast configuration space and complex
interdependencies across interconnects, memory hierarchies, and
communication protocols. For instance, Intel’s Ponte Vecchio [28]
integrates 47 chiplets and over 100 billion transistors, with a design
cycle of a few years [4].

The limitations of existing simulators—especially their inability
to support modular integration and high synchronization over-

<——> Synchronization point

simlet A simlet B simlet A simlet B simlet A simlet B

100 100

101 101 Wt e— 1 10 x“ run

102 102 N run run| o . .

103 103 106+n + » + 10G+n X2 Y2
: : : " run runf . . run un|
. : : 100snd ¢ 5 1 100k2n X V3

: N run run| 5 . :
. : 100%+3n 100%3n Xy / va
L W< >V .- <« fun ru
cycle cycle cycle cycle cycle cvcle

(a) Per-cycle (b) Time quantum (c) On-demand
Figure 1: Comparison of different synchronization mecha-
nisms. In Figure (c), x; and y; are the times at which inter-

chiplet communication requests are initiated.

head— exacerbates low efficiency in design space exploration. Nu-
merous simulators have been developed to simulate individual
components/chiplets such as CPUs, GPUs, and Nols [2]- [66], as
tabulated in Table 1, which unfortunately lack the flexibility to be
integrated to simulate heterogenous multi-chiplet systems. Modu-
lar simulators aim to integrate various components into a unified
framework. For example, SimBricks [41] can integrate multiple
simulators, but its complex integration mechanism results in low
simulation speed, and it cannot model inter-chiplet transmission.
ZSim [53] can efficiently simulate large-scale systems, but it has ac-
curacy issues in simulating multi-chiplet interconnection networks.
In addition, gem5-X [49] and its extended series (e.g., gem5-GPU
[48], gem5-AcceSys [44], gem5-SALAM [51], etc.) also attempt to
provide integration of CPUs, GPUs, memory models, and accel-
erators. However, these integrations require deep internal modifi-
cation of the simulators, and they are fixed architectures, instead
of modular integration of many other system architectures. SST
(Structural Simulation Toolkit [50]) is another modular framework
that supports integration across different simulation models and al-
lows component plug-ins. However, SST cannot model inter-chiplet
communication network and has significant simulation overhead
and complexity, and also needs significant code modification to
existing simulators.

2.2 Limitations of Existing Simulator
Synchronization Schemes

Synchronization overhead in parallel simulation remains a bot-
tleneck to simulate a large-scale system with dozens of chiplets
or a wafer scale computing system. Traditional synchronization
methods, including sequential simulation [22], per-cycle synchro-
nization [9], and time quantum synchronization [9] have following
limitations.

1) Sequential simulation. In sequential simulation (e.g., gem5
[45]), the simulation of each simlet (i.e., the simulation module of
an individual chiplet) and Network-on-Interposer (Nol) simulation
is performed sequentially, resulting in low utilization of computing
resources. Moreover, as the system size scales up, the simulation
time grows exponentially. Figure 2a further illustrates the execution
of sequential simulation, where the execution of simlets and Nol is
strictly sequential with no overlap, significantly limiting the simu-
lation efficiency. For example, with gem5 simulating one second of
a many-core system takes 1 and 10 weeks [18], making sequential
simulation impractical for large scale multi-chiplet systems.

2) Per-cycle synchronization. Parallel simulation improves ef-
ficiency compared to sequential simulation. Per-cycle synchronized
parallel simulation (e.g., parti-gem5 [18]) allows the simulation of

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

281
282
283
284
285
286
287
288
289
290

Simulation Time (%)

LEGOSim: A Unified Parallel Simulation Framework for Multi-chiplet Heterogeneous Integration

MICRO 2025, October 18-22, 2025, Seoul, Korea

(a) sequential simulation

Simulation [simet1] [simtet2 | ‘ _Nof ‘ parallel
time T T simulation
simlet 1 sync start 1 Barrier A |} sync time
sync end L Z :
v v v
Simlet [simiet1] [simiet2 | ‘ _No ‘
| simulation sy st T ; H
! Syncend | Barrier o]
----1 simlet2 p--F--
simlet] [simiet1] [simlet2 | ‘ —Nof ‘
: Yneond
sync end nchronization Barrier H one cycle
. - " Nol simulation time
Inter-chiplet Nol ‘ simlet 1 ‘ ‘ simlet 2 ‘ ‘ . ‘
communication Simulator ; H
" sync start - i
simulation e end | : : Barrier]
v v
; [simiet1] [simiet2 | ‘ _ Nof ‘
A\ \ T

sync end L :

‘sim;en ‘ ‘ sim;et2 ‘ ‘ . N\{)I ‘

(b) per-cycle simulation

Figure 2: Simulation flow of sequential simulation and per-cycle synchronized parallel simulation.

multiple simlets to be executed in parallel and can overlap with the
simulation of Nol, as shown in Figure 1a. However, synchronization
is required in each simulation cycle, as shown in Figure 2b, leading
to significant synchronization overhead. Per-cycle synchronization
typically relies on shared memory, pipe communication, or file
systems in host machines which not only increases the synchro-
nization overhead but also causes serious performance bottlenecks,
especially when simulating large-scale systems. As shown in Fig-
ure 3, the synchronization overhead increases drastically with the
number of cores, making per-cycle synchronization infeasible for
large scale systems.

3) Time quantum synchronization. To mitigate the synchro-
nization overread in PC, Time Quantum (TQ), using a fixed time
window (such as in Zsim [53]), was proposed to reduce the number
of synchronizations, as shown in Figure 1b, but the size of the time
window (x) needs to be manually adjusted. A large time window
masks short-period cross-chiplet events (such as inter-chiplet data
transmission or synchronization for the benchmark/application
threads), leading to timing errors and low accuracy; on the other
hand, a small time window degrades to near per-cycle synchroniza-
tion, incurring huge simulation time.

As shown in Figure 3, we evaluate the above three synchroniza-
tion mechanisms. The experiment is conducted with three different
multi-/many-core configurations: 8 cores, 16 cores, and 32 cores,

8 cores 16 cores 32 cores
100 X
i X
75 % i i X 4
i X i —_— X
50 X X i X 5
25 X | RS

o

Error Rate (%)

B Simlet Time Sync Time mmm Nol Time

X Error Rate

Figure 3: Comparison of overheads of different synchroniza-
tion methods. Error is computed with respect to the sequen-
tial simulation.

using gemb5 [45] for sequential simulation and parti-gem5 [18] for
parallel simulation, modified to support both per-cycle synchro-
nization and TQ-x modes (where TQ-x refers to the time quantum
synchronization, i.e., synchronization per x cycles). As the number
of cores increases, sequential simulation becomes highly inefficient
and cannot scale to large systems. For the 16-core and 32-core
configurations, the synchronization overhead of per-cycle synchro-
nization increases rapidly. In particular, the synchronization time
occupies a large percentage (85% in the 32-core case) of the total
simulation time, significantly reducing overall simulation efficiency.
In contrast, TQ synchronization improves efficiency by increasing
the time window and reducing the frequency of synchronizations,
but comes at the cost of increased synchronization errors. For exam-
ple, with TQ—103 on the 32-core configuration, the synchronization
overhead is reduced by 99.9% compared to per-cycle synchroniza-
tion, but the error reaches 56%.

To address the above challenges, we propose on-demand syn-
chronization. A key observation in multi-chiplet system design is
that, inter-chiplet communication should be minimized by improv-
ing locality, as inter-chiplet communication latency is much higher
than on-chip (intra-chiplet) interconnections and inter-chiplet com-
munication bandwidth is much lower than on-chip (intra-chiplet)
interconnections [61]. Inspired by this observation, on-demand
synchronization performs synchronization only when communica-
tion occurs between chiplets, avoiding frequent synchronizations.
This allows simlets to run independently without unnecessary in-
teraction and stalls until inter-chiplet communications of other
simlets occur, significantly reducing synchronization overhead, as
shown in Figure 1c. This mechanism enables the system to maintain
high simulation accuracy while substantially improving simulation
efficiency.

Furthermore, inter-chiplet communication modeling poses a
trade-off between accuracy and efficiency. Oversimplified commu-
nication models fail to model system-level performance accurately,
while detailed modeling results in excessive simulation overhead,
increasing simulation time to impractical levels for large-scale multi-
chiplet systems. For instance, gem5 [45] incurs substantial commu-
nication overhead as all components (sim-objects) must commu-
nicate via port connections. Each communication is structured as
a pair of request and response events, managed by a centralized

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

306

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
334

336
337
338
339
340
341
342
343
344
345
346
347
348

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

MICRO 2025, October 18-22, 2025, Seoul, Korea

Simlet 1 Simlet 2
Local Remote | | Road requests [Global | Write request Remote Local
read | read
memory module | |Read permission Manager | \yite permission module memory
‘ T Traffic traces| [Communication delay ‘ T
v] v |
ul Nol Simulator

C—]

Figure 4: Overview of LEGOSim architecture and its compo-
nents.

event queue and processed sequentially. As a result, simulation
time escalates to days or weeks and in many cases the simulation
crashes due to out of memory for large scale systems which hin-
ders agile design space exploration [41]. In contrast, Sniper [25]
reduces communication overhead by using queueing model based
analytical modeling to replace detailed network transmission simu-
lation, which unfortunately leads to degraded simulation accuracy
as congestion cannot be faithfully modeled with correct timing.
Similarly, performing the NoI (Network-on-Interposer) only simu-
lation with traffic traces leads to low accuracy as data dependency
is not considered [11]. To address this challenge, we propose a
three-stage simulation mode, by decoupling NoI modeling from
chiplet simulation, allowing Nol simulation to be performed
separately after functional simulation, and integrating the inter-
chiplet communication delay in the final stage with correct timing
to ensure simulation accuracy. This method significantly reduces
inter-chiplet communication modeling while maintaining accuracy
and simulation efficiency.

3 LEGOSim Architecture and Design Principles

The design principles of LEGOSim are two key mechanisms. One is
on-demand synchronization to improve simulation efficiency, which
triggers synchronization only upon inter-chiplet communications,
thereby significantly reducing synchronization overhead. The other
is decoupling inter-chiplet communication from chiplet simulation,
which optimizes performance and fidelity.

3.1 Overview of LEGOSim

LEGOSim supports parallel simulation and breaks down the simula-
tion of a multi-chiplet system into the following three components,
as shown in Figure 4:

1)Heterogeneous Chiplet Simulation Units (Simlets): Dif-
ferent simlets (CPUs, GPUs, NPUs, CiMs, etc.) are independent
simulation processes in parallel simulation, each of which can be
existing open-source simulators (e.g., gem5 [45] or Sniper [25]
for CPU chiplets, GPGPU-Sim [37] for GPU chiplets, MNSIM [65]
for compute-in-memory chiplets, etc.). Simlets interact with each
other through a Unified Integration Interface (UII), which will be
described in Section 4.

2) Network-on-Interposer (Nol) Simulator: Used for mod-
eling the interconnection topologies of inter-chiplet network, to
accurately simulate inter-chiplet communication latency.

Table 2: Comparison of synchronization mechanisms

Sync Method Per-Cycle Time-Quantum z‘gﬁgﬁﬁ;n d)
Frequency of Sync | Every cycle Every n cycles ((:)ori};nounnil;;r(;rclhlplet
Accuracy High Medium High
Overhead Very High Medium Very Low
Scalability Poor Moderate Good
Not Precise but ~ Trade-off between Syncs only

otes costly speed and fidelity ~ when necessary

3) Global Manager (GM): Responsible for coordinating inter-
chiplet data synchronization, scheduling Nol simulation, and ex-
ecuting synchronization strategies. The GM employs on-demand
synchronization to minimize synchronization overhead while en-
suring simulation accuracy.

Simlets perform their respective chiplet simulation in parallel,
communicate and synchronize with the GM through the UIL while
the GM coordinates these simlets’ synchronization and data trans-
fers, ensuring the accuracy of the simulation. The Nol simulator sim-
ulates the communication behavior between chiplets and provides
the GM with communication delay of inter-chiplet data transfer,
thus enabling the GM to make correct synchronization decisions.

3.2 Decoupling Inter-chiplet Communication
Modelling from Chiplet Simulation

In traditional simulation, Nol simulation is interwoven with func-
tional simulation. To improve the simulation efficiency, LEGOSim
decouples Nol modeling, separating it from functional simulation,
and integrates inter-chiplet communication delay in the final stage
to ensure simulation timing accuracy. Figure 5 shows the simulation
workflow of LEGOSim, including the following three stages.

1) Stage 1: LEGOSim simulates the functional model of each
chiplet independently, while collecting inter-chiplet communica-
tion traffic traces. Each simlet executes functional simulation in-
dependently, advancing its local clock tick, ensuring that the func-
tional behavior of each chiplet is accurately modeled. Meanwhile,
all inter-chiplet communication events are recorded, including the
time of data packet injection into the inter-chiplet network as traf-
fic traces. They are crucial for the subsequent stage because they
will be used to analyze inter-chiplet communication delays. Inter-
chiplet communication traffic traces include timestamps of packet
injection, data packet size, source and destination chiplets, etc.
Since this stage does not perform any form of inter-simlet synchro-
nization, each simlet performs its simulation without considering
inter-chiplet communication delays or network congestion which
incurs no stalls. This decoupled design maximizes parallel simula-
tion efficiency and avoids additional synchronization overhead.

2) Stage 2: The inter-chiplet communication traffic traces col-
lected in the first stage are input into the Nol simulator for inter-
chiplet network interconnection modeling. In this stage, the Nol
simulator runs independently, modeling inter-chiplet communica-
tions, generating accurate delay results for each traffic flow. As a
comparison, conventional parallel simulation requires that each
simlet and Nol should be strictly synchronized and advance cycle by
cycle, and thus leads to huge synchronization and communication
overhead.

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

449

461
462
463

464

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

LEGOSim: A Unified Parallel Simulation Framework for Multi-chiplet Heterogeneous Integration

MICRO 2025, October 18-22, 2025, Seoul, Korea

stage 1

algorithm - sync without sync without _
Ly 14 traffic delay traffic delay
Global)
‘ L read/write request {} read/write request
application inter-simlet Traffics
level stage 2

CPU code 1 CPU code 2 Gpii code 1

inter-simlet delay of each

([

level simlet 1 simlet 2 simlet 3 simlet 4) N
cPU cPU GPU cim Simlet 1 Simlet n
stage 3 T om | e with sync with _
T T ? L raffic delay traffic delay uln

Global Manager

Network-on-
traffics = ©

traffic flow

Global Manager

read/write request read/write request

Figure 5: Workflow of the three-stage decoupled simulation of LEGOSim.

3) Stage 3: The system integrates the execution time of simlets
and the inter-chiplet communication latency from the Nol simula-
tion in the second stage into the system-level simulation. The GM
uses these delay values to adjust the clock cycles of each simlet, en-
suring that the timing of inter-chiplet communication is accurately
modeled and the entire system simulation models the actual behav-
ior of the multi-chiplet system. Simlets re-execute their functional
and timing models, now incorporating inter-chiplet communication
delays. The GM coordinates the synchronization of all simlets, en-
suring that shared resource access and inter-chiplet communication
delays are correctly aligned. By integrating inter-chiplet commu-
nication delays in the final stage, LEGOSim achieves high-fidelity
simulation of the entire multi-chiplet system, accurately capturing
the functional behavior and timing characteristics of inter-chiplet
communications.

LEGOSim’s decoupling simulation strategy effectively addresses
the challenges of simulating complex multi-chiplet systems. By
decoupling the functional simulation of individual chiplets from de-
tailed modeling of inter-chiplet communication, LEGOSim achieves
both accuracy and efficiency.

3.3 On-Demand Synchronization Mechanism

Traditional synchronization methods in parallel simulation often
incur high computational overhead as shown in Table 2. Thus,
LEGOSim adopts an on-demand synchronization, allowing simlets
to run independently and synchronize only when inter-chiplet
communication occurs.

As shown in Figure 6, inter-simlet synchronization is coordinated
by the GM which is a controller thread/process. The workflow
follows these steps:

® Read/Write or Synchronization Request (Step 1): A simlet
generates a read/write request as well as a clock synchronization
request and sends it to the GM, which includes timing information,
i.e. the simlet’s local clock cycle, and this simlet stops advancing
its clock ticking and waits for the response from the GM.

@ Global Manager Handling Requests (Step 2): For read/write
requests, the GM pairs the data requester and responder between

simlets, following a producer-consumer model for ordered inter-
chiplet communication. For synchronization requests, the GM cal-
culates the next target clock cycle to be advanced for the simlet,
coordinating with other active simlets to maintain consistent tim-
ing across the system. In simulation stage 1, where inter-simlet
traffic delays are not known yet, the GM sets the clock cycle to
be advanced for the simlet to be the maximum cycle of the two
communicating simlets. In simulation stage 3, in contrast, the GM
takes into accounts Nol transmission latency from simulation stage
2. Here, the clock cycle to be advanced for the data-sending simlet
remains the maximum clock cycle of the two simlets, while the
data-receiving simlet’s clock cycle to be advanced is adjusted by
adding the corresponding Nol delay.

® Request Response (Step 3): After processing the request,
the GM returns a response to the simlet. For read/write requests,
this response indicates the readiness of the data transfer, allowing
the simlet to proceed with the requested inter-chiplet read or write
operation. For synchronization requests, this response specifies the
clock cycle to be advanced.

@ Data Transfer Execution/Clock Synchronization (Step 4):
Upon receiving the synchronization response, the simlet advances
its clock to the designated cycle. This step completes the clock
synchronization, ensuring that all simlets currently remain aligned
across the simulation. With synchronization confirmed, the simlet
performs the data transfer operation. This step may involve reading
or writing remote chiplet data according to the initial request.

By dynamically adjusting the synchronization points based on
actual inter-chiplet data exchange, the system achieves both high
simulation efficiency and accuracy.

4 Unified System Integration

The Unified Integration Interface (UIl) is a fundamental component
of the LEGOSim framework to support modular parallel simula-
tion. It is designed to provide a standardized framework for in-
tegrating diverse simulators—whether they model CPUs, GPUs,
DRAMs, or custom domain-specific accelerators (DSAs)— to simu-
late a multi-chiplet system in parallel. The UII abstracts simulator-
specific interfaces and harmonizes them under a unified API, provid-
ing benchmark/application-level APIs, system call mapping, data

523
524
525

526

528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

MICRO 2025, October 18-22, 2025, Seoul, Korea

@handling requests transmission latency 7,

e———w lime to start data transfer,

@handling requests clock synchronization

Time a

time to end data transfer

@sending read request D
Simlet 8 [
@ .
Global |waiting| Global |__| Global | ®resp
Manager pair | Manager Manager | permission !
SimletA |--
@sending write request

data
transfer

@ action:
data
transfer

(a) Workflow of the inter-simlet data transfer.

i i — .
Time

transmission latency 7,

SimletB --

ending syne reguest
sync
" @ :
Global |waiting| Global | | Global [Drespondipg the clock cycle
Manager [pair | Manager Manager | to be adyanced

sync
imlet A .
(@sending sync request

S ——
(b) Workflow of the inter-simlet clock synchronization.

data

@action:sync .
transfer

Figure 6: Workflow of the inter-simlet synchronization.

transfer management, and clock synchronization mechanisms. Fig-
ure 7 outlines its modules, which include:

1) Benchmark/Application-Level APIs and System Call Defini-
tion: The UII defines a standard set of benchmark-level APIs used
by chiplets for inter-chiplet communication and synchronization:
sendMessage() and receiveMessage(). When integrating a new sim-
let, these APIs must be mapped to the internal mechanisms of the
simulator as follows.

e For system-call based simulators (e.g., gem5 [45], Sniper
[25]), these APIs are implemented as custom syscalls (e.g.,
SYSCALL_REMOTE_READ and SYSCALL_REMOTE_WRIT
E) and processed by the syscall handling routine.

e For runtime-library-based simulators (e.g., GPGPU-Sim
[37]), these APIs are mapped to existing functions (e.g.,
cudaMemcepy()).

e For DSA simulators (e.g., Scale-sim [52]), these APIs are
embedded as function calls or files within the simulation
script.

2) Data Transfer Implementation: Data transfer between chiplets
in the UII is managed by functions such as sendSync(), receiveSync(),
write_data(), and read_data(). These functions coordinate data trans-
fer protocols with the GM and enable data transmission through
dedicated channels as follows.

e For CPU simulators (e.g., gem5 [45], Sniper [25]) , sendMes-
sage() / receiveMessage() are translated to be inter-simlet
data transmission in the syscall handling routines by file ex-
change, pipes, or shared memory in the host machine. Data
is transferred from and to this simlet’s internal simulated
memory.

e For GPU simulators (e.g., GPGPU-Sim [37]), additional
memory copy operations (e.g., cudaMemcpy()) are inserted
before/after calling sendSync() and receiveSync() to move
data between this simlet and others. These wrappers en-
sure that the GPU’s memory space remains consistent with
LEGOSim’s global model.

o For DSA simulators (e.g., Scale-sim [52]), UII writes inputs
to an interface file, executes the DSA script, then reads out-
put. sendMessage() is implemented by writing input data to
this file, or passing arguments to the Python configuration
function for the simlet. receiveMessage() reads output data
after simulation completes.

3) Clock Control: Given the diversity of simulation timing mod-
els, UII supports a flexible synchronization model to ensure that
heterogeneous simlets advance their respective local clock tick
correctly as follows.

o For cycle-accurate simulators (e.g., gem5 [45], GPGPU-Sim
[37]), their clock cycles are controlled. For example, gem5
uses an event-driven model of clock tick granularity, and
synchronization is managed by controlling tick. In GPGPU-
Sim, simulation progress is tracked using gpu_sim_cycle
and gpu_tot_sim_cycle. Clock ticking is controlled by these
variables in such simulators.

e For non-cycle-driven simulators (e.g., Sniper [25]), UIl in-
serts pseudo operations to artificially delay execution, such
as Sleep() to adjust the clock delay according to the syn-
chronization events.

e For DSA simulators (e.g., Scale-Sim [52]), which have no na-
tive clock or with simplified execution timeline: A block of
operations/computations is performed to obtain the execu-
tion time, which is reported to the GM for synchronization.

Below are examples of how it facilitates integration in Sniper
[25] , GPGPU-Sim [37] and Scale-Sim [52]:

Integration of Sniper [25]. Sniper, a CPU simulator, required
additional adaptation due to its non-cycle-driven execution. Custom
system calls are defined (SYSCALL_REMOTE_READ and SYSCALL_
REMOTE_WRITE) to map Sniper’s remote read/write operations to
UIl's sendMessage() and receiveMessage() functions. In the functional
model, these system call handling routine translates receiveSync(),
read_data(), sendSync(), and write_data() into inter-simlet message
passing. In the timing model, readSync() and writeSync() are used
for synchronization. However, since Sniper does not advance by
discrete clock cycles, a Sleep() function is inserted to adjust its

Benchmarks: API

iy

E] 1 /\':—:'»' Global
i | Data Transfer | | Clock Adjustment |E Manager
AT e

Figure 7: Modules of the UIIL

639
640
641
642
643
644
645
646
647
648
649
650

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

696

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730

LEGOSim: A Unified Parallel Simulation Framework for Multi-chiplet Heterogeneous Integration

MICRO 2025, October 18-22, 2025, Seoul, Korea

Table 3: Configurations used in the experiments.

Configurations Used in the Simulation

Sniper Configuration GPGPU-Sim Configuration MNSIM Configuration
Cores 8 x86_64 ISA # of SMs 80 Memristor Model RRAM
L1 D Cache 32KB, 8-way, 64B line, 4cycles, 1port Tensor Core 640 Weight Bit 8
L11 Cache 32KB, 4-way, 64B line, 4cycles Architecture NVIDIA Volta (Titan V) | Crossbar Size 24
L2 Cache 256KB, 8-way, 64B line, 8cycles, 1port L1 Cache 32KB DSA
L3 Cache 8192KB, 16-way, 64B line, 30cycles, 4ports L2 Cache 4.5MB # of MACs 128
memory size 2GB Global Buffer 64 KB (SRAM)
Configurations of chiplet interposer
Interposer Chiplet
Capacity 1.81 x 10% J/(m> - K) | Area 2500 mm? Chiplet Pitch 10 mm
Heat Thermal .. X R . 2
Conductivity 35 /(m - K) Thickness 0.1 mm Capacitance Density 300 nF/mm'
Inter-chiplet Transmission Energy Consumption 1.17 PJ/bit

execution timing according to the target clock cycles to be advanced,
ensuring accurate synchronization.

Integration of GPGPU-Sim [37]. GPGPU-Sim is used to simu-
late NVIDIA GPU architectures and relies on the CUDA runtime
environment. Within the LEGOSim framework, its sendMessage()
and receiveMessage() functions are mapped to CUDA cudaMemcpy(),
facilitating data transfer between this simlet and others. In terms
of timing synchronization, GPGPU-Sim records local clock by gpu_
sim_cycle and gpu_tot_sim_cycle and updates them according to
the target clock cycles to be advanced.

Integration of SCALE-Sim [52]. SCALE-Sim is integrated into
LEGOsim as simlet through executing the corresponding python
script with designated chiplet identifiers, topology, the workload of
NPU as input parameters. As SCALE-Sim has only timing model,
the functional model is implemented in a dedicated C++ model.
It receives input through receiveMessage() and transmits output
via sendMessage() as wrappers. Upon completion of the simulation,
the wrapper proceeds reading the execution time from SCALE-
Sim’s output logs. This execution time will be added to the time
get from readSync() and sent to other chiplets through writeSync().
Data is received using receiveSync() and read_data() and sent using
sendSync() and write_data().

By standardizing APIs, inter-chiplet communication data man-
agement, and clock synchronization, the UIIl enables seamless in-
teroperability between diverse simlets, reducing integration com-
plexity.

5 Evaluation

5.1 Experimental Setup

The experiments were performed on a 20 cores Intel(R) Xeon(R)
Gold 6133 CPU with 2.50GHz and 512G main memory server. The
benchmarks include parallel convolution (conv) [39], breadth-first
search (BFS) [14], matrix multiplication (matmul) [12], MLP [64],
ResNet [24] and Transformer [23]. Following architectures were
configured in the experiments: CPU-4GPU-NPU-3CiM, CPU-20GPU-
15NPU, CPU-3GPU, CPU-DSA-CiM-7GPU, CPU-DSA-CiM-47GPU,
CPU-DSA-CiM-97GPU and CPU-20GPU-15NPU. Sniper [25], GPGPU-
Sim [37], a custom-developed simulator mimicking the architecture
of the Eyeriss NPU, SCALE-Sim, and MNSIM were used as sim-
lets for the CPU, GPU, domain-specific accelerator (DSA), NPU,
and compute-in-memory (CiM), respectively. These heterogeneous
multi-chiplet systems cannot be simulated by most of the existing

Table 4: Configurations of SIMBA and CIM-based Accelerator.

Multi-chiplet System Architecture

SIMBA CiM-based Accelerator
Number of PEs 16 Activation Buffer ~ 150KB
Technology 16 nm FinFET | CiM Array Size 144KB
Voltage 0.42-1.2V Clock Frequency ~ 100MHz

PE Clock Frequency 0.16-2.0 GHz | CiM Type ReRAM
Global PE . CiM Array

Buffer Size 64 KiB Performance 1024 MACs per cycle
Routers Per Die-to-die .
Global PE 3 Connections 1.2Gbps/link
NoC Bandwidth 68 GB/s/PE

Microcontroller RISC-V

simulators listed in Table 1, except for LEGOsim. The detailed con-
figurations of each simulator are provided in Table 2. Two memory
protocols were configured in these experiments: HBM3 and DDRS5,
both with capacity of 24GB [1] [3]. The thermal parameters of the
interposer, as well as the core area and pitch of chiplets, are listed
in Table 3.

The transmission delay between adjacent chiplets is composed
of the following three parts: 1) packetization and depacketization
times (the values are obtained from [54] and [43]); 2) the transceiver
latency (the values are obtained from [21] and [63]); and 3) the
interposer wire delay and power models adopted from [31].

The inter-chiplet network topologies used in the experiment
are mesh, meshLL (mesh with nodes (x,y) to node (x + 1, y + 1)
connected by a long serial link) [20], NVL (a fat tree mimicking the
NVlink structure), star, and torus.

5.2 Validating Simulation Accuracy and
Analyzing Synchronization Overhead

To validate the fidelity of the simulator, the 4-chiplet, 8-chiplet,
and 32-chiplet SIMBA [55] architectures, as well as the 4-chiplet,
5-chiplet, 9-chiplet, and 18-chiplet CiM-based accelerator [13], were
simulated. In the CiM-based accelerator, each chiplet has CiM units
using ReRAM, on-chip SRAM buffers, and high-speed interconnec-
tions. The chiplets’ configurations in SIMBA and the CiM-based
accelerator are detailed in Table 4.

The ResNet-50 benchmark runs on the 4-chiplet, 8-chiplet, and
32-chiplet SIMBA architecture, while the Tiny-Yolo [33] benchmark
runs on the 4-chiplet, 5-chiplet, 9-chiplet, and 18-chiplet CiM-based
accelerator to compare its performance with the reported data from
these two references.

760
761
762
763

764

766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812

813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856

858
859
860
861
862
863
864
865
866
867
868
869
870

MICRO 2025, October 18-22, 2025, Seoul, Korea

GPU GPU

GPU CPU

(a) CPU-3GPU (b) CPU-4GPU-NPU-3CIM

X \ G|N|N|G|N|G
N|G|N|G|N|G
stage 0&1 stage 3
|} G|N|G|G|N|G =]
N|G|C|G|N|G
G|N|G|N|G|N
stage 2 stage 4
= G|G|IN|G|N|G =

(¢) CPU-4DSA-4DRAM

(d) CPU-20GPU-15NPU

Figure 8: Inter-chiplet network topologies of the multi-chiplet architectures in experiments.

1) To quantify the simulation error of SIMBA architecture, the

error ¢ is defined as follows,
ez Tim = Trepl 1)
max{Tsim, Tref}

where Tsim and T, ¢ are simulated execution cycles and referenced
execution cycles in [55] respectively.

The ¢ were 2.52%, 3.51% and 5.35% for 4-chiplet, 8-chiplet,and 32-
chiplet systems respectively for the SIMBA simulation as illustrated
in Table 5, which are quite low.

Table 5: Simulation accuracy validation.

SIMBA Multi-chiplet Architecture

Architecture | 4-chiplet 8-chiplet 32-chiplet

£ (%) 2.52 3.51 535

CiM-based Multi-chiplet Accelerator

Architecture | 4-chiplet 5-chiplet 9-chiplet 18-chiplet
ey (%) 2.71 4.68 2.69 5.79

2) To quantify the simulation error of the Tiny-Yolo model run-
ning on the CiM-based accelerator architecture [13], simulation
error &, is defined as follows,

Ui —
£y = [Usim Uref| @)
max{Usims Uref}
where Usjy, and Uy, f are simulated computing utilization and ref-
erenced [13] computing utilization receptively.

The ¢, were 2.71%, 4.68% , 2.69% and 5.79% for 4-chiplet, 5-chiplet,
9-chiplet and 18-chiplet systems respectively for the CIM-based
accelerator as illustrated in Table 5, which are quite low. The low
errors validate the high fidelity of LEGOSim in accurately modeling
system performance.

GE) 1.00 Bl Norm. Sync Count AW ggnc (%)
= 5 40__
-0.75 N 3
[\ =
S N o
@'0.50 \ 20 5
£ N o
So02s §
2 N

0.00 — N .o

0
°C 1Q? ;o2 1q? 12 TQ—?-STQ.XO’I:(Q—'L(()):"dema\’\d

Figure 9: Comparison of synchronization event counts of PC,
TQ, and OD synchronization methods.

5.3 Synchronization Time Comparison

Figure 9 compares the time of the proposed on-demand synchroniza-
tion (OD) with per-cycle synchronization (PC) and time quantum
synchronization (TQ) to simulate a-64 core system running the
MLP benchmark. The synchronization time of the nine synchro-
nization algorithms is normalized to that of PC. The inter-chiplet
interconnection network topology is shown in the Figure 8a. TQ-x
refers to synchronization occurring every x cycles. The OD ap-
proach reduces synchronization time by 99.9%, 99.9%, 99.8%, 99.7%,
99.4%, 98.1%, 96.6%, and 66.1% compared to PC, TQ-2, TQ-22, TQ-23,
TQ—24, TQ—25, TQ—lOZ, and TQ—103, respectively. Notably, TQ—lO3
exhibits a high synchronization error, whereas OD achieves high
accuracy. The synchronization error quantifies the error with dif-
ferent synchronization methods w.r.t. PC, which is defined as:

T —Tpc|

max{Ty, Tpc} ®)

Esync =
where n € {TQ — x,0D}, x € {2,2%,23,2% 25,102, 10%}. Here, T, is
total execution time with synchronization algorithm n. Ty, is the
total execution time in PC synchronization. Esync are 0% for OD,
and 0%, 0.04%, 0.12%, 0.66%, 0.87%, 1.9%, 8.6%, and 37.9% for PC, TQ-
2, TQ-22, TQ-23, TQ-2%, TQ-2°, TQ-10%, and TQ-103, respectively.
These results indicate that as the synchronization interval in the TQ
algorithm increases, &sync also increases. In contrast, on-demand
synchronization exhibits the lowest overhead while maintaining
high accuracy.

Figure 10 shows the time breakdown of sequential simulation,
PC, and OD. The time of the three synchronization methods is
normalized to the total simulation time of sequential simulation. Se-
quential simulation exhibits the highest chiplet-simulation time. PC

1.00 KR
[o20%0%]
£ 0.75 '0’0::’0‘

m
)
w
o

X EETTL

KRR
ot

botete!
/]

N
o
N
o
KR
20T,
30X
o
&
X
J
3

Sequential SimulationPer-cycle Sync Simulation Proposed Simulation

BB Total Simulation Time
Sync Simulation Time

EXX Chiplet-simulation Time
E=1 Nol-simulation Time

Figure 10: Simulation time comparison of three different
methods.

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

986

LEGOSim: A Unified Parallel Simulation Framework for Multi-chiplet Heterogeneous Integration

reduces simulation time but incurs both the highest synchroniza-
tion time. In contrast, OD has the lowest synchronization overhead
and the lowest total simulation time.

Compared to the chiplet-simulation time in sequential simulation
and the synchronization time in PC, the chiplet-simulation and
synchronization time with OD are reduced by 61.9% and 98.1%,
respectively. Furthermore, the total simulation time of LEGOSim
is reduced by 61.4% and 56.7% compared to sequential simulation,
and per-cycle synchronized parallel simulation, respectively.

5.4 Scalability Analysis

LEGOSim can be used to simulate large-scale multi-chiplet systems
on a single server. Table 6 compares the simulation times of 10-
chiplet, 50-chiplet, and 100-chiplet systems, all running the same
input sized MLP benchmark. The simulation times are normalized
to that of the 100-chiplet system. All three systems adopt a mesh
inter-chiplet interconnection network topology. The 10-chiplet, 50-
chiplet, and 100-chiplet configurations are CPU-DSA-CiM-7GPU,
CPU-DSA-CiM-47GPU, and CPU-DSA-CiM-97GPU, respectively.
The simulation times of the 50-chiplet and 10-chiplet systems are
46.6% and 12.3% of the 100-chiplet system’s simulation time, re-
spectively. In contrast, existing simulator cannot flexibly simulate
heterogeneous multi-chiplet system up to 100 chiplets.

Table 6: Simulation time comparison

Architecture 10-chiplet 50-chiplet 100-chiplet
Norm. Time 0.12 0.47 1

6 Case Studies

6.1 Exploring the Design Space of On-chip
Buffer and Inter-chiplet Interconnection
Network

In the first case study, we conducted a design space exploration
(DSE) using LEGOsim. The experiment was configured on a CPU-
20GPU-15NPU architecture with a mesh topology as inter-chiplet
interconnection network, as illustrated in Figure 8d, where “C”, “G”
and “N” are CPU, GPU and NPU chiplets, respectively. The ResNet-
50 benchmark was the workload. In the baseline configuration, each
GPU chiplet has 50 Streaming Multiprocessors. The NPU chiplet
adopts the SIMBA architecture. Additional configuration details
are provided in Table 7. The NoI bandwidth of this multi-chiplet
architecture is 100 GB/s.

In this setup, the 36 chiplets are divided into four groups, with
each group computing one or two stages of ResNet-50. To identify
the performance bottlenecks of this architecture when running
ResNet-50, running the ResNet-50 benchmark to this multi-chiplet
system involves following three steps: allocating tasks to different
chiplets, inserting the inter-chiplet communication (using the API
functions defined in Section 4) and synchronization.

In the first step, tasks are assigned to different chiplets based on
their computational workloads. Layer res2[a-c]_branch2c, res[2-
5]a_branchl, res3[a-d]_branch2c, res4[a-f]_branch2c, and res5[a-
c]_branch2c of ResNet-50 are allocated to NPU chiplets. Other

MICRO 2025, October 18-22, 2025, Seoul, Korea

Table 7: Configurations of the CPU-20GPU multi-chiplet
systems

GPU chiplet CPU chiplet
of SMs 50 # of Cores 8
Technology 4nm FinFET Technology 7nm FinFET
L1 Cache Size 128KB L1 Cache Size 512KB
Architecture Nvidia Hopper | L2 Cache Size 4MB
L2 Cache Size 50MB L3 Cache Size 16MB
Frequency 2GHz Base Frequency 3.2GHz

layers are allocated to GPU chiplets. In Figure 8d, res1 through res5
correspond to stages 0 through 4, respectively. The CPU chiplet is
the manager, distributing computation tasks to other chiplets.

In the second step, the tasks running on the GPU chiplets are
programmed using CUDA. The tasks on the NPU chiplets are im-
plemented by configuring a CSV topology file in SCALE-Sim. This
topology file defines the layers of the workload. In SCALE-Sim, con-
volution layers and other operations that can be expressed in terms
of equivalent GEMM operations are described using the M, N, K
format in the workload topology. The tasks running on the CPU
chiplets are programmed using C++.

Table 8: Performance comparison

Computation Buffer access Nol
Norm. Time 0.34 0.72 1

As shown in Table 8, the Network-on-Interposer (Nol) latency
and on-chip buffer access time are identified as the performance
bottlenecks in this case. The times of computation, buffer access,
and Nol are normalized to that of NoI latency. For example, chiplet
(0,0) spent 35.6% and 42.9% time in buffer access and waiting for
the remote data access. The breakdowns of a few chiplets’ perfor-
mances, which are normalized to the Nol latency of chiplet (3,0),
are shown in Figure 11. In what follows, the on-chip buffer size
and Nol bandwidth are selected as design variables to reduce the
overall execution time.

To model the impact of on-chip buffer size and Nol bandwidth
w.r.t. execution time, LEGOsim is run with different configurations.
The following performance model is obtained using the maximum

likelihood method [47]:

T=d+exp(a—bln(I+1)—cln(B+1)) (4)

9

A

]

S K3 <% < 190, - 4
(<] (- <] X X 1% .

SN N NN BN B RN
151 151 o] .\¥% o] £ o £ o
O < K2 6% P Ua% D P D X
1 4 ‘.‘ — \,“ %Y 1% 1% 1% % 1%
% % N o o o o o o
K K ol NS o R &4 ! &4 &4
% % 1% 4% P P P P D<A <
NG N NSH NSNS BN N o BN
9| (X{ (<] (X £ 4 1% 1% % 1%
o 15 0% tt?% % o o £ o o
154 0%l .\S% ol £ £ £ o R
NNied K BN 2 & & & b)
I I A A AN

8 N NG o N N NS NS NG Q&

Chiplet #
B Computation =3 Nol 522 Buffer access

Figure 11: Breakdown of the performances for selected
chiplets.

987

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044

1045
1046
1047
1048

1049

1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102

MICRO 2025, October 18-22, 2025, Seoul, Korea

Table 9: Configurations of reference architectures

Reference Reference
Power . .
A configurations 1 configurations 2
limit (W)
Buffer Nol Buffer Nol
size (MB) bandwidth size (MB) bandwidth
(GB/s) (GB/s)

6200 2 512 2 512

6300 8 512 10 512

6400 15 1024 17 1024

6500 23 1024 24 1024

6600 30 1024 33 1024

6700 40 2048 45 2048
1.00 ya— XX s o
[S o] %] P q % X
£ 33 & £ e b K
Fo0.75 955 £ 19584 g oo oo
oot 24 R o ! K
3 955 K 9% 5% g oo
50.50 B & el s o oo
900 K2 K o o £
£ b ol s oo 8] K
5025 b b 5% s £ K
2 B K g B B £
00 9] K g oo <
0.00 io2old KX A\\KXX R A X

6200.0 6300.0 6400.0 6500.0 6600.0 6700.0

Power Limit (W)
Ref. configurations 1

I optimized results BEXA Ref. configurations 2

Figure 12: Execution time comparison by varying power bud-
gets.

where a, b, ¢ and d are regression coefficients and I, T, B are Nol
bandwidth, total execution time, and buffer size of each chiplet.
Eqn. 4 has a regression error of 8%.

To explore the design space, an optimization problem is defined
to minimize the execution time under power constraint with power
models adopted as in [62]. NSGA-II [19] is used to solve this prob-
lem. For comparison, two reference architectures listed in Table 9
are used. Figure 12 shows that, under different power budgets, the
proposed solution achieves the lowest execution time. For example,
it reduces execution time by 30% and 27% compared to reference
configurations 1 and 2 under a power budget of 6109 W, respectively.
Execution time of each configuration is normalized to that of the
maximum execution time of reference configurations 1 and 2. This
example shows that LEGOsim can be used to identify performance
breakdowns and bottlenecks, generate datasets with different con-
figurations for performance modeling, which is used in design space
exploration (i.e., optimizing performance under power constraints).

6.2 Alleviating Computation Bottlenecks Using
LEGOsim

In this case study, we demonstrate how LEGOSim can be used to
flexibly and accurately compare various multi-chiplet architectures
to identify and address computational performance bottlenecks
and trade-offs inherent to these architectures. Initially, a baseline
architecture CPU-4GPU-NPU-3CiM, connected via a 3 X 3 mesh
inter-chiplet network, was configured. This setup, referred to as
the CPU-4GPU-NPU-3CiM architecture, was tasked with running
the parallel convolution benchmark with a convolution matrix of
size 128 X 128 X 3, are shown in Figure 8b.

To analyze performance, a key metric is defined, 7(,,) (com
putation-to-communication-latencyratioofchiplet(x, y)), as the
ratio of each chiplet’s execution time to its communication latency.

Figure 13 reveals that 7((), the computation-to-communication-
latency ratio of the GPU chiplet at (0,0), reaches the highest value
of 11.5. Indicating that the GPU chiplet at (0,0) is the bottleneck in
terms of computation.

To address this issue, we reconfigured the system by adding two
additional GPU chiplets and redistributing the workload previously
handled by GPU (0,0). After this adjustment, z(q o) is reduced to 7,
and the overall system execution time is decreased by 15%.

This case study highlights the effectiveness of LEGOSim for
evaluating the performance of different multi-chiplet architectures.

=0.39, n=160 cycle

Figure 13: Chiplet level task graph of the parallel convolution
benchmark with CPU-4GPU-NPU-CiM architecture, where
n is execution time.

6.3 Evaluating Different Inter-chiplet Network
Topology Configurations

For our first case study, LEGOSim was used to evaluate the impact of
different inter-chiplet network topologies on the multi-chiplet sys-
tem. Using the CPU-4GPU-DSA-CiM architecture, LEGOSim was
configured with various inter-chiplet network topologies, including
mesh, meshLL, NVL, and torus. These configurations were eval-
uated using benchmarks such as matmul, MLP, and Transformer,
with varying packet flit sizes.

Figure 14 compares the normalized execution times with dif-
ferent inter-chiplet network configurations. With a flit size of 4,
the matmul benchmark achieves the shortest execution time. The

Transformer Matmul

mesh mes\'\LL NVL gtar yorus mesh mes\'\LL NVL gtar yorus
(a) (b)
BFS MLP
@ 1.0 @ 1.0
;; 0.9 ;; 0.9
g 0.8 g 0.8
S0.7 207

mesh mes\‘\—‘— NVL gtar

© mm flit=2

torus

mesh meSh\—\— NVL gtar

o flit=4 (@)

forus

Figure 14: The execution times of (a) Transformer, (b) Mat-
mul, (c) BFS, (d) MLP with different inter-chiplet network
configurations.

10

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

1160

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

1218

LEGOSim: A Unified Parallel Simulation Framework for Multi-chiplet Heterogeneous Integration

execution times for the transformer, matmul, BFS, and MLP bench-
marks were reduced by 7%, 5.2%, 6.2%, and 5.6%, respectively, when
the flit size increases from 2 to 4.

A visualization tool for inter-chiplet traffic distribution of each
D2D interface is included in LEGOSim as shown in Figure 15.
Through this tool, researchers can observe the traffic volume at
each D2D interface and the number of packets transmitted between
chiplets, which can help researchers to find out the bottleneck of
the multi-chiplet system more easily.

14000
14000
o 12000 0 12000
10000 10000
1 1
8000 8000
< <
6000
5 6000)
4000
3 2000 3 2000
. 0 0
0 1 2 3 0 1 2 3
Y Y

(a) mesh (b) meshLL

Traffic volume
Traffic volume

Figure 15: Inter-chiplet network traffic distribution of the
matmul benchmark with (a) mesh and (b) meshLL as inter-
chiplet network topologies.

6.4 Evaluating HBM3 vs. DDR5 in a
CPU-4DSA-4DRAM Multi-chiplet System

For this case study, we examine the impact of different memory
protocols (HBM3 versus DDR5) in the CPU-4DSA-4DRAM multi-
chiplet system, using ResNet-50 as benchmark, where a DDR DRAM
with 32 GB is connected to the memory controller in the CPU
chiplets. The inter-chiplet interconnection topology is mesh as
shown in Figure 8c where each DSA has a memory controller (MC)
and UCle is used as D2D communication protocol.

Figure 16a shows that the total execution cycle of the system
with HBM 3 is 39.1% lower than that of the system with DDR 5. The
significant performance improvement demonstrates that HBM 3 is
a superior choice for bandwidth-intensive workloads, particularly
for deep learning inference tasks. These results, obtained through
LEGOSim, reinforce its capability to accurately model memory
hierarchy trade-offs in multi-chiplet architectures, making it an
effective tool for guiding system design decisions.

6.5 Evaluating UCle vs. PCle in a
CPU-4DSA-4DRAM Multi-chiplet System

Beyond memory protocols, D2D interconnection technology plays
a pivotal role in determining overall system performance. This case
study evaluates the impact of adopting Universal Chiplet Intercon-
nection Express (UCle) [56] and Peripheral Component Intercon-
nection Express (PCle) [5] as the D2D communication protocol in a
1CPU-4DSA-4DRAM multi-chiplet architecture. The inter-chiplet
network topology is shown in the Figure 8c. LEGOSim was used to
model and analyze both configurations to assess their impact on
execution time, focusing on inter-chiplet interconnection protocol
and communication time within the multi-chiplet system.

11

MICRO 2025, October 18-22, 2025, Seoul, Korea

Figure 16b shows that the total execution time of the system
with UCle is 16.08% lower than that of the system with PCIe. These
improvements highlight UCIe’s ability to minimize interconnec-
tion latency, making it a more efficient solution for chiplet-based
architectures.

=
=

N

DDR5 HBM 3
(a) HBM 3 vs DDR 5

§

Norm. cycles

o

Norm. cycles

o

PCle UCle
(b) UClIe vs PCle

Figure 16: Performance comparision.

The findings further validate LEGOSim’s ability to model inter-
connection trade-offs, demonstrating its effectiveness in evaluating
chiplet design choices. By capturing the performance impact of
different interconnection technologies, LEGOSim proves to be a
valuable tool for optimizing next-generation multi-chiplet systems.

7 Conclusion

In this paper, we proposed LEGOSim, a modular and unified paral-
lel simulation framework tailored for heterogeneous multi-chiplet
systems. LEGOSim supports seamless integration of diverse simula-
tors (simlets) as processes in parallel simulation, enabling accurate
and flexible modeling. To address synchronization bottlenecks, on-
demand synchronization was proposed, where synchronization
occur only upon inter-chiplet communication to reduce synchro-
nization overhead in parallel simulatoin. A decoupled simulation
strategy was proposed to mitigate the inter-chiplet communication
modeling overhead by decoupling chiplet simulation from inter-
chiplet communication modeling. The Unified Integration Interface
(UII) was proposed as a standard interface, allowing existing sim-
ulators like gem5, Sniper, and GPGPU-Sim to be integrated with
minimal code changes to support parallel simulation. Experimen-
tal result shows that, LEGOSim has modeling errors of 3.79% and
3.94% when validating against SIMBA and a CiM-based accelerator,
indicating high fidelity. LEGOSim also decreases synchronization
overhead by 99.9% and 66.1% compared to per-cycle synchroniza-
tion and time quantum, respectively. LEGOSim was showcased
to analyze the performance bottleneck and perform design space
exploration for various multi-chiplet systems. LEGOSim was open
sourced, and hopefully can facilitate design space exploration for
future large-scale multi-chiplet systems.

References

[1] [n.d.]. HBM3 IP Technical Bulletin.
urlhttps://www.synopsys.com/designware-ip/technical-bulletin/hbm3-ip-
dwtb.html.

[2] [n.d.]. Intel Distribution of OpenVINO toolkit.
urlhttps://software.intel.com/en-us/openvino-toolkit.

[3] [n.d.]. SK Hynix Details Its DDR5-6400 DRAM Chip.
urlhttps://www.anandtech.com/show/13999/sk-hynix-details-its-ddr56400-
dram-chip.

[4] [n.d.]. The SR-71 of computing: Intel Ponte Vecchio retires after five years.
urlhttps://www.jonpeddie.com/news/the-sr-71-of-computing-intel-ponte-
vecchio-retires-after-five-years/.

[5] 2022. PCI Express Base Specification Revision 6.0 Version 1.0.

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

1276

1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333

1334

MICRO 2025, October 18-22, 2025, Seoul, Korea

[11]

[12

[13

[14]

[15]
[16]

[17]

(18]

[19]

[20

[21]

[22]

[23]

[24

[25]

[26]
[27]

[28

[29]

[30

[31]

2025. LEGOSim. Link omitted to abide double-blind review policy; will be
available in the final version.

Niket Agarwal, Tushar Krishna, Li-Shiuan Peh, and Niraj K Jha. 2009. GARNET:
a detailed on-chip network model inside a full-system simulator. In Proc. IEEE
Int’l Symp. Perform. Anal. Syst. Softw. 33-42.

AMD. 2023. Zen 5 Architecture Overview. Whitepaper.

H. Angepat, D. Chiou, and E. S. Chung. 2014. Simulator Background. Springer
International Publishing, 7-24.

Yehia Arafa, Abdel-Hameed A Badawy, Gopinath Chennupati, Nandakishore
Santhi, and Stephan Eidenbenz. 2019. PPT-GPU: scalable GPU performance
modeling. IEEE Comput. Archit. Lett. 18, 1 (2019), 55-58.

M. Badr and N. E. Jerger. 2014. SynFull: synthetic traffic models capturing cache
coherent behaviour. ACM SIGARCH Computer Architecture News 42, 3 (2014),
109-120.

Grey Ballard, Christopher Siefert, and Jonathan Hu. 2016. Reducing communica-
tion costs for sparse matrix multiplication within algebraic multigrid. SIAM 7.
Sci. Comput. 38, 3 (2016), 203-231.

Jinshan Zhang Shunli Wang Xiaoyang Kang Lhua Zhang Mingyu Wang Bo Jiao,
Haozhe Zhu and Chixiao Chen. 2021. Computing utilization enhancement for
chiplet-based homogeneous processing-in-memory deep learning processors. In
Proc. Great Lakes Symp. VLSI. 241-246.

A. Bulug and K. Madduri. 2011. Parallel breadth-first search on distributed
memory systems. In Proc. SC Conf. 1-12.

G. Carneiro. 2010. NS-3: Network simulator 3. In UTM Lab Meeting. 4-5.
Vincenzo Catania, Andrea Mineo, Salvatore Monteleone, Maurizio Palesi, and
Davide Patti. 2015. Noxim: an open, extensible and cycle-accurate network on
chip simulator. In Proc. IEEE Int’l Conf. Appl.-Specific Syst., Archit. Processors.
162-163.

P. Y. Chen, X. Peng, and S. Yu. 2018. NeuroSim: a circuit-level macro model
for benchmarking neuro-inspired architectures in online learning. IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst. 37, 12 (2018), 3067-3080.

J. Cubero-Cascante, N. Zurstrafien, and J. Noller. 2023. parti-gem5: gem5’s Timing
Mode Parallelised. In Proc. Int’l Conf. Embedded Comput. Syst. 177-192.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation 6, 2
(2002), 182-197.

Yinxiao Feng, Yuchen Wei, Dong Xiang, and Kaisheng Ma. 2024. Evaluating
chiplet-based large-scale interconnection networks via cycle-accurate packet-
parallel simulation. In Proc. USENIX Annu. Tech. Conf. 731-747.

Yinxiao Feng, Dong Xiang, and Kaisheng Ma. 2023. Heterogeneous die-to-
die interfaces: enabling more flexible chiplet interconnection systems. In Proc.
IEEE/ACM Int’l Symp. Microarch. 930-943.

J.J. Gomez-Hernandez and E. F. Cassiraga. 1994. Theory and practice of sequen-
tial simulation. In Geostatistical Simulations Workshop. 111-124.

Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and Salman Avestimehr. 2021.
PipeTransformer: Automated elastic pipelining for distributed training of trans-
formers. arXiv (2021).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition.

W. Heirman, T. Carlson, and L. Eeckhout. 2012. Sniper: scalable and accurate
parallel multi-core simulation. In Proc. Int’l Summer School Adv. Comput. Archit.
91-94.

Intel. 2018. OpenCL Beignet Project. Technical Report. Intel.

C. Jiang, A. Jayarajan, and H. Lu. 2023. Arbitor: a numerically accurate hardware
emulation tool for DNN accelerators. In Proc. USENIX Technical Conference. 519
536.

H. Jiang. 2022. Intel’s Ponte Vecchio GPU: Architecture, Systems Software. In
Proc. IEEE Hot Chips Symp. 1-29.

Nan Jiang, George Michelogiannakis, Daniel Becker, Brian Towles, and William J
Dally. 2010. BookSim 2.0 user’s guide. Technical Report. Stanford Univ.

M. Jung, J. Zhang, and A. Abulila. 2017. SimpleSSD: modeling solid state drives
for holistic system simulation. IEEE Computer Architecture Letters 17,1 (2017),
37-41.

MD Arafat Kabir and Yarui Peng. 2020. Chiplet-package co-design for 2.5D
systems using standard ASIC CAD tools. In Proc. Asia South Pac. Des. Autom.
Conf. 351-356.

Mahmoud Khairy, Zhesheng Shen, Tor M Aamodt, and Timothy G Rogers. 2020.
Accel-sim: an extensible simulation framework for validated GPU modeling. In
Proc. ACM/IEEE Int’l Symp. Comput. Archit. 473-486.

Ivan Khokhlov, Egor Davydenko, and Ilya Osokin. 2020. Tiny-YOLO Object
Detection Supplemented with Geometrical Data. arXiv.

K. Shafie Khorassani, J. Hashmi, and C. H. Chu. 2021. Designing a ROCm-
aware MPI library for AMD GPUs: early experiences. In Proc. Int’l Conf. High
Performance Computing. 118-136.

Hyesoon Kim, Jaekyu Lee, Nagesh B Lakshminarayana, Jaewoong Sim, Jieun
Lim, and Tri Pho. 2012. Macsim: a CPU-GPU heterogeneous simulation framework
user guide. Technical Report. Georgia Inst. Technol. 1-57 pages.

12

(36]

(37]

(38]

(39]

[41]

[42

[43

[44]

[46

[47

(48]

[49]

[54

[55

[56

[57

Y. Kim, W. Yang, and O. Mutlu. 2015. Ramulator: a fast and extensible DRAM
simulator. IEEE Computer Architecture Letters 15, 1 (2015), 45-49.

Chao-Lin Lee, Min-Yih Hsu, Bing-Sung Lu, Ming-Yu Hung, and Jenq-Kuen Lee.
2020. Experiment and enabled flow for GPGPU-sim simulators with fixed-point
instructions. J. Syst. Archit. 111 (2020), 101783.

D. Lee, D. Hong, and W. Choi. 2022. MQSim-E: an enterprise SSD simulator. IEEE
Computer Architecture Letters 21, 1 (2022), 13-16.

Sunwoo Lee, Dipendra Jha, Ankit Agrawal, Alok Choudhary, and Wei-keng Liao.
2017. Parallel deep convolutional neural network training by exploiting the
overlapping of computation and communication. In Proc. IEEE Int’l Conf. High
Perform. Comput. 183-192.

M. Leinhauser, J. Young, and S. Bastrakov. 2021. Performance analysis of PICon-
GPU: particle-in-cell on GPUs using NVIDIA’s NSight systems and NSight compute.
Technical Report. Oak Ridge National Laboratory.

H. Li, J. Li, and A. Kaufmann. 2022. Simbricks: end-to-end network system
evaluation with modular simulation. In Proc. ACM SIGCOMM Conf. 380-396.
Shang Li, Zhiyuan Yang, Dhiraj Reddy, Ankur Srivastava, and Bruce Jacob. 2020.
DRAMSim3: a cycle-accurate, thermal-capable DRAM simulator. IEEE Comput.
Archit. Lett. 19, 2 (2020), 106—109.

Xiaoyan Li, Zizheng Dong, and Shuaipeng Li. 2023. MUG5: Modeling of Universal
Chiplet Interconnect Express (UCle) Standard Based on gem5. IEEE Int’l Conf.
ASIC (2023), 1-4.

Q. Liu, M. Zapater, and D. Atienza. 2025. Gem5-acceSys: enabling system-level
exploration of standard interconnects for novel accelerators. arXiv (2025).
Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico
Amslinger, Matteo Andreozzi, Adria Armejach, Nils Asmussen, Brad Beckmann,
Srikant Bharadwaj, et al. 2020. The gem5 simulator: version 20.0+. arXiv Preprint
(2020).

Jason E Miller, Harshad Kasture, George Kurian, Charles Gruenwald, Nathan
Beckmann, Christopher Celio, Jonathan Eastep, and Anant Agarwal. 2010.
Graphite: a distributed parallel simulator for multicores. In Proc. Int’l Symp.
High-Perform. Comput. Archit. 1-12.

In Jae Myung. 2003. Tutorial on maximum likelihood estimation. J. Mathematical
Psychology 47, 1 (2003), 90-100.

J. Power, J. Hestness, and M. S. Orr. 2014. gem5-gpu: a heterogeneous cpu-gpu
simulator. IEEE Computer Architecture Letters 14, 1 (2014), 34-36.

Y. M. Qureshi, W. A. Simon, and M. Zapater. 2019. Gem5-x: a gem5-based system
level simulation framework to optimize many-core platforms. In Proc. Simulation
Conf. 1-12.

A.F.Rodrigues, K. S. Hemmert, and B. W. Barrett. 2011. The structural simulation
toolkit. ACM SIGMETRICS Performance Evaluation Review 38, 4 (2011), 37-42.
S. Rogers, J. Slycord, and M. Baharani. 2020. gem5-salam: a system architecture
for LLVM-based accelerator modeling. In Proc. Int’l Symp. Microarch. 471-482.
Ananda Samajdar, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar
Krishna. 2018. Scale-sim: systolic CNN accelerator simulator. arXiv Preprint
(2018).

D. Sanchez and C. Kozyrakis. 2013. ZSim: fast and accurate microarchitectural
simulation of thousand-core systems. ACM SIGARCH Comput. Archit. News 41, 3
(2013), 475-486.

Fabian Schétzle, Carlos Falquez, and Stefan Heinen. 2024. Modeling methodol-
ogy for multi-die chip design based on gem5/SystemC co-simulation. In Proc.
Workshop on Rapid Simul. and Perform. Eval. for Design. 35-41.

Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian Zimmer,
Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,
Priyanka Raina, et al. 2019. Simba: Scaling Deep-Learning Inference with Multi-
Chip-Module-Based Architecture. In Proc. IEEE/ACM Int’l Symp. Microarchitec-
ture. 14-27.

Debendra Das Sharma, Gerald Pasdast, Zhiguo Qian, and Kemal Aygun. 2022.
Universal Chiplet Interconnect Express (UCIe): an open industry standard for
innovations with chiplets at package level. IEEE Trans. Compon. Packag. Manuf.
Technol. 12, 9 (2022), 1423-1431.

Yifan Sun, Trinayan Baruah, Saiful A Mojumder, Shi Dong, Xiang Gong, Shane
Treadway, Yuhui Bao, Spencer Hance, Carter McCardwell, Vincent Zhao, et al.
2019. MGPUSim: enabling multi-GPU performance modeling and optimization.
In Proc. Int’l Symp. Comput. Archit. 197-209.

Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli.
2012. Multi2Sim: a simulation framework for CPU-GPU computing. In Proc. Int’l
Conf. Parallel Archit. Compil. Tech. 335-344.

A. Varga. 2010. OMNeT++. Springer Berlin Heidelberg, 35-59.

Jun Wang, Jesse Beu, Rishiraj Bheda, Tom Conte, Zhenjiang Dong, Chad Kersey,
Mitchelle Rasquinha, George Riley, William Song, He Xiao, and other. 2014.
Manifold: a parallel simulation framework for multicore systems. In Proc. IEEE
Int’l Symp. Perform. Anal. Syst. Softw. 106-115.

Xiaohang Wang, Yifan Wang, Yingtao Jiang, Amit Kumar Singh, et al. 2025. On
Task Mapping in Multi-chiplet Based Many-core Systems to Optimize Inter-and
Intra-chiplet Communications. IEEE Trans. Computers 74, 2 (2025).

X. Wang, M. Xu, A. K. Singh, Y. Jiang, and M. Yang. 2025. On Optimizing Inter-
and Intra-Chiplet Interconnection Topologies for Robust Multi-Chiplet Systems.

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

1392

1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449

1450

LEGOSim: A Unified Parallel Simulation Framework for Multi-chiplet Heterogeneous Integration MICRO 2025, October 18-22, 2025, Seoul, Korea

IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems (2025). behavior-level modeling tool for processing-in-memory architectures. IEEE
[63] Bingyi Ye, Kai Sheng, and Weixin Gai. 2023. A 2.29-pJ/b 112-Gb/s Wireline Trans. Comput.-Aided Design Integr. Circuits Syst. 42, 11 (2023), 4112-4125.

Transceiver With RX Four-Tap FFE for Medium-Reach Applications in 28-nm [66] L. Zuolo, C. Zambelli, and R. Micheloni. 2017. Ssdexplorer: a virtual platform for

CMOS. IEEE §. Solid-State Circuits 58, 1 (2023), 19-29. SSD simulations. Solid-State-Drives (SSDs) Modeling: Simulation Tools Strategies
[64] H. Zhang. 2018. Distributed deep learning training with Horovod. arXiv (2018). (2017), 41-65.

[65] Zhenhua Zhu, Hanbo Sun, Tongxin Xie, Yu Zhu, Guohao Dai, Lixue Xia, Dimin
Niu, Xiaoming Chen, Xiaobo Sharon Hu, Yu Cao, et al. 2023. MNSIM 2.0: a

13

1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Limitations of Existing Simulators in Modular Integration
	2.2 Limitations of Existing Simulator Synchronization Schemes

	3 LEGOSim Architecture and Design Principles
	3.1 Overview of LEGOSim
	3.2 Decoupling Inter-chiplet Communication Modelling from Chiplet Simulation
	3.3 On-Demand Synchronization Mechanism

	4 Unified System Integration
	5 Evaluation
	5.1 Experimental Setup
	5.2 Validating Simulation Accuracy and Analyzing Synchronization Overhead
	5.3 Synchronization Time Comparison
	5.4 Scalability Analysis

	6 Case Studies
	6.1 Exploring the Design Space of On-chip Buffer and Inter-chiplet Interconnection Network
	6.2 Alleviating Computation Bottlenecks Using LEGOsim
	6.3 Evaluating Different Inter-chiplet Network Topology Configurations
	6.4 Evaluating HBM3 vs. DDR5 in a CPU-4DSA-4DRAM Multi-chiplet System
	6.5 Evaluating UCIe vs. PCIe in a CPU-4DSA-4DRAM Multi-chiplet System

	7 Conclusion
	References

