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Abstract
Language models (LMs) utilize chain-of-thought (CoT) to imitate human reasoning and inference processes, achieving 
notable success in multi-hop question answering (QA). Despite this, a disparity remains between the reasoning capabilities 
of LMs and humans when addressing complex challenges. Psychological research highlights the crucial interplay between 
explicit content in texts and prior human knowledge during reading. However, current studies have inadequately addressed 
the relationship between input texts and the pre-training-derived knowledge of LMs from the standpoint of human cogni-
tion. In this paper, we propose a Prompting Explicit and Implicit knowledge (PEI) framework, which employs CoT prompt-
based learning to bridge explicit and implicit knowledge, aligning with human reading comprehension for multi-hop QA. 
PEI leverages CoT prompts to elicit implicit knowledge from LMs within the input context, while integrating question type 
information to boost model performance. Moreover, we propose two training paradigms for PEI, and extend our framework 
on biomedical domain QA to further explore the fusion and relation of explicit and implicit biomedical knowledge via 
employing biomedical LMs in the Knowledge Prompter to invoke biomedical implicit knowledge and analyze the consist-
ency of the domain knowledge fusion. The experimental results indicate that our proposed PEI performs comparably to 
the state-of-the-art on HotpotQA, and surpasses baselines on 2WikiMultihopQA and MuSiQue. Additionally, our method 
achieves a significant improvement compared to baselines on MEDHOP. Ablation studies further validate the efficacy of 
PEI framework in bridging and integrating explicit and implicit knowledge.
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1  Introduction

Multi-hop question answering (QA) poses a significant chal-
lenge, requiring sophisticated reasoning and inference across 
multiple sources to derive a coherent and accurate answer 
[63]. Chain-of-thought (CoT) mimics human reasoning by 
generating a series of intermediate natural language steps 
that guide the model toward the final answer for complex 
reasoning tasks. Recent studies utilizing CoT prompt-based 

learning on language models (LMs) have shown consider-
able effectiveness in tackling multi-hop QA [9, 51, 66].

Despite the advancements in LMs, there remains a sig-
nificant gap between their reasoning abilities and human 
cognitive processes in addressing intricate problems. Cur-
rent research has yet to adequately investigate the interplay 
between input texts and the pre-training-derived knowledge 
of LMs, particularly through the lens of cognitive science.

In studies of human reading comprehension, Smith [48] 
suggests that information is often reiterated during reading, 
resulting in redundancies at various linguistic levels, includ-
ing letter-to-letter, word-to-word, sentence-to-sentence, 
and text-to-text. As a result, readers are able to reduce their 
dependence on explicit information details within the text 
by integrating external sources of information, such as world 
knowledge [17]. According to the findings of Clarke and Sil-
berstein [8], readers engage in reading comprehension and 
question-answering process while reading, drawing upon 
both the explicit information conveyed in the text and their 

 *	 Yunfei Long 
	 yl20051@essex.ac.uk

	 Guangming Huang 
	 gh22231@essex.ac.uk

	 Cunjin Luo 
	 cunjin.luo@essex.ac.uk

1	 School of Computer Science and Electronic Engineering, 
University of Essex, Wivenhoe Park, Colchester CO4 3SQ, 
UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-025-02712-y&domain=pdf


	 International Journal of Machine Learning and Cybernetics

pre-existing language knowledge, background knowledge, 
and world knowledge derived from that explicit informa-
tion. Certain studies have pointed out that a critical factor 
in reading ability is what the reader brings to the text, or 
what is generally referred to as prior knowledge [1, 2, 64]. 
Related experimental findings further reveal a significant 
positive correlation between human reading comprehension 
and prior knowledge [1].

For instance, as depicted in Fig. 1, consider the ques-
tion “Was Morris Lee born in the capital of the Democratic 
Republic of the Congo?”. A human reader would retrieve 
relevant information from the provided passages and, based 
on the auxiliary verb “was” in the yes-no question, infer the 
answer “yes” or “no” drawing upon linguistic knowledge (as 
part of implicit knowledge), even in the absence of informa-
tion regarding the capital of Congo.

Therefore, an inherent and inseparable connection pre-
vails between the explicit information within text context 
and pre-existing prior knowledge of human being. The prior 
knowledge lessens the dependence on explicit details, thus 
reducing the necessities for redundant information dur-
ing inference and reasoning. In addition, the harmonious 
fusion of explicit information and prior knowledge improve 
the effectiveness of the reading process, contributing to 
enhanced comprehension and deeper engagement.

Building on insights from the theories of human cognition 
mentioned above, we introduce a novel framework, referred 
to as Prompting Explicit and Implicit knowledge (PEI), to 
address the challenges multi-hop QA. In this framework, 
readers are analogized to LMs, where their prior knowledge 
represents implicit knowledge gained through pre-training, 
and the explicit information within passages serves as the 
input context conveying explicit knowledge. While acknowl-
edging the inherent differences between LMs and human 
beings, and recognizing the limitations in directly consid-
ering readers as LMs, Jin and Rinard [24] argue that LMs 
surpass beyond mere “stochastic parrots” [4], as they possess 

the capacity to acquire meaningful semantic information 
during pre-training. Complex question answering encom-
passes high-complexity, non-factoid inquiries that require 
multi-step decomposition and integration of multiple infor-
mation sources. The decomposition process is fundamental 
to this problem-solving paradigm, as it transforms initially 
intractable complex questions into manageable subprob-
lems. Furthermore, as evidenced in recent chain-of-thought 
approaches and prompt-based methodologies for LLMs, 
these explicit reasoning steps not only enhance the models’ 
problem-solving capabilities but also render the solutions 
auditable, verifiable, and interpretable when errors occur 
[5, 42].

To make use of these knowledge sources, we utilize 
CoT prompting to capture explicit knowledge and activate 
implicit knowledge. Intuitively, this approach effectively 
bridges these knowledge types, thereby enhancing the rea-
soning performance of PEI framework for multi-hop QA. 
Additionally, PEI reduces dependency on the explicit infor-
mation details contained within input passages by enabling 
the selective removal of irrelevant or “redundant” informa-
tion unrelated to the questions, aligning with Smith [48]’s 
theory. To further demonstrate the significant role of implicit 
knowledge in boosting the proposed framework’s perfor-
mance, we conduct ablation studies, which corroborates our 
hypothesis (refer to Sect. 4.7).

As illustrated in Fig. 2, our proposed PEI framework con-
sists of three main components: (i) The Type Prompter is 
designed to identify and learn the weights of reasoning types 
for given questions; (ii) The Knowledge Prompter acquires 
implicit knowledge by leveraging explicit knowledge, which 
employs an encoder-decoder foundation language module, 
mirroring human reading comprehension based on psycho-
logical cognition theories; (iii) The Unified Prompter fuses 
explicit, implicit knowledge and question types for multi-
hop QA, which uses the same foundation model as Type 
Prompter. Moreover, our proposed framework offers flexibly 

Fig. 1   An example of the significance of implicit knowledge in reading comprehension



International Journal of Machine Learning and Cybernetics	

replace the foundation models to adapt to different require-
ments, such as those specific to the biomedical domain 
or constraints related to computational cost. Hence, We 
propose two training paradigms to PEI framework, which 
employs various sizes of foundation LMs (i.e., Llama 3.1-8B 
and ELECTRA).

Tackling questions in the biomedical field frequently 
requires multi-step reasoning. For example, a clinician 
might inquire, “Which tests are required for patients exhib-
iting [specific symptoms]?” To answer, models must: (i) 
deduce the possible diseases involved and (ii) determine 
the appropriate tests for differential diagnosis. To address 
these challenges, we extend our proposed PEI framework 
to biomedical domain for further exploring the fusion and 
connection of explicit and implicit biomedical knowledge 
in addition to general domain. Biomedical QA significantly 
deviates from general QA in content, scope, and methodol-
ogy because of the complex nature of biomedical informa-
tion [20, 25]. Zweigenbaum [69] was the first to highlight 
the distinctive characteristics of Biomedical QA compared 
to general domain QA. Biomedical QA deals with specific 
technical terms (e.g., “pharmacokinetics,” “tyrosine kinase 
inhibitors” and “monoclonal antibodies”) and entails the 
comprehension of detailed, evidence-based information, 
such as the interpretation of clinical trials and understand-
ing action mechanisms. Additionally, biomedical informa-
tion is frequently incomplete, ambiguous, or subject to con-
stant change. Therefore, it is essential to comprehensively 
evaluate our proposed framework within the biomedical 
domain to ensure its effectiveness and reliability. We utilize 
a biomedical encoder-decoder foundation model within the 

Knowledge Prompter to harness specialized implicit knowl-
edge, which is then integrated into the Unified Prompter 
with explicit knowledge derived from the provided texts. 
Moreover, we examine the consistency of the domain knowl-
edge integration.

Our contributions are summarized as follows:

•	 We introduce the PEI framework that offers a proficient 
method for multi-hop QA, based on the human reading 
process, by modeling the input passages or context as 
explicit knowledge and invoking the pre-trained knowl-
edge of LMs as implicit knowledge that mirroring with 
human prior knowledge.

•	 We propose two training paradigms to PEI framework, 
which employs various sizes of foundation LMs (i.e., 
Llama 3.1-8B and ELECTRA). The experiment results 
show that the performance of Llama-based PEI with 
prompt tuning is slightly lower that of the standard PEI, 
but significantly reduces the number of trainable param-
eters while maintaining comparable reasoning perfor-
mance.

•	 Our PEI framework demonstrates performance on par 
with state-of-the-art baseline evaluating on the bench-
mark HotpotQA dataset. Furthermore, PEI shows 
consistent effectiveness and robustness on single-
hop sub-questions and additional multi-hop datasets 
(2WikiMultiHopQA and MuSiQue).

•	 We further evaluate PEI framework on biomedical 
domain to comprehensively explore the explicit and 
implicit knowledge fusion in specify domain. The experi-
mental results shows that the proposed PEI framework 

Fig. 2   The overview of our proposed PEI framework for multi-hop QA. The right green dashed block is the Type Prompter; the top blue dashed 
block refers to the Knowledge Prompter; and the bottom orange dashed block is the Unified Prompter
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significantly outperforms the baselines on MEDHOP 
dataset.

•	 The ablation studies corroborate that implicit knowl-
edge improves the reasoning abilities of PEI framework, 
thereby supporting our hypothesis regarding PEI, which 
grounded in the human cognition theories for reading 
comprehension.

2 � Related work

2.1 � Chain‑of‑thought prompting

Prompt tuning1 has been acknowledged as a potent method 
to tune LMs to harness pertinent knowledge for targeted 
downstream tasks [62]. CoT prompting, which is a prompt-
driven strategy, has surfaced as a technique to extract 
implicit knowledge from large language models (LLMs) 
for intricate reasoning tasks. It mirrors the sequential and 
coherent thought processes of humans by creating interme-
diate reasoning steps in natural language that culminate in 
the final result [56, 67]. Manual-CoT [56] aimed to extract 
CoT reasoning capability via manual demonstrations. Subse-
quently, Kojima et al [28] showed that LLMs can effectively 
act as zero-shot reasoners, producing rationales that inher-
ently contain CoT reasoning by using the phrase “Let’s think 
step by step” to encourage a detailed thought process before 
deriving answers. AutoCoT, an automatic CoT prompting 
approach [67], employed various question sampling and rea-
soning chain construction to form demonstrations, thereby 
reducing the need for human input. Recent research have 
delved into CoT prompt learning for multi-hop QA [51, 53]. 
Building on aforementioned studies, our study investigates 
the application of CoT prompting to extract implicit knowl-
edge from LMs. Unlike CoT, which produces intermediate 
steps in natural language, our approach produces continuous 
embeddings to represent implicit knowledge.

2.2 � Prompt‑based learning for multi‑hop QA

Significant advancements in recent research have been made 
by incorporating prompts for multi-hop QA [21, 33, 68]. 
For instance, PromptRank [27] developed an instruction-
based prompt, integrating a candidate document pathway 
to calculate the relevance between a given question and 
the documented path. This relevance is evaluated via the 
conditional likelihood of the question in relation to the 
path prompt, as assessed by a language model. In contrast, 
IRCoT [51] implemented a system that alternated between 

CoT generation and knowledge retrieval steps, leveraging 
CoT prompting to direct the retrieval process. Wang et al 
[53] proposed an iterative CoT prompting method that pro-
gressively extracts knowledge from LMs using a sequence-
to-sequence BART-large model, thereby recalling natural 
language sequences for multi-hop QA. Each triplet in the 
evidence path is transformed into a natural language state-
ment through a straightforward template, cumulatively gen-
erating the final statement. Building on this concept, our 
method employs a similar encoder-decoder foundation LM 
(i.e., BART-large) for recalling implicit knowledge by an 
approach of iterative prompting.

Comparing to the aforementioned studies, our proposed 
method distinguishes in the following three aspects: (i) PEI 
eliminates the need to transform triple evidence paths into 
natural language statements; (ii) we utilizes input passages 
to explicitly draw upon implicit knowledge from LMs, 
which previous methods have yet explored; (iii) PEI repre-
sents the recalled implicit knowledge as continuous embed-
dings, as opposed to using natural language statements or 
lexical knowledge [19]. Consequently, our framework is not 
dependent on natural language statements originating from 
evidence paths.

2.3 � Biomedical multi‑hop QA

Biomedical multi-hop QA is a specialized domain of multi-
hop QA that involves reasoning over multiple intercon-
nected biomedical facts to answer complex queries [25]. 
Recent studies utilize a combination of LMs and structured 
knowledge representations such as biomedical knowledge 
graphs [11, 14], or external medical knowledge [15]. Du 
et al [11] proposed Adversarial Entity Graph Convolutional 
Networks (AEGCN), constructing an enriched entity graph 
with innovative edge relationships derived from supporting 
text while leveraging adversarial entities during training to 
enhance the model’s resistance to interference. MedKGQA 
[15] addressed drug-drug interaction (DDI) prediction and 
medical reasoning by combining external medical knowl-
edge bases with “drug-protein” triplets and graph neural 
networks (GNNs) to navigate and extract answers from bio-
medical pathways effectively.

Comparing with the previous methods introduced in 
related works, our proposed PEI framework employs CoT 
prompting to elicit implicit biomedical knowledge from 
LMs, reducing the cost of constructing of knowledge bases. 
Meanwhile, PEI framework is flexible to utilize various 
foundation LMs to adapt specialty knowledge requirements.

1  The term “prompt tuning” refers to a broad array of methods rather 
than a specific approach.
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3 � Methodology

3.1 � Problem statement

Multi-hop QA represents a challenging natural language 
processing task wherein a system must generate responses 
by retrieving and reasoning across multiple evidence frag-
ments from disparate textual sources. In contrast to single-
hop QA, which extracts answers from individual passages, 
multi-hop QA necessitates complex inferential reasoning 
to synthesize information across disconnected documents. 
Formally, given a complex query Q and a collection of sup-
porting sentences Sn = [s1, s2, ..., si, ..., sn] , the objective is 
to derive the correct answer A through sequential inferential 
processes that traverse the relevant textual evidence, and the 
corresponding supporting sentences Sk , where Sk ⊆ Sn.

3.2 � Framework overview

As illustrated in Fig. 2, our proposed PEI framework com-
prises three primary components: (i) Type Prompter iden-
tifies reasoning types for given questions and learns their 
respective weights; (ii) Knowledge Prompter acquires 
implicit knowledge by leveraging explicit knowledge 
through an encoder-decoder foundation language model, 
reflecting the human reading process as informed by psy-
chological cognition theories; and (iii) Unified Prompter, 
which integrates explicit knowledge, implicit knowledge, 
and question types for multi-hop QA using the identical 
foundation backbone model as Type Prompter. PEI frame-
work facilitates flexible substitution of foundation models to 
accommodate diverse requirements, such as domain-specific 
adaptation for biomedical applications or optimization of 
computational resource allocation.

Pre-training on single-hop QA. To analyze the capabili-
ties of QA models throughout each step of reasoning pro-
cesses for multi-hop QA, our study utilizes a foundational 
LM, namely ELECTRA​2 [7], trained on the single-hop QA 
dataset SQuAD [45]. Following this, we employ the pre-
trained ELECTRA model as the foundation LM for our Type 
Prompter component. By deploying the ELECTRA model 
trained on single-hop tasks, we endeavor to investigate the 
interplay between the model’s behavior and reasoning pro-
cesses across multi-hop reasoning stages.

Note that the LLMs (i.e. Llama 3.1 [12]) also be employed 
as the foundation model, however, we do not fine-tune Llama 
on SQuAD since the computational cost of full parameter 

fine-tuning for LLMs is costly. Additionally, SQuAD dataset 
is a sub-task of the LLM benchmark.

3.3 � Type prompter

The Type Prompter is designed to enhance the training of 
acquired weights for soft prompts, allowing them to adeptly 
learn the unique features of different question types. As illus-
trated in Fig. 2, the yellow blocks Pt denote trainable prompt 
embeddings, whereas the blue blocks represent the input 
embeddings and frozen foundation LM.

The P-tuning v2 approach [34] is utilized to trainable soft 
prompts Pt , learning the weights and capturing specific-type 
information of the given queries. Initially, the foundation 
LM remains frozen while the trainable soft prompt Pt is 
optimized. Upon training, the updated Pt is linked to the 
Unified Prompter module, while preserving its fixed nature 
throughout subsequent operations. The input sequence for 
the model includes both the trainable prompt embeddings 
and the token embeddings of the given question Q:

where e(Pt) is the trainable prefix embeddings (prompt 
tokens added before the input text), e(Q) denotes the token 
embeddings of the input question Q, and the specific token 
[CLS] is used as classification.

The extended input Hin is passed through the LM to com-
pute hidden representations:

here, Hout ∈ ℝ
(d+l)×m , where We denote d as the embedding 

dimension of the foundation LM, l denotes the length of 
trainable prompt Pt and m is the hidden dimension of the 
LM.

In this module, the total number of trainable parameters 
can be calculated as Θ(d ⋅ h ⋅ l) , where h as the number of 
layers within the LM.

Comparing to full-parameter fine-tuning, Type Prompter 
module that employing p-tuning v2 decreases the number of 
training parameters while effectively capturing type-specific 
information. Additionally, it allows for the transfer updated 
weights of Pt , encompassing type-specific information, to 
the Unified Prompter module. Furthermore, by utilizing 
p-tuning v2, a broader feature spectrum can be efficiently 
captured and learned compared to the prompt-tuning [29].

3.4 � Knowledge prompter

The Knowledge Prompter leverages textual input to activate 
and integrate LMs’ innate prior knowledge, thereby enhanc-
ing the fusion of explicit and implicit information for effec-
tive reading comprehension.

(1)Hin = [e(Pt);e([CLS]);e(Q)]

(2)Hout = Model(Hin)

2  The foundational LMs could be displace with more advanced mod-
els. Consistent with previous studies [9] on prompt-based learning, 
we selected ELECTRA.
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Figure 2 illustrates how the Knowledge Prompter employs 
an iterative encoder-decoder LM to retrieve implicit knowl-
edge through prefix tuning3 [32]. Trainable prompt embed-
dings, labeled as PE

k
 for the encoder and PD

k
 for the decoder, 

are integrated within each LM layer. This method facilitates 
the efficient retrieval and application of explicit knowledge 
during the iterative phases of encoding and decoding.

Given a multi-hop query Q and a serious of supporting 
sentences Sn = [s1, s2, ..., si, ..., sn] , we aim to retrieve and 
extract a sequence of knowledge Kn = [k1, k2, .., ki, ..., kn] that 
provides sufficient information for determining the response 
to both Q and Sn , where n represents the number of support-
ing sentences. Our focus lies in the development of prompt-
based learning method, where we intend to construct trainble 
prompts PE

k
 and PD

k
 to lead the encoder-decoder LM in recall-

ing the desired knowledge Kn . Notably, we maintain fixed 
parameters for the encoder-decoder LM, thereby allowing us 
to direct its retrieval process via trainable prompts.

Motivated by the sequential nature observed in multi-
step reasoning tasks [53], we adopt an iterative approach 
as below:

where at each step j, LM recalls the next piece of knowl-
edge kj conditioned on the query Q and supporting sentences 
s1, ..., sj and gathered knowledge k1, ..., kj−1.

More specially, when j = 1 , it is written as following 
based on Equation (3) and (4):

3.5 � Unified prompter

As illustrated in Fig. 2, we suture the Unified Prompter mod-
ule with Pt , integrating weights tailored for specific reason-
ing types. Additionally, the implicit knowledge Kn derived 
from the Knowledge Prompter module serves as supple-
mentary input. This fusion of information intuitively boost 
reasoning capabilities of PEI framework based on human 
reading process.

In Unified Prompter module, the trainable prompt embed-
dings are denoted as Pu , where the updated prompt embed-
dings Pt are frozen. To preserve the learned weights of Pt 
derived from the Type Prompter, we adopt the identical 

(3)P(kj|Q, Sj,Kj−1) =

n∏

j=1

P(kj|Q, s1, ...,sj, k1, ..., kj−1)

(4)decoder(kj) = encoder(Q, Sj,Kj−1)

(5)decoder(k1) = encoder(Q, s1)

architecture of the foundation LM, allowing for seamless 
concatenation of Pt with the Unified Prompter.

The input sequence for the Unified Prompter includes 
the trainable prompt embeddings Pu and the frozen prompt 
embeddings Pt:

Subsequently, we perform two training settings depending 
on various foundation LM. For ELECTRA, we employ joint 
p-tuning and full parameter fine-tuning to this module. For 
Llama, we use p-tuning to optimize the trainable Pu and 
freeze the foundation LM.

Prediction Module.4 After encoding in Unified Prompter, 
we design a prediction module to jointly perform answer 
and supporting evidence prediction, followed by [9, 13]. To 
determine the answer span, two linear layers are utilized 
on the context representation to ascertain the start and end 
positions of the response. Meanwhile, a binary linear layer 
is deployed for predicting supporting evidence by assigning 
a binary relevance label at the beginning of each supporting 
sentence [SE].

4 � Experiments

4.1 � Dataset and metrics

HotpotQA [63] comprises a dataset of 113,000 question-
answer pairs sourced from Wikipedia. Furthermore, Hot-
potQA includes sentence-level supporting facts critical for 
reasoning, thereby enabling QA systems to carry out infer-
ence with strong supervision and articulate their predictions.

2WikiMultiHopQA [18], comprises more than 192,000 
entries, distributed across 167,000 for training, 12,500 for 
evaluation, and 12,500 for testing. While its structure is 
largely aligned with HotpotQA [63], this dataset introduces 
improvements by offering a wider spectrum of reasoning 
categories for questions and detailed annotations of the evi-
dence trajectories linked to each question.

MuSiQue [50] consists of 25,000 examples featuring 
questions that require 2 to 4 reasoning steps. This collection 
is curated through a structured method of selecting compat-
ible single-hop question pairs that manifest logical links, 
thereby crafting a comprehensive set of multi-hop inquiries.

Sub-question QA dataset [49] was developed to support 
the examination of multi-hop QA models’ reasoning abilities 
at each phase of the reasoning process. To assess the mod-
els’ effectiveness, the authors assembled a dedicated data-
set composed of single-hop sub-questions. This collection 

(6)H = [e(Pu);e(Q, Sn,Kn);e(Pt)]

3  We employ prefix tuning method for the Knowledge Prompter 
inspired by the context-aware prompter design [53]. 4  https://​github.​com/​Tswin​gs/​PCL.

https://github.com/Tswings/PCL
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encompasses 1k samples, manually validated from the Hot-
potQA development set, thereby providing a high-quality 
evaluation resource for the research.

To achieve uniformity and comparability among the data-
sets employed in our experimental analyses, we classify the 
question types from the three datasets being examined into 
the overarching categories of comparison and bridge. This 
classification aids in establishing a standardized method-
ology for managing various question structures across the 
datasets subjected to our evaluation.

MEDHOP[58] is a benchmark resource designed for 
multi-hop reasoning in the biomedical domain. It belongs to 
the QAngaroo collection,5 which emphasizes the integration 
of data from multiple documents or textual units to resolve 
intricate queries. The dataset comprises 1,620 training 
instances, 342 validation instances, and 546 test instances, 
culminating in a total of 2,508 instances. However, to the 
best of our knowledge, only MEDHOP evaluates multi-hop 
reasoning abilities, while almost all other Biomedical QA 
datasets focus on single-hop reasoning[25].

Metrics. Consistent with prior research [63], We report 
Exact Match (EM) and Partial Match (F1) to evaluate the 
efficacy and performance of our proposed framework con-
cerning both answer and supporting facts prediction. Fur-
thermore, the joint EM and F1 are used to assess the overall 
performance. Specially, we use accuracy to evaluate the per-
formance of our PEI and baselines on MEDHOP following 
by Welbl et al [58].

4.2 � Selected baselines

To comprehensively assess the performance of PEI, we 
compare with a series of selected and state-of-art base-
lines, including 1) general domain methods on HotpotQA, 
2WikiMultiHopQA, MuSiQue and Sub-question QA, and 
2) biomedical domain methods that are conducted on MED-
HOP dataset.

These baselines for general multi-hop QA as follows:

•	 Baseline Model [63] serves as the initial baseline for Hot-
potQA.

•	 DecompRC [37] transforms complex queries into easier 
sub-questions, enabling resolution via existing single-hop 
reading comprehension frameworks.

•	 OUNS [41] represents an algorithm designed for One-
to-N Unsupervised Sequence transduction. It converts 
intricate, multi-step queries into a range of straightfor-
ward, single-step questions to enhance the QA process 
by decomposing complexities.

•	 QFE [39] model incrementally identifies evidence sen-
tences through an RNN with attention focused on the 
query, drawing inspiration from models used in extrac-
tive summarization.

•	 Longformer [3] employs an attention mechanism that 
increases linearly with the sequence length, facilitating 
the examination of extended texts in a multi-hop QA con-
text.

•	 Beam Retrieval [66] integrates the retrieval operation 
in an end-to-end manner by synchronously optimizing 
an encoder and two classification outputs throughout all 
steps.

The following baselines apply GNN-based methods for gen-
eral multi-hop QA:

•	 DFGN [43] dynamically constructs an entity graph from 
the text and incrementally identifies supporting entities 
relevant to the query within the provided documents.

•	 SAE-large [52] utilizes a GNN where contextual sen-
tence embeddings serve as nodes, bypassing the use of 
entities as nodes, thereby directly predicting supporting 
sentences alongside the answer.

•	 C2F Reader [47] integrates task-specific prior knowledge 
via graph structures and adjacency matrices, employing 
graph attention as a variant of self-attention.

•	 HGN [13] introduces a hierarchical graph with nodes 
representing varying granularities, such as questions, par-
agraphs, sentences, and entities, leveraging pre-trained 
contextual encoders for initialization.

•	 AMGN [31] incorporates GNN-based methodologies to 
asynchronously update multi-grained nodes by modeling 
relationships across different levels, reflecting the logical 
progression of multi-hop reasoning.

•	 S2G [60] implements a select-to-guide (S2G) strategy to 
retrieve evidence paragraphs in a coarse-to-fine manner, 
augmented by two novel attention mechanisms, which 
effectively align with the inherent nature of multi-hop 
reasoning.

These baselines utilize CoT prompting methods for general 
multi-hop QA as follows:

•	 iCAP [53] adopts an iterative prompting framework 
designed to incrementally extract pertinent knowledge 
from pre-trained language models (PLMs), enabling step-
by-step inference.

•	 PCL [9] introduces a Prompt-based Conservation Learn-
ing (PCL) framework, wherein soft prompts are opti-
mized to guide sub-networks in executing type-specific 
reasoning tasks.

The biomedical domain baselines are as follows:5  http://​qanga​roo.​cs.​ucl.​ac.​uk.

http://qangaroo.cs.ucl.ac.uk
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•	 FastQA [57] employs a single bi-directional recurrent 
neural network followed by an answer prediction layer 
that independently identifies the start and end points of 
the answer span.

•	 BiDAF [46] adopts a hierarchical approach, representing 
contextual information at varying levels of granularity 
and leveraging a bidirectional attention flow mechanism 
to construct a query-aware context representation without 
premature summarization.

•	 Document-cue [58] emphasizes the model’s ability to 
leverage document-answer co-occurrence patterns to 
identify relevant information.

•	 BAG [6] introduces a bidirectional attention entity 
graph convolutional network that captures relationships 
between graph nodes and employs attention mechanisms 
to link the query with the entity graph.

•	 EPAr [23] (Explore-Propose-Assemble reader) mimics 
human-like reading strategies by adopting a coarse-to-
fine approach for reasoning and answering QA tasks.

•	 NLProlog [55] integrates symbolic reasoning and rule 
learning with distributed representations of sentences and 
entities to perform rule-based multi-hop reasoning over 
natural language inputs.

•	 DrKIT [10] simulates traversals in a knowledge base 
(KB) constructed over a text corpus, providing ability to 
follow relations in the “virtual” KB over text for multi-
hop questions.

•	 DILR-BERT [54] combines transformer-based model 
with inductive logic reasoning, first extracting query-
relevant data and then applying rule induction to conduct 
logical reasoning across the filtered information.

•	 ClueReader [14] employs a heterogeneous graph atten-
tion network inspired by the grandmother cell concept, 
aggregating semantic features at multiple levels and 
dynamically focusing or suppressing information for 
reasoning.

•	 MedKGQA [15] integrates external biomedical knowl-
edge bases, including “drug-protein” triplets, with graph 
neural networks (GNNs) to facilitate effective navigation 
and answer retrieval within biomedical pathways, par-
ticularly for drug-drug interaction (DDI) prediction and 
medical reasoning.

•	 AEGCN [11] enhances entity graph representations with 
enriched edge relationships derived from supporting 
texts, employing adversarial training to improve resist-
ance and interference.

4.3 � Implementation details

ELECTRA-large [7] and Llama 3.1 8B [12] serve as 
the foundation LM for both Type Prompter and Unified 
Prompter modules. In Type Prompter, p-tuning v2 [34] 
is used for the prompt tuning to acquiring the weights of 

specific-type information of the given questions. In Uni-
fied Prompter, we conduct two training settings depends on 
various foundation LM: 1) for ELECTRA, we employ joint 
p-tuning and full parameter fine-tuning to the whole module, 
and 2) for Llama, we use p-tuning to optimize the trainable 
Pu and freeze the Llama. Inspired by the studies of Wang 
et al [53], we adopt BART-large [30] as the foundation LM 
in the Knowledge Prompter module. Specially, BioELEC-
TRA [26] and BioBART [65] are employed as the founda-
tion LMs for biomedical domain extension.

Our implementation is built upon the Huggingface plat-
form [59]. For model optimization, we employ the AdamW 
optimizer [35] along with a linear learning rate scheduler 
with a warmup ratio of 0.05.

In terms of hyperparameters, we conduct a search 
for the optimal batch size. We explored batch sizes of 
{4, 8, 12, 16, 32} respectively. Additionally, we performed 
a tuning process for the learning rate, considering values 
from {2e − 5, 4e − 5, 8e − 5, 2e − 4, 4e − 4, 8e − 4, 2e − 3,

4e − 3, 8e − 3, 2e − 2, 4e − 2, 8e − 2} . Moreover, we con-
ducted tuning experiments for the length of the encoder/
decoder prompts Pk type prompts Pt and the unified prompt 
Pu , exploring values from {20, 40, 60, 80, 100, 120, 150}.

4.4 � Main results and analysis

Initially, we evaluate PEI framework on the test set of 
HotpotQA in the distractor setting comparing with peer-
reviewed baselines, including the baseline model of Hot-
potQA [63], Beam Retrieval [66] that is the state-of-art 
model on the leaderboard, iCAP [53] and PCL [9] which 
we inspired by, and other baselines. For a reminder, we will 
refer to the PEI(ELECTRAPT+FT ) framework that employs 
ELECTRA with full parameter fine-tuning and prompt tun-
ing as PEI to be more brief.

As depicted in Table 1, PEI framework outperforms all 
baseline models across the evaluated metrics, with the sole 
exception of Beam Retrieval. Notably, PEI achieves perfor-
mance comparable to that of Beam Retrieval [66] on the 
HotpotQA, demonstrating the substantial advancements 
facilitated by PEI in addressing multi-hop QA.

More specifically, comparing with Beam Retrieval, PEI 
achieves an improvement of 0.20/0.28/0.30 in answer EM, 
answer F1 score and joint F1 score, respectively. In contrast, 
Beam Retrieval exhibits superior results with an improve-
ment of 1.22 in supporting EM, 0.28 in supporting F1 score, 
and 0.62 in joint EM compared to PEI.

The difference in performance between PEI and Beam 
Retrieval in answer prediction versus supporting prediction 
could be attributed to the distinct methodologies employed 
by the two approaches. Beam Retrieval preserves mul-
tiple partial hypotheses of relevant passages at each step, 



International Journal of Machine Learning and Cybernetics	

expanding the search space (albeit at the expense of an 
exponentially complex retrieval process) and reducing the 
risk of missing relevant passages. Consequently, it excels in 
supporting prediction. On the other hand, PEI draws inspira-
tion from human reading processes by integrating implicit 
knowledge and type-specific information, which enhances 
its accuracy in answer prediction. However, this design 
may limit its efficacy in supporting prediction compared to 
Beam Retrieval, owing to the differences in their retrieval 
strategies.

Though PCL and PEI adopts the same backbone LM (i.e., 
ELECTRA) and prediction module, PEI framework demon-
strates a significant improvement of 0.64/1.28 in the Joint 
EM/F1 score compare to PCL. Compare with the question 
classification that PCL trains a PLM to acquired the reason-
ing type, PEI leverages the prompt tuning to learn the type-
specific knowledge and transfers the trained weight to the 
Unifier Prompter, which effectively reduces computational 
cost.

Moreover, the proposed PEI framework demonstrates 
a notable improvement over iCAP, achieving a 2.89/3.73 
increase in joint EM/F1 scores, despite both models utiliz-
ing the same encoder-decoder architecture (BART) as their 
foundational LMs. When compared to the graph-based 
AMGN model, PEI achieves even greater gains, with a 
2.14/2.6 enhancement in joint EM/F1 scores.

4.4.1 � Comparison on LM architecture and training 
paradigms

In Table 1, the performance of PEI(LlamaPT ) framework 
based on Llama with prompt tuning is slightly lower that 

that of the standard PEI in both answer and supporting 
facts prediction. Because Unified Prompter actually acts 
as a context encoder, the performance of PEI depends on 
the architecture of foundation LMs and training paradigms. 
Extractive multi-hop QA (e.g., HotpotQA) often requires 
token-level attention over the input representation to have 
an edge in span-based extraction, which is a native strength 
of encoder-only architectures such as ELECTRA [44]. In 
contrast, decoder-only models (such as Llama) are not inher-
ently designed to output spans of text, instead, they excel at 
generative QA tasks, where their ability to synthesize and 
produce text is advantageous [38].

Compared to standard PEI, which employs full parameter 
fine-tuning, the Llama-based PEI utilizing prompt tuning 
significantly reduces the number of trainable parameters 
while maintaining comparable reasoning performance. 
However, it still incurs higher computational cost and longer 
inference time due to the large-scale parameters of Llama 
and the associated memory requirements.

4.4.2 � Comparison with LLMs under zero‑shot

Table 2 presents the performance of open-source LLMs in 
a zero-shot setting for multi-hop QA. The results clearly 
indicate that zero-shot LLMs perform significantly inferior 
than PEI and other baseline models (see Tables 1 and 3) 
across the HotpotQA, 2WikiMultihopQA, and MuSiQue 
datasets. This demonstrates that extractive multi-hop QA 
still remains a challenge to LLMs in zero-shot setting. Nota-
bly, Llama-based PEI surpass all LLM baselines, including 
Llama 3.1-8B, across diverse datasets. Compare to zero-
shot Llama 3.1-8B, the PEI ( Llama 3.1-8BPT  ) attains a 

Table 1   Results on the blind 
test set of HotpotQA in the 
distractor setting. “-” denotes 
the case where no results are 
available. † denotes that we 
implement the codes. Other 
results are derived from [9] 
and [66]. “Ans” represents 
the metrics for answer; 
“Sup” denotes the metrics for 
supporting facts; “Joint” is the 
joint metrics that combine the 
evaluation of answer spans and 
supporting facts. “FT” is full 
fine-tuning and “PT” is the 
prompt tuning

Models Ans Sup Joint

EM F1 EM F1 EM F1

Baseline Model [63] 45.60 59.02 20.32 64.49 10.83 40.16
DecompRC [37] 55.20 69.63 – – – –
OUNS [41] 66.33 79.34 – – – –
QFE [39] 53.86 68.06 57.75 84.49 34.63 59.61
DFGN [43] 56.31 69.69 51.50 81.62 33.62 59.82
SAE-large [52] 66.92 66.92 61.53 86.86 45.36 71.45
C2F Reader [47] 67.98 81.24 60.81 87.63 44.67 72.73
Longformer [3] 68.00 81.25 63.09 88.34 45.91 73.16
HGN [13] 69.22 82.19 62.76 88.47 47.11 74.21
AMGN [31] 70.53 83.37 63.57 88.83 47.77 75.24
S2G [60] 70.72 83.53 64.30 88.72 48.60 75.45
iCAP † [53] 68.61 81.82 62.80 88.51 47.02 74.11
PCL [9] 71.76 84.39 64.61 89.20 49.27 76.56
Beam Retrieval [66] 72.69 85.04 66.25 90.09 50.53 77.54
PEI(ELECTRA

PT+FT) 72.89 85.32 65.03 89.81 49.91 77.84
PEI(Llama

PT
) 71.45 85.05 64.00 88.97 48.89 76.41
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notable performance boost with EM and F1 improvements 
of 32.0/39.1 on HotpotQA and 12.8/36.0 on 2WikiMulti-
hopQA, respectively. On MuSiQue, while the performance 
gains are less pronounced (an improvement of 7.6/30.7 in 
EM/F1 compared to Llama 3.1-8B), PEI still leads with an 
EM of 40.5 and F1 of 67.2, demonstrating consistent perfor-
mance across diverse datasets. These findings demonstrate 
the effectiveness of leveraging task-specific prompt tuning 
to enhance the reasoning capabilities of LLMs. By enabling 
task-specific fine-tuning, PEI enhances the model’s ability to 
fuse explicit and implicit knowledge effectively for complex 
reasoning tasks.

4.5 � Evaluation of robustness

To further evaluate the robustness of proposed PEI frame-
work, we conduct three aspects experiments: (1) assessing 
PEI on other multi-hop QA datasets; (2) evaluation on sub-
question dataset in composing answers from solved sub-
questions; and (3) effect of foundation LMs in the same 
training paradigm.

4.5.1 � Evaluation on other multi‑hop datasets

To evaluate generalization, we validate the PEI framework 
on the 2WikiMultihopQA and MuSiQue datasets. As pre-
sented in Table 3, PEI consistently outperforms all baseline 
models across both EM and F1 metrics. Notably, although 
both PEI and iCAP utilize the same encoder-decoder archi-
tecture (BART), PEI achieves a significant improvement 

of 4.52/26.66 in answer EM/F1 scores on the 2WikiMulti-
hopQA dataset. Additionally, PEI demonstrates superior per-
formance over PCL, with gains of 1.29/1.14 and 0.69/0.51 
in answer EM/F1 scores on the 2WikiMultihopQA and 
MuSiQue, respectively.

4.5.2 � Evaluation on sub‑question dataset

To assess the efficacy of the PEI model in multi-hop rea-
soning, particularly in synthesizing answers from resolved 
sub-questions, we conduct an evaluation on the sub-ques-
tion QA dataset [49]. Each parent question, denoted as q, 
is associated with two corresponding sub-questions, qsub1 
and qsub2 . As presented in Table 4, the PEI model achieves 
a success rate of 97.62% in correctly answering the parent 
multi-hop question q while both sub-questions qsub1 and qsub2 
are answered correctly.6 This highlights the proficiency of 
PEI in retaining acquired knowledge through the integra-
tion of explicit and implicit knowledge, surpassing other 
baseline models. Interestingly, PEI also demonstrates a 
notable success rate of 36.55% in correctly answering the 
parent multi-hop question even when only one of the sub-
questions is answered correctly.7 Fig. 3 further illustrates the 
sub-question-dependent success rates for various multi-hop 
QA models, showing that these models frequently predict 
the correct parent question answer even when only one sub-
question is answered correctly. This observation highlights 
a persistent challenge in multi-hop QA: models often exploit 
unreliable reasoning shortcuts for answer prediction, a phe-
nomenon that deviates from the expected logical reasoning 
process [9].

4.5.3 � Effect of foundation LMs

To evaluate the effects of foundation LMs, we conduct a 
comparative analysis of PEI against PCL and HGN under 
identical experimental conditions, including the same data-
sets and foundation models. As shown in Table 5, PEI con-
sistently exceeds both PCL and HGN across all evaluation 

Table 2   Performance of 
Llama-based PEI compared 
to open source LLMs with a 
zero-shot setting on HotpotQA, 
2WikiMultihopQA and 
MuSiQue. † denotes that is our 
implement using the prompt 
template of [61]. Other results 
come from [61]

Models HoptpotQA 2WikiMultihopQA MuSiQue

EM F1 EM F1 EM F1

Mistral-7B 30.6 37.2 27.4 29.8 25.2 28.9
Qwen 2-7B 36.2 43.5 31.7 35.8 28.2 31.2
Llama 2-7B 34.5 41.3 30.6 34.7 31.7 35.6
Llama 3.1-8B † 39.4 45.9 33.1 37.5 32.9 36.5
PEI ( Llama 3.1-8B

PT
) 71.4 85.0 45.9 73.5 40.5 67.2

Table 3   Results of our proposed PEI compared to PCL, HGN and 
iCAP on 2WikiMultihopQA and MuSiQue multi-hop QA test set. 
“-” denotes the case where no results are available. PEI is version of 
PEI(ELECTRA

PT+FT)

Models 2WikiMultihopQA MuSiQue

EM F1 EM F1

iCAP 42.80 47.90 – –
HGN 38.74 68.69 39.42 65.12
PCL 46.03 73.42 41.28 67.34
PEI (Ours) 47.32 74.56 41.97 67.85

6  The calculation process: 49.2∕(49.2 + 1.2) = 97.62%
7  The calculation process: 
(7.1 + 22.1)∕(49.2 + 7.1 + 22.1 + 1.5) = 36.55%
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metrics, demonstrating its effectiveness and robustness 
across various foundation LMs. Furthermore, PEI that 
implemented with ALBERT achieves an improvement of 
0.62/0.23 in Answer/Support F1 scores compared to its 
implementation with RoBERTa. This aligns with prior 
findings that ALBERT surpasses RoBERTa on the GLUE 
benchmark under a single-model configuration.8 These 
results affirm that incorporating a more advanced foundation 

LM can significantly enhance the performance of the PEI 
framework.

4.6 � Evaluation on biomedical inference

4.6.1 � Results and discussion

To comprehensively evaluate PEI framework on biomedical 
domain, we compare PEI with diverse baselines including 
biomedical knowledge-based and non-biomedical knowl-
edge-based models. As shown in Table 6, the vanilla PEI, 

Fig. 3   The success rate (%) of five multi-hop QA models. sub1 denotes the first sub-question and sub2 is the second sub-question of correspond-
ing question q. The results of DFGN, DecompRC, HGN and PCL are from [9]

Table 4   Results on sub-question 
dataset. c/w denotes that the 
question is answered correctly/
wrongly. sub1 denotes the 
first sub-question and sub2 
is the second sub-question of 
corresponding question q. The 
results of DFGN, DecompRC, 
HGN and PCL are derived from 
[9]

q qsub1 qsub2 DFGN DecompRC HGN PCL PEI(Ours)

c c c 23.0 31.3 39.5 43.6 49.2
c c w 9.7 7.2 5.1 6.8 7.1
c w c 17.9 19.1 19.6 21.3 22.1
c w w 7.5 5.5 3.8 2.1 1.5
w c c 4.9 3.0 2.8 1.7 1.2
w c w 17.0 18.6 16.7 16.3 13.4
w w c 3.5 3.4 2.6 1.1 1.0
w w w 16.5 11.9 9.9 7.1 4.5

8  https://​github.​com/​google-​resea​rch/​albert.

https://github.com/google-research/albert
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which employs BART and ELECTRA foundation models 
without biomedical pretraining, exceeds all the baselines on 
MEDHOP dataset and outperforms the state-of-art model, 
AEGCN [11] with 0.75% in accuracy. This shows that even 
without using a biomedical LMs, the PEI framework exhib-
its significant reasoning ability in biomedical multi-hop QA.

Although general capabilities of foundation models 
have become increasingly apparent, there remain open 
questions regarding whether exceptional performance can 
be achieved on specialized tasks, such as those in the med-
ical field, without extensive domain-specific training or 
fine-tuning of these general models [22, 40]. Much of the 
research on the application of foundation models in bio-
medicine has been heavily reliant on fine-tuning tailored 
to specific domains and tasks. With the advent of first-gen-
eration foundation models, the benefits of domain-specific 
pretraining became evident, as demonstrated by widely 
used models in the biomedical domain, such as PubMed-
BERT [16] and BioGPT [36]. In Table 6, the experimental 
results show that the biomedical PEI, which employs both 

BioBART and BioELECTRA as fundamental models to 
make fully use of pretrained biomedical domain knowl-
edge, achieve a significant 3.34% improvement in accu-
racy compared with AEGCN. Compared with the 0.75% 
accuracy improvement of vanilla PEI, it is obvious that 
biomedical PEI has better performance and stronger rea-
soning ability in the biomedical domain.

4.6.2 � Effect of biomedical knowledge

To further analyze the effect of specialty knowledge of 
PEI framework for biomedical domain, we explore the 
various settings of foundation models (see Table 7). As 
illustrated in Table 7, the experimental results show that 
biomedical knowledge boost performance of PEI. The 
PEI with bioBART shows an improvement of 0.96% in 
accuracy compared with the vanilla PEI, demonstrat-
ing the Knowledge Prompter module is able to elicit the 
implicit specialty knowledge via CoT prompting. Moreo-
ver, the Unified Prompter makes fully use of the implicit 
knowledge Kn = [k1, k2, .., ki, ..., kn] and fuse with explicit 
knowledge Sn = [s1, s2, ..., si, ..., sn] to enhance the inference 
ability. These results provide evidence that implicit knowl-
edge plays a crucial role in improving the model’s reason-
ing capabilities, thereby comfirming the hypothesis that 
underpins our proposed PEI framework, which is inspired 
by human reading process.

Additionally, the PEI with BioELECTRA outperforms 
the vanilla PEI with an improvement of 1.27% in accuracy, 
further emphasizing the reliance of most investigations 
into the efficacy of foundation models in biomedical tasks 
on extensive domain- and task-specific fine-tuning.

4.7 � Ablation studies

To investigate the contributions of each components 
within PEI framework, we perform a series of ablation 
studies on the validation set of HotpotQA.

Table 5   Results with different LMs on the development set of Hot-
potQA. The results of HGN and PCL are derived from [9]

Model Ans F1 Sup F1 Joint F1

HGN (RoBERTa) 82.22 88.58 74.37
HGN (ELECTRA) 82.24 88.63 74.51
HGN (ALBERT) 83.46 89.20 75.79
PCL (RoBERTa) 84.33 90.75 77.12
PCL (ELECTRA) 84.42 91.15 77.76
PCL (ALBERT) 85.47 91.28 78.76
PEI (RoBERTa) 85.61 92.02 78.95
PEI (ELECTRA) 85.68 92.11 79.02
PEI (ALBERT) 86.23 92.25 79.11
PEI ( Llama

PT
) 85.05 88.97 76.41

Table 6   Results on testset of 
MEDHOP. PEI (vanilla) denotes 
that PEI model employs BART 
and ELECTRA as foundation 
models without biomedical 
pre-trained knowledge. PEI 
(biomedical) denotes that 
bioBART and bioELECTRA 
serve as foundation models for 
PEI, which inject pre-trained 
biomedical knowledge

Model Accuracy

FastQA [57] 23.10
BiDAF [46] 47.80
Document-cue [58] 44.90
BAG [6] 64.50
EPAr [23] 64.90
NLProlog [55] 65.78
DrKIT [10] 67.25
DILR-BERT [54] 71.35
ClueReader [14] 46.00
MedKGQA [15] 64.80
AEGCN [11] 72.28
PEI (Vanilla) 73.03 ↑0.75
PEI (Biomedical) 75.62 ↑3.34

Table 7   Ablation study of 
comparison on vanilla PEI and 
biomedical PEI with different 
components

Components Accuracy

 BioBART​ Bio-
ELEC-
TRA​

✗ ✗ 73.03
✓ ✗ 73.99 ↑0.96
✗ ✓ 74.30 ↑1.27
✓ ✓ 75.62 ↑2.59
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4.7.1 � Effect of implicit knowledge

To validate the hypothesis that implicit knowledge enhances 
reasoning capabilities in multi-hop QA, we conduct an 
ablation study comparing the ELECTRA model with and 
without implicit knowledge integration (specifically refer-
ring to the implicit knowledge Kn derived from the Knowl-
edge Prompter). Table 8 demonstrates that incorporating 
implicit knowledge yielded significant improvements of 
3.10/2.05/2.30 in Answer F1, Supporting F1, and Joint F1 
scores, respectively, compared to the baseline model without 
implicit knowledge. These findings empirically confirm that 
implicit knowledge substantially augments models’ reason-
ing abilities, aligning with the cognitive theories underpin-
ning the PEI framework, which draws inspiration from the 
human reading process.

4.7.2 � Effect of type prompts

To assess the influence of type-specific prompts and the 
model’s capacity for type-driven reasoning in multi-hop 
question answering, we perform a comparative analysis of 
the ELECTRA language model, both with and without the 
Type Prompter module. As presented in Table 8, integrat-
ing the Type Prompter with the language model results in 
significant improvements of 3.02/1.17/2.18 in Answer F1, 
Supporting F1, and Joint F1 scores, respectively, over the 
model without Type Prompter. These results highlight the 
effectiveness of incorporating question type information 
through the Type Prompter in enhancing the model’s overall 
performance and facilitating type-specific reasoning. Fur-
thermore, the findings support the alignment of PEI frame-
work architecture with cognitive process observed in human 
reasoning, as type information can be regarded as a form of 
implicit knowledge.

4.7.3 � Effect of pre‑training on single‑hop

We initially trained an ELECTRA-based QA model on the 
single-hop QA dataset, SQuAD [45], and subsequently 
fine-tuned it on the HotpotQA dataset. While conservation 

learning [9] is not utilized in our approach, we assess the 
model’s performance both with and without pre-training 
to evaluate its impact on single-hop QA. As indicated in 
Table 8, incorporating pre-training resulted in improvements 
of 0.70/0.62/1.04 in Answer F1, Supporting F1, and Joint 
F1 scores, respectively, compared to the model without pre-
training. These results suggest that pre-training in the single-
hop QA task helps the model capture valuable information, 
thereby boosting its performance. However, it is important 
to note that the observed improvements are relatively modest 
in the absence of conservation learning.

5 � Conclusions and future work

In this study, we present a novel framework inspired by 
human cognitive theories, which utilizes prompts to connect 
explicit and implicit knowledge. Our approach incorporates 
chain-of-thought prompts to extract implicit knowledge from 
LMs within the given input context, while also integrating 
question type information to improve the overall perfor-
mance of the model. Moreover, we propose two training 
paradigms for PEI framework, and extend PEI on biomedi-
cal domain QA to further explore the fusion and relation of 
explicit and implicit biomedical knowledge and analyze the 
consistency of the domain knowledge fusion. Experimental 
results show that PEI performs comparably to the state-of-
the-art on HotpotQA, and excels all baselines on MEDHOP.

Additionally, ablation studies affirm the efficacy and 
resilience of PEI framework in mirroring human reading 
comprehension. Moving forward, we intend to expand and 
apply cognitive theories of human reading to a wider range 
of reasoning tasks, with the goal of fostering more advanced 
and intricate reasoning capabilities.
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