

University of Essex

Research Repository

On Improving the Performance of Intra- and Inter-chiplet

Interconnection Networks in Multi-chiplet Systems for

Accelerating FHE Encrypted Neural Network Applications

Accepted for publication in Transactions on Embedded Computing Systems.

Research Repository link: https://repository.essex.ac.uk/41252/

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers

may not be reflected in this version. For the definitive version of this publication, please refer to the

published source. You are advised to consult the published version if you wish to cite this paper.

https://dl.acm.org/journal/tecs

www.essex.ac.uk

On Improving the Performance of Intra- and Inter-chiplet
Interconnection Networks in Multi-chiplet Systems for
Accelerating FHE Encrypted Neural Network Applications

Fully Homomorphic Encryption (FHE) is regarded as a promising way to protect data privacy with encrypted
computation. Due to high computation overhead, hardware based FHE accelerators were proposed to speed
up FHE applications. To support complicated FHE-encrypted neural network applications, multi-chiplet
based FHE accelerators were further proposed for scaling up system size, whereas one of the challenges is
designing efficient intra- and inter-chiplet interconnection networks to accelerate data transfer. Conventional
regular topologies like mesh or Kite either lead to high inter-chiplet transmission latency or excessive power
consumption as these topologies assume uniform bandwidth or radix for nodes/links, ignoring the highly
irregular distribution of inter-chiplet communication volumes. On the other hand, the problem of generating
customized intra- and inter-chiplet interconnection networks has high complexity and previous network-
on-chip topology generation works cannot efficiently improve the intra- and inter-chiplet interconnection
networks. In this paper, the intra- and inter-chiplet interconnection optimization problem is defined, aiming
to minimize the execution time of FHE applications under cost and power constraints. To efficiently solve this
problem, we propose a bilevel optimization algorithm, which decomposes the problem into three sub-problems:
(1) FHE parameters selection, (2) task-to-core mapping, and (3) intra-/inter-chiplet interconnection network
topology generation. These sub-problems are then solved iteratively. Experimental results demonstrate that
our proposed method reduces execution time by 51.66%, 43.16%, 39.44%, 43.34%, and 27.70% compared to REED
and four multi-chiplet based FHE accelerators with mesh, Kite, Butterfly, and Florets as inter-chiplet networks.
Therefore, the proposed method can effectively accelerate FHE applications on large-scale multi-chiplet
systems.

Additional Key Words and Phrases: Multi-chiplet Systems; Intra- and Inter-chiplet Interconnection Network
optimization

ACM Reference Format:
. 2025. On Improving the Performance of Intra- and Inter-chiplet Interconnection Networks in Multi-chiplet
Systems for Accelerating FHE Encrypted Neural Network Applications. ACM Trans. Embedd. Comput. Syst. 1,
1 (August 2025), 23 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Fully Homomorphic Encryption (FHE) has been regarded as a promising solution to privacy
computing. It enables computations on encrypted data, supporting privacy-preserving machine
learning. However, due to ciphertext expansion (up to a million times), FHE operations are 10,000
to 100,000 times slower than plaintext computation [45], with some operations requiring tens of
MBs to GBs of auxiliary data [45]. Therefore, hardware based FHE accelerators were proposed to
speed up the computation, including F1 [45] , Ark [29] , BTS [31] , REED [3], etc. To further sustain
the scaling of big chips, multi-chiplet integration technology enables multiple dies/chiplets to be
integrated with interposers to overcome the area wall. Multi-chiplet based FHE accelerators were

Author’s Contact Information:

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1558-3465/2025/8-ART
https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: August 2025.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

2

proposed [18] where complicated FHE applications (e.g. FHE encrypted neural networks) can be
supported.
One of the design challenges is to find an optimal intra- and inter-chiplet interconnection

network architecture, which has key impact on the overall system performance [3, 18]. As shown
in Fig 1, the topologies of (a) ring-ring and (b) mesh-mesh as the inter-chiplet and intra-chiplet
interconnection networks. Although there are widely used topologies like mesh, they lead to
sub-optimal transmission efficiency. Fig. 2(a) shows that for a 9-chiplet FHE accelerator running
CKKS_ResNet50 with each chiplet having 9 Ark [29] style processors and using mesh/Kite [6]
as inter-chiplet interconnection network topologies, Kite [6] reduces execution time by 10.4%
compared to mesh. To see the reason, Fig. 3 shows the inter-chiplet communication volumes,
showing a high degree of non-uniformity, whereas the ratio of the maximum and minimum volume
of inter-chiplet communication demands is as much as 10.4x. Therefore, regular topologies like
mesh or ring cannot effectively accelerate communication flows with high volumes as all links are
uniform. More recently proposed inter-chiplet interconnection network topologies like Kite [6]
increase the number of links and thus improve transmission performance. However, the increase
in link number and radix of each router also increases power consumption by 44.3% as shown in
Fig. 2(b).

chiplet
micro-bump

interposer
C4-bump

(a) ring-ring topology: both inter- and intra-chiplet
interconnection networks are ring

chiplet core chiplet
micro-bump

interposer
C4-bump

(b) mesh-mesh topology: both inter- and intra-
chiplet interconnection networks are mesh

chiplet core

Fig. 1. The topologies of (a) ring-ring and (b) mesh-mesh as the inter-chiplet and intra-chiplet interconnection
networks.

Therefore, customized inter-chiplet interconnection network design becomes amust that achieves
high power efficiency by considering the irregularity in the traffic distribution of FHE applications.
However, the problem of generating customized intra- and inter-chiplet interconnection network
has high complexity due to its huge design space. Assume that there are 𝑛 core/D2D units, there
are 𝑂 (2𝑛2) different topologies, which leads to huge number of design options. Although there are
customized network topology generation works in the network-on-chip (NoC) area [12, 39, 44, 63],
they cannot be used for generating intra- and inter-chiplet interconnection networks due to the
following reasons: (1) They are unaware of the hierarchical nature of intra- and inter-chiplet
interconnection networks and the constraints of the D2D interfaces and interposers. (2) Beside
topology generation, task-to-core mapping and FHE parameters selection are key to the traffic
distribution of inter-chiplet interconnection networks, which are not considered in these works.

To solve this problem, in this paper, an intra- and inter-chiplet interconnection network optimiza-
tion problem is defined and solved. We start by modeling the latency and application execution time
w.r.t. to intra- and inter-chiplet interconnection network parameters and task-to-core mapping via
graph models. An optimization problem is formulated to minimize FHE application execution time
under cost and power constraints. To solve this problem, we propose an efficient algorithm using a
bilevel optimization strategy to (1) generate intra- and inter-chiplet interconnection network, (2)
perform task-to-core mapping, and (3) select key FHE parameters. Experimental results confirm
that our approach improves performance for FHE applications. Compared to REED [3] and four

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: August 2025.

On Improving the Performance of Intra- and Inter-chiplet Interconnection Networks in Multi-chiplet Systems for
Accelerating FHE Encrypted Neural Network Applications 3

multi-chiplet systems with mesh, Kite, Butterfly and Florets [48] as their respective inter-chiplet
interconnection network topologies, our proposed scheme reduces the application execution time
by 51.66%, 43.16%, 39.44%, 43.34%, and 27.70% respectively. Therefore, the proposed scheme is
suitable to improve the performance of large-scale multi-chiplet systems.

Execution Time Comparison (normalized)

0.0

0.5

1.0

(a)

Power Comparison (normalized)

(b)
0.0

0.5

1.0

Fig. 2. Execution time and power consumption comparison be-
tween multi-chiplet systems, with intra- and inter-chiplet inter-
connection networks set to be mesh and Kite. The execution time
and power consumption of Kite are normalized to those of mesh.
The benchmark is CKKS_Resnet50.

Inter-chiplet Communication Volume (normalized)

Chiplet 0 Chiplet 1 Chiplet 2

Chiplet 3 Chiplet 4 Chiplet 5

Chiplet 6 Chiplet 7 Chiplet 8

1.000 0.077

0.077

1.000 0.115

1.000

0.201 0.096

0.235

0.691

10.4x

difference

Fig. 3. The inter-chiplet communica-
tion volumes. All the inter-chiplet com-
munication volumes are normalized to
that between chiplets 0 and 1.

The reminder of the paper is organized as follows. Section II provides a survey of related
work. In Section III, the system model for FHE applications running on multi-chiplet systems is
formally defined, followed by the problem formulation. Section IV details the bilevel optimization
algorithm, solving the sub-problems of (1) FHE parameters selection, (2) task-to-core mapping, and
(3) intra-/inter-chiplet interconnection network generation. Section V presents the evaluation of
experimental results. Finally, Section VI concludes the paper.

2 Related Work
2.1 Preliminaries on FHE
Fully Homomorphic Encryption (FHE) allows performing arbitrary arithmetic on encrypted plain-
text values, via appropriate operations on their ciphertexts. Decrypting the resulting ciphertext
yields the same result as if the operations were performed directly on plaintext values [45]. BGV
[8], BFV [7], GSW [25], CKKS [15], and TFHE [16] are popular FHE schemes. In our work, we use
CKKS as it supports float point arithmetic, making it suitable for machine learning applications.

In CKKS, a message, 𝑋 , which is a vector of complex numbers, is encoded to a plaintext,𝑚(𝑋) =
𝑁∑
𝑖=0
𝑐𝑖𝑋

𝑖 , represented as a polynomial in a cyclotomic polynomial ring R𝑄 = Z𝑄 [𝑋]/
[
𝑋𝑁 + 1

]
[31].

The coefficients {𝑐𝑖 } are integers modulo𝑄 and the polynomial degree is𝑁 , which is a power-of-two
integer, typically ranging from 210 to 218. For a given 𝑁 , up to 𝑁

2 complex numbers can be packed
into a single plaintext, with each element called a slot. After encoding (or packing), element-wise
multiplication (mult) and addition between two messages can be performed through polynomial
operations. Then, the plaintext𝑚(𝑋) ∈ R𝑄 is encrypted as,

𝑐𝑡 = (𝑏 (𝑋) , 𝑎 (𝑋)) = (𝑎 (𝑋) · 𝑠 (𝑋) +𝑚 (𝑋) + 𝑒 (𝑋) , 𝑎 (𝑋)) (1)
where 𝑠 (𝑋) ∈ R𝑄 is a secret key, 𝑎(𝑋) ∈ R𝑄 is a random polynomial, and 𝑒 (𝑋)is a small Gaussian
error polynomial required for LWE security guarantee. In CKKS, 𝑐𝑡 is decrypted by computing
𝑚′ (𝑋) = 𝑐𝑡 · (1,−𝑠 (𝑋)) =𝑚 (𝑋) + 𝑒 (𝑋), which approximates to𝑚(𝑋) with a small error.

2.2 FHE Accelerator Design
In [57], [45], [17], and [31], FHE accelerators NTTFusion, F1, Trinity, and BTS were proposed,
with specially designed function units of NTT, modular addition, modular multiplication, and

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: August 2025.

4

bootstrapping. Alchemist [38] adopts a novel slot-based data management scheme and utilizes
finer-grained low-level arithmetic units to accelerate cross-scheme FHE. HEAP [2] uses the CKKS
and the TFHE schemes for the non-bootstrapping and bootstrapping steps to accelerate FHE.
UFC [64] unifies cryptographic primitives required for all operations in hybrid FHE workflows,
enabling high hardware utilization across multiple FHE schemes. The work in [37] accelerates
NTT/INTT by designing a scalable and conflict-free memory mapping algorithm and a flexible, no-
stall hardware/software pipeline. PPGNN [58] uses a high-precision arithmetic-logic integrated FHE
algorithm tailored for GNN inference. CraterLake [46] is a hardware architecture that efficiently
scales to very large ciphertexts, featuring novel functional units to accelerate key kernels. CiFHER
[30] and REED [3] adopted MCM and multi-chiplet integration to scale system size. Poseidon [59] is
an FPGA-based FHE accelerator, which decomposes fully homomorphic encryption operations into
reusable fine-grained operators (e.g., modular operations, NTT), and includes an optimized NTT
fusion algorithm and a hardware-friendly automorphism operation to maximize computational
parallelism and bandwidth efficiency under limited resources. FAB [1] adopts algorithm-architecture
co-optimization through decomposed Key-Switching operations and enhanced modular reduction
techniques. The accelerator integrates HBM-driven heterogeneous memory hierarchies with multi-
FPGA task parallelism, enabling full-parameter-set bootstrappable homomorphic encryption on
FPGA platforms. TensorFHE [19] accelerates FHE by leveraging GPU tensor cores for optimized
NTT computations and employing operation-level batching to maximize data parallelism.

2.3 Inter-chiplet Interconnection Network Design
Bharadwaj et al. proposed the Kite topology [6]. It selects either one of the straight or diagonal
links as the longest link to reduce network diameter. Feng et al. proposed a method [23] to scale
large high-radix inter-chiplet interconnection networks with 2D-mesh-based chiplets. Feng et al.
proposed a switch-less Dragonfly topology [21]. Lakhotia et al. proposed PolarFly [32], a diameter-2
topology constructed from Erdős-Rényi polarity graphs with router radix 𝑘 = 𝑞 + 1, where 𝑞 is a
prime power. However, it restricts radix choices and thus fails to generate flexible and application-
specific topologies. Wan et al. proposed a five-level Butterfly fat tree (BFT-like) topology [54] that
is suitable for wafer-scale computing systems. Cao et al. proposed an automated design framework
called CINT-AD [11] for inter-chiplet interconnection network topology generation. However,
it assumes symmetric traffic patterns, which might lead to low performance with high irregular
communication patterns of FHE applications.
Unlike prior efforts such as [10, 13, 34, 48, 60, 61] which focus on accelerating plaintext neural

network inference with different traffic patterns, our work targets the unique characteristics of
homomorphically encrypted applications, including irregular inter-chiplet communication patterns
of ciphertext computations.

2.4 Design Space Exploration For Plaintext Neural Networks
Gemini [10] uses a layer-centric encoding method and a co-exploration framework for architecture
and mapping, leveraging simulated annealing to optimize inter-chiplet communication. HPPI
[34] is a reconfigurable photonic interconnection network with wavelength division multiplexing
(WDM) offering four communication patterns. It dynamically selects the optimal pattern via a
lightweight neural network for communication-aware customization across convolutional layers.
INDM [60] is a hierarchical interconnection network combining a multi-ring intra-chiplet network
and a cluster-based inter-chiplet network, along with inter-chiplet communication-aware dataflow
mapping to minimize traffic congestion during DNN layer switching. M2M [61] is designed as a fine-
graine mapping framework that integrates temporal-spatial task scheduling, communication-aware

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: August 2025.

On Improving the Performance of Intra- and Inter-chiplet Interconnection Networks in Multi-chiplet Systems for
Accelerating FHE Encrypted Neural Network Applications 5

mapping, and a QoS management policy for inter-chiplet links, aiming at improving communication
efficiency in multi-DNN workloads.

However, these works cannot optimize FHE parameters, task-to-core mapping, and inter-chiplet
interconnection networks simultaneously.

3 System Model and Problem Definition
3.1 System Model
In CKKS, a ciphertext is represented by a polynomial pair ⟨𝑐0, 𝑐1⟩, where 𝑁 denotes the polyno-
mial degree. The modulus 𝑞 is decomposed into 𝐿 primes 𝑞1, . . . , 𝑞𝐿 for leveled operations. The
Key-Switching is the most costly operation. The evaluation key (evk) for Key-Switching used in
homomorphic multiplication and rotation can be further decomposed into 𝑑𝑛𝑢𝑚 slices. The choice
of 𝑑𝑛𝑢𝑚 impacts the performance, which is considered as a decision variable in this paper.

The CKKS encrypted neural network inference application is modeled by a task graph𝐺𝐹 (𝑉 , 𝑆),
where 𝑉 is the set of tasks and 𝑆 is the set of communications between tasks. Each task 𝑣𝑖 ∈ 𝑉 is a
CKKS operator such as homomorphic addition (HAdd), homomorphic multiplication (HMult), and
Key-Switching operation etc. Each task has two weights, 𝜔 (𝑣𝑖) is the execution time of the task.
The edge 𝑠𝑖, 𝑗 =

(
𝑣𝑖 , 𝑣 𝑗

)
∈ 𝑆 is the communication between tasks 𝑣𝑖 and 𝑣 𝑗 , and the weight 𝜔

(
𝑠𝑖, 𝑗

)
is

the traffic volume between them. The second weight 𝑡
(
𝑣𝑖 , 𝑣 𝑗

)
is the communication latency from

task 𝑣𝑖 to task 𝑣 𝑗 .
In a multi-chiplet system architecture, multiple chiplets in the system are connected by an

inter-chiplet network. Chiplets in the system are denoted as 𝑅1, 𝑅2 ..., 𝑅𝑛 . The number of cores in 𝑅 𝑗
is denoted as

��𝑅 𝑗 ��, and 𝑛𝑅 is the total number of chiplets in the system, 𝑏 𝑗 is the memory capacity
of chiplet 𝑗 . A multi-chiplet system is modeled by a graph 𝐺𝐶 (𝑈 , 𝐸), where𝑈 is the set of cores
following the architecture in Ark [29] and each core has NTT, INTT, Automorphism, Multiply-Add
units, etc., and a global buffer. 𝐸 is the set of links between cores. Each vertex 𝑢𝑖, 𝑗 ∈ 𝑈 is core 𝑖
in chiplet 𝑗 , and 𝑒𝑖1, 𝑗1,𝑖2, 𝑗2 ∈ 𝐸 is the link between 𝑢𝑖1, 𝑗1 and 𝑢𝑖2, 𝑗2 whose weight 𝜔

(
𝑒𝑖1, 𝑗1,𝑖2, 𝑗2

)
is the

transmission latency between 𝑢𝑖1, 𝑗1 and 𝑢𝑖2, 𝑗2 if they are connected. Otherwise, 𝜔
(
𝑒𝑖1, 𝑗1,𝑖2, 𝑗2

)
is set to

be +∞. A binary variable 𝑐𝑖1, 𝑗1,𝑖2, 𝑗2 indicating the connectivity between nodes is defined as follows.

𝑐𝑖1, 𝑗1,𝑖2, 𝑗2 =

{
1, there is a link between 𝑢𝑖1, 𝑗1 and 𝑢𝑖2, 𝑗2
0, otherwise

(2)

The count of die to die (D2D) interfaces in chiplet 𝑘 is denoted as 𝑑𝑘 , and the D2D interfaces in the
chiplet 𝑘 are indexed by 𝑢 |𝑅𝑘 |+1,𝑘 , ..., 𝑢 |𝑅𝑘 |+𝑑𝑘 ,𝑘 within chiplet 𝑘 . According to [10], we assume that
each chiplet has no more than 4 D2D interfaces for inter-chiplet communication. The D2D interfaces
within a chiplet can possibly connect to any core within the same chiplet. This connectivity is
indicated by binary variables 𝑐𝑖,𝑘, |𝑅𝑘 |+𝑚,𝑘 , which represent the connectivity of the D2D interface of
index𝑚 in chiplet 𝑘 .

A variable 𝜋𝑖, 𝑗,𝑘 is defined to denote the mapping of task 𝑣𝑖 to core 𝑢 𝑗,𝑘 :

𝜋𝑖, 𝑗,𝑘 =

{
1, if 𝑣𝑖 is mapped to 𝑢 𝑗,𝑘
0, otherwise

(3)

The function𝑀 (𝑣𝑖) returns the core 𝑢 𝑗,𝑘 that runs task 𝑣𝑖 :

if ∀𝜋𝑖, 𝑗,𝑘 = 1, 𝑀 (𝑣𝑖) = 𝑢 𝑗,𝑘 (4)

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: August 2025.

6

3.2 Latency Model
The latency model estimates the transmission latency between two cores assuming a deterministic
routing algorithm. The latency between two cores that run 𝑣𝑖 and 𝑣 𝑗 respectively is composed of:
1) zero load latency 𝑡𝑧𝑒𝑟𝑜

(
𝑣𝑖 , 𝑣 𝑗

)
, which is related to the distance of the shortest path between the

source and destination cores, and 2) queuing latency 𝑡𝑞𝑢𝑒𝑢𝑖𝑛𝑔
(
𝑣𝑖 , 𝑣 𝑗

)
, which is modeled by queuing

theory.
1) Zero load latency: Given the multi-chiplet system graph 𝐺𝐶 (𝑈 , 𝐸), and the communication

flow 𝑠𝑖, 𝑗 =
(
𝑣𝑖 , 𝑣 𝑗

)
that is mapped to cores 𝑢𝑖1, 𝑗1 and 𝑢𝑖2, 𝑗2 , the zero load latency 𝑡𝑧𝑒𝑟𝑜

(
𝑣𝑖 , 𝑣 𝑗

)
consists

of two parts: the latency of head packet and the serialization latency:
𝑡𝑧𝑒𝑟𝑜

(
𝑣𝑖 , 𝑣 𝑗

)
= 𝑡ℎ𝑒𝑎𝑑

(
𝑣𝑖 , 𝑣 𝑗

)
+ 𝑡𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

(
𝑠𝑖, 𝑗

)
(5)

The serialization latency 𝑡𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
(
𝑠𝑖, 𝑗

)
is related to the packet size (filt number). The latency

of the head packet is determined by the length of the shortest path Π
(
𝑀 (𝑣𝑖) , 𝑀

(
𝑣 𝑗

))
between

these two cores𝑀 (𝑣𝑖) and𝑀 (𝑣 𝑗) as follows:
𝑡ℎ𝑒𝑎𝑑 (𝑣𝑖 , 𝑣 𝑗) = 𝑘𝑝 · 𝑙 (𝑀 (𝑣𝑖), 𝑀 (𝑣 𝑗)) = 𝑘𝑝 · 𝑙 (𝑢𝑖1, 𝑗1 , 𝑢𝑖2, 𝑗2) (6)

where 𝑘𝑝 is the router pipeline stage number, 𝑙
(
𝑀 (𝑣𝑖) , 𝑀

(
𝑣 𝑗

))
is the length of the shortest path

from nodes𝑀 (𝑣𝑖) to𝑀 (𝑣 𝑗), that is, from 𝑢𝑖1, 𝑗1 to 𝑢𝑖2, 𝑗2 .

Min

Shortest Path
Fig. 4. Shortest path calculation in the latency model. The red line represents the shortest path from source
core to destination core. The blue lines are the decisions at 𝑢𝑖2, 𝑗2 node.
As shown in Fig. 4, the shortest path can be computed by Bellman equation [50], where the

shortest path from core 𝑢𝑖1, 𝑗1 = 𝑢0 to core 𝑢𝑖2, 𝑗2 = 𝑢𝑚 is formulated as a sequence of cores
Π

(
𝑢𝑖1, 𝑗1 , 𝑢𝑖2, 𝑗2

)
= Π (𝑢0, 𝑢𝑚) =

{
𝑢0 = 𝑢𝑖1, 𝑗1 , 𝑢1, ..., 𝑢𝑚 = 𝑢𝑖2, 𝑗2

}
. 𝜔

(
𝑢𝑖 , 𝑢 𝑗

)
is the transmission latency

between the 𝑢𝑖 and 𝑢 𝑗 .
The shortest path is obtained by recursively using the Bellman equation. In the 𝑘 th step of this

process, the distance from source node 𝑢0 to node 𝑢𝑘 is recursively updated until the optimum is
reached, which is formulated by:

𝑙𝑘 (𝑢0, 𝑢𝑘) = min
∀𝑢𝑘 ∈𝑈

{𝑙𝑘−1 (𝑢0, 𝑢𝑘−1) + 𝜔 (𝑢𝑘−1, 𝑢𝑘)} at node 𝑢𝑘 (7)

where𝑈 is the set of cores, 𝑙𝑘 is the shortest path length in the 𝑘 th step. The length of the shortest
path is the sum of link weights along the path:

𝑙
(
𝑢𝑖1, 𝑗1 , 𝑢𝑖2, 𝑗2

)
= 𝑙 (𝑢0, 𝑢𝑚) =

𝑚∑︁
𝑞=1

𝜔
(
𝑢𝑞−1, 𝑢𝑞

)
(8)

To make the performance model differentiable, it is smoothed by the log-exp smoothing method
[4]:

𝑙 (𝑢0, 𝑢𝑚) = − ln
∑︁

∀𝑢𝑚∈𝑈
exp{−(𝑙𝑚−1 (𝑢0,�𝑢𝑚−1) + 𝜔 (�𝑢𝑚−1, 𝑢𝑚))} (9)

2) Queuing latency: The queuing latency of two cores 𝑢𝑖1, 𝑗1 and 𝑢𝑖2, 𝑗2 is the summation of the
queuing latency of each router in the path Π(𝑢𝑖1, 𝑗1 , 𝑢𝑖2, 𝑗2), which is obtained by the routing algorithm.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: August 2025.

On Improving the Performance of Intra- and Inter-chiplet Interconnection Networks in Multi-chiplet Systems for
Accelerating FHE Encrypted Neural Network Applications 7

Given the flows 𝑠𝑝0,𝑞0 , 𝑠𝑝1,𝑞1 , ..., 𝑠𝑝𝑚,𝑞𝑚 traversing router 𝑥𝑖, 𝑗 , the queuing latency is modeled by
the G/G/1 model. In the G/G/1 model, the router 𝑥𝑖, 𝑗 is considered as multiple input channels
𝐼𝐶

𝑥𝑖,𝑗
𝛼 ∈

{
𝐼𝐶

𝑥𝑖,𝑗
1 , 𝐼𝐶

𝑥𝑖,𝑗
2 , ..., 𝐼𝐶

𝑥𝑖,𝑗
𝑝

}
competing for a single output channel 𝑂𝐶𝑥𝑖,𝑗

𝛽
∈ 𝑂𝐶𝑥𝑖,𝑗 . The average

queuing latency 𝜏𝑥𝑖,𝑗
𝛼→𝛽

in router 𝑥𝑖, 𝑗 is [28]:

𝜏
𝑥𝑖,𝑗

𝛼→𝛽
=



𝜌
𝑥𝑖,𝑗

𝛽

(
𝐶2
𝐴
𝑥𝑖,𝑗

+𝐶2
𝑆
𝑥𝑖,𝑗

𝛽

)
2
(
𝜇
𝑥𝑖,𝑗

𝛽
−𝜆𝑥𝑖,𝑗1→𝛽

) , 𝛼 = 1

𝜆
𝑥𝑖,𝑗

𝛽

(
𝐶2
𝐴
𝑥𝑖,𝑗

+𝐶2
𝑆
𝑥𝑖,𝑗

𝛽

)
2
(
𝜇
𝑥𝑖,𝑗

𝛽
−∑𝑝−1

𝑘=1 𝜆
𝑥𝑖,𝑗

𝑘→𝛽

) , 2 ≤ 𝛼 ≤ 𝑝

(10)

where 𝜌𝑥𝑖,𝑗
𝛽

is the proportion of time the output channel 𝑂𝐶𝛽 being occupied by packets, 𝜆𝑥𝑖,𝑗
𝛼→𝛽

and 𝜇𝑥𝑖,𝑗
𝛽

are the packet arrival rate from input channel 𝐼𝐶𝑥𝑖,𝑗𝛼 to output channel 𝑂𝐶𝑥𝑖,𝑗
𝛽

and the
average arrival rate of output channel 𝑂𝐶𝑥𝑖,𝑗

𝛽
respectively, 𝐶2

𝐴
𝑥𝑖,𝑗

and 𝐶2
𝑆
𝑥𝑖,𝑗

𝛽

are the coefficients of

variation for the packet arrival rate and service rate that is obtained based on the Allen-Cunneen
approximation equation [28].
Based on this formulation, the queuing latency 𝑡𝑞𝑢𝑒𝑢𝑖𝑛𝑔 from tasks 𝑣𝑖 to 𝑣 𝑗 is formulated by the

sum of the queuing latency of routers along the path:

𝑡𝑞𝑢𝑒𝑢𝑖𝑛𝑔
(
𝑣𝑖 , 𝑣 𝑗

)
=

∑︁
𝑥𝑖,𝑗 ∈Π(𝑀 (𝑣𝑖),𝑀 (𝑣𝑗))

𝑝∑︁
𝛼=1

𝑞∑︁
𝛽=1

𝜏
𝑥𝑖,𝑗

𝛼→𝛽
(11)

The communication latency 𝑡 (𝑣𝑖 , 𝑣 𝑗) between tasks 𝑣𝑖 and 𝑣 𝑗 is the sum of zero load latency
𝑡𝑧𝑒𝑟𝑜

(
𝑣𝑖 , 𝑣 𝑗

)
and queuing latency 𝑡𝑞𝑢𝑒𝑢𝑖𝑛𝑔

(
𝑣𝑖 , 𝑣 𝑗

)
:

𝑡
(
𝑣𝑖 , 𝑣 𝑗

)
= 𝑡𝑧𝑒𝑟𝑜

(
𝑣𝑖 , 𝑣 𝑗

)
+ 𝑡𝑞𝑢𝑒𝑢𝑖𝑛𝑔

(
𝑣𝑖 , 𝑣 𝑗

)
(12)

3.3 Performance Model

MAX

Makespan

Fig. 5. Makespan computation for a task graph
As shown in Fig. 5, the execution time of the FHE application is estimated by computing the

makespan of task graph 𝐺𝐹 (𝑉 , 𝑆), which is obtained by using the Bellman equation. In the 𝑘 th
step of the Bellman equation, the path length from source node 𝑣0 to node 𝑣𝑘 is recursively updated
to obtain the optimum, which is formulated with:

𝜎𝑘 (𝑣0, 𝑣𝑘) = max
∀𝑣𝑘 ∈𝑉

{𝜎𝑘−1 (𝑣0, 𝑣𝑘−1) + 𝑡 (𝑣𝑘−1, 𝑣𝑘) + 𝜔 (𝑣𝑘)} (13)

where 𝜎𝑘 (𝑣0, 𝑣𝑘) is the maximum execution time in 𝑘 th step, 𝑉 is the set of nodes in the task
graph, 𝜔 (𝑣𝑘) is the execution time of task 𝑣𝑘 , 𝑡 (𝑣𝑘−1, 𝑣𝑘) is the communication latency from the
core running task 𝑘 − 1 to the core running task 𝑘 , defined in Eqn. (12) by the latency model.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: August 2025.

8

When the equation is from the source to the sink tasks in the task graph, the makespan is
obtained:

𝜎 (𝑣0, 𝑣𝑚) =
𝑚∑︁
𝑖=1

𝜔 (𝑣0) + max
{𝑣0,...,𝑣𝑚 }∈Π (𝑣0,𝑣𝑚)

(𝑡 (𝑣𝑖−1, 𝑣𝑖) + 𝜔 (𝑣𝑖)) (14)

where Π (𝑣0, 𝑣𝑚) is the set of paths from task 𝑣0 to 𝑣𝑚 , which refers to the source and the sink tasks
in the task graph. To make the performance model differentiable, it is smoothed by the log-exp
smoothing method [4]:

𝜎 (𝑣0, 𝑣𝑚) = ln
∑︁

{𝑣0,𝑣1,...,𝑣𝑘 }∈Π (𝑣0,𝑣𝑚)
exp

(
𝜔 (𝑣0) +

𝑚∑︁
𝑖=1

(𝑡 (𝑣𝑖−1, 𝑣𝑖) + 𝜔 (𝑣𝑖))
)

(15)

The coefficients in Eqns. (5) to (15) are computed by the maximum likelihood method [61] as
follows. The simulator (detailed in section 5.1) is configured with different settings of intra/inter-
chiplet link bandwidth, chiplet core count, D2D interfaces per chiplet, intra/inter-chiplet topology
(variables) to obtain 𝑡𝑧𝑒𝑟𝑜 , 𝑡𝑞𝑢𝑒𝑢𝑖𝑛𝑔, and 𝜎 . The latency and performance models use these data for
regression by the maximum likelihood method.

3.4 Cost and Power Models
The multi-chiplet system cost and power consumption are modeled as follows.

Cost Model. The cost of a multi-chiplet system has two components [20]: chiplet silicon cost
and packaging cost [52].

The silicon area for all dies/chiplets (𝐴𝑡𝑜𝑡 =
∑𝑛𝑅
𝑗=1𝐴(𝑅 𝑗)) is measured in monetary cost. For each

chiplet 𝑅 𝑗 , 𝑗 = 1, 2, ..., 𝑛𝑅, its area is

𝐴
(
𝑅 𝑗

)
=

|𝑅 𝑗 |∑︁
𝑖=1

𝐴1
(
𝑢𝑖, 𝑗

)
+
|𝑅 𝑗 |+𝑑 𝑗∑︁
𝑖=|𝑅 𝑗 |+1

𝐴2
(
𝑢𝑖, 𝑗

)
+

𝑛∑︁
𝑗=1

𝐴3
(
𝑅 𝑗

)
+

𝑛 𝑗∑︁
𝑖=1

𝐴4
(
𝑢𝑖, 𝑗

)
,∀0 < 𝑗 ≤ 𝑛𝑅 (16)

where 𝐴1
(
𝑢𝑖, 𝑗

)
, 𝐴2

(
𝑢𝑖, 𝑗

)
, 𝐴3

(
𝑅 𝑗

)
and 𝐴4

(
𝑢𝑖, 𝑗

)
are the areas of each core (𝑖 from 1 to

��𝑅 𝑗 ��), D2D
interface (𝑖 from

��𝑅 𝑗 �� + 1 to
��𝑅 𝑗 �� + 𝑑 𝑗), memory unit, and each router respectively, and 𝑛 𝑗 is the

number of routers on each chiplet.
The silicon cost of chiplet 𝑅 𝑗 is 𝐴(𝑅 𝑗)/𝑌 (𝑅 𝑗) ·𝐶𝑠 , where 𝑌 (𝑅 𝑗) is the yield of production per die

area and 𝐶𝑠 is the cost per silicon area. 𝑌 (𝑅 𝑗) = 𝑌𝑢𝑛𝑖𝑡𝐴(𝑅 𝑗)/𝐴𝑢𝑛𝑖𝑡 , where 𝑌𝑢𝑛𝑖𝑡 is the yield per unit
area.

The packaging cost is 𝐶𝑝 (𝐴𝑡𝑜𝑡). The production cost of the system is:

𝐶𝑜𝑠𝑡 =

𝑛𝑅∑︁
𝑗=1

𝐴(𝑅 𝑗)

𝑌
𝐴(𝑅 𝑗)/𝐴𝑢𝑛𝑖𝑡

𝑢𝑛𝑖𝑡

·𝐶𝑠 +𝐶𝑝 (𝐴𝑡𝑜𝑡) (17)

Power Model. The power consumption of a chiplet 𝑅 𝑗 is:

𝑃
(
𝑅 𝑗

)
=

|𝑅 𝑗 |∑︁
𝑖=1

𝑃1
(
𝑢𝑖, 𝑗

)
+
|𝑅 𝑗 |+𝑑 𝑗∑︁
𝑖=|𝑅 𝑗 |+1

𝑃2
(
𝑢𝑖, 𝑗

)
+

𝑛∑︁
𝑗=1

𝑃3
(
𝑅 𝑗

)
+

𝑛 𝑗∑︁
𝑖=1

𝑃4
(
𝑢𝑖, 𝑗

)
,∀0 < 𝑗 ≤ 𝑛𝑅 (18)

where 𝑃1
(
𝑢𝑖, 𝑗

)
, 𝑃2

(
𝑢𝑖, 𝑗

)
, 𝑃3

(
𝑅 𝑗

)
and 𝑃4

(
𝑢𝑖, 𝑗

)
are the powers of each core (𝑖 from 1 to

��𝑅 𝑗 ��), D2D
interface (𝑖 from

��𝑅 𝑗 �� + 1 to
��𝑅 𝑗 �� + 𝑑 𝑗), memory unit, and each router respectively, and 𝑛 𝑗 is the

number of routers on each chiplet.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: August 2025.

On Improving the Performance of Intra- and Inter-chiplet Interconnection Networks in Multi-chiplet Systems for
Accelerating FHE Encrypted Neural Network Applications 9

3.5 Problem Formulation
The problem is to minimize the execution time of FHE applications under the cost and power
constraints. Mathematically, the problem is formulated as follows:

min𝜎 (𝑣0, 𝑣𝑚) = ln
∑︁

{𝑣0,𝑣1,...,𝑣𝑘 }∈Π (𝑣0,𝑣𝑚)
exp

(
𝜔 (𝑣0) +

𝑚∑︁
𝑖=1

(𝑡 (𝑣𝑖−1, 𝑣𝑖) + 𝜔 (𝑣𝑖))
)

(19)

where 𝑣𝑖 is the node in the task graph, Π
(
𝑣𝑖 , 𝑣 𝑗

)
is the set of tasks from the source task to the sink

task, 𝜔 (𝑣𝑖) is the execution time of task 𝑣𝑖 , 𝑡 (𝑣𝑖 , 𝑣𝑖−1) is the data transmission time between the
cores running tasks 𝑣𝑖−1 and 𝑣𝑖 after mapping. The constraints include:
(1) The cost constraint of the system is within a threshold 𝐶𝑜𝑠𝑡0:

𝐶𝑜𝑠𝑡 ≤ 𝐶𝑜𝑠𝑡0. (20)
(2) The power consumption of the system is within their bounds 𝑃0:

𝑛𝑅∑︁
𝑖=1

𝑃 (𝑅𝑖) ≤ 𝑃0. (21)

where𝐶𝑜𝑠𝑡 and 𝑃 (𝑅𝑖) are defined in Eqn. (17) and Eqn. (18) respectively,𝐶𝑜𝑠𝑡0 and 𝑃0 are the
upper bounds of cost and power respectively.

(3) For the cores in a chiplet, each core cannot connect with cores or D2Ds in another chiplet.
𝑐𝑖1, 𝑗1,𝑖2, 𝑗2 = 0, if 𝑗1 ≠ 𝑗2 and 0 < 𝑖1 <

��𝑅 𝑗1 �� (22)
(4) For the D2Ds in a chiplet, each D2D cannot connect D2Ds in the same chiplet but can only

connect D2Ds in other chiplets.
𝑐𝑖1, 𝑗1,𝑖2, 𝑗2 = 0, if 𝑗1 = 𝑗2 and

��𝑅 𝑗1 ��<𝑖1, 𝑖2 < ��𝑅 𝑗1 �� + 𝑑 𝑗1 (23)
(5) The last constraints indicate one-to-one task mapping:

𝑛𝑅∑︁
𝑘=1

|𝑅𝑘 |∑︁
𝑗=1

𝜋𝑖, 𝑗,𝑘 = 1,∀0 < 𝑖 ≤ |𝑉 | (24)

|𝑅 |∑︁
𝑖=1

𝜋𝑖, 𝑗,𝑘 = 1,∀0 < 𝑗 < |𝑅𝑘 | ,∀0 < 𝑘 < 𝑛𝑅 (25)

where 𝑛𝑅 is the total number of chiplets, |𝑅𝑘 | is the number of cores in chiplet 𝑘 , |𝑉 | is the number
of tasks.

4 Bilevel Optimization Algorithm
4.1 Overview
The bilevel optimization algorithm works as follows. The problem defined in Eqns. (19)-(25) is
decomposed into three sub-problems: (1) FHE parameters selection sub-problem (P1), (2) task-to-
core mapping sub-problem (P2), and (3) intra- and inter-chiplet interconnection network topology
generation (P3).
The process of bilevel optimization is shown in Fig. 6, which is performed iteratively. In each

iteration, each sub-problem is solved with the corresponding decision variables improved, while
decision variables of other sub-problems are fixed as constants.

The convergence condition is as follows. The iteration terminates when the optimization target
is converged, or the number of an iteration reaches the upper bound 𝑛max, that is,

𝜎𝑖 − 𝜎𝑖−1 ≤ 𝛿 or 𝑖 ≤ 𝑛max (26)

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: August 2025.

10

Begin TerminateFHE Parameters
Selection

Task-to-Core
Mapping

Intra- / Inter-
chiplet Interconnection

Network Topology
Generation

No

Converge
Yes

Fig. 6. The process of bilevel optimization.

where 𝜎𝑖 is the application execution time in the 𝑖 th iteration, 𝛿 is the convergence threshold, 𝑛max
is the maximum iteration number set by users.

4.2 FHE Parameters Selection (P1)
In this work, FHE parameters are determined through exhaustive searches to balance computational
efficiency and noise growth. The parameters include:

• 𝐿 budget controls the number of supported sequential multiplications, and 𝐿 ∈ [28, 44] [14].
• 𝑞𝑖 is the prime modulus in the residue number system (RNS), and 𝑞𝑖 ∈ [240, 260] [17].
• 𝑑𝑛𝑢𝑚 is the decomposition bits in the Key-Switching operation. It is used to decompose
large polynomial coefficients into smaller blocks of bit-length parameters, and 𝑑𝑛𝑢𝑚 ∈
{8, 16, 32, 64}.

• 𝑛𝑠𝑙𝑜𝑡 is the number of plaintext data units that can be independently encoded and manipulated
within a single ring learning with errors (RLWE) ciphertext, and 𝑛𝑠𝑙𝑜𝑡 ∈ {2, 8, 32} as in Trinity
[17].

4.3 Task-to-Core Mapping (P2)
In task-to-core mapping, the inter-chiplet communication latency is minimized. Existing approaches
like [56] rely on complex integer programming, which scales poorly for large-scale FHE applications.
In contrast, this work proposes a lightweight and adaptable solution for various topologies.
The input to the task-to-core mapping algorithm is a given network topology. The proposed

task-to-core mapping has two steps: 1) The task graph is divided into cuts, which are then allocated
to each chiplet, ensuring that the size of each cut is equal to or smaller than the respective chiplet’s
core count, while minimizing the volumes of communications between chiplets. 2) Within each
chiplet, tasks are mapped to cores to reduce communication latency.
(1) Task graph partition. In the first step, the task graph 𝐺𝐹 (𝑉 , 𝑆) is partitioned into 𝑛 cuts

𝐺1,𝐺2, · · · ,𝐺𝑛 , such that each chiplet 𝑅𝑖 can host 𝐺𝑖 , i.e., |𝑅𝑖 | ≥ |𝐺𝑖 |, and the inter-cut communica-
tion volume

∑
1≤𝑝<𝑞≤𝑛

∑
𝑣𝑖 ∈𝐺𝑝

∑
𝑣𝑗 ∈𝐺𝑞

𝜔 (𝑣𝑖 , 𝑣 𝑗) is minimized.

The algorithm works as follows. The tasks 𝑣1, 𝑣2, 𝑣3, · · · , 𝑣 |𝑉 | are sorted in descending order by
their total communication volume, denoted as 𝑣1, 𝑣2, · · · , 𝑣 |𝑉 | , which are pushed into a queue 𝑉
and assigned to 𝐺1,𝐺2, · · · ,𝐺𝑛 . For each 𝐺𝑖 , its size is set to be |𝑅𝑖 |, and the following steps are
performed.

(1) If 𝐺𝑖 is empty, the first element 𝑣𝑖 ∈ 𝑉 (the task with the highest communication volume) is
popped from 𝑣𝑖 and assigned to 𝐺𝑖 .

(2) If |𝐺𝑖 | < |𝑅𝑖 |, task 𝑣 𝑗 ∈ 𝑉 is selected such that argmax
𝑣𝑗 is unassigned

(∑
𝑣𝑘 ∈𝐺𝑖

𝜔 (𝑣𝑘 , 𝑣 𝑗)
)
. That is, the

unassigned task which has the highest communication volume with tasks in 𝐺𝑖 is selected
and assigned to 𝐺𝑖 .

(3) If |𝐺𝑖 | = |𝑅𝑖 | , the algorithm continues to assign task nodes to 𝐺𝑖+1 in the same way.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: August 2025.

On Improving the Performance of Intra- and Inter-chiplet Interconnection Networks in Multi-chiplet Systems for
Accelerating FHE Encrypted Neural Network Applications 11

The steps above may not lead to minimal inter-chiplet communication volume. Therefore, an
adjustment step is proposed as follows.
In this step, tasks 𝑣 𝑗 ∈ 𝐺𝑝 and 𝑣𝑘 ∈ 𝐺𝑞 are randomly selected and temporarily swapped.

In iteration 𝑖 , the total inter-cut communication volume 𝐶𝑖 =
∑

1≤𝑝<𝑞≤𝑛

∑
𝑣𝑟 ∈𝐺𝑝

∑
𝑣𝑠 ∈𝐺𝑞

𝜔 (𝑣𝑟 , 𝑣𝑠) (be-

fore swapping) and 𝐶𝑖+1 =
∑

1≤𝑝<𝑞≤𝑛

∑
𝑣𝑟 ∈𝐺 ′

𝑝

∑
𝑣𝑠 ∈𝐺 ′

𝑞

𝜔 (𝑣𝑟 , 𝑣𝑠) (after swapping) are computed to derive

Δ𝑖 (𝑣 𝑗 , 𝑣𝑘) = 𝐶𝑖+1 −𝐶𝑖 , where 𝐺 ′
𝑝 and 𝐺 ′

𝑞 are cuts after swapping 𝑣 𝑗 and 𝑣𝑘 .
Therefore, in iteration 𝑖 , if Δ𝑖 (𝑣 𝑗 , 𝑣𝑘) > 0, this swapping is actually performed, i.e., 𝑣 𝑗 is assigned

to 𝐺𝑞 and 𝑣𝑘 is assigned to 𝐺𝑝 ; otherwise, the swapping is not performed. The iteration terminates
when max

𝑟≠𝑠
Δ𝑖 (𝑣𝑟 , 𝑣𝑠) ≤ 0 or a maximum number of iterations 𝑁 is reached.

The aforementioned algorithm is demonstrated through an example, as shown in Fig. 7. In the
first iteration, 𝑣2 and 𝑣6 are temporarily swapped, after which Δ1 (𝑣2, 𝑣6)=𝐶2 −𝐶1 = 21 is computed.
Based on the fact that Δ1 (𝑣2, 𝑣6) > 0, this swapping is actually performed, which is shown in (b). In
the second iteration, 𝑣1 and 𝑣5 are swapped in the same way, as shown in (c). In the third iteration,
the algorithm terminates because max

𝑟≠𝑠
Δ3 (𝑣𝑟 , 𝑣𝑠) ≤ 0.

Chiplet 2

: Other chiplets

(3) Swapping nodes 1 and 5

3 6

5

20 1 4

2

7

72

2
3

Chiplet 1 Chiplet 2

25
20

18

3024

4

22

2510

(2) Swapping nodes 2 and 6

3 6

1

4 5

2

27

10

Chiplet 1

25 22

20

2

20

3

18
24

30

25

(1) The original task graph

1 2

3

10

Chiplet 1

4 5

6

2

Chiplet 2

25

20

20

2 3

25

30 18 24

22

7 4

4

Fig. 7. The procedure of swapping nodes.

(2) Intra-chiplet task mapping. In the last step, a heuristic algorithm is adopted to map tasks
in 𝐺 𝑗 to the cores in chiplet 𝑅 𝑗 , 𝑗 = 1, 2, · · · , 𝑛 to minimize communication latency.
For each task node 𝑣𝑖 ∈ 𝐺 𝑗 , we define 𝐹 (𝑣𝑖 ,𝐺 𝑗) as the ratio of intra-chiplet to inter-chiplet

communication volumes:

𝐹 (𝑣𝑖 ,𝐺 𝑗) =

∑
𝑘=1,2,...,𝑛,𝑘≠𝑗

∑
𝑣𝑟 ∈𝐺𝑘

𝜔 (𝑣𝑖 , 𝑣𝑟)∑
𝑣𝑖 ∈𝐺 𝑗 ,𝑣𝑟≠𝑣𝑖

𝜔 (𝑣𝑖 , 𝑣𝑟)
. (27)

where
∑

𝑘=1,2,...,𝑛,𝑘≠𝑗

∑
𝑣𝑟 ∈𝐺𝑘

𝜔 (𝑣𝑖 , 𝑣𝑟) is the total inter-chiplet communication volume of 𝑣𝑖 and∑
𝑣𝑖 ∈𝐺 𝑗 ,𝑣𝑟≠𝑣𝑖

𝜔 (𝑣𝑖 , 𝑣𝑟) is the total intra-chiplet communication volume of 𝑣𝑖 .

For each 𝐺 𝑗 , each task 𝑣𝑖 within 𝐺 𝑗 is sorted in descending order by 𝐹 (𝑣𝑖 ,𝐺 𝑗) and stored in a
queue 𝑞𝑢𝑒𝑖 . The following iterations are performed. In iteration 𝑘 , the head 𝑣𝑝 and tail elements 𝑣𝑞
in 𝑞𝑢𝑒𝑖 are popped. For 𝑣𝑝 , if none of its neighbors in 𝐺 𝑗 is mapped, 𝑣𝑝 is mapped to the core with
maximum degree in 𝑅 𝑗 . Otherwise, suppose its mapped neighbors in 𝐺 𝑗 are all in set 𝑁𝑝,𝑗 , it is
mapped to a core 𝑢𝑥,𝑗 such that

argmin
𝑢𝑥,𝑗 ∈𝑅 𝑗

∑︁
𝑣𝑦 ∈𝑁𝑝,𝑗

𝜔 (𝑀 (𝑣𝑦), 𝑢𝑥,𝑗) · 𝜔 (𝑣𝑦, 𝑣𝑝) (28)

i.e., find a core that minimizes the partial intra-chiplet communication latency in 𝐺 𝑗 which has
high inter-chiplet communication volume.

For 𝑣𝑞 , it is mapped to a core that is closest to a D2D interface 𝑢𝑘,𝑗 in 𝐺 𝑗 .

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: August 2025.

12

The complexity of themapping algorithm is𝑂 (max{𝑐×|𝑆 |, 𝑁 }×|𝑉 |2) , where 𝑐 = max
𝑣𝑖 ,𝑣𝑗 ∈𝑉 ,𝑖≠𝑗

𝜔 (𝑣𝑖 , 𝑣 𝑗)
and 𝑁 is the iteration number set by user.

4.4 Intra-/Inter-chiplet Interconnection Network Topology Generation (P3)
After mapping, the communication volumes for each pair of cores/D2Ds is known. In order to obtain
an improved intra- and inter-chiplet interconnection network for CKKS-encrypted homomorphic
applications, a reinforcement learning (RL) algorithm is proposed since RL was used to solve many
network generation problems like [65], [24], [9]. An initial solution is found by an efficient heuristic
algorithm. After that, the system continues with the topology generation by reinforcement learning.
The algorithm selects a network structure to minimize execution time under the cost and power
constraints.
(1) Definition

The topology generation problem is formed as a Markov Decision Process (MDP) defined by the
tuple (Z,A,P,R, 𝛾), where 𝑧𝑖 ∈ Z is a state, representing 𝑖-th intra-/inter-chiplet interconnection
network topology, i.e.,

𝑧𝑖 =



𝑐
(𝑖)
1,1,1,1 𝑐

(𝑖)
1,1,2,1 ... 𝑐

(𝑖)
1,1,|𝑅𝑛𝑅 |+𝑑𝑛𝑅 ,𝑛𝑅

𝑐
(𝑖)
2,1,1,1 𝑐

(𝑖)
2,1,2,1 ... 𝑐

(𝑖)
2,1,|𝑅𝑛𝑅 |+𝑑𝑛𝑅 ,𝑛𝑅

...

𝑐
(𝑖)
|𝑅𝑛𝑅 |+𝑑𝑛𝑅 ,𝑛𝑅 ,1,1

𝑐
(𝑖)
|𝑅𝑛𝑅 |+𝑑𝑛𝑅 ,𝑛𝑅 ,2,1

... 𝑐
(𝑖)
|𝑅𝑛𝑅 |+𝑑𝑛𝑅 ,𝑛𝑅 ,|𝑅𝑛𝑅 |+𝑑𝑛𝑅 ,𝑛𝑅


, 0 ≤ 𝑖 ≤ 𝑁𝑇𝐺 (29)

where 𝑁𝑇𝐺 is the number of maximum iterations in the RL algorithm, 𝑎𝑖 ∈ A is an action, the 𝑖-th
action corresponds to link insertion and bandwidth enhancement between nodes (cores or D2D
interfaces), i.e.,

𝑎𝑖 =

{
𝑐
(𝑖)
𝑗1,𝑘1, 𝑗2,𝑘2

= 1 , 𝑐
(𝑖−1)
𝑗1,𝑘1, 𝑗2,𝑘2

= 0
𝑐
(𝑖)
𝑗1,𝑘1, 𝑗2,𝑘2

= 2 × 𝑐 (𝑖−1)
𝑗1,𝑘1, 𝑗2,𝑘2

, 𝑐
(𝑖−1)
𝑗1,𝑘1, 𝑗2,𝑘2

≠ 0
∃ 𝑗1, 𝑘1, 𝑗2, 𝑘2, 1 ≤ 𝑖 ≤ 𝑁𝑇𝐺 (30)

P(𝑧𝑖+1 |𝑧𝑖 , 𝑎𝑖) is the state transition probability, R(𝑧𝑖 , 𝑎𝑖 , 𝑧𝑖+1) is the reward function, 𝛾 ∈ [0, 1) is
the discount factor. The policy and value functions are denoted by 𝜋𝜃 (𝑎𝑖 |𝑧𝑖) and 𝑉𝜙 (𝑧𝑖).
(2) Initial Solution

Given |𝑈 | cores and 𝑛𝑅 (chiplet count), the algorithm first divides |𝑈 | cores evenly into 𝑛𝑅 sets
𝑅1, 𝑅2, · · · , 𝑅𝑛𝑅 . Both the intra- and inter-chiplet networks are initialized to be mesh.

A heuristics algorithm is proposed to generate topology according to the inter-chiplet communi-
cation volumes. In the intra-chiplet interconnection network, for each chiplet 𝑅 𝑗 , 𝑗 = 1, 2, · · · , 𝑛𝑅 , all
edges within 𝑅 𝑗 are sorted in descending order and the top 𝑡 of which are stored in a queue 𝑞𝑢𝑒𝑖𝑛𝑡𝑟𝑎 ,
where 𝑡 is a parameter. In each iteration, when 𝑞𝑢𝑒𝑖𝑛𝑡𝑟𝑎 is not empty, the first element < 𝑢𝑖1, 𝑗 , 𝑢𝑖2, 𝑗 >
(edge with the highest communication volume) is popped. A long link is added between 𝑢𝑖1, 𝑗 and
𝑢𝑖2, 𝑗 if they are not directly connected and the power and cost constraints are respected. This step is
demonstrated through an example, as shown in Fig. 8. The communication volumes between cores
after mapping in 𝑅 𝑗 is shown in Fig. 8 (a) and the original intra-chiplet topology is shown in Fig. 8
(b). The top two edges with the highest communication volume < 𝑢1, 𝑗 , 𝑢4, 𝑗 > and < 𝑢2, 𝑗 , 𝑢3, 𝑗 > are
popped into 𝑞𝑢𝑒𝑖𝑛𝑡𝑟𝑎 . Links are added between 𝑢1, 𝑗 and 𝑢4, 𝑗 , 𝑢2, 𝑗 and 𝑢3, 𝑗 respectively, as shown in
Fig. 8 (c).

For the inter-chiplet interconnection network, the inter-chiplet communication volume between
each pair of chiplets < 𝑅 𝑗1 , 𝑅 𝑗2 > (where 𝑗1, 𝑗2 = 1, 2, ..., 𝑛𝑅, 𝑗1 ≠ 𝑗2) is denoted as𝑊 (𝑅 𝑗1 , 𝑅 𝑗2) =∑
𝑢𝑖1, 𝑗1 ∈𝑅 𝑗1

∑
𝑢𝑖2, 𝑗2 ∈𝑅 𝑗2

𝜔 (𝑢𝑖1, 𝑗1 , 𝑢𝑖2, 𝑗2). The top 𝑡 pairs of chiplets with the highest communication volumes

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: August 2025.

On Improving the Performance of Intra- and Inter-chiplet Interconnection Networks in Multi-chiplet Systems for
Accelerating FHE Encrypted Neural Network Applications 13

30

20 10

𝑢1,𝑗 𝑢4,𝑗

𝑢2,𝑗𝑢3,𝑗 𝑢1,𝑗 𝑢2,𝑗

𝑢3,𝑗 𝑢4,𝑗

𝑢1,𝑗 𝑢2,𝑗

𝑢3,𝑗 𝑢4,𝑗

(a) (b) (c)

Fig. 8. An example of intra-chiplet interconnection network topology improvement with 𝑡 = 2.

are sorted and stored in a queue 𝑞𝑢𝑒𝑖𝑛𝑡𝑒𝑟 . In each iteration, when 𝑞𝑢𝑒𝑖𝑛𝑡𝑒𝑟 is not empty, the first
element𝑊 (𝑅 𝑗1 , 𝑅 𝑗2) in𝑞𝑢𝑒𝑖𝑛𝑡𝑒𝑟 is popped. A serial long link (via interposer [22]) is added between the
D2D units of 𝑅 𝑗1 and 𝑅 𝑗2 if no direct connection exists between them. For already connected chiplet
pairs, the D2D communication bandwidth is doubled provided that power and cost constraints are
respected. This methodology is exemplified in Fig. 9, where the initial inter-chiplet interconnection
network topology and communication volumes are illustrated in Fig. 9 (a) and (b) respectively.
In this example, the top two edges < 𝑅4, 𝑅5 > and < 𝑅1, 𝑅6 > with the highest communication
volumes are popped from 𝑞𝑢𝑒𝑖𝑛𝑡𝑒𝑟 . It results in the addition of a serial long link between 𝑅1 and 𝑅6,
with link bandwidth between 𝑅4 and 𝑅5 being doubled, as demonstrated in Fig. 9 (c).

30

20 20𝑅1 𝑅2 𝑅3

𝑅4 𝑅5 𝑅6

𝑅1 𝑅2 𝑅3

𝑅4 𝑅5 𝑅6

𝑅1

𝑅2𝑅3

𝑅4

𝑅5𝑅6

10

40 50

10

(a) (b) (c)

Fig. 9. An example of inter-chiplet interconnection network topology improvement with 𝑡 = 2.

(3) Reward Function
The action 𝑎𝑖 corresponds to inserting a link between two nodes (core or D2D) or doubling

the bandwidth between them. Each 𝑎𝑖 changes the intra-/inter-chiplet interconnection network
topology, transforming from the states 𝑧𝑖 to 𝑧𝑖+1. The reward of inserting edge or doubling bandwidth
from state 𝑧𝑖 to 𝑧𝑖+1 is

𝑅(𝑧𝑖 , 𝑎𝑖 , 𝑧𝑖+1) = 𝜎 (𝑧𝑖+1) − 𝜎 (𝑧𝑖) + 𝜆1 · (𝐶 (𝑧𝑖+1) −𝐶 (𝑧𝑖)) + 𝜆2 · (𝑃 (𝑧𝑖+1) − 𝑃 (𝑧𝑖)) (31)

where 𝜎 (𝑧𝑖), 𝐶 (𝑧𝑖) and 𝑃 (𝑧𝑖) are execution time, the cost and power consumption of state 𝑧𝑖 ,
respectively. 𝜆1, 𝜆2 are the Lagrange multiplier coefficients of the cost and power consumption,
respectively, where 𝜆1, 𝜆2 ∈ {0.1, 0.2, ..., 1.0} and selected via exhaustive search. The optimal
coefficients are determined by minimizing the execution time under power and cost constraints.
(4) Policy and Value Functions

(4.1) Policy Network
Following the RL algorithm designed for the protein phosphorylation sites network prediction

[55], the policy network is designed with the following layers.
• Problem Encoding: The intra-/inter-chiplet interconnection network topology can be
encoded by an adjacent matrix, denoted as 𝑧𝑖 ∈ 𝑅𝑁𝑑×𝑁𝑑 , where 𝑁𝑑 =

∑𝑛𝑅
𝑗=1 (

��𝑅 𝑗 �� + 𝑑 𝑗).
• Input Layer: After encoding, we use ResGCN [43] and self-attention modules for the policy
and value functions in the RL algorithm. Fig. 10 (a) is the proposed ResGCN-Attention policy
and value networks. The first layer is the input layer, whose input data is the encoded
intra-/inter-chiplet interconnection network topology 𝑍 ∈ R𝑁𝑑×𝑁𝑑 .

• ResGCNLayers:The second layer is ResGCN, as shown in Fig. 10 (b),𝐻 (1) = 𝑅𝑒𝐿𝑈 (𝐴𝑍𝑊 (1)
𝑔 +

𝑍𝑊
(1)
𝑟) ∈ R𝑁𝑑×128. Graph convolution is used to aggregate neighbor node features. Residual

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: August 2025.

14

connections are used to capture local topological relationships. The third layer is also ResGCN
for dimension identity mapping, i.e., 𝐻 (2) = 𝑅𝑒𝐿𝑈 (𝐴𝐻 (1)𝑊 (2)

𝑔 +𝐻 (1)𝑊 (2)
𝑟) ∈ R𝑁𝑑×512. The

two-layer ResGCN further integrates high-order neighbor information to enhance the feature
expression ability.

• GlobalAverage Pooling Layer:The next layer is global average pooling layer, i.e.,𝐻 (𝑔𝑙𝑜𝑏𝑎𝑙) =
1
𝑁𝑑

∑𝑁𝑑

𝑖=1𝐻
(2) ∈ R512.

• Multi-head Self-attention Layer: The fourth layer is multi-head self-attention layer.
In this layer, Query(𝑄𝐻), Key(𝐾𝐻), Value(𝑉𝐻) are computed by 𝑄𝐻 = 𝐻 (2)𝑊𝑄 , 𝐾𝐻 =

𝐻 (2)𝑊𝐻 , 𝑉𝐻 = 𝐻 (2)𝑊𝑉 , respectively. The multi-head attention mechanism divides the
𝑄𝐻 , 𝐾𝐻 , 𝑉𝐻 into 8 heads, 𝑄ℎ, 𝐾ℎ,𝑉ℎ ∈ R𝑁𝑑×64, 1 ≤ ℎ ≤ 8. The attention 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ℎ can
be computed by 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ℎ = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄ℎ𝐾

⊤
ℎ√

64
)𝑉ℎ ∈ R𝑁𝑑×64, 1 ≤ ℎ ≤ 8. Then 𝐻 (3) =

𝐶𝑜𝑛𝑐𝑎𝑡 (𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛1, ..., 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛8)𝑊𝑂 ∈ R𝑁𝑑×512. The multi-head mechanism dynamically
adjusts node weights through self-attention, capturing long-range dependencies and enhanc-
ing the adaptability of model to various interaction patterns.

• Global Average Pooling Layer: The fifth layer is global average pooling layer, i.e., 𝐻 (4) =
1
𝑁𝑑

∑𝑁𝑑

𝑖=1𝐻
(3) ∈ R512. The 𝐻 (4) concats the 𝐻 (𝑔𝑙𝑜𝑏𝑎𝑙) to be 𝐻 (5) ∈ R1×1024.

• Fully Connected Layers: The sixth layer and seven layer are both fully connnected layers.
𝐻 (6) = 𝑅𝑒𝐿𝑈 (𝐻 (5)𝑊𝑓 𝑐1 + 𝑏 𝑓 𝑐1) ∈ R256. 𝐻 (7) = 𝑅𝑒𝐿𝑈 (𝐻 (6)𝑊𝑓 𝑐2 + 𝑏 𝑓 𝑐2) ∈ R𝐶

2
𝑁𝑑 is the link

probability distribution of the edge of each pair of core/D2D.
Since the target of the policy network is to maximize the expected cumulative reward, we

optimize the action probability distribution using policy gradients. The loss function of the policy
network is

L𝑝𝑜𝑙𝑖𝑐𝑦 = −E(log𝜋𝜃 (𝑎𝑖 |𝑧𝑖) · 𝐴(𝑧𝑖 , 𝑎𝑖)) (32)

where log𝜋𝜃 (𝑎𝑖 |𝑧𝑖) is the probability of selecting action 𝑎𝑖 given state 𝑧𝑖 , 𝐴(𝑧𝑖 , 𝑎𝑖) is the advantage
function to measure the advantage of action 𝑎𝑖 compared to average as follows.

𝐴(𝑧𝑖 , 𝑎𝑖) = 𝑆𝐴(𝑧𝑖 , 𝑎𝑖) −𝑉𝜙 (𝑧𝑖) (33)

where 𝑆𝐴(𝑧𝑖 , 𝑎𝑖) is the state-action function, 𝑉𝜙 (𝑧𝑖) is the value of states predicted by the value
network.

(4.2) Value Network
The value network is similar to the policy network as shown in Fig 10 (a). The value network

does not have self-attention layer following the design in [43]. The high-dimensional features are
average pooled directly. After two fully connected layers, the state value estimate function ∈ R1

can be obtained. The loss function of value network is

L𝑣𝑎𝑙𝑢𝑒 = E((𝑉𝜙 (𝑧𝑖) −𝑉𝑡𝑎𝑟𝑔𝑒𝑡 (𝑧𝑖))2) (34)

where 𝑉𝜙 (𝑧), 𝑉𝑡𝑎𝑟𝑔𝑒𝑡 (𝑧) are the predicted value of the value network and target value, respectively.
𝑉𝑡𝑎𝑟𝑔𝑒𝑡 (𝑧) can be approximated by

𝑉𝑡𝑎𝑟𝑔𝑒𝑡 (𝑧𝑖) = 𝑅𝑖 + 𝛾 ·𝑉𝜙 (𝑧𝑖+1) (35)

where 𝑅𝑖 is the instant rewards, 𝛾 is the discount factor parameter, 𝑧𝑖+1 is the next state.
(5) Reinforcement Learning Algorithm

The reinforcement learning (RL) algorithm improves the intra- and inter-chiplet interconnection
network topology by iteratively exploring and exploiting the design space. The algorithm works as
follows:

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: August 2025.

On Improving the Performance of Intra- and Inter-chiplet Interconnection Networks in Multi-chiplet Systems for
Accelerating FHE Encrypted Neural Network Applications 15

Input Adjacent Matrix:

GCN:

Residual Processing:

Feature Add:

ReLU:

Output:

ResGCN:

ResGCN:

AverPool:

Concat:

Multiple Self-
Attention(8 head):

FC1:

FC2 (Output):

(a) (b)

Input:

AverPool:

FC1:

FC2 (Output):

Policy Function Value Function

Fig. 10. (a) Policy and Value Networks, (b) ResGCN Module

• Initialization: The policy network 𝜋𝜃 (𝑧0, 𝑎0) and value network 𝑉𝜙 (𝑧0) are initialized with
parameters 𝜃 and 𝜙 , respectively, where 𝜃 ∈ R𝜃 and 𝜙 ∈ R𝜙 define the trainable weights of
the ResGCN-based architectures. An experience replay buffer D is initialized to be ∅. 𝑧0 is
the intra-/inter-chiplet interconnection network topology after step (2) (initial solution).

• Action Selection: The agent generates a policy function 𝜋𝜃 (𝑧𝑖 , 𝑎𝑖) through the ResGCN
encoder and multi-head attention layers. An action 𝑎𝑖 ∈ A is sampled from the discrete
random distribution 𝜋𝜃 (𝑧𝑖 , 𝑎𝑖).

• State Transition andRewardCalculation: The action𝑎𝑖 is executed tomodify the topology,
yielding a new state 𝑧𝑖+1 with reward 𝑅𝑖 = 𝑅(𝑧𝑖 , 𝑎𝑖 , 𝑧𝑖+1) computed following Eqn. (31).

• Experience Storage: The transition (𝑧𝑖 , 𝑎𝑖 , 𝑅𝑖 , 𝑧𝑖+1) is stored to D.
• Policy and Value Networks Update: A batch of transitions (𝑧 𝑗 , 𝑎 𝑗 , 𝑅 𝑗 , 𝑧 𝑗+1) are periodically
sampled from D. The policy network is updated to minimize the policy loss (Eqn. (32)) and
the value network is updated to minimize the value loss (Eqn. (34)).

• Termination: The algorithm terminates when a predefined number of iterations is reached.

5 Experimental Results
5.1 Experimental Setup
Experiments were conducted using the CKKS homomorphic encryption scheme, with the polyno-
mial degree 𝑁𝐶𝐾𝐾𝑆 being 216 and the scaling factor Δ𝑠𝑐𝑎𝑙𝑒 being 264. Experiments were performed on
a multi-chiplet simulator [62] with the cores being those in Ark [29]. The power consumption and
areas of router, D2D interface, core, SRAM are from DSENT [49], synthesis from DC following the
core design in Ark [29] with TSMC 45nm technology, and Cacti 6.0 [40], respectively. The cost model
parameters follow those in [20]. The configurations of the FHE parameters, intra-/inter-chiplet
interconnection network, and interposer are tabulated in Table 1.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: August 2025.

16

Table 1. The Configurations of FHE Parameters, Intra-/Inter-chiplet Network, and Interposer

FHE Parameters
Polynomial Degree 𝑁𝐶𝐾𝐾𝑆 216

Scaling Factor Δ𝑠𝑐𝑎𝑙𝑒 264
Intra- and Inter-chiplet Network Configuration

Flit size 256 bits

Intra-chiplet communication latency Router: 2 cycles
Link: 1 cycle

Inter-chiplet communication latency Router: 2 cycles
Routing algorithm Routing table based

Buffer depth 4 flits per router
Interposer Configuration

Thickness 0.1 mm
Heat capacity 1.81 × 106 J/(m3· K)

Thermal conductivity 35 W/(m· K)
Capacitance density 300 nF/mm2

Inter-chiplet transmission power consumption 1.17 PJ/bit

Fig. 11 shows an example of an interposer-based 2.5D design and its cross-sectional view. In this
design, micro-bumps are created across the surface of chiplets to establish connections with the
interposer. The inter-chiplet routing relies on connecting the corresponding mirco-bumps using
wires routed across the interposer’smetal layers. External signals are routed through themetal layers
and then exit the package via C4-bumps, using through-silicon visas (TSVs). The transmission
energy consumption between adjacent chiplets is 1.17 PJ/bit [51], and the transmission delay
between adjacent chiplets is composed of the following three parts: 1) the processing overhead
of packetization and depacketization times, which can be obtained from [53]; 2) the transceivers’
transmission delay, which is adopted from [47]; and 3) the interposer wire delay, which is adopted
from [27]. In addition, the area and power consumption of D2D interface are based on [22].

PCB

C4-bump

micro-bumpchiplet

interposer

(a) (b)

chiplet
micro-bump

TSVs
interposer

C4-bump

PCB

Fig. 11. The packaging of interposer-based 2.5-D system. (a) interposer-based 2.5D IC and (b) Cross-sectional
view.

To evaluate the bilevel algorithm proposed in this paper, five previously proposed architectures,
REED [3] and multi-chiplet systems with mesh, Kite [6], Butterfly, and Florets [48] as inter-chiplet
interconnection networks were selected as the baseline for comparison. REED [3] uses ring as
inter-chiplet interconnection network, which is one of the pioneering works for multi-chiplet
FHE system design. Kite [6] reduces the average hop count by shortening diagonal long links, and
enhances the bi-section bandwidth by adopting the ButterDonut structure. Florets [48] adopts a

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: August 2025.

On Improving the Performance of Intra- and Inter-chiplet Interconnection Networks in Multi-chiplet Systems for
Accelerating FHE Encrypted Neural Network Applications 17

layered petal-shaped topology, whereas each subnet (or "petal") corresponds to a chiplet and is
connected by the ring topology as intra-/inter-chiplet interconnection network. The experiments
include four CKKS-encrypted benchmarks including CKKS_ResNet50, CKKS_MLP, CKKS_CNN,
and CKKS_VGG [33].

5.2 Validation of the Performance Model
The performance model defined in Eqn. (15) estimates the application execution time 𝜎 (𝑣0, 𝑣𝑚). To
validate its accuracy, 𝜎 (𝑣0, 𝑣𝑚) derived from Eqn. (15) is compared against the execution time 𝜎𝑠
from simulation. The regression error is defined as:

𝑒 =

����𝜎 (𝑣0, 𝑣𝑚) − 𝜎𝑠𝜎𝑠

���� × 100%.

Table 2 compares the average errors of the proposed performance model against other regression
models, where all coefficients in the four models are computed via the maximum likelihood method
[61], with 𝜔 (𝑣𝑖) being the execution time of task 𝑣𝑖 , 𝑡 (𝑣𝑖−1, 𝑣𝑖) being the communication latency
between the cores running on 𝑣𝑖−1 and 𝑣𝑖 after mapping. As shown in Table 2, one can see that the
proposed performance model has the lowest error rate (less than 2%), while the other regression
models have errors exceeding 35%. Therefore, the performance model proposed in this work
achieves high prediction accuracy.

Table 2. Average Errors of Different Regression Models

Model Formula Average Error
Proposed Eqn. (15) 1.79%

Linear 𝜎 (𝑣0, 𝑣𝑚) = 𝛼 ·
𝑚∑︁
𝑖=1

(𝑡 (𝑣𝑖−1, 𝑣𝑖) + 𝜔 (𝑣𝑖)) + 𝛽 37.06%

Exponential 𝜎 (𝑣0, 𝑣𝑚) = 𝛾 · exp
(
𝜆 ·

𝑚∑︁
𝑖=1

(𝑡 (𝑣𝑖−1, 𝑣𝑖) + 𝜔 (𝑣𝑖))
)

46.21%

Power-Law 𝜎 (𝑣0, 𝑣𝑚) = 𝜇 ·
(
𝑚∑︁
𝑖=1

(𝑡 (𝑣𝑖−1, 𝑣𝑖) + 𝜔 (𝑣𝑖))
)𝜈

50.35%

5.3 Ablation Experiment
In this subsection, the contributions of the sub-problems, task-to-core mapping (MA) and topology
generation (TG), are evaluated.

As shown in Fig. 12, four configurations are defined:
• Ring/Mesh: The multi-chiplet systems have intra- and inter-chiplet interconnection network
topologies set to be ring/mesh, using random task-to-core mapping.

• MA+Ring/MA+Mesh: The multi-chiplet systems have intra- and inter-chiplet topology set
to be ring/mesh, using the proposed task-to-core mapping.

• TG: The intra- and inter-chiplet interconnection network topology of the multi-chiplet
system is generated by the proposed topology generation algorithm, using random task-to-
core mapping.

• Proposed (MA+TG): Both the proposed topology generation and task-to-core mapping
algorithms are used.

The two MA configurations demonstrate significant latency reduction. As shown in Fig. 12,
MA+Ring reduces execution time by 59.77%, 65.13%, 37.78%, and 45.12% for CKKS_CNN, CKKS_MLP,
CKKS_ResNet50, and CKKS_VGG respectively compared to random mapping. MA+Mesh reduces

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: August 2025.

18

execution time by 24.20%, 31.92%, 12.22%, and 12.79% for CKKS_CNN, CKKS_MLP, CKKS_ResNet50,
and CKKS_VGG respectively compared to random mapping. The reason is as follows. Tasks with
high communication volume are mapped in close proximity, which decreases inter-chiplet commu-
nication volume and latency.
TG also demonstrates significant latency reduction. From Fig. 12, one can see that TG reduces

execution time by 35.90%, 46.82%, 65.92%, and 65.76% for CKKS_CNN, CKKS_MLP, CKKS_ResNet50,
and CKKS_VGG respectively compared to mesh topology. The proposed topology generation
algorithm allocates more links/bandwidth to communications with high volume, thus improving
resource utilization.

The proposed method on average reduces execution time by 21.9% and 5.1% over MA+Mesh and
TG, respectively. Therefore, iteratively improving MA and TG (proposed) further reduces execution
time than individually performing MA and TG.

CKKS_CNN CKKS_MLP CKKS_ResNet50 CKKS_VGG
0.0

1.0

0.5

Execution Time Comparison (normalized)

Fig. 12. Comparison of execution times with different configura-
tions. For each FHE application, the execution time of different
topologies are normalized to that of ring.

Execution Time Comparison (normalized)

0.0

1.0

0.5

9 chiplets, each chiplet

with 9 cores

16 chiplets, each chiplet

with 16 cores

Fig. 14. Comparison of execution times
on different multi-chiplet systems with 9
and 16 chiplets, running CKKS_Resnet50
under 200W power budget. The execu-
tion time is normalized to that of Florets
[48].

5.4 Performance Evaluation
The proposed method is compared with 5 previous works: REED [3], multi-chiplet systems with
inter-chiplet network set to be mesh, Kite [6], Butterfly and Florets [48]. All execution times are
normalized to that of REED.

CKKS_ResNet50 CKKS_CNN CKKS_MLP CKKS_VGG

1.0

0.0

0.5

(c) 200W power budget with 16 cores per chiplet

Execution Time Comparison (normalized)

CKKS_ResNet50 CKKS_CNN CKKS_MLP CKKS_VGG

1.0

0.0

0.5

(a) 200W power budget with 9 cores per chiplet

Execution Time Comparison (normalized)

(b) 100W power budget with 9 cores per chiplet

CKKS_ResNet50 CKKS_CNN CKKS_MLP CKKS_VGG

1.0

0.0

0.5

Execution Time Comparison (normalized)

Fig. 13. The execution time comparison with CKKS_ResNet50, CKKS_CNN, CKKS_MLP and CKKS_VGG
respectively under various configurations. For each FHE application, the execution times of different methods
are normalized to that of REED.

As shown in Fig. 13 (a) with each chiplet having 9 cores and a total of 200W power budget, on
average, our proposed method reduces the execution time by 51.66%, 43.16%, 39.44%, 43.34%, and
27.70% compared to REED [3], mesh, Kite [6], Butterfly, and Florets [48] respectively. On average,
the power consumption of the proposed method is 0.998×, 0.976×, 0.982×, 0.979×, and 0.984× of
REED [3], mesh, Kite [6], Butterfly, and Florets [48], respectively.
As shown in Fig. 13 (b) with each chiplet having 9 cores and a total of 100W power budget, on

average, our proposed method reduces the execution time by 50.61%, 43.91%, 43.78%, 45.87%, and
24.62% compared to REED [3], mesh, Kite [6], Butterfly, and Florets [48], respectively.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: August 2025.

On Improving the Performance of Intra- and Inter-chiplet Interconnection Networks in Multi-chiplet Systems for
Accelerating FHE Encrypted Neural Network Applications 19

As shown in Fig. 13 (c) with each chiplet having 16 cores and a total of 200W power budget, on
average, our proposed method reduces the execution time by 52.19%, 43.76%, 40.39%, 43.88%, and
30.20% compared to REED [3], mesh, Kite [6], Butterfly, and Florets [48], respectively.
In addition, we have implemented a new accelerator whose PEs resemble those in REED. The

inter- and intra-chiplet interconnection network in this accelerator is generated using our proposed
algorithm. The accelerator has been synthesized using Synopsys Design Compiler with the SMIC
28nm HKC Plus process standard cell library (HS C35 P140 RVT, version 0.1b). The D2D PHY
follows that described in [22].
For comparison, with 9 PEs per chiplet and in total 9 chiplets for running the CKKS_Resnet50

benchmark, the new accelerator achieves an execution time of 0.36× of that of REED, while the
power consumption and area are 0.99× and 0.91× those of REED, respectively. The Verilog code
for the PE is implemented based on our understanding of REED, with on-chip network routers
sourced from the OpenPiton project [5]. Our accelerator has also been validated using a 24-FPGA
system (each FPGA is Xilinx vu13p), with each FPGA communicating via QSFP 28 links, and the
D2D interfaces mapped to those of QSFP 28 PHY in FPGAs.

The reason is that our proposed method can optimize both the intra- and inter-chiplet network
topology and task-to-core mapping, therefore improving the overall performance.

5.5 Scalability Analysis
The proposed method is evaluated on different multi-chiplet systems with 9 and 16 chiplets to
validate its scalability. As shown in Fig. 14, the proposed method reduces execution time by 20.2%
and 24.3% for CKKS_ResNet50 compared to Florets [48], on a 9-chiplet and a 16-chiplet systems
respectively. Therefore, the proposed method can effectively accelerate FHE applications in multi-
chiplet systems of varying system sizes.

5.6 Applicability Beyond FHE
To validate the usability of the proposed method for applications other than FHE, we have conducted
three sets of experiments (DLRM [42], BEVFusion [36], and DeepSeek (one decoding block in D
phase) [35] in plaintext for comparison. These benchmarks are parallelized according to [41], [36]
and [35]. The PEs are adopted from [26], and the area and power models for D2D and routers are
based on [49]. As shown in Fig. 15, with each chiplet having 9 cores and a total power budget of
100W, our proposed method reduces execution time by an average of 46.50% and 46.20% compared
to ring and mesh inter-chiplet topologies (with corresponding intra-chiplet topologies).

1.0

0.5

0.0
DLRM BEVFusion DeepSeek (one decoding

block in D phase)

Execution Time Comparison (normalized)

Fig. 15. The execution time comparison of different inter-chiplet network topologies.

6 Conclusion
In this paper, an intra- and inter-chiplet interconnection network optimization problem was pro-
posed under the power and cost constraints, which was solved by a bilevel optimization algorithm.
In essence, three sub-problems were solved iteratively: (1) FHE parameters selection, (2) task-to-core

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: August 2025.

20

mapping, and (3) intra-/inter-chiplet interconnection network topology generation. Experimental
results demonstrate that our proposed method reduces execution time by 51.66%, 43.16%, 39.44%,
43.34%, and 27.70% compared to REED and four multi-chiplet systems with mesh, Kite, Butterfly,
and Florets as inter-chiplet networks. While the proposed method is tailored for FHE workloads, it
can be adapted to other applications by substituting task graphs and adjusting parameters. This
flexibility is enabled by the bilevel optimization framework, which decouples application-specific
constraints from topology generation. Therefore, the proposed method can effectively accelerate
FHE applications on large-scale multi-chiplet systems.

References
[1] Rashmi Agrawal, Leo de Castro, Guowei Yang, Chiraag Juvekar, Rabia Tugce Yazicigil, Anantha P. Chandrakasan,

Vinod Vaikuntanathan, and Ajay Joshi. 2023. FAB: An FPGA-based Accelerator for Bootstrappable Fully Homomorphic
Encryption. In IEEE International Symposium on High-Performance Computer Architecture. 882–895.

[2] Rashmi S. Agrawal, Anantha P. Chandrakasan, and Ajay Joshi. 2024. HEAP: A Fully Homomorphic Encryption
Accelerator with Parallelized Bootstrapping. In ACM/IEEEInternational Symposium on Computer Architecture. 756–769.

[3] Aikata, Ahmet Can Mert, Sunmin Kwon, Maxim Deryabin, and Sujoy Sinha Roy. 2023. REED: Chiplet-Based Scalable
Hardware Accelerator for Fully Homomorphic Encryption. International Association for Cryptologic Research Cryptology
ePrint Archive (2023), 1190.

[4] Arnold O. Allen. 1990. Probability, Statistics and Queueing Theory - with Computer Science Applications (2. ed.).
[5] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou, Alexey Lavrov, Mohammad Shahrad, Adi

Fuchs, Samuel Payne, Xiaohua Liang, et al. 2016. OpenPiton: An Open Source Manycore Research Framework. ACM
SIGPLAN Notices 51, 4 (2016), 217–232.

[6] Srikant Bharadwaj, Jieming Yin, Bradford M. Beckmann, and Tushar Krishna. 2020. Kite: A Family of Heterogeneous
Interposer Topologies Enabled via Accurate Interconnect Modeling. In ACM/IEEE Design Automation Conference. 1–6.

[7] Zvika Brakerski. 2012. Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP. In Annual
Cryptology Conference. 868–886.

[8] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014. (Leveled) Fully Homomorphic Encryption without
Bootstrapping. ACM Transactions on Computation Theory 6, 3 (2014), 1–36.

[9] Van-Phuc Bui, Shashi Raj Pandey, Pedro Maia de Sant Ana, and Petar Popovski. 2024. Value-Based Reinforcement
Learning for Digital Twins in Cloud Computing. In IEEE International Conference on Communications. 1413–1418.

[10] Jingwei Cai, Zuotong Wu, Sen Peng, Yuchen Wei, Zhanhong Tan, Guiming Shi, Mingyu Gao, and Kaisheng Ma. 2024.
Gemini: Mapping and Architecture Co-exploration for Large-scale DNN Chiplet Accelerators. In IEEE International
Symposium on High-Performance Computer Architecture. 156–171.

[11] Zhipeng Cao, Qinrang Liu, Zhiquan Wan, Wenbo Zhang, Ke Song, and Wenbin Liu. 2025. Enhancing Interconnection
Network Topology for Chiplet-based Systems: An Automated Design Framework. Future Generation Computer Systems
163 (2025), 107547.

[12] Karam S. Chatha, Krishnan Srinivasan, and Goran Konjevod. 2008. Automated Techniques for Synthesis of Application-
Specific Network-on-Chip Architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 27, 8 (2008), 1425–1438.

[13] Yu-Hsin Chen, Joel S. Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for
Convolutional Neural Networks. In ACM/IEEE International Symposium on Computer Architecture. 367–379.

[14] JungHee Cheon, KyoohyungHan, Andrey Kim,Miran Kim, and Yongsoo Song. 2018. A Full RNS Variant of Approximate
Homomorphic Encryption. In Selected Areas in Cryptography, Vol. 11349. 347–368.

[15] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homomorphic Encryption for Arithmetic of
Approximate Numbers. In International Conference on the Theory and Applications of Cryptology and Information
Security. 409–437.

[16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2020. TFHE: Fast Fully Homomorphic
Encryption over the Torus. Journal of Cryptology 33, 1 (2020), 34–91.

[17] Xianglong Deng, Shengyu Fan, Zhicheng Hu, Zhuoyu Tian, Zihao Yang, Jiangrui Yu, Dingyuan Cao, Dan Meng,
Rui Hou, Meng Li, Qian Lou, and Mingzhe Zhang. 2024. Trinity: A General Purpose FHE Accelerator. In IEEE/ACM
International Symposium on Microarchitecture. 338–351.

[18] Yibo Du, Ying Wang, Bing Li, Fuping Li, Shengwen Liang, Huawei Li, Xiaowei Li, and Yinhe Han. 2024. Chiplever:
Towards Effortless Extension of Chiplet-based System for FHE. In ACM/IEEE Design Automation Conference. 243:1–
243:6.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: August 2025.

On Improving the Performance of Intra- and Inter-chiplet Interconnection Networks in Multi-chiplet Systems for
Accelerating FHE Encrypted Neural Network Applications 21

[19] Shengyu Fan, Zhiwei Wang, Weizhi Xu, Rui Hou, Dan Meng, and Mingzhe Zhang. 2023. TensorFHE: Achieving
Practical Computation on Encrypted Data Using GPGPU. In IEEE International Symposium on High-Performance
Computer Architecture. 922–934.

[20] Yinxiao Feng and Kaisheng Ma. 2022. Chiplet actuary: A Quantitative Cost Model and Multi-chiplet Architecture
Exploration. In ACM/IEEE Design Automation Conference. 121–126.

[21] Yinxiao Feng and Kaisheng Ma. 2024. Switch-Less Dragonfly on Wafers: A Scalable Interconnection Architecture
based on Wafer-Scale Integration. In International Conference for High Performance Computing, Networking, Storage,
and Analysis. 96.

[22] Yinxiao Feng, Dong Xiang, and Kaisheng Ma. 2023. Heterogeneous Die-to-Die Interfaces: Enabling More Flexible
Chiplet Interconnection Systems. In International Symposium on Microarchitecture. 930–943.

[23] Yinxiao Feng, Dong Xiang, and Kaisheng Ma. 2023. A Scalable Methodology for Designing Efficient Interconnection
Network of Chiplets. In IEEE International Symposium on High-Performance Computer Architecture. 1059–1071.

[24] Daniele Gammelli, Kaidi Yang, James Harrison, Filipe Rodrigues, Francisco C. Pereira, and Marco Pavone. 2021. Graph
Neural Network Reinforcement Learning for AutonomousMobility-on-Demand Systems. In IEEE Conference on Decision
and Control. 2996–3003.

[25] Craig Gentry, Amit Sahai, and Brent Waters. 2013. Homomorphic Encryption from Learning with Errors: Conceptually-
simpler, Asymptotically-faster, Attribute-based. In Cryptology Conference. 75–92.

[26] Tom Glint, Mithil Pechimuthu, and Joycee Mekie. 2024. DeepFrack: A Comprehensive Framework for Layer Fusion,
Face Tiling, and Efficient Mapping in DNN Hardware Accelerators. In Design, Automation & Test in Europe Conference
& Exhibition. 1–6.

[27] M. D. Arafat Kabir and Yarui Peng. 2020. Chiplet-Package Co-Design For 2.5D Systems Using Standard ASIC CAD
Tools. In Asia and South Pacific Design Automation Conference. 351–356.

[28] Abbas Eslami Kiasari, Zhonghai Lu, and Axel Jantsch. 2013. An Analytical Latency Model for Networks-on-Chip. IEEE
Transaction on Very Large Scale Integration Systems 21, 1 (2013), 113–123.

[29] Jongmin Kim, Gwangho Lee, Sangpyo Kim, Gina Sohn, Minsoo Rhu, John Kim, and Jung Ho Ahn. 2022. ARK: Fully
Homomorphic Encryption Accelerator with Runtime Data Generation and Inter-Operation Key Reuse. In IEEE/ACM
International Symposium on Microarchitecture. 1237–1254.

[30] Sangpyo Kim, Jongmin Kim, Jaeyoung Choi, and Jung Ho Ahn. 2024. CiFHER: A Chiplet-Based FHE Accelerator with
a Resizable Structure. In International Symposium on Secure and Private Execution Environment Design. 119–130.

[31] Sangpyo Kim, Jongmin Kim, Michael Jaemin Kim, Wonkyung Jung, John Kim, Minsoo Rhu, and Jung Ho Ahn. 2022.
BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption. In International Symposium on Computer
Architecture. 711–725.

[32] Kartik Lakhotia, Maciej Besta, Laura Monroe, Kelly Isham, Patrick Iff, Torsten Hoefler, and Fabrizio Petrini. 2022.
PolarFly: A Cost-Effective and Flexible Low-Diameter Topology. In International Conference for High Performance
Computing, Networking, Storage and Analysis. 12:1–12:15.

[33] Hyunhoon Lee and Youngjoo Lee. 2023. Optimizations of Privacy-Preserving DNN for Low-Latency Inference on
Encrypted Data. IEEE Access 11 (2023), 104775–104788.

[34] Guanglong Li and Yaoyao Ye. 2024. HPPI: A High-Performance Photonic Interconnect Design for Chiplet-Based DNN
Accelerators. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 43, 3 (2024), 812–825.

[35] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu
Zhang, Chong Ruan, et al. 2024. Deepseek-v3 Technical Report. ArXiv Preprint ArXiv:2412.19437 (2024).

[36] Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang, Huizi Mao, Daniela L Rus, and Song Han. 2023. Bevfusion:
Multi-task Multi-sensor Fusion with Unified Bird’s-eye View Representation. In International Conference on Robotics
and Automation. 2774–2781.

[37] Zhaojun Lu, Weizong Yu, Peng Xu, Wei Wang, Jiliang Zhang, and Dengguo Feng. 2024. An NTT/INTT Accelerator
with Ultra-High Throughput and Area Efficiency for FHE. In ACM/IEEE Design Automation Conference. 158:1–158:6.

[38] Jianan Mu, Husheng Han, Shangyi Shi, Jing Ye, Zizhen Liu, Shengwen Liang, Meng Li, Mingzhe Zhang, Song Bian,
Xing Hu, Huawei Li, and Xiaowei Li. 2024. Alchemist: A Unified Accelerator Architecture for Cross-Scheme Fully
Homomorphic Encryption. In ACM/IEEE Design Automation Conference. 26:1–26:6.

[39] Srinivasan Murali and Giovanni De Micheli. 2004. SUNMAP: A Tool for Automatic Topology Selection and Generation
for NoCs. In Design Automation Conference. 914–919.

[40] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. 2009. CACTI 6.0: A Tool to Model Large
Caches. HP laboratories 27 (2009), 28.

[41] Krishnakumar Nair, Avinash-Chandra Pandey, Siddappa Karabannavar, Meena Arunachalam, John Kalamatianos,
Varun Agrawal, Saurabh Gupta, Ashish Sirasao, Elliott Delaye, Steve Reinhardt, et al. 2024. Parallelization Strategies
for DLRM Embedding Bag Operator on AMD CPUs. IEEE Micro (2024).

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: August 2025.

22

[42] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo Park,
Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G Azzolini, et al. 2019. Deep Learning Recommendation Model
for Personalization and Recommendation Systems. ArXiv Preprint ArXiv:1906.00091 (2019).

[43] Yulong Pei, Tianjin Huang, Werner van Ipenburg, and Mykola Pechenizkiy. 2022. ResGCN: Attention-based Deep
Residual Modeling for Anomaly Detection on Attributed Networks. Machine Learning 111, 2 (2022), 519–541.

[44] Md Farhadur Reza, Tung Thanh Le, Bappaditya Dey, Magdy A. Bayoumi, and Dan Zhao. 2018. Neuro-NoC: Energy
Optimization in Heterogeneous Many-Core NoC using Neural Networks in Dark Silicon Era. In IEEE International
Symposium on Circuits and Systems. 1–5.

[45] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald G. Dreslinski, Christopher Peikert,
and Daniel Sánchez. 2021. F1: A Fast and Programmable Accelerator for Fully Homomorphic Encryption. In IEEE/ACM
International Symposium on Microarchitecture. 238–252.

[46] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Nathan Manohar, Nicholas Genise, Srinivas Devadas, Karim
Eldefrawy, Chris Peikert, and Daniel Sánchez. 2022. CraterLake: A Hardware Accelerator for Efficient Unbounded
Computation on Encrypted Data. In International Symposium on Computer Architecture. 173–187.

[47] Debendra Das Sharma, Gerald Pasdast, Zhiguo Qian, and Kemal Aygun. 2022. Universal Chiplet Interconnect Express
(UCIe): An Open Industry Standard for Innovations with Chiplets at Package Level. IEEE Transactions on Components,
Packaging and Manufacturing Technology 12, 9 (2022), 1423–1431.

[48] Harsh Sharma, Lukas Pfromm, Rasit Onur Topaloglu, Janardhan Rao Doppa, Ümit Y. Ogras, Ananth Kalyanaraman,
and Partha Pratim Pande. 2023. Florets for Chiplets: Data Flow-aware High-Performance and Energy-efficient
Network-on-Interposer for CNN Inference Tasks. ACM Transactions on Embedded Computing Systems 22, 5s (2023),
132:1–132:21.

[49] Chen Sun, Chia-Hsin Owen Chen, George Kurian, Lan Wei, Jason E. Miller, Anant Agarwal, Li-Shiuan Peh, and
Vladimir Stojanovic. 2012. DSENT - A Tool Connecting Emerging Photonics with Electronics for Opto-Electronic
Networks-on-Chip Modeling. In IEEE/ACM International Symposium on Networks-on-Chip. 201–210.

[50] Ebadollah Taheri, Sudeep Pasricha, and Mahdi Nikdast. 2022. DeFT: A Deadlock-Free and Fault-Tolerant Routing
Algorithm for 2.5D Chiplet Networks. In Design, Automation & Test in Europe Conference & Exhibition. 1047–1052.

[51] Zhanhong Tan, Hongyu Cai, Runpei Dong, and Kaisheng Ma. 2021. NN-Baton: DNN Workload Orchestration and
Chiplet Granularity Exploration for Multichip Accelerators. In ACM/IEEE International Symposium on Computer
Architecture. 1013–1026.

[52] Tianqi Tang and Yuan Xie. 2022. Cost-Aware Exploration for Chiplet-Based Architecture with Advanced Packaging
Technologies. CoRR abs/2206.07308 (2022).

[53] Andreas Traber, Florian Zaruba, Sven Stucki, Antonio Pullini, Germain Haugou, Eric Flamand, Frank K Gurkaynak,
and Luca Benini. 2016. PULPino: A Small Single-core RISC-V SoC. In RISCV Workshop. 15.

[54] Zhiquan Wan, Zhipeng Cao, Shunbin Li, Peijie Li, Qingwen Deng, Weihao Wang, Kun Zhang, Guandong Liu, Ruyun
Zhang, and Qinrang Liu. 2025. Architectural Exploration for Waferscale Switching System. IEEE Transactions on Very
Large Scale Integration Systems 33, 2 (2025), 512–524.

[55] Minghui Wang, Jihua Jia, Fei Xu, Hongyan Zhou, Yushuang Liu, and Bin Yu. 2024. Res-GCN: Identification of Protein
Phosphorylation Sites Using Graph Convolutional Network and Residual Network. Computational Biology and
Chemistry 112 (2024), 108183.

[56] XiaohangWang, Yifan Wang, Yingtao Jiang, Amit Kumar Singh, and Mei Yang. 2025. On Task Mapping in Multi-chiplet
Based Many-Core Systems to Optimize Inter- and Intra-chiplet Communications. IEEE Trans. Comput. 74, 2 (2025),
510–525.

[57] ZhiweiWang, Peinan Li, Rui Hou, andDanMeng. 2023. NTTFusion: Efficient Number Theoretic TransformAcceleration
on GPUs. In IEEE International Conference on Computer Design. 357–365.

[58] Yuntao Wei, Xueyan Wang, Song Bian, Yicheng Huang, Weisheng Zhao, and Yier Jin. 2024. PPGNN: Fast and Accurate
Privacy-Preserving Graph Neural Network Inference via Parallel and Pipelined Arithmetic-and-Logic FHE Accelerator.
In ACM/IEEE Design Automation Conference. 273:1–273:6.

[59] Yinghao Yang, Huaizhi Zhang, Shengyu Fan, Hang Lu, Mingzhe Zhang, and Xiaowei Li. 2023. Poseidon: Practical
Homomorphic Encryption Accelerator. In IEEE International Symposium on High-Performance Computer Architecture.
870–881.

[60] Jinming Zhang, Xi Fan, Yaoyao Ye, Xuyan Wang, Guojie Xiong, Xianglun Leng, Ningyi Xu, Yong Lian, and Guanghui
He. 2024. INDM: Chiplet-Based Interconnect Network and Dataflow Mapping for DNN Accelerators. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 43, 4 (2024), 1107–1120.

[61] Jinming Zhang, Xuyan Wang, Yaoyao Ye, Dongxu Lyu, Guojie Xiong, Ningyi Xu, Yong Lian, and Guanghui He. 2024.
M2M: A Fine-Grained Mapping Framework to Accelerate Multiple DNNs on a Multi-Chiplet Architecture. IEEE
Transactions on Very Large Scale Integration Systems 32, 10 (2024), 1864–1877.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: August 2025.

On Improving the Performance of Intra- and Inter-chiplet Interconnection Networks in Multi-chiplet Systems for
Accelerating FHE Encrypted Neural Network Applications 23

[62] Haocong Zhi, Xianuo Xu, Weijian Han, Zhilin Gao, Xiaohang Wang, Maurizio Palesi, Amit Kumar Singh, and Letian
Huang. 2021. AMethodology for SimulatingMulti-chiplet Systems Using Open-source Simulators. InACM International
Conference on Nanoscale Computing and Communication. 1–6.

[63] Wei Zhong, Bei Yu, Song Chen, Takeshi Yoshimura, Sheqin Dong, and Satoshi Goto. 2011. Application-specific
Network-on-Chip Synthesis: Cluster Generation and Network Component Insertion. In International Symposium on
Quality Electronic Design. 144–149.

[64] Minxuan Zhou, Yujin Nam, Xuan Wang, Youhak Lee, Chris Wilkerson, Raghavan Kumar, Sachin Taneja, Sanu Mathew,
Rosario Cammarota, and Tajana Rosing. 2024. UFC: A Unified Accelerator for Fully Homomorphic Encryption. In
IEEE/ACM International Symposium on Microarchitecture. 352–365.

[65] Shengyu Zhu, Ignavier Ng, and Zhitang Chen. 2020. Causal Discovery with Reinforcement Learning. In International
Conference on Learning Representations.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: August 2025.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Preliminaries on FHE
	2.2 FHE Accelerator Design
	2.3 Inter-chiplet Interconnection Network Design
	2.4 Design Space Exploration For Plaintext Neural Networks

	3 System Model and Problem Definition
	3.1 System Model
	3.2 Latency Model
	3.3 Performance Model
	3.4 Cost and Power Models
	3.5 Problem Formulation

	4 Bilevel Optimization Algorithm
	4.1 Overview
	4.2 FHE Parameters Selection (P1)
	4.3 Task-to-Core Mapping (P2)
	4.4 Intra-/Inter-chiplet Interconnection Network Topology Generation (P3)

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Validation of the Performance Model
	5.3 Ablation Experiment
	5.4 Performance Evaluation
	5.5 Scalability Analysis
	5.6 Applicability Beyond FHE

	6 Conclusion
	References

