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mitigating financial disruptions, rectifying vulnerabilities, 
and maintaining the integrity of digital infrastructure. On the 
social responsibility front, consistent and sustainable cyber 
security investments ensure that organizations comply with 
local and international policies and regulations (Fielder et 
al., 2016; Jeong et al., 2019; Zamani et al., 2020), and fulfil 
their responsibilities to users, partners, and society, which 
is the duty of businesses as responsible participants in the 
digital economy (Pappas et al., 2023).

Nonetheless, underinvestment in cybersecurity persists 
as a pressing issue (Blau, 2017; Gordon et al., 2015). Invest-
ment in cybersecurity is usually lacking mainly because it 
does not directly generate revenue (Fedele & Roner, 2022; 
Gordon et al., 2018; Lee, 2021); instead, they are often 
viewed as cost expenditures aimed at reducing losses from 
security incidents (He et al., 2022; Janicke et al., 2021; 
Smith et al., 2021). Furthermore, the lack of transparency in 
investment assessment process exacerbates the disconnect 
between perceived value and actual needs of cybersecurity 
investments.

From a responsible investment perspective, improving 
transparency in cybersecurity investment assessment is vital. 
Decision makers require a clear, evidence-based framework 
and objective indicators to assess investment efficiency 

1 Introduction

Information systems security involves not only the protec-
tion of an organization’s sensitive data and assets, but also 
the obligation to maintain user privacy and protect the trust 
of stakeholders (Huang & Wang, 2021; O’Halloran & Grif-
fin, 2019; Walton et al., 2021). Cybersecurity investment 
is a strategic decision of an organization (Culnan & Wil-
liams, 2009), which covers two dimensions: organizational 
interests and social responsibility (Fleischman et al., 2023). 
From the perspective of organizational interests, cyber-
security investment is a crucial measure for maintaining 
normal operations (Kosutic & Pigni, 2022; Shaikh & Sipo-
nen, 2024). For example, it includes protecting user data, 
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(Beissel, 2016; Paul & Wang, 2019). However, not all 
cybersecurity investment decision-makers have expertise 
in cybersecurity, and therefore often rely on the experience 
of the Chief Information Security Officer (CISO) (Dor & 
Elovici, 2016; Moore et al., 2016). Such decisions based on 
subjective judgement and experience are prone to bias (Bor-
rero & Henao, 2017; Busenitz & Barney, 1997). Traditional 
return on security investment models can be considered as 
an economic indicator which reflects investment efficiency, 
but it often emphasizes investment costs and anticipated 
returns while overlooks cybersecurity related metrics. For 
example, the European Network and Information Security 
Agency (ENISA) (2012) proposed the Return on Security 
Investment (ROSI) model, which provides an exhaustive 
quantitative risk assessment of the financial impact arising 
from security incidents that influence ROSI. While it has 
an economic lens, highlighting the importance of reputation 
and regulatory compliance, their ROSI model overlooks 
non-economic dimensions, which narrows its viewpoint 
(Abrahamsen et al., 2021). Furthermore, the ROSI model, 
has an imbalanced focus on quantitative metrics, lacking 
qualitative security metrics that yield significant influence 
over cybersecurity investment choices. Relying solely on 
ROSI can lead to an inadequate grasp of the complexities 
and challenges within an organization’s cybersecurity land-
scape. According to Kesswan & Kumar (2015), using the 
ROSI model and focusing solely on Single Loss Expectancy 
(SLE), Annual Rate of Occurrence (ARO), and Annual Loss 
Expectancy (ALE) does not provide a robust and compre-
hensive assessment. The ROSI model, while simpler and 
useful for risk assessment, covers only a portion of the risk 
landscape. It does not account for interactions between 
metrics or the influence of other threatening events in the 
organization, and it lacks the detailed information needed 
to quantify the likelihood of various risk events and losses 
(Yaqoob et al., 2019). In summary, the lack of transpar-
ency of the cybersecurity investment process makes it chal-
lenging for organizational investors and CISOs to make 
informed investment decisions.

This paper integrates the FAIR model and the ROSI 
model and maps the qualitative and quantitative indicators 
of cybersecurity into the integrated model, with the purpose 
of enhancing cybersecurity risk management capabilities 
and improving the transparency in cybersecurity investment 
decision-making. The FAIR model offers a methodology 
and framework for converting technical cyber security risks 
and countermeasures into potential economic losses and 
costs by breaking down risks into quantifiable factors. By 
mapping five qualitative and quantitative indicators to the 
key factors in the FAIR model, technical indicators can be 
converted into measurable loss figures, which allows for the 
calculation of the risk reduction achievable through specific 

countermeasures. This combination provides a systematic 
approach for risk assessment and improve the precision of 
cybersecurity investment decisions.

The rest of the paper is organised as follows. Section 2 is 
a literature review of the research background and key con-
cepts. In Sect. 3, we present the FAIR-ROSI model and the 
proposed methodology in details. The FAIR-ROSI model is 
evaluated in Sect. 4 using a case study. Section 5 discusses 
research contributions and practical implications. Section 6 
concludes this paper.

2 Theoretical Background and Related Work

2.1 Cybersecurity Investment and its Models

Cybersecurity investment decision-making is the process 
by which an organization evaluates, selects, and allocates 
resources to reduce security threats and protect assets 
through risk assessment and economic analysis (Beissel, 
2016; Benaroch, 2018). Existing studies have proposed a 
variety of cybersecurity investment models. These models 
can be roughly divided into economic-driven models, risk-
driven models, and mixed methods models which attempt to 
balance economic and cyber risk considerations.

Economic-driven models focus primarily on cost-benefit 
analysis. Due to the complexities of evaluating and quanti-
fying myriad cyber risks, leveraging quantitative outcomes 
for investment decisions proves to be more convincing (He 
et al., 2023; Loft et al., 2021). Previous studies have used a 
variety of financial assessment tools and methods to assess 
losses, costs, and benefits. Gordon and Loeb (2002) pro-
posed a pioneering economic model for optimal security 
investment that considers potential losses and vulnerabili-
ties. The model shows that not all vulnerabilities are worth 
fully fixing, but there is a critical point of diminishing mar-
ginal benefits. More recently, Gordon et al. (2020) integrated 
cost-benefit analysis into the NIST cybersecurity framework 
to prioritize control measures based on marginal risk reduc-
tion. Tatsumi and Goto (2010) introduced real options to 
evaluate the flexibility of delaying investment under uncer-
tainty. Among them, ROSI metric is one of the most widely 
used methods (Schatz & Bashroush, 2017). ROSI can be 
used to assess cybersecurity investments effectiveness by 
comparing the cost of security measures with the financial 
benefits derived from preventing potential losses (Enisa, 
2012). Kesswan & Kumar (2015) demonstrated the use of 
cost-benefit analysis in cybersecurity, detailing the return 
on investment (ROI) calculation considering factors such 
as Single Loss Expectancy (SLE) and Annual Loss Expec-
tancy (ALE) among others. However, these economic-
driven models heavily rely on financial indicators, simplify 
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technical complexity (Yaqoob et al., 2019), and ignore non-
economic factors, such as compliance and reputation risks. 
It may lead to investment decisions being out of touch with 
actual risk scenarios (Schatz & Bashroush, 2017).

Risk-based models identify, assess, and prioritize cyber 
threats to guide investment decisions. For example, the 
risk assessment process of NIST SP 800 − 30 divides risk 
levels through a threat likelihood and impact matrix (Ross, 
2012). Allodi and Massacci (2017) proposed a real-time risk 
assessment method combined with vulnerability scanning 
logs to dynamically adjust investment priorities by counting 
the frequency of non-targeted attacks. However, risk-driven 
models lack an economic perspective and cannot directly 
answer the question of “how much to invest” (Fielder et al., 
2016).

2.2 Cybersecurity Qualitative Metrics and 
Assessment

Catota et al. (2018) emphasized the significance of quali-
tative metrics such as threat responsiveness, but they also 
noted a lack of comprehensive analysis regarding critical 
infrastructures, especially in quantifying the impact of secu-
rity responsiveness metrics on an organization’s security 
capabilities. Additionally, Naseer et al. (2021) discussed 
how cybersecurity incident response (CSIR) tends to be 
application-specific and categorized analytical insights into 
four types—real-time, forensic, predictive, and descrip-
tive—essential for proactive CSIR and threat intelligence. 
Yet, they missed specifying crucial sub-indicators like 
response and recovery times in the CSIR process. Zadeh et 
al. (2020) detailed the prevalent cybersecurity threats facing 
organizations, classifying them into physical, human, com-
munication and data, and operational threats. Their study 
emphasized the vulnerability of the IT and financial sec-
tors to these threats, comparatively underlining the lesser 
impact of physical threats in these areas. Their work also 
incorporated threat categorization under frameworks like 
Microsoft’s STRIDE and NIST SP 800 − 30, aiding in the 
identification and application of qualitative metrics in this 
research.

Georgiadou et al. (2022) assessed the qualitative indi-
cator of inherent threat and established a security culture 
framework with two levels (individual and organizational) 
across nine dimensions. The framework analyzed diverse 
domains to derive corresponding inherent threat factors. 
Given the subjective nature of human-induced intrinsic 
threat’s specific impact on qualitative indicators (threat 
level) and the challenge of precise quantification, this paper 
refrains from delving into the exact quantification of intrin-
sic threat. Nonetheless, Zadeh et al. (2020) comprehensively 
delineated the current cybersecurity threats organizations 

confront, categorizing them into four groups: physical 
threats, human threats, communication data threats and 
operational threats. The analysis highlighted the higher sen-
sitivity of the IT and financial sectors to cybersecurity con-
cerns, with physical threats being relatively less significant 
in these industries. The study provided a lens to emphasize 
the degree of cyber threats in the IT and financial sectors. It 
also depicted the four threat categories under Microsoft’s 
Threat Model (STRIDE) and the NIST SP 800 − 30 stan-
dard, contributing to this paper’s identification and refer-
ence of qualitative metrics.

Numerous organizations currently adopt a qualitative 
risk matrix for cybersecurity based on the NIST 800 − 30 
global standard (Al Fikri et al., 2019; Ross, 2012). How-
ever, relying solely on such an approach essentially ties 
cyber risk assessment to professionals’ future predictions 
regarding specific attacks. Allodi and Massacci (2017) 
extend this perspective by introducing a quantitative assess-
ment approach, evaluating the likelihood of non-targeted 
attacks through endpoint defence and periodic vulnerability 
assessment exercises. This method quantifies the likelihood 
of an attack more precisely. While this quantitative analysis 
offers a more scientific risk assessment method, concentrat-
ing solely on the number of vulnerabilities as a metric falls 
short in practice. Furthermore, Ghani et al. (2013) quantita-
tively evaluated software vulnerability qualitative indicators 
by leveraging the Common Vulnerability Scoring System 
(CVSS). This quantitative assessment methodology aids in 
prioritizing security investments, thereby minimizing losses 
from security vulnerabilities and optimizing the utility of 
security investments. The collective findings of these stud-
ies imply a need for introducing not only qualitative met-
rics analysis but also an emphasis on the impact of multiple 
quantitative metrics.

2.3 Cybersecurity Quantitative Metrics and 
Assessment

As for the cybersecurity metrics, Ma (2021) combined qual-
itative and quantitative metrics to generate quantifiable data 
for structural comparisons. When assessing cyber vulner-
ability, it investigates the attack process, passive detection, 
and active detection. The paper introduces several common 
network vulnerability assessments, including qualitative and 
quantitative approaches. The assessment of system security 
risk emphasizes assets and threat rate, but the evaluation 
of threat loss remains insufficient. Regarding the specific 
analysis and calculation of quantitative metrics, Kim (2019) 
introduced a decision-making method for estimating mal-
ware risk indices. The study analyses the probability of mal-
ware and malicious activities (MAs) using a decision model 
that incorporates static and dynamic analyses to detect, 
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quantitative metrics. Figure 1 shows the high-level proposed 
FAIR-ROSI model with specific qualitative and quantitative 
metrics elaborated in Sect. 3.2.

3.1 The Components and the Quantification in the 
FAIR Model

As shown in Sect. 2.1 and Fig. 1, the FAIR model has 
eight key components (den Elzen & Lucas, 2005; Freund 
& Jones, 2014). Loss Event Frequency (LEF) refers to the 
frequency of loss events occurrence. LEF is affected by two 
sub-metrics: Threat Event Frequency (TEF) and Vulnerabil-
ity (V). TEF refers to the likelihood of a threat event, while 
V denotes the susceptibility of an organization’s assets to 
a threat event. TEF can be further influenced by Contact 
Frequency (CF) and Probability of Action (PoA), and V is 
impacted by Resistance Strength (RS) and Threat Capabil-
ity (TC), respectively. CF refers to the frequency at which 
a threat endeavors to exploit an asset, and PoA refers to the 
likelihood that a threat will execute a detrimental action 
after accessing an asset. RS assesses the effectiveness of 
organizations’ security controls, while TC reflects the capa-
bility of a threat. The formulas are outlined as follows:

LEF = TEF × V  (1)

TEF = CF × PoA (2)

V = RS × TC (3)

Loss magnitude (LM) represents the magnitude of the loss 
expected at the time of the loss event. It comprises a primary 
loss magnitude (PLM) and a secondary loss magnitude 
(SLM). Among them, PLM is the loss directly caused by the 
loss event, and SLM is the further loss due to the primary 
loss. In this study, we will focus on the effect of PLM on 
FAIR modeling. The formula is outlined as follows:

LM = PLM × SLM  (4)

Risk (R) is a combination of loss event frequency and loss 
magnitude. The formula is as follows:

R = LEF × LM  (5)

3.2 The Qualitative and Quantitative Metrics

This section introduces and expands the qualitative and 
quantitative metrics as shown in Fig. 1.

identify, and classify various malicious activities and threat 
sources. By utilizing hierarchical analysis, it quantitatively 
assesses and quantifies the malware threat indices and sub-
sequently examines the probability of malware and MAs. 
The primary emphasis is on quantitative metrics, probabil-
ity of malware, probability of MAs.

Wang (2020) conducted an in-depth analysis of the vul-
nerability detection technique—the fuzzing technique. 
The findings from this study can provide improved detec-
tion tools for organizations using historical metrics sta-
tistics. CRISTEA (2021) introduced five security threats: 
ransomware, malware, advanced persistent threats (APT), 
third-party threats, and external actor sabotage. The study 
proposed a more practical risk management model primar-
ily centred on analyzing the frequency of these five types of 
security events, commonly referred to as the frequency of 
the threat. Although Allodi and Massacci (2017) acquired 
a risk metric by adopting quantitative risk analysis in con-
junction with traditional qualitative analysis, organizations 
seeking a more intuitive organizational risk value need 
to estimate threat probability and subsequently establish 
a targeted baseline based on the calculated risk value. In 
this context, a suitable approach to assess threat frequency 
involves initially comprehending the nature of the security 
event and then estimating the associated threat probability.

3 Methodology

This section introduces the proposed FAIR-ROSI model. 
This model aims to evaluate the rationality of cyber secu-
rity investment decisions through the results of ROSI. The 
calculation of ROSI is based on the components and quan-
tification methods in the FAIR model. We choose a series 
of threat response properties, including threat level, threat 
frequency, threat response capability. We map these metrics 
and add a potential risk component to FAIR components. 
The metrics were selected based on three criteria informed 
by Ross (2025)’s research: relevance to the organizational 
risk assessment, consistent with existing cybersecurity 
frameworks, and can be quantified through existing orga-
nizational tools and processes. This mapping is inspired 
by (Qamar et al. 2017)’s work, we map the threat response 
properties to FAIR components that are semantically simi-
lar and comparable. The threat response properties serve as 
a bridge between evaluating FAIR components and calcu-
lating ROSI, as these are the key properties used by both 
FAIR and ROSI. In this section, we first introduce the com-
ponents and quantification methods of the FAIR model, then 
explain how the qualitative and quantitative metrics of the 
threat response properties map to FAIR components, and 
finally introduce the baseline settings of the qualitative and 
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organizations’ vulnerability scanning systems. The attack 
blocking rate is the percentage of threat attack attempts 
that an organization successfully blocks in a certain period, 
which can be obtained from SIEM and system protection 
logs. Post-incident capability is the organization’s ability to 
respond and recover after a threat incident occurs, which can 
be measured by response time and recovery time. Response 
time indicates the time required to identify and respond to a 
threat event; recovery time, which signifies the duration to 
restore normal operations. These sub-metrics together cover 
the before (i.e., control measures) and after (i.e., recovery 
time) stages of a cyber threat event, which assess the orga-
nization’s cybersecurity posture, making them a good mea-
sure of threat response capacity. Threat response capacity 
could be used to evaluate RS in FAIR model. It provides 
a more comprehensive view of an organization’s ability to 
respond to cyber threats, which not only considers RS, but 
also the speed of response and recovery, which are critical 
aspects of managing cyber threats.

3.2.1 Qualitative Metrics

Threat response capacity assesses the level of response in 
the face of cyber threats and consists of two sub-metrics: 
pre-incident control effectiveness and post-incident capabil-
ity. Pre-incident control effectiveness refers to the effective-
ness of an organization’s control measures in identifying, 
preventing, and detecting threat events. According to the 
NIST Cybersecurity Framework (Ross, 2025), it can be 
measured via three observable metrics: the organization’s 
security configuration compliance rate, vulnerability patch-
ing rate, and attack blocking rate. The security configura-
tion compliance rate measures the degree of compliance of 
the system’s security configuration with the security base-
line specified by the organization, which can be assessed by 
the security configuration of the operating system and net-
work devices. The vulnerability patching rate measures the 
organization’s efficiency to patch identified vulnerabilities 
in a certain period. This information can be obtained from 

Fig. 1 High level FAIR-ROSI model. The elements enclosed in black boxes represent components of the FAIR model. The blue boxes indicate the 
qualitative and quantitative metrics we have selected, along with their corresponding sub-metrics.
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Threat frequency is the actual number of times a specific 
threat event occurs within a designated time frame. Given 
that threat frequency relies on observed actual data for 
determination and can be tracked and updated through logs, 
monitoring systems and other data sources, mapping threat 
frequency to TEF allows the abstract concept to be trans-
lated into concrete observed threat frequency data.

3.3 Baseline Setting

Each organization establishes its specific acceptable values 
for the metrics based on its cyber security environment and 
security capacity. These values represent the organization’s 
“normal” state for cyber performance metrics, and any met-
ric deviations from this baseline, particularly those falling 
below it, can be deemed anomalies or risks. This model inte-
grates the principles of NIST Special Publication 800 − 53 
Rev. 4 (FORCE, 2013) to determine high and medium-low 
impact security systems. It primarily centers on the cyberse-
curity investment objectives of the organization and uses the 
historical security data of each organization as a foundation. 
The analysis is based on the average value of each metric 
across organizations.

3.3.1 Baseline Setting for Qualitative Metrics

To establish the value for threat response capacity, the 
assumption is that organizations can automatically compute 
values of the sub-metrics, response time, recovery time, and 
effectiveness of control measures. This computation can be 
accomplished by utilizing the log and event monitoring sys-
tem, the security event management system (SIEM), and 
the fault ticketing system during the acquisition of threat 
responsiveness data.

The threat response capacity is determined based on the 
average of the pre-incident control effectiveness and post-
incident capability metrics. Pre-incident control effective-
ness can be assessed through three sub-metrics, security 
configuration compliance rate, vulnerability patching rate, 
and attack blocking rate. Post-incident capability is calcu-
lated based on response time and recovery time. The data 
can be sourced from the log and event monitoring system, 
the security event management system (SIEM), and the 
fault ticketing system, the security configuration of operat-
ing systems and network devices, etc.

The security configuration compliance rate (CCR) is 
calculated based on the ratio of the number of endpoints 
that meet the organization’s security requirements ( EP S) 
to the total number of endpoints ( EP T ). The formula is as 
follows:

CCR = EP S
/

EP T
× 100% (6)

Threat level refers to the specifics of cyber threats 
encountered by organizations. The specific quantification 
of the threat level is expanded to three sub-metrics: threat 
potential refers to how likely a specific threat is to occur; 
severity of consequences indicating the potential damage 
a threat could cause; and the scope of threat, which is the 
breadth of impact a threat could have. They collectively pro-
vide a detailed picture of the threat level. In FAIR-ROSI 
model, threat level could be mapped to TC. According to 
the definition of TC, threat potential can be considered as 
the likelihood of a threat agent applying force against an 
asset. The severity of consequences and scope of threat fur-
ther detail the potential impact of this force, which is consis-
tent with the FAIR model’s focus on quantifying risk. This 
model will quantify the likelihood, severity, and scope of 
impact using a 0–1 scoring system. Given that TC is sub-
ject to change, the quantification of threat level ensures that 
the organizations routinely reassess the magnitude of TC. 
This quantification approach aligns with the requisites of 
TC and contributes to increased operability and dynamic 
adaptability.

Potential risk is used to evaluate various future cyber 
threats an organization could face. The two sub-metrics 
are the likelihood of future threats, the severity of future 
threats. By incorporating potential risk, the FAIR model 
will be capable of accounting for risks that may emerge in 
the future. This model uses a 0–1 scoring system to quantify 
the likelihood and severity of the consequences of potential 
risks.

It is important to emphasize that, although these metrics 
are directly mapped to some components of the FAIR model 
and directly affect the evaluation of these components, 
they indirectly affect higher-level components through the 
inbuilt calculation models of the FAIR model. For exam-
ple, the threat level directly affects our measurement of the 
threat capability and affects the evaluation of LEF through 
TC (i.e., threat level →  TC →  V →  LEF). This design 
enables our model to assess the current security status and 
future risk situation more precisely.

3.2.2 Qualitative Metrics

Cybersecurity return on investment (ROSI) is an economic 
metric used to assess the effectiveness of an investment by 
measuring the return generated. ROSI is calculated by using 
Loss Event Frequency (LEF) and Loss Magnitude (LM) 
determined in the FAIR model, and investment guidance is 
provided based on the ROSI calculation results. A positive 
result indicates a favorable return on the investment, while 
a negative result suggests that the investment expectations 
have not been met.
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Thus, threat response capacity (TRC) is calculated as 
follows:

TRC = (PCE + PIC)/
2  (13)

The qualitative metrics of threat level (TL) are assessed 
qualitatively based on threat potential (TP), severity of con-
sequences (SC), and scope of threat (ST), with assessment 
levels of low, medium, and high, corresponding to a spe-
cific range of values of 0–0.33, 0.34–0.66, and 0.67–1.0 (see 
Table 1).

The three sub-metrics for measuring threat level require 
a coordinated effort from both cybersecurity and financial 
personnels. Specifically, the threat scope can be assessed 
based on factors including the degree of exposure of the 
threat attack surface, the degree of data exposure, the scope 
of affected assets, and the potential propagation path of the 
threat. The severity of consequences can be determined by 
assessing the degree of damage to system functions and data 
integrity that the threat may cause, the degree of business 
interruption, delay time, and recovery time. The assess-
ment of threat potential can be determined by the success 
rate of the threat in attacking the organization in the past 
period, the number of exploitable system vulnerabilities and 
their CVSS scores, and the characteristics of the threat. The 
data can be sourced from the organization’s internal data 
and external cyber threat intelligence. Internal data includes 
past events, security logs, asset management systems, net-
work monitoring systems, vulnerability scanning records, 
and other relevant information. External cyber threat intel-
ligence includes threat intelligence analysis, industry cyber-
security reports, etc.

Threat level assessment is based on the arithmetic mean 
of these three sub-metrics,

TL = (TP + SC + ST )/
3  (14)

The qualitative metrics of potential risk (PR) is assessed 
qualitatively based on the arithmetic mean of the likelihood 
of future threats (LFT) and the severity of future threats 
(SFT). It is worth noting that in the FAIR-ROSI model, the 
likelihood and severity metrics under potential risks specifi-
cally assess future unpredictable threats rather than current 
threats.

PR = (SFT + LFT )/
2  (15)

The specifics are as follows in Table 2.

The Vulnerability Patching Rate (VPR) is calculated based 
on the ratio of the number of fixed vulnerabilities ( VP ) to 
the total number of critical vulnerabilities ( VT ) within the 
organization:

V PR = VP
/

VT
× 100% (7)

The attack blocking rate (ABR) is based on the ratio of the 
number of blocked attacks ( AB) to the total number of 
attacks detected ( AT ):

ABR = AB
/

AT
× 100% (8)

Pre-incident control effectiveness (PCE) is determined by 
the average of the above three indicators:

PCE = (CCR + V PR + ABR)/
3  (9)

To calculate the average response time (ART) of the sub-
metrics, let’s denote nR as the number of response times 
in the organization, and Ri as the ith response time. The 
formula for calculating ART is as follows:

ART =
(1/

nR

)
×

∑
Ri (10)

Calculate the mean recovery time (MRT) of the sub-metric, 
where nM  in the organization denotes the number of recov-
ery times and Mi denotes the ith recovery time, then the 
MRT is:

MRT =
(1/

nM

)
×

∑
Mi (11)

Post-incident capability (PIC) is determined by the average 
of the mean response time and the mean recovery time is:

PIC = (ART + MRT )/
2  (12)

Table 1 Qualitative threat level assessment form
Threat potential Severity of 

consequences
Scope of threat Numeri-

cal range
Highly unlikely Minor impact Affects a small 

part
0.0–0.33

Likely Medium impact Affects a part of 
the region

0.34–
0.66

Highly likely High impact Affects entire 
organization

0.67–1.0
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4 Case Study

4.1 Case Introduction

Due to the limited accessibility of organizations context, 
obtaining accurate and sensitive cyber security data is chal-
lenging. Thus, this study uses a semi-synthetic data approach 
that combines empirical data from the IBM Cost of a Data 
Breach Report 2023 (IBM Security, 2023) with expert-gen-
erated data where detailed information is not available. The 
semi-synthetic data approach is well established in cyberse-
curity research and allows for comprehensive analysis while 
maintaining realistic parameters when detailed organiza-
tional data is not publicly available (Skopik et al., 2014). 
The IBM report (2023) provides insights into the cost of a 
data breach across industries and sizes, considering various 
attack vectors, the average detection and containment time 
for different vulnerabilities or threats, and the magnitude of 
impact associated with various data breaches. It also exam-
ines the financial consequences of a data breach and offers 
insights into the factors influencing these costs. The case 
hypotheses in this paper will be based on specific data from 
the report, which includes total loss cost, data breach cost 
based on organization size, and threat response and recov-
ery time averages. For metrics not directly provided in the 
report, we supplemented expert-generated data with inputs 
from three cybersecurity practitioners, each with more than 
10 years of experience in enterprise security operations and 
risk management.

Companies A and B are both hypothetical companies 
based on real data from the IBM 2023 data breach report. 
Company A is a professional cyber security service pro-
vider, and Company B is a new e-commerce platform with 
a workforce of 10,000 to 25,000 employees. Due to the 
rapid expansion of Company B’s business in recent years, 
it has experienced an increase in phishing incidents, leading 
to substantial user data leakage. It has resulted in business 
interruptions, affecting the organization’s normal opera-
tions, and causing significant losses.

4.2 Case Statistics

The primary challenge faced by Company B is the substan-
tial data leakage of customer, employee, and anonymous 
data due to numerous phishing incidents. The statistics 
reveal that the total cost of losses amounts to $5,360,000, 
corresponding to the loss magnitude (LM). The main data 
leakage stems from a significant number of phishing inci-
dents, accounting for $5,360,000. Among these, the leakage 
of customer information constitutes a major portion, with 
each data leakage incident costing $183.

3.3.2 Baseline Setting for Quantitative Metrics

In this approach, the baseline of ROSI is set to 0 with the 
following considerations: a ROSI baseline set to 0 is the 
lowest investment baseline for the organization. It is in line 
with the principle of zero return on investment in economics 
because the purpose of investment is to obtain greater ben-
efits. When the ROSI is less than 0, it means that the invest-
ment does not have any value in the analysis of the benefits 
of the investment. Additionally, the indicator is easy to com-
pare and analyze. By setting the baseline to 0, it provides a 
greater incentive for the organization, and the members of 
the organization can easily achieve a ROSI greater than 0.

Threat frequency (TF) can be tracked and updated based 
on logs, monitoring systems, and other data sources. TF can 
be calculated using Loss Magnitude, Cost of Each Breach 
(CEB) and Number of Total Beaches (NTB),

TF = LM/CEB/NTB (16)

The pseudocode in Sect. 4.3 shows in detail the process of 
how to use qualitative and quantitative metrics to evaluate 
ROSI through the quantitative method of the FAIR model.

3.3.3 Baseline Setting Adjustment

According to the principles of NIST Special Publication 
800 − 53 Rev. 4 (FORCE, 2013), the baseline setting should 
be adjusted. For metrics with higher-better values, the base-
line is set higher than 10% of the average historical baseline, 
while for metrics with lower-better values, the baseline is 
set lower than 10% of the average historical baseline. For 
example, for metrics that benefit from larger values (e.g., 
control measure effectiveness), the baseline is set at 110% 
of the metric’s average value. Conversely, for metrics that 
benefit from smaller values (e.g., response time and recov-
ery time), the baseline is set at 90% of the average value. 
Calculating and statistically averaging values initially 
establishes a practical reference standard that better reflects 
the historical data for each organization. However, this 
approach considers the risks associated with overly conser-
vative or underestimated baseline values.

Table 2 Qualitative potential risks assessment form
Likelihood of future threat Severity of future threat Numeri-

cal range
Highly unlikely Minor impact 0.0–0.33
Likely Medium impact 0.34–

0.66
Highly likely High impact 0.67–1.0
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average value of the severity of potential risk consequences 
is 0.8. According to the principles outlined in 3.3.1 and 3.3.3 
(i.e., the 10% baseline setting adjustment), the following base-
line metrics for the organization’s existing threat response 
capability, threat level and potential risks can be established 
in Table 3.

4.3.2 Setting Quantitative Baseline

As mentioned in Sect. 3.3.2, the baseline of ROSI is set to 0. 
It is in line with the principle of zero return on investment 
in economics because the purpose of investment is to obtain 
greater benefits. When the ROSI is less than 0, it means that 
the investment does not have any value in the analysis of the 
benefits of the investment.

 As for the threat frequency, from the report, the cost of 
data leakage is $5,360,000 per year. The main data breaches 
involve customer information leakage problems, and the 
cost of each data breach is $183. In this regard, it is esti-
mated that the number of data breaches caused by the num-
ber of data breaches per year is 5,360,000/183 = 29,290. 
In response, there are a total of 29,290 data breaches per 
year. Thus, considering the size of the organization and the 
cost of a data breach, and if each threat event (e.g., phish-
ing event) results in an average of about 800 data breaches, 
the annual threat frequency is 29,290/800 = 37. According to 
the 10% baseline adjustment, the organization’s threat fre-
quency baseline is adjusted to 33 (Table 3 ). Table 3 presents 
the data means of each metric in the study.

4.4 Use FAIR-ROSI Model To Analyze Return on 
Security Investment

Considering the statistics from the report (see Sect. 4.2) as 
inputs as well as reasonable assumptions, we calculated the 
return on investment after the organization implemented 
security measures. The specific analysis process is outlined 
in the following algorithm.

Company B then implemented a range of security mea-
sures, including Intrusion Detection Systems (IDS), Intrusion 
Prevention Systems (IPS), and Multi-Factor Authentication 
(MFA), as well as the incorporation of security artificial 
intelligence and automated detection. Following the imple-
mentation of these control measures, the new loss magnitude 
(NLM) is $2,650,000. During a specific period for statistics 
on security metrics, the following results are obtained: a 
response time of 167 days, a recovery time of 47 days, secu-
rity configuration compliance rate measures at 97%, vulner-
ability patching rate is at 88% and attack block rate at 99%. 
The threat likelihood metric is recorded at 0.4, the threat con-
sequence severity is 0.6, and the threat impact range is 0.65. 
The potential risk likelihood metric is measured at 0.33, and 
the potential risk consequence severity is 0.6. Additionally, 
the threat frequency is found to be 27 times per year.

In this context, Company A needs to assess the situation, 
compares it with the baseline and advise on the return on the 
cyber security investment.

4.3 Baseline Setting

4.3.1 Setting Qualitative Baseline

According to the Cost of a Data Breach Report 2023 (IBM 
Security, 2023), IBM conducted statistical analysis to deter-
mine the averages of the two sub-metrics within the qualitative 
metrics for threat response capability. These are an average 
response time of 217 days and an average recovery time of 76 
days. Furthermore, it’s assumed that the current organization’s 
security configuration compliance rate is 84%, vulnerability 
patching rate is 78% and attack block rate is 92%. As for the 
threat level, we assume the average values, derived from sta-
tistical analysis and assessment, for the organization’s threat 
potential, severity of consequences, and scope of threat to be 
0.5, 0.8, and 0.8, respectively. For potential risks, we assume 
that the average value of the likelihood of potential risk val-
ues in the historical data of the organization is 0.4, while the 

Table 3 Mean value and baseline of qualitative and quantitative indicators
Cybersecurity Metrics Sub-metrics Mean Value Baseline
Threat response capability Pre-incident control effectiveness Security configuration compliance rate 84% 84 × (1 +10%) = 92.4

Vulnerability patching rate 78% 78× (1 +10%) = 85.8
Attack blocking rate 92% 92 × (1 +10%) =101.2

Post-incident capability Response time (days) 217 217 × (1 −10%) = 195
Recovery time (days) 76 76 × (1 −10%) = 68

Threat level Threat potential 0.5 0.5 × (1 −10%) = 0.45
Severity of consequence 0.8 0.8 × (1 −10%) = 0.72
Scope of threat 0.8 0.8 × (1 −10%) = 0.72

Potential risks Likelihood of future threats 0.4 0.4 × (1 −10%) = 0.36
Severity of future threats 0.8 0.8 × (1 −10%) = 0.72

Threat frequency Threat frequency (times/year) 37 33
ROSI ROSI n.a. 0
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The Algorithm CalculateNLEFandROSI(CompanyData)
Input: CompanyData containing baseline metrics and impact scores
Output: NLEF(New Loss Event Frequency), RiskMi�ga�onValue, ROSI (Return on Security Investment)

1. Ini�alize LEF to 1, ROSI to 0, RiskMi�ga�onValue to $2710000

// Adjust Baselines with 10% rule, if the metric is higher-be�er, then set baseline to 110% of the average; 
otherwise, set baseline to 90% of the average.
// Adjust Baselines for Pre-incident Control Effec�veness
2. AdjustedBaselineCCR = BaselineCCR * 1.10  
3. AdjustedBaselineVPR = BaselineVPR * 1.10
4. AdjustedBaselineABR = BaselineABR * 1.10
5. BaselinePCE = (AdjustedBaselineCCR + AdjustedBaselineVPR + AdjustedBaselineABR) / 3

// Adjust Baselines for Post-incident Capability
6. AdjustedBaselineResponseTime = BaselineResponseTime * 0.90
7. AdjustedBaselineRecoveryTime = BaselineRecoveryTime * 0.90
8. BaselinePIC = (AdjustedBaselineResponseTime + AdjustedBaselineRecoveryTime) / 2

// Calculate Baseline TRC
9. BaselineTRC = (BaselinePCE + BaselinePIC) / 2

// Calculate New Pre-incident Control Effec�veness Score
10. NewCCRScore = NewCCR / AdjustedBaselineCCR
11. NewVPRScore = NewVPR / AdjustedBaselineVPR
12. NewABRScore = NewABR / AdjustedBaselineABR
13. NewPCEScore = (NewCCRScore + NewVPRScore + NewABRScore) / 3

// Calculate New Post-incident Capability Score
14. NewResponseTimeScore = AdjustedBaselineResponseTime / NewResponseTime
15. NewRecoveryTimeScore = AdjustedBaselineRecoveryTime / NewRecoveryTime
16. NewPICScore = (NewResponseTimeScore + NewRecoveryTimeScore) / 2

// Calculate TRC Score
17. CompositeResponseScore = (NewPCEScore + NewPICScore) / 2

// Calculate composite scores for threat level  
18. NewThreatPoten�alScore = BaselineThreatPoten�al / NewThreatPoten�al   
19. NewSeverityofConsequencesScore = BaselineSeverityofConsequences / NewSeverityofConsequences
20. NewThreatScopeScore = BaselineThreatScope / NewThreatScope   
21. CompositeThreatLevelScore = (NewThreatPoten�alScore + NewSeverityofConsequencesScore + 
NewThreatScopeScore) / 3   

// Calculate composite scores for poten�al risks
22. NewPoten�alThreatLikelihoodScore = BaselinePoten�alThreatLikelihood / 
NewPoten�alThreatLikelihood  
23. NewPoten�alThreatSeverityScore = BaselinePoten�alThreatSeverity/ NewPoten�alThreatSeverity   
24. CompositePoten�alRiskScore = (NewPoten�alThreatLikelihoodScore + 
NewPoten�alThreatSeverityScore) /2

// Calculate composite scores for threat frequency
25. NewThreatFrequencyScore = BaselineThreatFrequency / NewThreatFrequency   

// Calculate NLEF
26. NTEF = 1 / NewThreatFrequency   /
27. NPR = 1 / CompositePoten�alRiskScore   
28. NV = (1 / CompositeResponseScore) * (1 / CompositeThreatLevelScore)   
29. NLEF = NTEF * NV * NPR   

// Calculate RiskMi�ga�onValue
30. RiskMi�ga�onValue = BaselineLossMagnitude - NLEF   

// Calculate ROSI
31. ALEBefore = BaselineAnnualLossExpectancy
32. ALEA¤er = ALEBefore - RiskMi�ga�onValue
33. C = TotalAnnualSecurityCost
34. ROSI = (ALEBefore - ALEA¤er) / C  

35. RETURN NLEF, RiskMi�ga�onValue, ROSI
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A comparison indicates that this value (1.39) is signifi-
cantly greater than the baseline ROSI of 0, which signifies 
a very high benefit from the investment. Naturally, before 
investing, Company B can establish its risk tolerance level 
according to its specific circumstances and organizational 
fundamentals. The company may choose not to implement 
the security measures, if the calculated risk value remains 
below the established threshold.

5 Discussion

This study developed a comprehensive cybersecurity invest-
ment assessment model, which for the first time attempts to 
integrate the FAIR model and the ROSI model. We mapped 
the qualitative and quantitative indicators related to cyber 
threats (e.g., threat level, threat frequency, threat response 
capability) to the relevant components of the FAIR model. 
By using the risk quantification framework and calculation 
method of the FAIR model, the FAIR-ROSI model can cal-
culate the ROSI based on the values of the indicators and 
assess the economic impact of cybersecurity measures. The 
model is further demonstrated through a case study that uses 
data from the 2023 IBM Data Breach Cost Report to assess 
the financial return of a specific cybersecurity investment. 
This study makes contributions to both the theoretical and 
practical aspects of cybersecurity investment.

The analysis process includes the calculation of compos-
ite scores for threat response capability, composite scores 
for threat severity, composite scores for potential risk, risk 
mitigation value and ROSI. We aim to compare the loss 
before and after applying the new security measures which 
is detailed in Sect. 4.5.

4.5 Results Analysis

This section presents the comparison of losses before and 
after implementing the security measures, as shown in Table 
4. Based on the results of IBM Security ( 2023 ) actual statis-
tics, Company B reduced the actual loss margin (the actual 
value at risk) from $5,360,000 to $2,650,000 by implement-
ing a series of security measures. When using the research 
method and research metrics identified in this paper, the cal-
culated expected risk loss value was $2,551,701 per year. 
A comparison revealed that the actual risk loss value is 
closer to the expected risk loss value. The expected risk loss 
value is relatively close. Additionally, when comparing with 
Company B’s costs for detection and notification upgrades 
totaling $1,950,000 per year, it becomes evident that the 
degree of risk mitigation (i.e., the reduction in risk value) 
significantly exceeds the costs incurred by Company B. 

Furthermore, to better visualize the benefits of this 
investment, this paper uses the risk mitigation value to cal-
culate the ROSI, resulting in a ROSI calculation of 1.39. 

Table 4 Comparison of scores for qualitative and quantitative indicators before and after implementing security measures
Cybersecurity metrics Metrics Before implementation of security 

measures (Company B baseline)
After imple-
mentation 
of security 
measures

Threat response capability Composite score 1 1.21
Pre-incident control effectiveness Composite score 1 1.018

Security configuration 
compliance rate

92.4 97

Vulnerability patching rate 85.8 88
Attack blocking rate 101.2 99

Post-incident capability Composite score 1 1.307
Response time (days) 195 167
Recovery time (days) 68 47

Threat level Composite score 1 1.144
Threat potential 0.45 0.4
Severity of consequence 0.72 0.6
Scope of threat 0.72 0.65

Potential risks Composite score 1 1.145
Likelihood of future threats 0.36 0.33
Severity of future threats 0.72 0.6

Threat frequency Composite score 1 1.22
Threat frequency (times/year) 33 27

Other ROSI 0 1.39
Actual loss value $5,360,000 $2,650,000
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et al., 2020), however, it focuses solely on pure financial 
results (Kesswani & Kumar 2015), lacking in specific guid-
ance on how to translate the risks posed by cyber threats 
into financial losses or costs. Existing research have also 
attempted to integrate economic and risk factors into com-
prehensive frameworks. For example, Wang et al. (2020) 
designed a more complex risk analysis model by combin-
ing Bayesian networks and FAIR model, which quantifies 
cybersecurity risks by categorizing them into measurable 
components such as Loss Event Frequency (LEF) influ-
enced by Threat Event Frequency (TEF) and vulnerability. 
Nagurney et al. (2017) constructed a multi-objective opti-
mization model in the supply chain network to minimize 
security costs and maximize risk reduction. However, exist-
ing hybrid models failed to bridge the gap between technical 
security indicators and financial decisions, and the com-
plexity of the model itself leads to the opacity of its output, 
which hinders the decision makers’ trust.

Our proposed FAIR-ROSI model maps cybersecurity 
metrics from the technical domain to the corresponding 
components of the FAIR model and develops a calcula-
tion method to incorporate them into the ROSI assessment 
process. Specifically, we used the Threat Frequency (TF) 
instead of the Threat Event Frequency (TEF) as it is a more 
intuitive and accessible metric. Unlike the TEF, TF is easier 
to derive from historical data and system logs, making it 
more concrete and operational. This substitution improves 
the model’s intuitiveness, operability, and data availabil-
ity. The choice of mapping Threat Responsiveness (TR) 
to Resistance Strength (RS) is based on the high degree of 
quantifiability of TR. Threat responsiveness can typically 
be measured using specific metrics, such as response time, 
recovery time, and the effectiveness of control measures. 
These are quantifiable data points that can be more easily 
correlated with RS, which offers a way to quantify security 
performance. Furthermore, mapping Threat Level (TL) to 
Threat Capability (TC) is justified because TL is a measure 
of the severity of a threat, describing its impact on the orga-
nization. By mapping TL to TC, the model’s accuracy can 
be improved as it reflects the potential threats’ impact on 
the organization. Moreover, the impact of threat level on the 
organization can be quantified by quantifying the threat like-
lihood, threat consequence severity, and threat impact range 
within the threat level. Therefore, the choice of threat level 
to map to TC takes into consideration the comprehensive-
ness of the metrics. Additionally, this research introduces 
Potential Risk (PR) to modify the Loss Event Frequency 
(LEF), which improves the model’s foresight and predic-
tive capabilities. This unique theoretical approach directly 
embeds key factors that IT experts pay attention to in cyber 
risk assessment into the specific framework of the financial 
risk model, which to a certain extent opens the “black box” 

5.1 Theoretical Contribution

The FAIR-ROSI model enriches the methodological frame-
work for cybersecurity investment decisions and makes two 
major contributions to promoting responsible cybersecurity 
investment by improving the accuracy, comprehensiveness, 
and transparency of investment decisions.

On one hand, this study integrates the FAIR model with 
the ROSI model in a novel way, using the FAIR model to 
quantify risk and incorporate it into the ROSI model, inte-
grating both quantitative and qualitative analysis. This 
provides organizations with more accurate and comprehen-
sive risk assessment and cost-benefit analysis. Specifically, 
this approach connects the value of risk with both Loss 
Event Frequency (LEF) and Loss Magnitude (LM). It fully 
addresses the multiple variables impacting LEF, including 
Threat Event Frequency (TEF) and Vulnerability (V) and 
captures the maximal influence that these factors exert on 
the value of risk. Through the use of the FAIR model to 
quantify a plethora of qualitative and quantitative metrics, it 
amends and enhances the LEF and offers a precise basis for 
organizational risk assessment. Built on both quantitative 
and qualitative metrics, the FAIR component of the FAIR-
ROSI model delivers precise risk values, while the ROSI 
component integrates economic considerations. This analy-
sis empowers organizations to gain a comprehensive under-
standing of the impact of diverse threats and cyber risks on 
their organization. Furthermore, the FAIR model provides 
quantitative risk scenarios, and the ROSI model measures 
the relationship between risk mitigation values and costs. 
This paper’s fusion of the FAIR and ROSI models serves 
not only to quantify risk and assess the effectiveness of risk 
mitigation but also to merge risk management with cost-
effectiveness. The result is a more holistic, precise, and tar-
geted risk management analysis within organizations. This 
combination facilitates a superior grasp and measurement 
of risk that enables informed decision-making and optimal 
risk management strategies, particularly when dealing with 
limited resources.

On the other hand, by mapping technical cybersecurity 
metrics to the FAIR model, we translate technical terms to 
financial terms that can be understood by both the CISO, and 
other members of the decision-making board who often lack 
in-depth knowledge of their system architecture, the threats 
faced, and the existing vulnerabilities (Moore et al., 2016). 
Current cybersecurity investment decision-making heavily 
relies on the CISO’s experiential judgment (Rowe & Gal-
laher, 2006). However, this process is opaque like a “black 
box”, which is subject to the risk of subjective bias (Bor-
rero & Henao, 2017; Busenitz & Barney, 1997). Traditional 
models such as ROSI as an economic indicator can be used 
to assess investment efficiency (Garvey et al., 2013; Gordon 
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infrastructure (Fleischman et al., 2023). FAIR-ROSI model 
provides a robust cybersecurity investment assessment 
framework based on transparent and quantifiable cyber-
security metrics, which enables organizations to identify 
their cybersecurity weaknesses more accurately, allocate 
resources reasonably, ensure the sustainability of cyberse-
curity investments and offer security guarantees for their 
digital transformation. By doing this, organizations can 
not only perform commitments to customers, employees, 
and other stakeholders, handle shared data and information 
safely, compliantly, and responsibly, but also achieve regu-
latory compliance requirements and social responsibilities 
in cybersecurity.

5.3 Limitation and Future Work

While the FAIR-ROSI model offers valuable insights, 
there are still several limitations. One limitation is that 
the selected metrics and their sub-metrics do not cover an 
exhaustive list of factors relevant to quantifying cyber risk. 
However, our model focuses on improving the transparency 
of the qualitative metrics assessment through using quantifi-
able sub-metrics (e.g., vulnerability patching rate, recovery 
time). We also identified new metrics including quantifiable 
factors such as the degree of exposure of the threat attack 
surface, the potential propagation path of the threat. These 
metrics can be assessed and determined using multiple data 
sources: operational data (e.g., security logs, SIEM alerts), 
infrastructure data (e.g., asset management systems, net-
work monitoring systems), threat intelligence feeds and 
experts’ input. There may be other metrics that can provide 
more insights, which requires multiple in-depth industrial 
case studies to explore further and validate these metrics. 
Future research can build on this research to develop more 
comprehensive and specialized metrics suitable for different 
industries.

Furthermore, our model treats the relationships between 
metrics at different levels of abstraction (e.g., recovery time 
vs. threat potential) as linear and additive. The model can 
be further improved to capture more complex interactions 
between these metrics. In addition, the effectiveness of the 
model also depends on the quality and completeness of the 
input data. With the advancements in cyber threat intelli-
gence and its products, this should not be a concern as the 
quality of CTI data continues to improve.

Another constraint is that it is applied to a case study 
derived from the IBM 2023 Data Breach Report (IBM 
Security, 2023), and not to an actual organization with real-
life data. Applying the model to empirical data from an 
actual case study would greatly strengthen its validity and 
enhance its practical contribution. This step would allow for 
a more nuanced understanding and validation of the model 

of cybersecurity investment decision evaluation, improves 
the transparency of the cybersecurity investment decision 
process, and effectively responds to existing challenges.

5.2 Practical Implication

From a practical perspective, the FAIR-ROSI model pro-
vides a transparent assessment method for cybersecurity 
investments. It is particularly helpful for small and medium-
sized enterprises (SMEs) to make cybersecurity investment 
decisions as SMEs typically face tight budgets and limited 
cybersecurity resources (Alahmari & Duncan, 2021; Heidt 
et al., 2019). Their decision-makers are often not experts in 
the field of cybersecurity and may lack the necessary tech-
nical knowledge and experience to make complex cyber-
security investment decisions (Miaoui & Boudriga, 2019). 
The FAIR-ROSI model provides them with a transparent 
framework that translates complex cybersecurity risks into 
measurable financial metrics. The inherent objectivity of 
some metrics used in the FAIR-ROSI model reduces the 
reliance on the CISO’s subjective judgement and experience 
in investment assessment process, allowing organizations to 
understand the causes and effects of the ROSI metric clearly 
and make responsible investment decisions. For example, if 
an organization has a robust logging and monitoring system, 
some sub-metrics in the FAIR-ROSI model such as threat 
incident response time, threat incident recovery time, and 
threat frequency can be obtained through network and sys-
tem monitoring tools, manual event reporting, or automated 
event logging. Additionally, clearly defining the assessment 
mechanisms for other qualitative metrics (e.g., threat level, 
potential risks) can help other decision-makers in the orga-
nization understand the reasoning behind the CISO’s cyber-
security risk assessments.

Furthermore, the case study in this research demonstrates 
the feasibility of the model to real-world scenarios and 
offers practical insights. As we can see, after the implemen-
tation of control measures in Company B, it can be observed 
that the three qualitative metrics have improved, and their 
composite scores are all greater than the baseline score of 
1. Furthermore, the quantitative metrics, specifically threat 
frequency, have also shown improvement. Upon compar-
ing the expected risk value and the actual risk value, it is 
evident that the two values are relatively close. This indi-
cates that the selected metrics and the mapping of metrics to 
the LEF are highly scientifically reasonable, and the use of 
these metrics accurately reflects the cybersecurity situation 
of Company B.

Finally, the FAIR-ROSI model also support organiza-
tions to fulfill their ethical and regulatory obligations. As 
organizations embrace digital transformation, they need to 
protect sensitive data and ensure the security of their digital 
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in a practical context. However, the extensive and complex 
nature of conducting such an empirical study necessitated its 
exclusion from this current research phase. The next phase 
of our research will focus on a detailed exploration and 
analysis of the model using empirical data and real-world 
cases, aligning with the rigorous standards required for a 
thorough empirical investigation. This future work allows 
us to validate and refine our model in real world practice.

6 Conclusion

This paper marks the first effort to merge the FAIR and 
ROSI models, quantifying and comparing expected and 
actual risk values in an organization. It improves the 
understanding of metric validity and baseline settings and 
explores risk mitigation and ROSI’s impact on investment 
decisions. This approach offers a more scientific method for 
risk estimation and analyzing investment returns. However, 
the study acknowledges limitations, and future work will 
aim to apply the framework to real cases and refine the met-
rics and models to offer a comprehensive and current cyber-
security decision support guide. This FAIR-ROSI model 
represents a significant advancement in protecting user data, 
mitigating financial disruptions, maintaining the integrity of 
digital infrastructure. Ongoing and sustainable cyber secu-
rity investments also reflect organization’s commitment to 
social responsibility, as organizations comply with local 
and international policies and regulations, and fulfil their 
responsibilities to users, partners, and society as responsible 
participants in the digital economy.
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