
1

PRECIOUS: Approximate Real-Time Computing
in MLC-MRAM based Heterogeneous CMPs

Sangeet Saha, Shounak Chakraborty, Sukarn Agarwal, Magnus Själander, and Klaus McDonald-Maier

Abstract—Enhancing quality of service (QoS) in approximate-computing (AC) based real-time systems, without violating power limits
is becoming increasingly challenging due to contradictory constraints, i.e., power consumption and time criticality, as multicore
computing platforms are becoming heterogeneous. To fulfill these constraints and optimise system QoS, AC tasks should be judiciously
mapped on such platforms. However, prior approaches rarely considered the problem of AC task deployment on heterogeneous
platforms. Moreover, the majority of prior approaches typically neglect the runtime architectural phenomena, which can be accounted
for along with the approximation tolerance of the applications to enhance the QoS. We present PRECIOUS, a novel hybrid
offline-online approach that first schedules AC real-time tasks on a heterogeneous multicore with an objective to maximise QoS and
determines the appropriate cluster for each task constrained by a system-wide power limit, deadline, and task-dependency. At runtime,
PRECIOUS introduces novel architectural techniques for the AC tasks, where tasks are executed on a heterogeneous platform
equipped with multilevel-cell (MLC)-MRAM based last-level cache to improve energy efficiency and performance by prudentially
leveraging storage density of MLC-MRAM while ameliorating associated high write latency and write energy. Our novel block
management for the MLC-MRAM cache further improves performance of the system, which we exploit opportunistically to enhance
system QoS, and turn off processor cores during the dynamically generated slacks. PRECIOUS-Offline achieves up to 76% QoS for a
specific task-set, surpassing prior art, whereas PRECIOUS-Online enhances QoS by 9.0% by reducing cache miss-rate by 19% on a
64-core heterogeneous system without incurring any energy overhead over a conventional MRAM based cache design.

Index Terms—Real-time Approximate Computing, QoS, Energy Efficiency, Caches, Heterogeneous Systems, MLC-MRAM

✦

1 INTRODUCTION

IN approximate time-critical systems, delivering an ap-
proximated result before a deadline is favoured over an

accurate but late one [29], a common scenario in multime-
dia processing, mobile target tracking, real-time heuristic
search, information gathering, and control systems [4]. For
instance, lower-quality video frames are preferred to miss-
ing ones, and an estimated target location within the time
limit is better than a precise one arriving late. Applications
in these domains are often modeled as precedence con-
strained task graphs (PTGs), where nodes represent tasks
with dependencies indicated by edges. Each task comprises
a mandatory part, which must finish by the deadline to
ensure a minimum acceptable Quality of Service (QoS), and
one or more optional parts [9], [28], [31]. Executing the
optional part(s) partially or fully, depending on available
resources, enhances the initial QoS within the deadline.
Higher QoS levels demand more computation, resulting in
longer execution times and increased power consumption.
Consequently, achieving improved QoS, enhanced power
efficiency, and on-time task completion often presents con-
flicting objectives.

Time-critical systems modeled as PTG, conventionally
implemented on homogeneous multiprocessors, are increas-

S.Saha and K. McDonald-Maier are with the Embedded and Intelligent
Systems Lab, University of Essex, Colchester, UK. S. Chakraborty is with
the Department of Computer Science, Durham University, UK. S. Agarwal
is with the EECS Department, Indian Institute of Science Education and
Research Bhopal, India. M. Själander is with the Department of Computer
Science, Norwegian University of Science and Technology, Trondheim, Nor-
way.
e-mail: (sangeet.saha@essex.ac.uk, shounak.chakraborty@durham.ac.uk,
sukarn@iiserb.ac.in, magnus.sjalander@ntnu.no, kdm@essex.ac.uk).

ingly scheduled on heterogeneous platforms (HE) [14], [27]
to meet performance, reliability, and power constraints. On
HE systems, task resource needs and execution times vary
by core. A critical scheduling challenge involves maximising
system-level QoS for an AC real-time PTG with multi-level QoS
tasks on a heterogeneous multicore by optimally assigning QoS
levels, processor cores, and start times while adhering to tim-
ing, power, precedence, and resource constraints. While offline
scheduling is preferred for timing predictability in such
systems [36], its static nature can compromise runtime per-
formance if architectural characteristics are not taken into
account [10]. Runtime architectural optimisations, particu-
larly for last-level caches (LLCs) [11], [33], can be leveraged
to create QoS-aware and power-efficient real-time platforms.

Over the last decade, non-volatile memories (NVMs) like
MRAM/STT-RAM, PCM, and flash have been investigated
to tackle SRAM cache leakage power [1]. MRAM shows
promise as an SRAM replacement in caches due to its low
leakage, high endurance, and comparable read times [2].
Multilevel-cell (MLC)-MRAM further doubles storage den-
sity, increasing cache capacity, which is highly beneficial for
demanding time-critical workloads. In this paper, we pro-
pose PRECIOUS, which employs an MLC MRAM-based LLC
architecture on a heterogeneous multicore platform to enhance
both energy efficiency and storage density, thereby improving the
QoS of approximate real-time computations—a notable advance-
ment over conventional SRAM or single-level cell (SLC) MRAM
cache designs.

In PRECIOUS, we introduce a hybrid heterogeneous
task-scheduling technique for approximate real-time tasks.
PRECIOUS-Offline initially generates an offline schedule to
maximise QoS, forming a foundation for the online phase.

2

Online

Offline

Fig. 1: PRECIOUS: Process Overview

PRECIOUS-Online then dynamically refines this schedule at
runtime to significantly boost QoS by considering runtime
characteristics and optimizing MLC-MRAM cache utilisa-
tion without incurring performance or energy penalties. Our
dependent task set is represented by a PTG (shown in Sec. 2)
and scheduled on a heterogeneous multicore processor,
where each task offers different QoS levels via multiple
versions. The entire PRECIOUS concept is illustrated in Fig-
ure 1, with the offline part on the left and the online part
on the right. The major contributions of PRECIOUS can be
listed as follows:

1) With an objective to maximise QoS, PRECIOUS-Offline
presents a power-constrained, optimal, task-scheduling
strategy devised for a set of approximated real-time
dependent tasks on a heterogeneous system, allocating
each task at either of two different clusters of cores
(high-performance cores, represented as CH , and low-
performance cores, represented as CL) (Sec. 3).

2) At runtime, PRECIOUS-Online prudentially leverages
higher storage density of MLC-MRAM based LLC to
enhance performance of individual tasks by accumu-
lating more live LLC blocks on-chip while mitigating
higher write cost of MLC-MRAM by employing novel
block management mechanism (Sec. 4).

3) The improved performance reduces the execution
length of each task, which is further traded off either to
enhance system level QoS by opportunistically execut-
ing task-version having higher QoS level, if available,
or to improve energy efficiency by turning off the
cluster(s) during online slacks (Sec. 4).

Surpassing prior art, PRECIOUS-Offline achieves up to 76%
QoS, and PRECIOUS-Online further improves this by 9.0%
through a 19% reduction in cache miss-rate on a 64-core het-
erogeneous system, without increasing energy consumption
compared to a conventional SLC-MRAM LLC on a 64-core
HE CMP with an MLC-MRAM LLC (Sec. 5). To the best of
our knowledge, PRECIOUS is the first work to maximise
QoS for an approximate dependent time-critical task set by
using a novel scheduling strategy on a heterogeneous mul-
ticore processor. It further enhances QoS through a novel

architectural technique that judiciously utilises the increased
storage density of an MLC-MRAM-based LLC while miti-
gating higher write costs, without incurring performance or
energy overhead.

2 SYSTEM MODEL AND ASSUMPTIONS

By considering the characteristics of an existing HE platform
(e.g., ARM big.LITTLE) [25], we introduce the concept of
cluster. For instance, our platform consists of two HE clus-
ters: the high performance (HP) cluster (denoted as CH) and
the low performance (LP) cluster (denoted as CL), where
all cores from the same cluster run at the same frequency,
fc. Note that the processor cores belonging to the same
cluster are homogeneous. We represent our application as
a PTG (see Figure 2), G = (T,E), where T is a set of
tasks (T = Ti|1 ≤ i ≤ n) and E is a set of directed edges
(E = {⟨Ti, Tj⟩ | 1 ≤ i, j ≤ n; i ̸= j}), indicating the
task-dependency or precedence relations between a distinct
pair of tasks. As a real-time application, G needs to be
executed within a given deadline, DPTG, by executing all
of its associated tasks (Ti). We further assume that, Ti can
have ki different versions, Ti = T 1

i , T
2
i , ..., T

ki
i , those are

distinct by their respective execution lengths (Oi), which
can be denoted as O1

i , O
2
i , ..., O

ki
i , while Op

i offers higher
QoS than Oq

i , if p > q. For each of the optional parts of a
task (Oi), there exists a separate executable module, which
is executed after executing the mandatory portion (Mi) of
the respective task, Ti. The execution length of the v-th
version of task Ti (lenv

i) can be defined as: lenv
i = Mi +Ov

i .
Note that, lenv

i includes the cycles needed for accessing
LLC, which we obtain by executing an individual task for a
specific configuration. We next define result-accuracy/QoS
Accvi of T v

i as the executed optional portion of the task,
Oi (i.e., Acci = Ov

i). Hence, the overall system level QoS
is now defined as the summation of the executed cycles
of Ov

i for all the tasks [9], which can be represented as:
QoS =

∑n
i=1 O

v
i | Ti = T v

i . To represent the heterogeneity
among the processor cores in different clusters, we introduce
a factor γi,c ∈ (0, 1] [23], which indicates the efficiency factor
of HE processors executing task Ti. Therefore, the execution
time of task Ti executing with version v at cth cluster can be
represented as ET (i, v, Clc) is lenv

i

γi,c×fc
.

TABLE 1: Parameters and their values, for example task-set

Tasks CL CH

Mi Oi Powi γi,L Mi Oi Powi γi,H

T 1
1 4 2 10 0.5 4 2 13 0.7

T 1
2

T 2
2

T 3
2

10
10
10

5
8
10

20
22
24

0.4
0.4
0.4

10
10
10

5
8
10

26
29
30

0.6
0.6
0.6

T 1
3

T 2
3

T 3
3

10
10
10

2
4
6

10
12
15

0.5
0.5
0.5

10
10
10

2
4
6

12
14
17

0.6
0.6
0.6

T 1
4

T 2
4

28
28

16
20

15
18

0.4
0.4

28
28

16
20

18
21

0.8
0.8

T 1
5

T 2
5

T 3
5

8
8
8

2
4
5

20
24
27

0.5
0.5
0.5

8
8
8

2
4
5

25
28
31

0.7
0.7
0.7

T 1
6

T 2
6

T 3
6

10
10
10

3
6
9

10
12
14

0.5
0.5
0.5

10
10
10

3
6
9

12
14
16

0.7
0.7
0.7

3 PRECIOUS-Offline
With an objective to maximise the QoS without violating
the system-wide constraints, PRECIOUS-Offline introduces

3

T
1

T
2

T
3

T
4

T
5

T
6

k
2
 X 1

T1

2
T2

2
Tk

2

Available Versions
Selected
Version

2

D
PTG

= 140

C
H

C
L

{H, L} X 1

142

Fig. 2: Precedence Task Graph (PTG).

a scheduling strategy to allocate tasks to the processor cores
in an HE platform, detailed in Sec. 3.1.

3.1 Scheduling Approach

At first, we present our scheduling strategy based on Integer
Linear Programming (ILP), for which, we will introduce an
integer decision variable Si ∈ Z+ to capture start time of
each task Ti, where Z+ denotes the set of positive integers.
We next define a binary decision variable, Zi,v,clc , where,
i = 1, 2, ..., n; clc ∈ {CH , CL}; and v denotes the task’s
version. If Ti executes on cluster clc with version v, then
Zi,v,clc = 1, otherwise 0. We define another binary variable
Yij , where Yij = 1, if task Ti starts before Tj , else 0, defines
the precedence order for mutually independent tasks.

To model our scheduling strategy, the constraints on our
decision variable are now represented as follows:

1) Each task Ti is assigned to exactly one cluster with one
particular version (v):

∀i ∈ [1, n]|
ki∑

v=1

∑
clc∈{CL,CH}

Zi,v,clc = 1 (1)

2) The application A must meet its end-to-end absolute
deadline DPTG. Hence, the sink node Tn should be
finished by DPTG, which we represent as follows:

Sn+

Ki∑
v=1

∑
clc∈{CL,CH}

(ET (n, v, clc)×Zn,v,clc)−1 ≤ DPTG (2)

3) Precedence constraint between the tasks must also be
satisfied. The execution of Tj should commence only
after the completion of its predecessor Ti which can be
formulated as: ∀(⟨Ti, Tj⟩) ∈ E,

Si+
ki∑
v=1

∑
clc∈{CL,CH}

[ET (i, v, clc)×Zi,v,clc] ≤ Sj (3)

4) No two tasks can be assigned to the same cluster, such
that their execution instances overlap. However, for the
task pair that shares a precedence relationship, this non-
overlapping constraint is imposed on them by default.
To avoid overlapping for the rest of the mutually inde-
pendent task pairs, the following inequalities need to
be satisfied: ∀(⟨Ti, Tj⟩) /∈ E, where i ̸= j,

Yij + Yji = 1 (4)

Si +
ki∑
v=1

∑
clc∈{CL,CH}

[ET (i, v, clc)× Zi,v,clc]

− (1− Yij)×M ≤ Sj (5)

Sj+
ki∑
v=1

∑
clc∈{CL,CH}

[ET (j, v, clc)×Zj,v,clc]−(Yij×M)

≤ Si (6)

Equation 5 avoids time-wise overlap of any task pair
on the same cluster. In the left-hand side of Equation 5,
the (1 − Yij) × M term vanishes when Yij = 1.
Otherwise, the constraint trivially satisfies due to the
large constraint M . Similarly, if Ti starts after Tj , the
term (Yij × M) in Equation 6 vanishes, and thus, the
constraint gets satisfied. When Tj starts after Ti on
the same cluster, then Yij becomes 1 and constraint
Equation 5 enforces completion of Ti before Tj starts.

5) The total power consumption of the CMP must not
exceed the power budget (Pow BGT). Let Powi,v,clc

represents the power consumption of the task Ti exe-
cuting with version v at cth cluster.

n∑
i=1

ki∑
v=1

∑
clc∈{CL,CH}

Powi,v,clc × Zi,v,clc ≤ Pow BGT (7)

6) Objective: The objective of the formulation is to choose
a feasible solution that maximises QoS:

Maximise

ki∑
v=1

n∑
i=1

∑
clc∈{CL,CH}

Zi,v,clc ×Ov
i (8)

3.1.1 Offline Cache Management Considerations
PRECIOUS-Offline primarily aims to generate efficient task
schedules that maximise QoS while meeting timing and
power constraints. Although offline cache management to
optimise cache performance is a possible alternative, it faces
fundamental limitations. The dynamic nature of runtime
cache behaviour, influenced by data dependencies, inter-
task interference, and unpredictable events, makes any static
offline cache policy likely suboptimal. Hence, we propose a
novel online technique, PRECIOUS-Online, to dynamically
adapt to runtime cache behaviour.

3.2 PRECIOUS-Offline at work
Let us consider the real-time PTG according to Table 1
and Figure 2. We need to schedule this PTG on two clusters
of processor cores (CH and CL), with a deadline DPTG =
142 time units, whereas frequencies of CH and CL have
been assumed as 1.0 and 0.5, respectively. Our assumed
power budget for both processors is set as Pow BGT =
50. As per PRECIOUS’s constrained scheduling strategy,
CPLEX [8], the ILP solver generates the scheduling output1

shown in Figure 3. From Figure 3, it can be found that
tasks T1, T2, T3 and T4 were executed with their highest
versions, where T1, T2 and T4 were scheduled at CH and

1. Leveraging the typically small constant values for versions and
cluster types, and the structured nature of PTGs, the PRECIOUS-Offline
ILP formulation presents a computationally tractable approach for
finding optimal schedules in an offline setting.

4

T4

T3

CH

Slack
Task with
highest version

Task with
lower version

0 9

9

43 103 121 Time

V/F

DPTG = 142

T1

CL

T2

73 121

Task with
lowest version

T6

T5

Fig. 3: Generated Task-Schedule (not to scale).

T3 was scheduled at CL. T5 and T6 execute at CL and
CH , respectively, where T6 has been scheduled with its
lowest version (T 1

6) and T5 has been scheduled with a lower
version (T 2

5). Note that, our schedule satisfies the power
constraint which is considered as POW BGT = 50. The
entire PTG is able to finish by 140 time units and thus,
DPTG = 142 is met and total QoS value obtained is 45.

4 PRECIOUS-Online
In this section, we will illustrate the motivation behind
devising PRECIOUS-Online mechanism for enhancing QoS
along with the prime technique after discussing the basic
concepts of MLC-MRAM and the cache organisation we will
use in this work.

4.1 MLC-MRAM Cache: Background and Organisation

Magneto-resistive RAM (MRAM) employs magnetic tun-
neling junctions (MTJs) as storage elements, unlike SRAM
caches that use electric charge. As illustrated in Figure 4, an
MTJ consists of a free layer, a barrier (oxide), and a fixed ref-
erence layer. The free layer’s magnetisation direction (MD)
can be altered by a spin-polarised current [18]. Applying
a current exceeding the critical switching current (IC) from
the free to the reference layer aligns their MDs (parallel state,
low resistance, logic ‘0’) or anti-aligns them (antiparallel
state, high resistance, logic ‘1’). A cache bit storage cell in
single-level cell (SLC) MRAM comprises an MTJ connected
to an NMOS transistor (rightmost in Figure 4) [18], [22].

MLC-MRAM increases storage density by integrating
multiple MTJs per cell. Parallel MLC-MRAM, which divides
an MTJ’s free layer into hard and soft domains for two
bits [26], suffers from reliability issues due to process vari-
ations [46]. A more viable approach is series MLC-MRAM,
stacking two MTJs [20]. As shown in the leftmost diagram
of Figure 5, smaller and larger MTJs store soft and hard
bits, respectively. Writing to series MLC-MRAM (middle
of Figure 5) involves two steps: first, a large current (IWH

> IC,Hard) switches both bits; second, a smaller current
(IC,Hard > IWS > IC,Soft) switches only the soft bit. Read-
ing (shown in the right of Figure 5) also requires two sensing
steps for soft and hard bits sequentially. Hard bits in MLC-
MRAM exhibit higher write latency than soft bits due to
complex programming and sensing [6], involving higher
energy barriers and challenging distinction of magnetic
states, thus balancing density with performance.

Two main design options exist for MLC-MRAM caches:
Direct Mapping (DM) and Cell Split Mapping (CSM) [6].
DM straightforwardly divides each cache line into soft and

hard bits, mapping N logic bits to N/2 MLC cells (e.g.,
a 512-bit line in 256 MLC cells, as in Figure 6), with half
of each line’s bits in soft bits and the other half in hard
bits. Although simple and used in some prior designs [13],
DM’s two-step access incurs performance overhead by over-
looking the faster access to soft bits. To address this, CSM,
illustrated in Figure 6, evenly divides the cache way-wise
into soft and hard bit regions, each holding an equal number
of cache blocks. Access latency depends on a block’s location
in either region (soft or hard ways). Soft way hits are
faster (one step), but hard way writes are more expensive
due to the higher (write) latency of hard bits. Hence, an
efficient data management mechanism is crucial to leverage
MLC-MRAM’s density while mitigating the higher write
latency of hard bits. In PRECIOUS, we adopt CSM and
will next discuss our intelligent data management technique
for MLC-MRAM-based LLC, which enhances cache perfor-
mance and, consequently, the overall system-level QoS for
our approximate real-time tasks.

4.2 Preliminary analysis and Motivation
Based on our previous discussion and prior studies on MLC-
MRAM it can be concluded that [6], [13], writing at the
hard bits of MLC-MRAM is a costly operation in terms of
energy as well as performance. In fact, energy usage while
writing at the hard-bits will incur almost double energy
than the soft bits, whereas write latency is also significantly
higher in hard bits than soft ones. On the other hand, MLC-
MRAM offers higher storage density over its SLC-MRAM
counterpart, and our iso-area analysis through NVSim sim-
ulator [15] shows that the storage density almost doubles
in MLC-MRAM over the SLC-MRAM. In PRECIOUS, by
incorporating an iso-area MLC-MRAM with SLC-MRAM,
we attempt to double the LLC capacity to improve the
performance of the approximated real-time task-set so that
overall QoS can be enhanced significantly. However, the
advantage of larger LLC can only be exploited in MLC-
MRAM if the costly write operations can be directed to the
soft LLC ways.

Towards developing our novel write handling mecha-
nism, we first analysed the read and write counts of our
considered 8 and 5 benchmark applications from Ligra [37]
and Cilk [38], respectively, where applications are based
on hyper-graph and task-parallel based memory as well
as compute intensive algorithms. The benchmarks are ex-
ecuted in an advanced version of gem5 [7], [42] by con-
sidering an HE CMP, where we have 60 In-Order (InO)
energy efficient processor cores, which are accompanied by
4 high performance Out-of-Order (OoO) processor cores
from RISC-V ISA. We concentrated on the LLC accesses
for each application and plotted the percentages of read
and write counts in Figure 7. This analysis shows the write
percentage can be as high as 98%. At the same time, the
average is around 51%, which indicates that if the majority
of the write operations take place in the hard ways, higher
access latency will be incurred, which might lead to severe
performance aggravation. In fact, a higher write count on
the hard ways will increase energy usage.

To study the behaviour of MLC-MRAM based LLC, we
further analysed cache access pattern for an iso-area MLC-
MRAM based LLC (8MiB, 16W) and compared it with an

5

Free Layer

Barrier

Ref. Layer

Free Layer

Barrier

Ref. Layer

Parallel Low
Resistance (0)

Anti-Parallel High
Resistance (1)

V
DD

-IR
L

V
DD

Source-Line (SL)

Bit-Line (BL)

W
ri

te
-1

 C
u

rr
en

t

W
ri

te
-0

 C
u

rr
en

t

Fig. 4: Concept of MTJ and SLC-MRAM.

BL

SL

WL

Soft
Bit

Hard
Bit

W1

W0

W1

W0
[00] [01]

[10] [11]

[XX] = [soft, hard]

I
WS

I
WH

[00] [01] [11][10]

ref-H
ref-H’
(step 2)

ref-S (step 1)

[0X] [1X]

Fig. 5: Concept of MLC-MRAM.

Hard Region

Soft Region Line 0

Line 2

Line 1

Line 3

256 MLCs

64B

512 MLCs

64B

Line 0

Line 2
Line 3

Line 1

Tag 0-3
Tag 4-7

Way 0
Way 4

Way 1
Way 5

Way 3
Way 7

Set

Direct Mapping Cell Split Mapping

Cache Organisation of MLC MRAM with cell splitting

Fig. 6: MLC-MRAM based Cache.

Fig. 7: Distribution of Read and Write
operations.

Fig. 8: Change in MPKI for iso-area
SLC-MRAM and MLC-MRAM LLC.

Fig. 9: Change in IPC for iso-area
SLC-MRAM and MLC-MRAM LLC.

iso-area SLC-MRAM based LLC (4MiB, 16W), and plotted
the changes in MPKI (misses per kilo instructions), IPC
(instructions per cycle), and energy in Figure 8, 9 and 10,
respectively. Doubling the LLC size by employing MLC-
MRAM accumulates more live blocks on-chip that poten-
tially lowers miss rates (MPKI) by 21% on average, which
entails IPC improvement by 6 to 16% for all applications.
This significant IPC improvement motivated us to employ
iso-area MLC-MRAM for PRECIOUS to enhance perfor-
mance; however, such performance improvement has been
achieved at the cost of more than 50% increase in energy
on average, caused by a substantial number of writes have
been taken place at the hard ways. To ameliorate such
significant energy usage, we propose a prudential LLC
block management technique so that energy usage can be
minimised without any noticeable performance loss.

4.3 Core Concept of PRECIOUS-Online

In this section, we will illustrate the core concept of PRE-
CIOUS-Online, which reduces the write counts at the hard
ways of the MLC-MRAM based LLC. As our LLC is attached
to an HE system, we first statically redirect the requests to
the soft and hard ways by restricting them as follows:

• MLC In S Out H – requests generated from InO
(OoO) cores will be handled at the soft (hard) ways;

• MLC In H Out S – requests generated from InO
(OoO) cores will be handled at the hard (soft) ways.

As write back operations are costlier at the hard bits, we
first analysed the write counts at soft bit and hard bit
regions. The total percentages of write back operations at
hard and soft bit regions are plotted in Figure 11 for three
different configurations: MLC (no restriction for cache ac-
cess), MLC In H Out S and MLC In S Out H , while
considering 8 Ligra and 5 Clik applications. On average for
MLC configuration, soft bit region serves 60% of the total
writes, whereas, hard bit region serves the rest 40%. As write

energy and latency are the prime bottlenecks for the MLC-
MRAM based LLC and 40% of the entire write counts is
substantially high, we further attempt to minimise the write
counts at the hard bit regions. Hence, we next experimented
with MLC In S Out H and MLC In H Out S, and
analysed the write back percentages for soft and hard bit
regions. The analysis in Figure 11 depicts that, for our set
of applications, the majority of the writes are requested
by the InO cores, which are around 81% of the entire
write counts. However, remaining 19% writes generated by
the OoO cores are still considerable as it can potentially
aggravate performance as well as energy efficiency at the
hard bits. It is evident from our analysis that, a prudential
write redirection needs to be implemented so that hard bit
region will serve a minimal amount of write operations. In
PRECIOUS, we next propose MLC In S Out HS, which
will redirect all write operations of the InO cores to the soft
bit regions, whereas the majority of write requests from the
OoO cores will be redirected to the soft bit regions, however,
a small portion of the write requests generated by OoO cores
will still be served at the hard bit regions.

4.3.1 MLC In S Out HS: Managing LLC Blocks
The entire technique is illustrated in the flowchart shown
in Figure 13. In this approach, we selectively redirect the
allocation of OoO cores to the soft bit region using an addi-
tional bit named repl bit. The repl bit is added with every
cache entry in the soft bit region as shown in Figure 12,
which is used to preserve the residency of InO core blocks
over the OOO core block by setting the repl bit during
the cache block allocation and cache block hit requested
by the InO core. The resetting mechanism of repl bit will
be done on the LLC cache miss, which is illustrated in the
flowchart given in Figure 13. Once an LLC miss is detected,
the LLC controller will first inspect if the soft bit region
has any invalid entry, as allocation in the soft bit region is
always beneficial due to its low access latency and power
consumption. However, once an invalid entry is detected at

6

Fig. 10: Change in Energy for iso-area
SLC-MRAM and MLC-MRAM LLC.

Fig. 11: Percentages of WBs for our
primary LLC configurations.

Way 0

Way 4

Way 1 Way 2 Way 3

Way 5 Way 6 Way 7

Replacement Bit (repl_bit) Hard Bit Soft Bit

Fig. 12: Replacement Bits at the soft bit
region.

Allocate the incoming
block in soft bits of MLC

Reset the repl_bit

Reset the repl_bit and
allocate the incoming

block in soft bits of MLC

Find an LRU entry
in soft bits region

Yes No

In-Order
Out-of
-Order

Miss at LLC

Is repl_bit set
for LRU entry

of soft bit?

Reset the repl_bit

Yes

Invalid Entry in
hard bit region?

Allocate the incoming block
in hard bits region of MLC

Yes

Find an LRU entry
in hard bits region
and evict the block

No
Evict block from
Soft bit region

No

Invalid Entry in
soft bit region?

Requester
type? In-Order Out-of-OrderRequester

type?

Find an LRU entry
in soft bits region

and evict the block

Set the repl_bit and
allocate the incoming
block in soft bit region

Set the repl_bit

Fig. 13: Flow chart: MLC In Soft Out HS policy for
LLC Blocks.

the soft bit region, the requester type, i.e., an InO core or
an OoO core, is next determined. If the requester is an InO
core, the block will be allocated to the soft bit after setting
the repl bit. Otherwise, if the requester is an OoO core, the
repl bit will be reset, and the block will be allocated in the
soft-bit region.

Once the soft bit region does not contain an invalid
entry within an LLC set, the block requester (an InO or
an OoO core) will be further determined. If the requester
is an InO core, an LRU entry will be detected within the
soft bit region, and a block will be allocated subsequently
after setting the repl bit. For a request from an OoO core,
the LRU entry will be detected in the soft bit region at the
beginning. Next, the respective repl bit will be inspected,
and if it is set, the controller will reset it and search for
an invalid entry in the hard bit region. If the hard bit
region has an invalid entry, the block will be allocated there,
otherwise, the LRU entry from the hard bit region will be
evicted, and the new block will be allocated in the hard
bit region. However, an LRU entry will be evicted from the
soft bit region in case the respective repl bit is not set for
this entry, and the block will be allocated subsequently after
resetting the corresponding repl bit. Note that the entire
mechanism of PRECIOUS-Online will be implemented in

the LLC controller of the CMP, and this will not incur any
significant hardware overhead. Implementation of repl bit
at each entry of the soft bit region will incur less than 1% of
area and cost overhead, but is effective enough to prioritise
allocations and write requests from the InO over the OoO.

4.3.2 Improving QoS & Energy Efficiency

The entire mechanism of enhancing QoS and energy effi-
ciency of PRECIOUS-Online is orchestrated by Algorithm 1.
To balance per-task optimisation with the system level
QoS enhancement goal, PRECIOUS-Online refines the task
schedule from PRECIOUS-Offline (shown as the length of
time-span between 0 to DPTG in Figure 3 and referred to
as Frame). This refinement involves making per-task deci-
sions about optional part selection within the constraints
of the offline schedule. At the beginning of each frame,
our task-set and their individual starting time stamps and
precedence are stored in the dispatch table. For individual
clusters, the tasks are fetched in parallel from the dispatch
table for execution as they have been scheduled by PRE-
CIOUS-Offline (line 2 to 3). For a particular cluster, if the
current task (Ti) is a source task, its execution will be started
immediately (line 4 to 5). Note that, our underlying LLC
hardware is implemented with MLC-MRAM technology,
and by applying MLC In S Out HS, we have attempted
to improve performance and reduce energy usage of the
LLC. Hence, all of our tasks’ execution length will be re-
duced, which can be exploited to improve overall system
level QoS or energy efficiency.

The execution of non-source tasks can only be com-
menced if and only if all of its predecessors have been
executed (line 7). During commencement of the execution,
the Mi is fetched and executed at first, and subsequently
scheduled version of the Oi is checked to determine whether
the highest version is scheduled (line 9). If the highest ver-
sion is not scheduled, our online mechanism will attempt to
schedule a higher version. As incorporation of MLC-MRAM
along with our novel block management policy reduces
execution span of Mi for individual tasks, there might be
room to dynamically schedule a higher version. Algorithm 1
will next evaluate the time left (Max Time Left Oi) to
schedule a higher Oi. If the current task is a sink task,
Max Time Left Oi will have time till the deadline to
schedule an apt Oi; otherwise, Max Time Left Oi will be
the time left till the earliest starting timestamp among all of
its successors (line 9 to 14). Based upon the value assigned
at Max Time Left Oi and the versions of Oi, a suitable
higher version will be executed next (line 15 to 18).

7

Algorithm 1: PRECIOUS-Online: Improving Energy
Efficiency and QoS

Input: Dispatch Table, Set of Oi’s for all Ti’s, Deadline, fC ,
break even time

1 for each Frame do
2 for each cluster in parallel do;
3 Get schedule details of each Ti from the Dispatch Table

and fetch it;
4 if Ti is source task then
5 Execute Ti at the predetermined cluster;
6 else
7 if All predecessors of Ti has been executed then
8 Fetch Ti and execute Mi;
9 if Highest Oi is not scheduled then

10 if Ti is not the sink task then
11 Get the earliest start time

(Early Start Succ Ti) from
List Succ Ti (successor list of Ti,
stored in dispatch table);

12 Max Time Left Oi =
Early Start Succ Ti − Curr T ime;

13 else
14 Max Time Left Oi =

Deadline− Curr T ime;

15 # Call the function that returns optional part
with the highest possible accuracy which
can run within Max Time Left Oi ;

16 Oi = get Oi(Ti,Max T ime Left Oi) ;
17 if Oi is available then
18 #Fetch the Oi and start execution ;

19 if Ti has been executed then
20 Get the start time of next task Tj

(Start T ime Tj) scheduled on the same cluster;
21 Est Slack Cycles = (Start T ime Tj -

Curr T ime)/fC ;
22 if Est Slack Cycles > break even time AND

∃ Tk ∈ Pred(Tj), Tk is not yet executed then
23 #Power gate the core ;
24 while Est Slack Cycles > 0 do
25 Est Slack Cycles--;
26 if ∀Tk ∈ Pred(Tj), Tk has been executed

OR Est Slack Cycles ==
break even time then

27 #Turn on the core;
28 #break;

As our runtime policy (MLC In S Out HS) is also
enabled during execution of Oi, there might be a chance
that execution of Oi may finish earlier and a slack will
be generated. Hence, once execution of an entire Ti is
over, the starting time of the subsequent task (Tj) sched-
uled on the same processor is inspected, which is rep-
resented by Start T ime Tj (line 20). The cycles left
(Est Slack Cycles) before Start T ime Tj are evaluated
next by considering the current time-stamp (Curr T ime)
and the cluster frequency (fC). A slack is only be de-
clared at this point, if Est Slack Cycles is higher than
the break even time of the underlying core (provided by
vendor), and the core will be power gated or turned off if
any of the predecessors of the next task on the same cluster
has not yet been executed. As MLC In S Out HS dy-
namically reduces the execution length of individual tasks,
the execution of a predecessor (Tk) of the next task (Tj) can
be finished early, which can enable us to start execution of
Tj before its actual schedule assigned offline. On the other
hand, we also need to ensure that a cluster must have an

amount of break even time left before starting execution
while deadline is guaranteed. Hence, turning on process
for the cluster will be started if all predecessors (Tk) of
the next task (Tj) on the same cluster have been executed,
or it has break even time left. The entire mechanism for
cluster power saving is given in line 22 to 28. Finally, the
improved QoS and reduced energy usage of the schedule
can be determined from the executed Oi’s and power gated
time-spans, respectively.

5 EVALUATION

The effectiveness of PRECIOUS relies on the synergy
between PRECIOUS-Offline and PRECIOUS-Online: PRE-
CIOUS-Offline generates the initial task schedule, while
PRECIOUS-Online refines it to adapt to dynamic runtime
conditions and optimise MLC-MRAM cache utilisation for
improved QoS and energy efficiency. In this section, we
evaluate PRECIOUS-Offline and PRECIOUS-Online, demon-
strating how their combined operation enhances system-
level QoS.

5.1 PRECIOUS-Offline: Evaluation Methodology
We define Normalised Achieved QoS (NAQ) as the ratio
between the actually achieved QoS for the PTG, and the
maximum achievable QoS by executing the highest versions

of all tasks. NAQ can be formulated as: NAQ =
∑n

i=1 QoSj
i∑n

i=1 QoS
ki
i

,

where ki represents the highest version of task Ti. Next, we
model our multicore and the task-set:

• Processor System: An HE-multicore platform having
2 clusters (CL (having 60 tiny InO cores) and CH

(having with 4 big OoO cores) of RISC-V cores has
been considered. The power constraint of the indi-
vidual cores is scaled and set as 10.5W based on the
obtained runtime core power from McPAT [24].

• Task-set: Each PTG consists of a set of tasks (aka
nodes) under precedence constraints and has a dead-
line DPTG. Each task (Ti) is a multithreaded task
(see Table 4), where all threads of a task are executed
on the same cluster, characterised by execution times,
ETi. We assumed that a task can consume between
4 × 107 and 6 × 108 clock cycles [25], and they can
have a maximum of 5 versions, i.e. k = 5. The as-
sumptions regarding execution lengths also include
memory cycles for our individual task consisting of
Ligra, Cilk, and mix benchmark applications [37],
[38] (Table 4). The heterogeneity factor γH and γL
for individual tasks are chosen within the range
of [0.4, 1] [25]. Having these parameters, execution
times of task Tj on different clusters (ET (j, cl)) are
determined, and we calculated the average execu-
tion requirement of a PTG (Cavg

PTG) of all tasks. The
average utilization UPTG of a PTG can be written
as Cavg

PTG

DPTG
. In our experiments, Cavg

PTG is generated by
keeping average utilisation of a PTG as 0.6. Given a
set of values for task execution times, the total system
workload (SysWL) can be obtained by:

SysWL =

∑n
j=1

∑|cl|
cl=1 ET (j, cl)

|n| × |cl| × Cavg
PTG

(9)

8

• Task Temporal Parameters: For each Ti, based on which
portion of the leni is considered as mandatory part
(Mi), the following cases are considered [16]: (i)
man low : Mi ∼ U(0.2, 0.4)× leni (low portion of a
task Ti’s length (leni) is for the mandatory part). (ii)
man med :Mi ∼ U(0.4, 0.6)×leni (medium portion
of a task Ti’s length (leni) is for the mandatory part).
(iii) man high :Mi ∼ U(0.6, 0.8)×leni (high portion
of a task Ti’s length (leni) is for the mandatory part).

5.2 PRECIOUS-Offline: Results and Analysis

Figure 14 depicts the NAQ achieved by PRECIOUS-Offline
for different values of SysWL (system workloads). We ob-
served that PRECIOUS is able to achieve upto 76% NAQ
when SysWL is low. However, the QoS is reduced by 25%
on average, when the workload is scaled up by 50%. Other
insightful observations can also be derived from this figure.
Firstly, as the system workload increases, the number of
tasks in the PTG and the individual execution times of the
task nodes increases (Equation 9) as the average utilisation
of PTG is fixed, which eventually contributes to low NAQ
values. This happens because higher the execution length of
each task, lower the possibility of obtaining sufficient free
slots in the scheduling period within the deadline, and thus,
the probability of obtaining feasible schedules by selecting
higher tasks’ versions reduces.

We also compared our strategy with prior art, TD [25],
HDA [31], and DPMRS [35]. Towards a fair comparison
with TD, we computed the overall energy budget based on
the considered power constraint of the experimental frame-
work of PRECIOUS. It can be observed that as execution
demand for individual tasks goes up (due to an increase in
SysWL), PRECIOUS maintains improved QoS by achieving
a higher NAQ than TD. PRECIOUS is able to maintain 65%
QoS at a 70% workload, for which TD achieves around 50%
QoS. This is because the considered overall energy budget in
TD would scale up with the higher SysWL as the number
of tasks increases, and to obtain the feasible schedule, TD
allows task migrations, which incur additional overhead
and result in lower achieved QoS.

PRECIOUS-Offline achieves superior NAQ (56 − 76%)
over HDA (38 − 51%) due to its globally optimal approach
to task and version assignment for maximising optional
computations. HDA, conversely, employs a heuristic for its
initial task allocation (Master Problem) which may not be
optimal, and critically, it terminates its iterative optimisation
(between Master and Slave Problems) upon finding the
first feasible solution. This premature termination restricts
HDA’s exploration of the solution space for the most effec-
tive distribution of optional work. For DPMRS (achieving a
NAQ of 20− 42%), where PRECIOUS-Offline makes explicit
choices about which version of a task to run and on which
cluster type, considering the efficiency (γi,c) and power of
that version on that cluster to maximise the overall NAQ.
But, DPMRS selects processor frequencies (DVFS) and map-
pings to complete its workload with the least energy. Its
DVFS is an energy-saving mechanism for a fixed workload,
not a technique to create room for variable optional work.

Figure 15 illustrates the effect of processor heterogene-
ity on the system’s QoS. We introduced the heterogeneity

Fig. 14: Comparing NAQ of PRECIOUS-Offline vs. prior-art
for different System-Workloads.

Fig. 15: Effect of processor heterogeneity on system’s QoS.

between the clusters by introducing the factor γL

γH
. It can

be observed that in the case of manhigh, the increase in
achieved NAQ is comparatively lower than that of manmed

and manlow, while increasing the value of γL

γH
. This can

be attributed to the fact that (i) with γL

γH
increasing, the

heterogeneity of the processors in clusters is reduced. As
a result, the degree of skewness among the task execution
times on two clusters decreases and the schedulability of
the tasks increases, which contributes to higher QoS. (ii)
Increase the mandatory portions of the individual tasks;
lower the length of the optional portions. This results in the
variance among the different versions of a task becoming
smaller. Due to fewer variations among the optional parts
of a task, there will be less impact on the achieved QoS. On
the other hand, for manlow, we observe that the increase
in NAQ is higher than the other two, and manmed offers a
performance between manhigh and manlow.

5.3 PRECIOUS-Online: Simulation Infrastructure

PRECIOUS-Online has been evaluated by simulating the
HE-multicore system in gem5 [7], with different core types,
e.g., Big-core and Tiny-core, employing the setup proposed
by Wang et al. [42]. Table 2 lists the system parameters
used in our HE simulation. Note that, the set of four big-
cores forms the CH cluster, whereas the CL cluster is the
set of 60 tiny-cores. However, in our simulated system,
each core has its own private L1 data and instruction
caches, and all cores share the L2 cache, the LLC, which
is considered a built-in MRAM. In our simulation, we
configured our HE system with the two MRAM config-
urations: iso-area SLC-MRAM (SLC) of size 4 MiB and
MLC-MRAM (MLC) of size 8 MiB. The baseline tech-
niques, MLC In S Out H and MLC In H Out S, and the
proposed technique MLC In S Out HS use the iso-capacity
MLC-MRAM of 8 MiB. The timing and energy parameters
of SLC and MLC-MRAM are given in Table 3, obtained
from NVSim [15]. We used the Ligra and Cilk benchmark

9

suite [37], [38] to construct task sets in approximate com-
puting paradigm [41] for the performance evaluation. The
applications chosen for evaluation are listed in Table 4.

TABLE 2: System parameters of PRECIOUS-Online [CC:
clock cycle]

Parameters Values

Tiny Core
ISA RISC-V (RV64GC)

Cores 60 cores (1.5GHz), single issue, in-order
L1 Cache 4KiB L1I/D, 2-way, 1 CC

Big Core

ISA RISC-V (RV64GC)

Cores 4 cores (3GHz), 4-way out of order
16 entry LSQ, 128 entry ROB

L1 Cache 64KiB L1I/D, 4-way, 1 CC

L2 Cache Shared, 8-banks, 512KiB/1MiB SLC/MLC
per bank, 8-way, 1 bank per mesh column

Network 8x8 mesh, XY routing, 16B per flit

TABLE 3: Timing and Energy Parameters of MRAMs.

Characteristics SLC-STT MLC-STT

Read Latency (in Cycles) 13 S:14 H:20

Write Latency (in Cycles) 49 S:50 H:95

Read Energy (in pJ) 415 S:427 H:579

Write Energy (in pJ) 876 S:1084 H:2653

Leakage Power 80.8 mW

5.4 PRECIOUS-Online vs. Conventional MRAM-LLC
5.4.1 Performance Improvement and EDP Gains
We first evaluate the reduction in LLC misses (MPKI)
and the IPC values for each benchmark application
while using the following LLC configurations: SLC, MLC,
MLC In S Out H and MLC In H Out S, and our pro-
posed technique MLC In S Out HS. Using iso-area MLC
with respect to SLC doubles the LLC size, which reduces
the MPKI for all the benchmark applications, as a larger
cache can accumulate more live blocks on-chip. Figure 16
depicts that, the MPKI for MLC has significantly been
reduced up to 40%, which is around 19% on average, than
SLC for all benchmarks.

In MLC , LLC blocks are allocated in a cache set without
considering the underlying storage constructs, i.e., hard
ways or soft ways. As writing or allocating a block in hard-
way is costlier than the soft ways especially in terms of
write energy and latency, the blocks need to be managed
prudentially so that performance benefits by higher storage
density of MLC can be exploited. Hence, we next con-
sidered MLC In S Out H and MLC In H Out S where all
requests from a specific cluster will be handled either in soft
region or in hard region. As block movement has been re-
stricted for both of these configurations, individual clusters
can only use half of the entire cache, which might lead to
a higher miss rate within the partitioned LLC area, hence
higher MPKI than MLC for all the benchmarks. However,
in MLC In H Out S, a substantial amount of write accesses
and allocations take place in the hard ways of the LLC,
which incurs higher LLC access latency and energy, and that
drops the IPC. On the other hand, MLC In S Out H expe-
riences higher IPC, as many write accesses and allocations

have been performed at the soft region. Basically, many InO
cores in CL generate a significant amount of LLC requests
for almost all of our memory-intensive applications. Hence,
handling such large write accesses and allocations at the
hard region in MLC In H Out S aggravates the overall
energy efficiency and performance, which we further ame-
liorated in MLC In S Out HS.

In MLC In S Out HS, the higher write access and al-
location counts generated by the CL are handled at the soft
region. In contrast, requests from OoO cores, i.e. CH , will be
handled in the soft region opportunistically, otherwise in the
hard region. MLC In S Out HS although increases access
pressure at the soft regions, which is, however, compensated
by the energy savings at the hard region for all other
three MLC configurations. We plotted the IPC changes for
all of these configurations in Figure 17, where, for all the
applications MLC In S Out HS shows 5.7% higher IPC, on
average, than baseline SLC while IPCs of MLC In S Out H
and MLC In H Out S drop by 1% and 9.6% than base-
line SLC, respectively. To showcase the overall improve-
ment in energy efficiency and performance, we next plot
EDP in Figure 18. Due to higher write access and allo-
cation counts, MLC In H Out S has higher energy usage,
so the significantly higher EDP (94.2% higher, on average),
whereas MLC In S Out HS shows almost the same EDP
as the iso-area SLC. This implies that MLC In S Out HS
has significantly lower energy usage while having higher
performance. Note that, as our offline scheduling is based
on the SLC configuration, employing MLC-MRAM LLC
with MLC In S Out HS configuration entails performance
improvements, that implicitly guarantees deadline with op-
portunity to enhance overall QoS.

Reliability Analysis: The potential impact of our cache
management policy on the write distribution and the result-
ing reliability implications requires careful consideration.
Figure 19 illustrates the percentages of writebacks and write
energy consumption in the soft and hard bit regions. As
shown, the MLC In Soft Out HS configuration directs a
significantly larger portion of write requests to the soft-
bit region (around 82% of writebacks), while these writes
account for 65% of the total write-back energy. Although
hard-bit writes are less frequent (18%), their higher energy
consumption indicates that they still contribute a substantial
35% of the total write-back energy. This uneven distribution
of both write counts and write energy coupled with thermal
properties of underlying soft-bit and hard-bit circuitry could
lead to differential heating and varying thermal profiles
across the cache. Such localised thermal variations can neg-
atively impact key reliability metrics like endurance and
retention time, ultimately affecting the chip’s lifetime. While
a comprehensive reliability analysis, including detailed ther-
mal modelling and simulation, is beyond the scope of this
paper, we acknowledge the importance of this issue and
identify it as a critical area for future research.

5.4.2 Impacts on Scheduling
The schedule shown in Figure 3 is next scaled by consider-
ing the tasks given in Table 4 along with runtime frequencies
of the clusters and the respective magnitude of γ given
in Table 1 and the online representation of Figure 3 is
depicted in Figure 20[A]. By considering the performance

10

TABLE 4: Tasks formation with only Ligra [37], only Cilk [38] and mixing of both suites. For example, BC (2) implies two
copies of BC, which is the same for others. Note that each copy runs with 64 threads. List of Benchmarks (names are

prefixed with Li for Ligra, and cilk for Cilk applications): Li BC, Li BFSBV, Li BF, Li BFS, Li CC, Li mis, Li radii, Li tc,
cilk lu, cilk MM, cilk MT, cilk nq and cilk sort. The execution lengths (ELs) are in million cycles.

Tasks Ligra Benchmarks (Mi, Oi) Cilk Benchmarks (Mi, Oi) Mixed Benchmarks (Mi, Oi) EL ([Mi], [Oi]) Sel. Oi [EL]

T1 Li BC (2), Li BFSBV (2) cilk sort (2), cilk nq (2) Li BC (2), cilk lu (2) [80], [40] #1 [40]

T2 Li BF (2), Li BFS (2) cilk MT (2), cilk lu (2) cilk nq (2), Li BFS (2) [200], [100, 160, 200] #3 [200]

T3 Li CC (2), Li mis (2) cilk nq (2), cilk MT (2) Li CC (2), cilk MM (2) [200], [40, 80, 120] #3 [120]

T4 Li radii (2), Li BFS (2) cilk lu (2), cilk MM (2) cilk MT (2), Li radii (2) [560], [320, 400] #2 [400]

T5 Li tc (2), Li BFSBV (2) cilk nq (2), cilk sort (2) cilk nq (2), cilk sort (2) [160], [40, 80, 100] #2 [80]

T6 Li BFSBV (2), Li radii (2) cilk MM (2), cilk sort (2) Li BFSBV (2), cilk MT (2) [200], [60, 120, 180] #1 [60]

Fig. 16: Normalised MPKI. Fig. 17: Normalised IPC. Fig. 18: Normalised EDP.

Fig. 19: Write Count (WB Soft/Hard) and Write Energy
(WB Soft/Hard En) distributions: soft vs. hard bits.

improvement of MLC In S Out HS for individual tasks
(constructed with different combinations of benchmarks),
reduced execution lengths and the dynamic slacks are de-
rived, and the respective schedule is shown in Figure 20[B].
However, these dynamic slacks are next exploited oppor-
tunistically by Algorithm 1 to improve system-wide QoS by
executing higher versions of T5 and T6, where the rest of the
tasks were scheduled with their highest versions.

By employing Algorithm 1, the tasks have been given
the privilege of early start and completion of their execution
without violating the precedence and timing constraints
and offer ample room to improve power and QoS. Finally,
Algorithm 1 can execute T5 with its highest version, while
T6 has been executed with a higher version, but not the
highest, while initially scheduled with its lowest version
by PRECIOUS-Offline. Additionally, Algorithm 1 further
exploits the slacks at both the clusters to save energy
through power gating the clusters. The final schedule after
employing Algorithm 1 is shown in Figure 20[C], and the
respective energy savings for three schedules ([A], [B] and

T4

T3

CH

Slack
Task with
highest version

Task with
lower version

0 58

58

281 681 805 Time

V/F

DPTG = 936

T1

CL

T2

485
T5

805

Task with
lowest version

T3

CH

0 54

58

268 660 805 Time

V/F

DPTG = 936

T1

CL

461 788

922

T4

T5

T2

Online Slack

[A]

[B]

CH

0 54

54

264 643 804 Time

DPTG = 936

T1

CL

457 804

T4

T5

T2
[C]

T3

T6

Updated to Highest Version in Online

T6

Sleep mode enabled

T6

Updated to Higher Version in Online

Fig. 20: QoS Update and Energy Savings by
PRECIOUS-Online.

Fig. 21: Energy Usage by PRECIOUS-Online.

11

[C]) are shown in Figure 21. We have shown the change in
energy for both clusters while executing with [B] and [C].
For [B], energy saving is more than 5% for both clusters,
which is partially traded off in [C] to improve QoS; however,
[C] still has the same energy usage as [A]. Note that, due to
executing the highest version of T5 at CL, the energy usage
in [C] is almost the same as the [A], however turning off
CH during the online slack between T4 and T6 saves energy
around 4% at CH . As the number of cores in CL is much
higher than the core counts in CH , the overall energy saving
is following the trend shown for CL. However, reducing
power density at high performance cores in CH will lead to
improved thermal safety. The overall QoS improvement is
9.0%, shown in Table 5, with the updated task-versions.

TABLE 5: Outputs of PRECIOUS-Offline and Online for the
task-set constructed with Ligra (Table 4)

Tasks Mapped Scheduled Updated
Cluster Version (Offline) Version (Online)

T1 CH 1 1

T2 CH 3 3

T3 CL 3 3

T4 CH 2 2

T5 CL 2 3

T6 CH 1 2

Improvement in Achieved QoS 9.0%

Core Utilisation Profiles: To provide a comprehensive
understanding of the system behaviour, we analysed the
utilisation profiles of the InO and OoO cores during our ex-
periments. OoO cores (in CH) are primarily responsible for
executing tasks T1, T2, T4, and T6. This leads to periods of
high activity, especially during the execution of time-critical
task components. InO cores (in CL), while handling tasks T3

and T5, contribute the majority of the write requests (76%).
PRECIOUS-Online leverages the dynamic slack generated
by improved task execution to exploit the higher versions of
tasks. The cache management strategy is designed to accom-
modate these distinct profiles: prioritising soft region access
for InO cores to minimise write overhead and providing
opportunistic soft region access for OoO cores to support
performance.

6 RELEVANT LITERATURE

Based on problem objectives, the scheduling can be broadly
categorised as energy-aware and QoS-aware. In case of
energy-aware task deployment, energy usage is minimised
while considering system-wide constraints [5], [36]. For
homogeneous systems, DVFS and DPM are primarily
considered enhancing energy efficiency [17]. The recent
shift from homogeneous to HE platform introduces ad-
ditional research challenges, such as extra variables re-
garding the core selection and voltage/frequency (V/F).
Even scheduling becomes more challenging in such HE
paradigms [25] that integrate a set of high-performance,
larger processor cores with a number of power-efficient
smaller cores [3]. Researchers attempted to develop HE
energy-aware schedulers for real-time tasks considering sys-
tem’s constraints [35]. Another recent study [32] enables
virtualisation on heterogeneous MPSoCs by generalising

real-time static partitioning for virtual machines across dif-
ferent ISAs, ensuring spatio-temporal isolation. SCENIC [12]
presents an end-to-end co-design approach using a control
capability function to efficiently design and schedule intel-
ligent control tasks on heterogeneous computing architec-
tures, optimising for latency, performance, and reliability.

In [9], the concept of the imprecise computing (IC) or
approximate computing task of a real-time system towards
maintaining an energy budget was introduced. Other earlier
efforts [10], [30] that explored approximate task scheduling
for time-critical systems for maximising QoS while trim-
ming energy usage, considered homogeneous computing
paradigms. On the other hand, a few works also focused on
HE platforms [25], [43]. To enhance the QoS with energy and
time constraints, a DVFS-based approach was devised [30].
However, the considered tasks were independent. In an-
other work [39], the authors considered dependent tasks,
and optimised frequency and task assignment to maximise
the system QoS under real-time energy budget.

To reduce leakage power and area occupancy of the
conventional SRAM-based LLC, researchers have been ex-
ploring alternative emerging memory technologies over the
decades [40]. Prior research on MRAM primarily focused
on the higher write latency and energy. For example, to
alleviate the adverse impact of costly write operations
through read-preemptive write buffer, a novel technique
was proposed [45]. Relocating and managing the frequently
used LLC blocks over multiple retention zones is a way in
practice to boost system performance and has been utilised
in MRAM cache design [1]. However, since its presenta-
tion [26], MLC MRAM has also gained attention for its
density benefit [13]. But, MLC MRAMs inevitably suffer
from the long read/write latency and energy, especially on
accessing hard bits [20]. Jiang et al. presented line-paring
mechanism that partitions the parallel MLC into read-fast-
write-slow and write-fast-read-slow regions [21] to improve
energy of MLC-MRAM caches.

Sampaio et al. proposed an approximation-aware MLC
STT-RAM cache architecture, that partially protects cache
from reliability issues and, in turn, leverages variable re-
silience of applications to adaptively trim protection over-
head within a specified error threshold [34]. The reliability
of data storage in the hard region has further been improved
by implementing a “two-step elimination” protocol at the
MLC-MRAM based LLC [19]. In contrast, a read error re-
silient MLC-MRAM has been proposed to improve reliabil-
ity by mitigating both sensing and disturbance errors at the
soft regions [44]. However, all of these prior techniques were
explicitly proposed for the shared LLC in the homogeneous
CMPs, whereas incorporating MLC-MRAM based shared
LLC in HE environment needs novel solution to manage
the cache accesses so that performance per watt of the LLC
can be improved while preserving the performance benefits
offered by the HE cores.

PRECIOUS over Prior Art: In PRECIOUS, we investi-
gated the potential of MLC-MRAM based LLC in improving
performance energy efficiency of an approximated HE real-
time computing paradigm. Basically, PRECIOUS first intro-
duces a novel HE-offline scheduling algorithm for a depen-
dent approximate real-time task-set, intending to improve
the QoS (Sec. 3). The QoS is further improved by exploiting

12

TABLE 6: Summary: PRECIOUS vs. Prior Art

Prior Art Heterogeneous Dependent Task Approx. Comp. Online Adapt. Cache Aware QoS Aware Energy Aware

TD [25] ✓ ✓ ✓ × × ✓ ×
Mo et al. [31] ✓ ✓ ✓ × × ✓ ×
DPMRS [35] ✓ ✓ × × × × ✓

Wei et al. [43] ✓ ✓ ✓ ✓ × ✓ ✓
Cao et al. [9] ✓ × ✓ ✓ × ✓ ✓

Aydin et al. [4] × ✓ ✓ × × ✓ ×
Prepare [10] × ✓ ✓ ✓ × ✓ ✓
Mo et al. [30] ✓ ✓ ✓ × × ✓ ✓

ACCURATE [33] × ✓ ✓ ✓ ✓ ✓ ✓

PRECIOUS ✓ ✓ ✓ ✓ ✓ ✓ ✓

storage benefits of MLC-MRAM based LLC whereas higher
write energy and latency of the MLC-MRAM based LLC
is further mitigated by our novel online technique (Sec. 4)
that opportunistically manages the frequently used write
intensive blocks at the soft region. The task-level perfor-
mance gain makes room for improving QoS by running
higher task-version or energy efficiency by turning off the
cores during slacks. Our results (in Sec. 5, as evident from
Table 5) exhibit the efficacy of the offline and online tech-
niques of PRECIOUS, and specifically our offline scheduler
outperforms prior art [31].

To the best of our knowledge, PRECIOUS is the first tech-
nique that prudentially exploits the storage advantage of MLC-
MRAM based LLC over conventional SLC-MRAM based LLC
while ameliorating its write related issues to enhance QoS gained
by its offline HE scheduler targeting an approximate dependent
time-critical task-set without violating system-wide constraints.
We further summarised the differences between the prior
approaches and PRECIOUS in Table 6.

7 CONCLUSIONS

In PRECIOUS, we introduce a novel hybrid offline-online
scheduling strategy for approximate real-time tasks in an
HE multiprocessor platform equipped with MLC-MRAM
based LLC. PRECIOUS-Offline generates a schedule for
a dependent task-set with an objective to maximise the
QoS while considering other system-wide constraints. PRE-
CIOUS-Online further improves the tasks’ performance by
prudentially leveraging MLC-MRAM storage density and
enhancing system level QoS by considering the tasks sched-
uled with lower accuracy and opportunistically schedul-
ing the higher task versions without incurring any energy
overhead. In addition, PRECIOUS-Online saves energy by
turning off the processor cores during the slacks generated
at runtime. PRECIOUS is the first exploration that stud-
ied scheduling for a dependent approximate time-critical
task-set on an HE-computing platform that exploits higher
storage density of MLC-MRAM. Overall, PRECIOUS’s ef-
fectiveness stems from its hybrid offline-online approach,
where PRECIOUS-Offline generates a static schedule, and
PRECIOUS-Online dynamically adapts and optimises it for
MLC-MRAM characteristics, demonstrating the necessity of
both phases for achieving high QoS and energy efficiency.
PRECIOUS-Offline achieves up to 76% QoS for a specific
task-set, surpassing prior art, whereas PRECIOUS-Online
enhances QoS by 9.0% by reducing cache miss-rate by 19%
on a 64-core HE system without incurring any energy over-
head over conventional MRAM cache. In future, we plan

to extend PRECIOUS to support concurrent task execution
within clusters by transitioning to a task-to-core mapping.
Furthermore, incorporating DVFS and task migration strate-
gies could further enhance the framework’s performance
and energy efficiency.

ACKNOWLEDGMENTS

This work is supported by the UK Engineering and Phys-
ical Sciences Research Council (EPSRC) through grants-
EP/Z533749/1 and c− 14456642 (APRIL Hub Seed Fund).
For the purpose of open access, the author has applied
a Creative Commons Attribution (CC BY) licence to any
Author Accepted Manuscript version arising.

REFERENCES

[1] S. Agarwal et al., “Architecting Selective Refresh based Multi-
Retention Cache for Heterogeneous System (ARMOUR),” in DAC,
2023.

[2] ——, “TEEMO: Temperature aware energy efficient multi-
retention stt-ram cache architecture,” in 2024 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2024, pp.
852–864.

[3] M. Ansari et al., “Thermal-aware standby-sparing technique on
heterogeneous real-time embedded systems,” IEEE TETC, 2021.

[4] H. Aydin et al., “Optimal reward-based scheduling for periodic
real-time tasks,” IEEE TC, 2001.

[5] A. Bhuiyan et al., “Energy-efficient parallel real-time scheduling
on clustered multi-core,” IEEE TPDS, 2020.

[6] X. Bi et al., “Unleashing the potential of MLC STT-RAM caches,”
in ICCAD, 2013.

[7] N. Binkert et al., “The gem5 simulator,” SIGARCH CAN, 2011.
[8] C. Bliek et al., “Solving mixed-integer quadratic programming

problems with IBM-CPLEX: a progress report,” in RAMP, 2014.
[9] K. Cao et al., “QoS-adaptive approximate real-time computation

for mobility-aware IoT lifetime optimization,” IEEE TCAD, 2019.
[10] S. Chakraborty et al., “Prepare: Power-Aware Approximate Real-

Time Task Scheduling for Energy-Adaptive QoS Maximization,”
ACM TECS, 2021.

[11] S. Chakraborty and M. Själander, “WaFFLe: Gated cache-ways
with per-core fine-grained DVFS for reduced on-chip temperature
and leakage consumption,” ACM TACO, 2021.

[12] J. Chen et al., “SCENIC: Capability and Scheduling Co-Design for
Intelligent Controller on Heterogeneous Platforms,” in RTSS, 2024.

[13] Y. Chen et al., “Access scheme of multi-level cell spin-transfer
torque random access memory and its optimization,” in MWSCAS,
2010.

[14] H. Djigal et al., “Task scheduling for heterogeneous computing
using a predict cost matrix,” in Workshop Proceedings of ICPP, 2019.

[15] X. Dong et al., “NVSim: A Circuit-Level Performance, Energy,
and Area Model for Emerging Nonvolatile Memory,” IEEE TCAD,
2012.

[16] A. Esmaili et al., “Energy-aware scheduling of task graphs with im-
precise computations and end-to-end deadlines,” ACM TODAES,
2019.

[17] ——, “Modeling processor idle times in MPSoC platforms to
enable integrated DPM, DVFS, and task scheduling subject to a
hard deadline,” in ASP-DAC, 2019.

13

[18] M. Hosomi et al., “A novel nonvolatile memory with spin torque
transfer magnetization switching: Spin-RAM,” in IEEE IEDM,
2005.

[19] J.-W. Hsieh et al., “TSE: Two-Step Elimination for MLC STT-RAM
Last-Level Cache,” IEEE TC, 2021.

[20] T. Ishigaki et al., “A multi-level-cell spin-transfer torque memory
with series-stacked magnetotunnel junctions,” in Symposium on
VLSI Technology, 2010.

[21] L. Jiang et al., “Constructing large and fast multi-level cell STT-
MRAM based cache for embedded processors,” in DAC, 2012.

[22] T. Kawahara et al., “2 Mb SPRAM (SPin-Transfer Torque RAM)
With Bit-by-Bit Bi-Directional Current Write and Parallelizing-
Direction Current Read,” IEEE Journal of Solid-State Circuits,
vol. 43, no. 1, 2008.

[23] D. Li and J. Wu, “Minimizing energy consumption for frame-based
tasks on heterogeneous multiprocessor platforms,” IEEE TPDS,
2014.

[24] S. Li et al., “McPAT: an integrated power, area, and timing mod-
eling framework for multicore and manycore architectures,” in
MICRO, 2009.

[25] X. Li et al., “Approximation-aware task deployment on heteroge-
neous multi-core platforms with DVFS,” IEEE TCAD, 2022.

[26] X. Lou et al., “Demonstration of multilevel cell spin transfer
switching in MgO magnetic tunnel junctions,” Applied Physics
Letters, 2008.

[27] Y. meng Chen et al., “A scheduling algorithm for heterogeneous
computing systems by edge cover queue,” Knowledge-Based Sys-
tems, Elsevier, 2023.

[28] S. Mittal, “A survey of techniques for approximate computing,”
ACM Comput. Surv., vol. 48, no. 4, 2016.

[29] ——, “A survey of techniques for cache locking,” ACM TODAES,
2016.

[30] L. Mo et al., “Energy-quality-time optimized task mapping on
DVFS-enabled multicores,” IEEE TCAD, 2018.

[31] ——, “Approximation-aware task deployment on asymmetric
multicore processors,” in DATE, 2019.

[32] D. Ottaviano et al., “The Omnivisor: A Real-Time Static Partition-
ing Hypervisor Extension for Heterogeneous Core Virtualization
over MPSoCs,” in ECRTS, 2024.

[33] S. Saha et al., “ACCURATE: Accuracy maximization for real-time
multi-core systems with energy efficient way-sharing caches,”
IEEE TCAD, 2022.

[34] F. Sampaio et al., “Approximation-aware Multi-Level Cells STT-
RAM cache architecture,” in CASES, 2015.

[35] D. Senapati et al., “Energy-aware real-time scheduling of multiple
periodic dags on heterogeneous systems,” IEEE TCAD, 2023.

[36] S. Z. Sheikh and M. A. Pasha, “Energy-efficient real-time schedul-
ing on multicores: A novel approach to model cache contention,”
ACM TECS, 2020.

[37] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing
framework for shared memory,” in PPPoPP, 2013.

[38] J. Shun et al., “Brief announcement: The problem based benchmark
suite,” in ACM SPAA, 2012.

[39] G. L. Stavrinides and H. D. Karatza, “An energy-efficient, QoS-
aware and cost-effective scheduling approach for real-time work-
flow applications in cloud computing systems utilizing DVFS and
approximate computations,” Future Generation Computer Systems,
vol. 96, pp. 216–226, 2019.

[40] G. Sun et al., “A novel architecture of the 3D stacked MRAM L2
cache for CMPs,” in HPCA, 2009.

[41] K. Tovletoglou et al., “HaRMony: Heterogeneous-Reliability Mem-
ory and QoS-Aware Energy Management on Virtualized Servers,”
in ASPLOS, 2020.

[42] M. Wang et al., “Efficiently supporting dynamic task parallelism
on heterogeneous cache-coherent systems,” in ISCA, 2020.

[43] T. Wei et al., “Cost-constrained QoS optimization for approximate
computation real-time tasks in heterogeneous MPSoCs,” IEEE
TCAD, 2018.

[44] W. Wen et al., “Read Error Resilient MLC STT-MRAM Based Last
Level Cache,” in ICCD, 2017.

[45] X. Wu et al., “Hybrid cache architecture with disparate memory
technologies,” in ISCA, 2009.

[46] Y. Zhang et al., “Multi-level cell STT-RAM: Is it realistic or just a
dream?” in ICCAD, 2012.

Sangeet Saha is a Lecturer in Computer Sci-
ence at the University of Essex, UK. From 2018
to 2021, he was a Senior Research Officer at the
EPSRC National Centre for Nuclear Robotics,
based at the University of Essex. He received
the YERUN Research Mobility Award in 2021.
His research focuses on real-time scheduling,
reconfigurable computing, embedded systems,
and cloud computing. He has published exten-
sively in conferences like CODES+ISSS, ISCAS,
and journals like ACM TECS, IEEE TCAD, etc.

Shounak Chakraborty (Senior member, IEEE)
is currently working as an Assistant Professor in
the Department of Computer Science, Durham
University, UK. His research interests include
high performance computer architectures, non-
volatile memory technologies, on-chip thermal
management, and compilers. Prior to joining
NTNU, Shounak obtained his PhD in Computer
Science and Engineering from IIT Guwahati, In-
dia in February 2018, and also worked as assis-
tant professor at IIIT Guwahati, India.

Sukarn Agarwal is currenlty working as an As-
sistant Professor in Electrical Engineering and
Computer Science Department at the Indian
Institute of Science Education and Research,
Bhopal India. He earned his PhD degree in Com-
puter Science and Engineering from IIT Guwa-
hati, India, in March 2020. His research inter-
ests include Emerging Memory Technologies,
Memory System Design, Network-on-Chip de-
sign, and Thermal Aware Chip Management. He
published many of his research contributions in

conferences like DAC, PLDI, ASAP, etc. and also published several of
his research outcomes in journals like IEEE TVLSI, ACM TECS, IEEE
TC, etc.

Magnus Själander is working as a Professor at
the Norwegian University of Science and Tech-
nology (NTNU). He obtained his Ph.D. from
Chalmers University of Technology in 2008. Be-
fore joining NTNU in 2016 he has been a re-
searcher at Chalmers University of Technol-
ogy, Florida State University, and Uppsala Uni-
versity. Själander’s research interests include
hardware/software co-design (compiler, archi-
tecture, and hardware implementation) for high-
efficiency computing.

Klaus McDonald-Maier is currently the Head of
the Embedded and Intelligent Systems Labora-
tory and Director Research, University of Essex,
Colchester, U.K. He is also the founder of Ul-
traSoC Technologies Ltd., the CEO of Metrarc
Ltd., and a Visiting Professor with the University
of Kent. His current research interests include
embedded systems and system-on-chip design,
security, development support and technology,
parallel and energy-efficient architectures, com-
puter vision, data analytics, and the application

of soft computing and image processing techniques for real-world prob-
lems. He is a member of VDE and a Fellow of the BCS and IET.

	Introduction
	System Model and Assumptions
	PRECIOUS-Offline
	Scheduling Approach
	Offline Cache Management Considerations

	PRECIOUS-Offline at work

	PRECIOUS-Online
	MLC-MRAM Cache: Background and Organisation
	Preliminary analysis and Motivation
	Core Concept of PRECIOUS-Online
	MLC_In_S_Out_HS: Managing LLC Blocks
	Improving QoS & Energy Efficiency

	Evaluation
	PRECIOUS-Offline: Evaluation Methodology
	PRECIOUS-Offline: Results and Analysis
	PRECIOUS-Online: Simulation Infrastructure
	PRECIOUS-Online vs. Conventional MRAM-LLC
	Performance Improvement and EDP Gains
	Impacts on Scheduling

	Relevant Literature
	Conclusions
	References
	Biographies
	Sangeet Saha
	Shounak Chakraborty
	Sukarn Agarwal
	Magnus Själander
	Klaus McDonald-Maier

