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Abstract—Accurate anomaly detection in dynamic graph net-
works suffers due to lack of coverage of all aspects of information;
specifically temporal, spatial and centrality based cross-coupled
information. This work aims to address the challenge of precise
and accurate anomaly detection in dynamic graph networks. It
uses a graph-based diffusion technique to sample a fixed-size,
yet cross-coupled, information-rich circumstantial node set for
target edges. Centrality enabled spatial-temporal node encoding
is considered as input to the dynamic graph based transformer
network. The proposed method uses a set of four elements to
make up the node encoding. The four encoding terms are com-
bined to create an input that contains extensive centrality based
cross-coupled spatial-temporal node encoding. The transformer
module simultaneously captures all the required attributes with
a single encoder. The performance of the proposed method is
validated on six different datasets; UCI Messages, Bitcoin-Alpha,
Digg Social, Enron Email, Epinions-Trust and AS-Topology. The
proposed method outperforms the existing methods in terms
of AUC-ROC score, accuracy, loss, and precision. Results show
an improvement of 2.42% AUC-ROC value over the existing
methods proving the models ability to counter over-fitting and
provide accurate results.

Index Terms—Anomaly Detection, Dynamic Graphs, Edge
Networks, Transformers, Input Embeddings.

I. INTRODUCTION

ynamic graphs are data structures where attributes

change over time and are therefore also referred to as
temporal graphs [1] [2]. Recent years have seen dynamic
graphs being used in several applications including modeling
systems like social media networks, traffic flow networks and
designing routing networks [3], [4]. Despite a wide range
of applications, the dynamic nature of these networks im-
poses several inherent constraints on performance in terms of
data management, anomaly detection and feature optimization
among others [4]. For instance, anomalies in dynamic graphs
can lead to surprising shifts in community structures or clus-
tering, as well as sharp increases or decreases in connectivity.
They may also cause abrupt changes in node properties or
behavior, unexpected variations in centrality measures, and
deviations from previous interaction patterns [5]. This work
is aimed at accurately detecting anomalies in dynamic graphs,
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which may arise due to various factors such as rapid shifts in
network activity, changing node associations or the emergence
of novel patterns that deviate from expected temporal trends
[5], [6], [7]. Detecting such anomalies as early as possible is
essential to ensure timely and effective responses.

The temporal correlation of quickly changing variables must
be considered when designing solutions for accurate anomaly
detection. Furthermore, while processing large volumes of
dynamic graph data, the performance is hindered by high false
positives, varying network size, and resource-hungry com-
putations. To demonstrate how linked information influences
the detection of edge abnormalities, a typical dynamic graph
network is shown in Fig. 1. The three graphs represent a
section of dynamic graph stream at sequential times T¢2,
T~ and T*. The black lines represent normal edges between
nodes, while the red line at ¢ represents an anomalous edge.
The dark grey colored node represents newly added node in
that specific timestamp. Different colors are used to denote
the corresponding nodes in the previous timestamps as per the
sliding window selection, taking the illustrative window size
as 3 nodes. Given that the network connects the neighbors in
the previous timestamps, the black edge is typical. The two
green nodes consistently have a distance from one another in
the earlier snapshots, which means that the edge between these
two green nodes, i.e. red might be an anomalous edge. Thus, it
is evident that shared neighborhoods and previous interactions
(examples of structural aspects) need to be taken into account
simultaneously while making judgments.

In the past, a variety of methods have been proposed to
address the issue of accurate anomaly detection in dynamic
graphs. The shallow learning processes, based on structural
connection model or historical behavior analysis, such as
GOutlier [8] and CM-Sketch [9], are some of the popular
techniques. In recent times, several deep learning (DL) based
techniques have shown effectiveness for time-variant graphs as
an unique approach. For instance, NetWalk [10] uses cluster-
based dynamic deep graph embedding to identify deviations;
AddGraph [9], StrGNN [11], and Cu-BLSTM [12] also make
use of such deep neural network models to address the issue.
Another interesting approach to address this issue is the use
of transformers for extracting global dependencies in data. In
contrast to the conventional architectures that processes data
sequentially, transformers are neural network architectures
centered on extracting global dependencies in data through
processing the full input concurrently [13]. To effectively learn
complicated patterns, transformers depend on self-attention
systems that weigh various input components differently dur-
ing processing. Due to their effectiveness in handling long-
distance dependencies, transformers have become increasingly
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Fig. 1: Impact of coupled information on appropriateness of
abnormal edge detection with illustrative window size as 3.

useful in applications such as graphs and sequence modeling.

Transformers improve the detection of dynamic network
anomalies by modeling complicated temporal dependencies
and capturing long-distance linkages between changing graph
variables. The information is processed holistically using a
self-attention mechanism, which is essential for evaluating the
behavior of dynamic graphs. An added advantage of trans-
formers is their ability to spot abnormalities that span several
time points and display complex temporal patterns. However,
handling the sparsity and inconsistency of dynamic graph
data requires in-network optimizations. These optimizations
are aimed at overcoming the issues of lack of raw information,
discriminative knowledge learning and over-fitting. To clarify,
the lack of raw information for dynamic graph embedding
limits the ability to capture temporal patterns and extract
valuable features. This, in turn, makes it difficult to effectively
represent evolving network dynamics for accurate anomaly
identification. In transformer-based anomaly detection for dy-
namic graphs, one key challenge is learning discriminatory
knowledge effectively. This involves combining discriminative
information in a way that distinguishes typical patterns from
anomalous ones, while accounting for the dynamic nature of
the graph data. Finally, robust generalization and accurate
anomaly identification in evolving graph structures are also
required. This presents the challenge of balancing model
complexity with the available data, thereby increasing the risk
of overfitting.

Thus, to achieve accurate anomaly detection in dynamic
graphs, the proposed work addresses key challenges such as
the lack of raw information, overfitting, and the need for
dynamic and discriminative model learning. It employs a
multiple embedding strategy combined with a dynamic graph
transformer to develop an efficient anomaly detector based
on binary cross-entropy. Centrality enabled spatial-temporal
node encoding is considered as input to the dynamic graph
based transformer network. A set of four elements make
up the proposed node encoding strategy. The four encoding
terms are combined to create an input that contains extensive
centrality based cross-coupled spatial-temporal node encoding.
In this way, the transformer simultaneously captures all the
required attributes with a single encoder. The performance of
the proposed method is validated on six different datasets, UCI
Messages [14], Bitcoin-Alpha [15], Digg Social [16], Enron

Email [17], Epinions-Trust [18] and AS-Topology [19]. The
novel contributions of the work are identified as below:

1) A graph-based diffusion technique for sampling a fixed-
size yet cross-coupled information containing circum-
stantial node set for target edges.

2) A novel cross-coupled multiple embedding schemes
considering time, space and centrality altogether is pro-
posed to optimize the detection accuracy.

3) A detailed ablation analysis to examine how each el-
ement of the spatial, temporal and centrality node en-
coding contributes to the overall performance of the
proposed model.

4) A mathematical analysis of the features and advantages
of the proposed model.

The rest of the paper is organized as follows: Section II
of the paper covers the related research. In Section III, the
problem formulation is presented followed by the overall
workflow and each element of the proposed framework in
Section IV. Section VII presents the dataset description and
experimental setup. A comprehensive sensitivity analysis of
the proposed method is presented in Section VIII which
precedes the Section IX where the performance analysis and
results are described. Finally in Section X, the concluding
comments and future directions are presented.

II. RELATED STUDIES
A. Graph based Anomaly Detection

In recent years, various anomaly detection techniques have
been proposed for dynamic graphs. To identify outliers within
graph streams, for instance, GOutlier [8] uses a structural
connectivity paradigm. It then creates a dynamic network di-
vision to preserve connectivity behavior model. To distinguish
the anomalous quality of the edge, CM-Sketch [9] takes into
account both previous behavior and the surrounding structural
information. StreamSpot [20] is a cluster-based technique
that makes use of the traits of graph streams. It uses a
centroid-based clustering technique and a unique similarity
function for assorted graph attribute comparison. To ensure
a significant mapping distance between irregular and normal
graph snapshots in the sketch space, SpotLight [21] adopts
a randomized drawing ability. These techniques fall under the
category of shallow learning-based techniques since they make
use of shallow mechanisms to identify anomalous edges.

A further strategy of approach uses DL techniques to
identify abnormal data in dynamic graphs. In order to create
node embeddings to clique embedding objectives, NetWalk
[10] uses a random walk-based encoder. Dynamically up-
dating reservoirs, are then used to describe the network’s
evolution. The anomaly at each edge is then scored using an
evolving clustering-based anomaly analyzer. AddGraph [22]
builds an end-to-end neural network framework to capture
the temporal and spatial characteristics of dynamic graphs. A
GRU-attention mechanism [23] is intended to integrate short-
and long-term dynamic changing features, while a Graph
Convolution Network (GCN) functions as structural features
extractor. Using stacked GCN and the GRU, StrGNN [11] re-
covers the h-hop enclosed sub-graph of edges and captures the
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temporal and geographical information. The learning model
learns via negative sampling using a ‘“context-dependent”
noise distribution in a complete manner. Using DL with a
Software-Defined Networking (SDN) architecture, the authors
in [12], propose a IDS to identify different attack types in
a smart consumer electronic network. In other methods, the
seminal work by the authors in [24], targets the lack of
informative encoding for unattributed nodes in the existing
methods. The authors propose a transformer-based anomaly
detection framework exploiting the spatial-temporal relations
in dynamic graphs. Node encoding and transformers are used
to captures informative representation from dynamic graphs
for accurate anomaly detection. The authors in [25] and
[26] employ random-walk and skip-gram based approach for
node embedding. Both the methods use an optimized K-
means clustering scheme for efficient anomaly detection in
dynamically changing node relations. The authors in [27] focus
on the significantly untouched issue of lack of real tags for
accurate anomaly detection. The issue is addressed through
an unsupervised learning framework, aimed at optimizing the
graph contrastive learning module. A network reconstruction
method is proposed to track and identify the anomalies in
the network and uses the topological structure along with
the node attributes for performance optimization. Another
important method is proposed in [28]. The authors use a
graph-based clustering method to divide the nodes into groups
by using the eigenvectors of Laplacian matrix. By using the
graph’s spectrum decomposition, the proposed method obtains
inherent structures and highlights the outliers.

Despite having several advantages, these approaches have
notable limitations. For example, the GOutlier [8] and CM-
Sketch [9], struggle with capturing complex temporal and
structural dependencies in dynamic graphs which restricts their
usage only to small scale datasets. On the other hand, deep
learning-based methodologies, such as AddGraph [22] and
StrGNN [11], have high computational costs and reliance on
extensive labeled data for training.

B. Graph Embeddings and Transformers

Transformers are specially curated neural networks for
learning representative embeddings for a range of input only
by using attention mechanisms. First introduced in [13], the
transformer model initially focused on natural language pro-
cessing (NLP) machine translation problems. By adding the
pre-training method, BERT [29] extends the use of trans-
formers to a variety of deep learning applications. Numerous
alternative works have been proposed since, achieving cutting-
edge results on diverse NLP problems. The transformer frame-
work has recently been adapted for computer vision (CV)
[13]. Enabling pixel-wise picture segmentation, SETR [30],
for example, uses multi-level feature accumulation module
and a ViT-like encoder with feature extraction.Transformers
are also introduced to the area of graph machine learning in
several recent research. GTN [31] uses meta-path-based rela-
tionship learning on diverse graphs with transformers. HGT
[32] represents a transformer model that achieves pioneering
performance on variety of downstream operations for represen-
tation learning over web-scale assorted graphs. In order to get

a representation over graph data, GROVER [33] incorporates
the message carrying technique into the transformer design.
Graph-BERT [34] builds a network model with static graph
learning which is similar to BERT and presents a number
of well crafted challenges for self-supervised framework pre-
training. One of the recent work in [35] uses spatial-temporal
embedding based auto-encoder infrastructure for outlier detec-
tion. The proposed method focuses on noisy label learning and
optimizes the sensitivity parameter of the model for improved
results.

However, owing to the inherent reliance on attention mech-
anisms, transformers tend to have high computational cost
making such approaches resource-intensive, particularly for
large-scale datasets in both NLP and CV [13]. The require-
ment of extensive pre-training and fine-tuning in models like
BERT [29] and Graph-BERT [34] makes them unsuitable for
several resource constrained real-world applications. Addition-
ally, while frameworks like HGT [32] and GROVER [33]
have shown success in graph machine learning tasks, their
performance relies heavily on well-crafted input features. This
making them less generalizable to heterogeneous graph data.
The literature supports the fact that the adaptation of trans-
formers to graphs, in methods such as GTN [31], struggles
to give the desired results due to the issues of scalability and
overfitting, particularly when dealing with sparse or highly
dynamic graphs.

III. PROBLEM FORMULATION

A. Problem Definition 1:

Consider a time variant graph, provided the number of
timestamps 7', it can be considered as a graph stream and
is depicted as W = {D'}I,, in which D! = {V,, E;} is
considered as a graph time-frame at the provided timestamp
T. The proposed work creates a link as e} ; = (p},p) € E'
depicting an edge among nodes p! and p;'- at the time 7', where
pi,p; € V*'. The proposed model denotes a' =| V* | and
bt =| E' | representing the count of vertices and count of
edges at time 7. D! is specifically mentioned in form of a
binary adjacency matrix which in the proposed methodology
is represented as M?, M' € R™*™" where Mf; = 1if a
connection among the nodes p; and p; exists at a particular
time-frame 7', or else M, f ; = 0. The problem is to identify the
edges which are anomalous in each of the timestamp, making
it a classification-oriented scoring problem, i.e., it needs to
be checked for Mf ; values which are 1, whether or not they
belong to the edges E! in that specific timestamp 7.

B. Problem Definition 2:

For the time dependent graph W = {D!}I_,, the major
objective of the proposed anomaly detection method is to
develop a learnable function to generate anomaly score which
predicts the degree of abnormality for a connection, to which
a big score f (eﬁ’ j) represents more anomalous probability of

t
ei’j.
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C. Problem Definition 3:

For the considered dynamic graph W = {D'}I_ |, the de-
fined learnable anomaly score function f (e; j) is supposed to
minimize over-fitting of edges 627 ; such that the anomaly score
prediction can be maximized, i.e. f (e; ;) making the problem
a classification-oriented scoring optimization problem.

IV. METHODOLOGY

The proposed framework consists of four major steps,
namely; Subgraph sampling based on edges, Node encoding
based on multiple embedding strategy, Dynamic graph based
transformer module, and Binary cross entropy based anomaly
detector, as shown in Fig. 2. Model training is performed in
such a way that the transformer architecture is fed the anomaly
scores straight away for learning. Subgraphs in the first step
are sampled based on their edges to get the nodes associated in
different timestamps for cross-coupled information capturing.
This step majorly focus on extracting the spatial, temporal and
centrality information from dynamic subgraphs based on their
timestamps. The combination occurs in such a manner that
a single fixed-length cumulative node encoding is produced.
The transformer model then uses the node encoding produced
by the centrality based spatial-temporal embeddings as input.
Next, the transformer module uses a single transformer model
and directs it to a pooling module to extract the overall targeted
knowledge of edges. Finally, a negative sampling is performed
in the binary cross-entropy based anomaly detector to produce
false negative edges. This is achieved using a scoring block
which utilizes binary cross-entropy loss to output anomaly
scores. The proposed work extensively presents the four key
parts of the methodology from Section IV-A through Section
IV-D.

A. Subgraph Sampling based on Edges

Edge-based subgraph sampling involves the extraction of
subsets of edges from dynamic graphs. It assists in the discov-
ery of evolving anomalies by revealing anomalous structural
patterns. It is used to magnify the receptive field to an
appropriate local scale since anomalies frequently appear in
the local substructures of graphs, as observed in prior research
[11]. Since subgraphs are the data elements for proposed work,
first step is to sample them to obtain information effectively.
The Fig. 1 depicts exactly how cross-coupled information is
present, and how edge based sampling is performed. Each
edge acts as a center and named as target edge. The origin
and objective nodes are the target nodes. Nodes surrounding
the target nodes are named as contextual nodes.

With respect to contextual nodes, to effectively sample them
from a particular target edge to accumulate cross-coupled
contextual information is a challenge. The proposed work
considers the subgraph as a static graph and proceeds. One
method to achieve this is with the help of identifying the h-hop
neighbours of target nodes, but it has drawbacks. With &-hop
neighbours sampling, the imbalanced node degree arrangement
in the authentic actual datasets would degrade the performance
and efficiency of the method. Consider the case for the UCI
message dataset [14]. It has a maximum degree of 255 and

an average degree of 14.47. The number of h-hop neighbors
would explode for those well-liked nodes with high degrees,
leading to biased information and hence reducing efficiency.
Also, sampling h-hop neighbours, lacks in identifying the
significance of each node inside the substructure.

Note that, two target nodes can be stated as shared neigh-
bours that help with target edge detection with a better effi-
ciency when they have both shared and unique neighbourhood
nodes. While sampling contextual nodes, this straightforward
technique just treats the shared and unique neighbors equally.
The proposed work uses a graph-based diffusion technique for
sampling a fixed-size yet cross-coupled information containing
circumstantial node set for target edges in order to deal with
the restrictions. The significance of each node can be assessed
for a specific target node after acquiring a global perspective
of the graph structure through graph diffusion.

Initially, provided an adjacency matrix of a static graph D €
R™* ™ the graph diffusion is defined as L € R™"*™ by

L= iegEM-f (1)
=0

where M € R™ ™ is a vague transition matrix and 0, is
weighing measure which is simply the ratio of global to that
of local context or information.

Now, in order to guarantee the convergence, some condi-
tions must be considered which require > 7 60, = 1,0, €
[0,1] and the eigenvalues of M are bounded in [0, 1].

For the diffusion matrix L, row [; represents the connection
among i*" node and every node from a global point of view.
Considering the target edge e;q; = (v1,v2), by appending the
associating vectors of the target nodes

l(iggt = l'U1 + l’Uz (2)

then top x nodes are sorted and selected with the larger
values to develop the provisional node set Ue,,,. After that,
the bigger node set for a subgraph can be formalized as

Letgt = {U17 V2, Uetgt} (3)

Equation 3 is for single static graph. But for dynamic graph,
7 times sliding window technique is implemented, where 7
belongs to all the timestamps of a dynamic graph.

B. Node Encoding Based on Multiple Embedding Strategy

The unattributed nature of graphs that the proposed work
uses, poses a challenge to naturally identify the relevant data to
use as the input. Different to the images and attributed dataset,
each data item has its own raw information. The challenge
also signifies the issue of creating an informative encoding as
network input. One can use the identity node encoding in place
of raw node feature, which represents one-hot vector for each
node, just as it is used in natural language processing (NLP).
But some drawbacks are observed for identity node encoding.
Absence of structural and temporal information is one of the
drawbacks for the one-hot encoding technique. Also, it cannot
describe the structural roles or temporal status of the nodes as
it just conveys the identity of the nodes. Hence dynamic graphs

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on June 16,2025 at 17:31:59 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCE.2025.3573163

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS

(#)
) @
Q

@)

Timestamp Tt2 Timestamp Tt Timestamp Tt
Subgraph Sampling based on Edges
Diffusion Distance Relative " "
Based Spatial Based Spatial Temporal E|ge'n-Vector‘ Cumulatlvg Node
@ |15 1 10 | |s 4 12| |9 20 s| 12 17 2o|‘" |42 52 47|
@ 2 9 12| |5 1 10 | |15 " 7 | 21 17 12| 43 48 31 |
@|1 15 20 [ |1 12 16 | |1z 21 21 | 9 15 1 [ 23 63 68 |
|
23 24 16 | |1o 12 9 | |1 15 zolx 20 17 9|“' |so 68 54
|s 16 26 | |15 20 15 | |9 1 12 | 7 21 5| |37 68 58
(7 (k+2))xdgnc Dimension

Scoring Module
Positive Edge Anomaly Pseudo
Embedding Score Label
S
Negative Ed <'=D B BCE
egative Edge =
Embedding 2 & Loss
—..,D_:I_ l posf| o

Discriminative Anomaly Detector

Transformer Module Pooling Module

Node
Embedding

Input

42 52 47 [t

43 48 31 fmju

Edge
Embedding

23 63 68 fmjm—

Buijood uespy

60 68 54 fmjmm

uonuany peay - BN
uonuayy peay - BINN

37 68 58 [mim—

Multiple Embedding based Node Encoding Strategy

Dynamic Graph Transformer and Pooling Module

Fig. 2: The Proposed Model: Subgraph Sampling Based on Edges, Node Encoding Based on Multiple Embedding Strategy,
Dynamic Graph Based Transformer Module, and Binary Cross Entropy Based Anomaly Detector.

with large amount of changing nodes is not a suitable data
for identity node encoding. Additionally, changing node set is
also not adapt for fixed dimension work. The proposed work
presents centrality enabled spatial-temporal node encoding to
be considered as input to the dynamic graph based transformer
network. Four elements make up the proposed node encod-
ing: relative temporal encoding, diffusion-dependent spatial
encoding, eigen vector based centrality and distance-dependent
spatial encoding.

The two terms for spatial embedding, global and local,
relates to their node encoding respectively, represents the
structural function of each node. Differently, the temporal
encoding term provides the time specific knowledge of every
constituent in the subgraph node set. Finally, the four encoding
terms are combined to create an input that contains extensive
centrality based cross-coupled spatial-temporal node encod-
ing. Corresponding to the frequency-aware sin/cos functions
employed in [13], the encoding is developed using learnable
linear projections. The reason for this is because learnable
functions may more easily describe the relationships between
various timestamps or places.

1) Rank Based Diffusion Spatial Encoding: The rank based
diffusion for spatial encoding is obtained as below:

lindex(v})]))  (4)

Tdiff (v;) = linear(rank(sftht

Where, index(.) represents the enquiry function for index,
rank(.) represents ArgSort rank function, linear(.) represents
learnable linear mapping, belonging to the range R%nc or

dimension of node encoding. For every vertex in the subgraph
node set vj— S S&gt, node is sorted based on diffusion value
and ranking is served as a data source in the proposed work.
Encoding is computed based on the ranks with a learnable
linear mapping containing single layer encoding function.

2) Distance Based Spatial Encoding: The distance based
spatial encoding is obtained as below:

(&)

Where, dist(.) represents relative distance computing func-
tion, min(.) shows learnable linear mapping function and
min(.) shows minimum value function. For every node in
substructure set v;- € Séi(t’ distance from target edge serves
as information provider for encoding. This distance can be
treated as the least relative distance value between two target
nodes.

3) Relative Temporal Encoding: The relative temporal en-
coding is obtained as below:

Tdist (v;) = linear(mm(dist(v; v, dist(vé ,03)))

(6)

Where |.|| is relative time computing function, which is L?
norm in here and linear(.) is learnable linear mapping. Data
source here is the difference between target ¢ and current edge
7 timestamps.

4) Eigenvector based Centrality Encoding: The eigenvector
based centrality encoding is obtained as below:

. 1 &
Icent('U;‘) = X ZAi’jaj S Rdﬁnc
j=1

Itemp('l};‘) = linear(”t — 7’”) c Rdenc

(7
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Where A is eigenvalue associated with that particular eigen-
vector, and «; represents the centrality score of that particular
vertex v;. The same equation (7) can also be represented as:

A- Lcent = A- Tcent

The eigenvalue centrality vector is for the largest eigenvalue.
In context to this statement, the Lemma 1 is presented:

Lemma 1. Consider a provided matrix M € R™*"™ containing
n eigenvectors, i.e. {v1,va,...v,} relating to the eigenvalues
{A1,As,...A,}. Suppose vy is the eigenvalue with the maxi-
mum value and A1 is it’s corresponding eigenvector, then any
random vector ro € R"*! can be represented as:

k
M, ~c-v ®)
where for some constant ¢, k — oo

Proof. - For the linear combination {vy,vs,...v,}, i.e. inde-
pendent eigenvectors, the random vector ry can be represented
as:

rg = C1V1 + CoV2 + ... + C U,
Mry =ciMvy 4+ coMvs + ... + ey Muy,
Mrg = clAjvy + 2A2v9 + ... + Ay, U,
Multiplying M frequently k£ times on both the sides,

MFrg = ey Yoy + coMsvy + ... + e AF vy,
A\ " A\ F
Mkro = A]f c1v1 + ¢2 <A2> Vo + ... + Cpp () Um
1

As k — oo and H/[tl

k
<<1lfori=1,2,3..m

M’I"O ~ clA’fvl

Hence,
MkTQ ~ CUq

Where ¢ is a constant. O

Hence, one can assimilate that the centrality vector associ-
ated with the proposed node encoding is the one with largest
eigenvalue. By Perron-Frobenius theorem, it can be stated
that for M being strictly non-negative matrix, A exists, that
is, the largest positive unique eigenvalue. Hence, eigenvector
centrality of M also exists, which came out from a non-
negative eigenvector.

5) Fusion of Encoding: The fusion of all the encoding
strategies is obtained as below:

Trotal (V) = @aiff (02)+Zaist (V) + Ttemp (V) +Tcent (v]) € Rlere

©))

provided the target edge eigt, for each node in subgraph

node set, the encoding is calculated and stacked into encoding
matrix:

Xt = @ [.’IT(U;)]T c Rdencx((k_;'_g)T)

€tgt

(10)

viES 4
J Ctgt

Where, € represents the concatenation and (.) "
operation.

is transpose

C. Dynamic Graph Transformer Module

In order for the neural network model to draw knowledge
from dynamic graphs, it must take into account both the
temporal and the spatial structure information. For effective
anomaly detection, geographical and temporal information
should typically be recorded simultaneously because they are
coupled in most circumstances. Using the dynamic graph (Fig.
4), one can observe that at time ¢, the nodes v! and v}
are connected. This is preceded by multiple connections in
respective communities in the preceding timestamps, such as
ugtfl) —uétil) and u?*” —uétiQ). How can a neural network-
based encoder take into account both spatial and temporal
information at the same time while designing a dynamic graph
encoder? In the works that are now available, using hybrid
networks layered by distance based or time dependent modules
is a common solution. In these hybrid models, the spatial and
temporal modules are used to separately and respectively col-
lect spatial and temporal information. For example, in StrGNN
[11], the GCN functions as a space-dependent module, while
temporal information is gathered by GRU evaluating the GCN
outputs from various timestamps. One drawback of these
hybrid frameworks can be considered as they could overlook
some data that spans temporal and geographical domains,
which would result in an even less-than-ideal outcome. The
proposed work utilizes transformer architecture in such a way
that only encoder module is fed the spatial, temporal and
centrality knowledge of dynamic graphs. In this way, the
transformer simultaneously capture all the spatial, centrality
and temporal attributes with a single encoder when it gets
the input of multiple encoding timestamps. The transformer
module and the pooling module make up the dynamic graph
transformer. A better representation for the dedicated graph
transformer is provided in Fig. 3. The attention mechanism
leverages the transformer module to gather the wealth of cross-
domain knowledge, and its last layer develops informative
node encodings. Finally, subgraph node embedding for each
node is then combined by pooling module and an embedding
vector is produced to portray the target edge.

1) Transformer Module: Consolidating node encodings
within a subgraph node set into node embeddings is the trans-
former module’s goal. Several layers of attention mechanism
is used to exchange the data of various nodes in order to
achieve this. The single head attention layer can be expressed
specifically as follows:

HY = attention(HD) (1
H
@ (T vm) o
k=1 \jEN
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Where, H(*1 is the output embedding of the (I + 1)**
layer, hé is the adjacency value for the j** channel, w s

i,
the trainable attention matrix, which is:

k’lhl» . Kk’lhl»
Qhy KHG J) (13)

kel _ 4
w;; = softmaz; =
emb

Here, Q', K', V! € RAems*(k+2)7) are the query, key, and
value matrices, respectively for the feature transformation and
information exchange. Q', K, V! are calculated by:

Q' =H""-W, (14)
K'=H"'. Wk (15)
Vi=H" Wy, (16)

Where W§,, Wi, W, € Remv*demt are learnable param-
eter matrices of the [*" attention layer. The purpose of Q'
and K' is to sum up the contributions of particular node
embeddings whereas V' is used to set input for new feature
space. In the proposed method, the target encoding matrix
X ef,, acts as input of transformer H (), and to articulate the
dimension, d = demp = dene. The output node embedding
matrix Z is the last attention layer output. In between, the
attention outputs hé“ made to go through a feed forward
neural network preceded and succeeded by unused connections
and layer normalization as:

Rttt = Norm(h! + hith)
A = wl - GeLU (wh hIF1)

a7
(18)

;Lli"'l = Norm(hﬁ"‘1 + ﬁé+1) (19)

Where, Norm(.) is the layer normalization used, while
GeLU(.) [36] is the Gaussian Error Linear Unit. Compared
to sigmoids, activations like ReL.U, ELU, and PReLU have
allowed neural networks to converge more quickly and ef-
fectively. Moreover, Dropout multiplies some of the activa-
tions by O at random to regularize the model. Together, the
two aforementioned approaches determine a neuron’s output.
Nevertheless, the two operate apart from one another. GeLU
seeks to integrate them. Mathematically, in a much simplified
manner:

GeLU(y) = y.P(Y < y) =y - ®(y)

GeLU(y) ~ 0.5y (1+ tanh [y/2/m(0.04471 - + ] )
(20)
Where ®(y) is the cumulative of Gaussian distribution and is
generally computed with the error function.

2) Pooling Module: The embeddings of the nodes in sub-
graph Z are to be transferred over the edge embedding vector
z(eigt) via the pooling module. Here, the pooling function is
defined as follows:

ns

Zet = pooling(Z) = 21
v k=1

In here, average pooling operation is achieved, with ng
being the number of nodes in a subgraph and Z;, being the

k" row of Z.

D. Binary Cross Entropy based Anomaly Detector

The aim of the proposed work is to determine an anomaly
score for all the edges present in the dynamic graph after
the edge embedding has been obtained. The framework for
anomaly score computation using a fully connected layer
based anomaly points detector, is presented. Evidently, the
training set in the proposed methodology lacks a ground-truth
anomaly sample. A new problem arises in such a scenario:
how can an anomaly detector be learned in the absence of
an aberrant sample? The proposed work presents a negative
sampling strategy to create fake anomalous edges, which is
used to train the detector with edges that already exist in the
training data.

The major challenge in here is that How to train such a
detector where anomalous data is not provided?. To address
this, pseudo anomalous edges are generated via negative
sampling technique and detector is trained with both data
as existing and pseudo anomalous altogether. Within the
proposed architecture, a basic negative sampling approach is
implemented. Same amount of node pair is randomly selected
as potential negative pair candidates for each timestamp of a
network with m edges. Next, each of these node pairs without
connection to current normal edge set are verified across all
the timestamps. Up until that node pair is valid, another pair is
resampled and every illegal node pair is assessed. Post negative
sampling, a centrality enabled spatial-temporal node encoding
is present to provide context sampling to get subgraph node set
of every negative edge. The negative edge is then embedded
by feeding the encoding into the dynamic graph transformer
framework.

A fully connected layer is utilized having sigmoid activation
function to serve as scoring module for the proposed frame-
work to get anomaly score, and is given by:

f(z) = o (E(2)wts + biass) (22)

Where, f(z) give the anomalous score, F(z) is edge
embedding of edge z, wt, € R%m and bias, € R are weight
and bias parameters respectively.

After that, Binary Cross Entropy loss is implemented as:

L==Y log(1— f(eposi)) +l0og(f(encgi))  (23)
=1

Where, e,,s,; Tepresents ith positive edge and e,,.4 ; represents
it" negative edge that is negatively sampled, giving out actual
loss over prediction.

The model is trained in iterative manner going end-to-end.
For every iteration, to prevent over-fitting and bias, different
negative edges are sampled. For all the edges, subgraph sam-
pling is followed with the cross-coupled node encoding, trans-
former model learning and anomaly computation is performed
step wise. After that, the parameters are back-propagated and
updated under the guidance of loss function.

V. ILLUSTRATIVE SYSTEM MODEL

As an example, a social media network is presented (Fig. 3)
as the system model, which is one of the model frameworks
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Algorithm 1 Proposed Model

Require: Graph G = {D]_;} with node features X ,number
of contextual nodes sampled k, anomaly labels Z(e),
epochs count 7, time f each window 7

Ensure: Anomaly scores for nodes in D_; Dynamic Graph

training data G = { D], }, epochs count I, sampled node

count k, time of each window 7

Initialize temporal embedding Z¢cmp

Initialize distance based spatial embedding x 4;s¢

Initialize diffusion based spatial embedding x4; ¢

Initialize centrality embedding ¢yt

Initialize Graph Transformer H'

Initialize Discriminative Anomaly Detector L

for each epoch I do

for each batch in k£ do
Xtemp < Femyen,(Ttemp) {Embed temporal fea-
tures }

10: Xaist < Fem,,.,(€dist) {Embed distance features}

11: Xaigr < Femgiyp(xaips) {Embed diffusion fea-

tures}

12: Xeent < Fem,.,,(Tcent) {Embed centrality fea-

tures }

13: Xeyge & Xtemp D Xaist © Xaifs ® Xcent {Combine

embeddings}

14: Ze,,, < H(X) {Transform embeddings with Graph

Transformer}
15: S + L(Z,,) {Compute anomaly scores with
Anomaly Detector}

16: Compute loss and update model parameters

17:  end for

18: end for

19: return S =0

R AN A R ol e

that the proposed methodology is presenting. This illustration
considers the UCI Messages dataset [14] environment and is
imitated just like a social media platform. The graph dataset
is divided into different snapshots and each snapshot serves
as a time frame. Here, to give a proper comparison, nodes
represent users, edges represent connections between the users.
Even if a user has sent a single message to any user, an edge
is formed. To represent it dynamically, users add and remove
other connections. Other users also join the network and new
nodes are getting added. An anomaly may occur, if a user
connection is getting established without necessity. With the
use of this data, a dynamic network is constructed in which
each user is depicted as a node while edges are established
by messages that are sent between users. The associations and
interactions, altering inside the platform, are captured in this
dynamic graph. In order to extract the features from this graph
data, various techniques and formulae are implemented that are
mentioned in the section IV in detail. Specific time frame 7
to consider each snapshot and extract the temporal embedding
is set. For spatial embedding, both local and global feature
scale is utilized for both distance-based and diffusion-based
spatial embedding. In order to effectively extract the centrality
embedding feature from the dynamic graph, the eigenvector
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Fig. 3: An Illustration of a Social Media Network Showing
Working of Transformer Inside Dynamic Graph Transformer
Module

based centrality scoring scheme is implemented and embed-
ded. All the computations are performed in Python using
Sypder cross-platform Integrated Development Environment
(IDE). After efficiently extracting all the features, a cumulative
node encoding is developed that is further used to train the
proposed transformer neural network.

V1. THEORETICAL CONSIDERATIONS AND CONVERGENCE
ANALYSIS

The proposed graph-based anomaly detection technique
is designed to extract a fixed-size circumstantial node set
that ensures cross-coupled temporal, spatial, and centrality-
based information. The proposed technique ensures that the
circumstantial node set remains bounded in size regardless
of the dynamic nature of the graph, making the subsequent
transformer-based encoding process computationally stable.
The proposed method reiterates the robust convergence prop-
erties of transformers, when paired with appropriate encoding
and learning-rate schedules. The results across the identified
datasets demonstrate consistent convergence of the model
during training, as indicated by the steadily decreasing loss
curves and performance metrics. A step-by-step mathematical
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proof of convergence for the proposed model is presented. The
aim is to demonstrate that the parameters fof the transformer
are updated in a manner that reliably decreases the BCE
loss function BCE(#), converging to a local minimum. This
proof relies on properties such as Lipschitz continuity and the
smoothness of the gradients.

A. Model Configuration and BCE Loss Function
The BCE loss for binary classification tasks is defined as
follows:
N

BCE(#) = — - > [ns108(31(6)) + (1 — ) log(1 — :(6))]
i=1

(24)
where y; are labels, and ¢;(6) are the predicted probabilities,

modeled by the sigmoid function o(z) = 14—%

B. Gradient Descent Update Rule

The parameters are updated using gradient descent as fol-
lows:

90+ = ) _ )v,BCE(H™) (25)

where 7 is the learning rate and VoBCE(6®)) is the gradient
of the BCE loss at iteration ¢.

C. Lipschitz Continuity and Gradient Smoothness

Assume the gradient of the BCE loss VyBCE(6) is Lips-
chitz continuous, i.e., there exists a constant L > 0 such that:

IVoBCE(6;) — VoBCE(6s)|| < L||6; — 6| (26)

for all 0+, 0-.

D. Convergence Proof

Using Taylor’s expansion and the mean value theorem, we
approximate the BCE loss around () as:

BCE(0"*1) =~ BCE(9')) + V4BCE(H))T (9+1 — 9))
(27)

n éw(tﬂ) —OUNT (9D — g (28)

By choosing a sufficiently small learning rate 7, specifically
n < 2, we ensure that:

BCE(0**1) < BCE(A) (29)

proving that the loss function decreases with each iteration,
leading to convergence of the model parameters 6 to a local
minimum under the assumption of gradient smoothness and
proper learning rate selection.

This proof under reasonable mathematical assumptions
demonstrates that our model’s training process, characterized
by the gradient descent optimization of the BCE loss, con-
verges to a local minimum, ensuring effective learning and
stability of the anomaly detection model in dynamic graphs.

VII. DATASETS AND EXPERIMENTS

A. Dataset Description and Pre-processing

The proposed framework is evaluated with the help of
six benchmark datasets from the real world. Every dataset
has time-stamped annotations on its edges. During the pre-
processing stage, the edge stream’s repeated edges are elim-
inated. The method described in [8] is applied to intro-
duce anomalous edges into each dataset because the original
datasets missed a ground-truth anomalous edge. The training
data is completely clean. X, x m, pairs of different nodes are
associated arbitrarily for each snapshot D! and is associated
as anomalous nodes in the test data set. Here, m; is the actual
count of edges in the graph, and X, is the anomaly amount,
which shows the proportion of anomalous edges corresponding
to each time-frame. We train UCI Messages [14], Bitcoin-
Alpha [15], and Digg [16] datasets with 100 epochs and
Enron Email [17], Epinions-Trust [18] and AS-Topology [19],
datasets for 200 epochs. The snapshot size is set to be 1,000
for UCI Messages, Bitcoin, and Digg, 2000 for Enron and
Bitcoin-Alpha, and 6000 for Epinions-Trust and AS-Topology,
respectively. Table I summarizes the important features and
statistics of the used datasets.

TABLE I: Important Features and Dataset Statistics

Features — No. of No. of Avg. Gini Mean

Dataset | Nodes Edges Degree Coefficient Distance
UCI Messages [14] 1899 13838 14.57 0.75 3.1
Bitcoin-Alpha [15] 3777 24173 12.80 0.70 3.6

Digg [16] 30360 85155 5.7 0.63 4.6
Enron Email [17] 87000 1100000 26 0.75 4.9
Epinions-Trust [18] 131828 841372 12.76 0.9423 4.10
AS-Topology [19] 34,761 0.72 9.86 0.80 3.7

B. Computational Resource Requirements

The proposed method was implemented and evaluated on
a high-end system, equipped with an NVIDIA RTX 3090
GPU (24GB VRAM), an AMD Ryzen 9 5950X processor (16
cores, 32 threads), and 64 GB of RAM, running Ubuntu 20.04
LTS with PyTorch 2.0 and CUDA 11.8. This setup enabled
rapid experimentation, with training times of approximately
2-5 minutes per epoch depending on the dataset and efficient
inference times within 2 — 3 seconds for test samples.

C. Baseline Models and Validation Parameters

The performance of the proposed framework is validated
on eight parameters and also compared with eight forefront
baseline models. The details of the same are presented in
Table II. With the aim of a fair evaluation, every dataset
is split into two subsets: the test set comprises the 50% of
timestamps, and the training set consists of the remaining
50%. The test introduces the anomalous data at three distinct
anomaly rates (pA): 1%, 5%, and 10%. Based on the learned
node embeddings, the clustering technique oriented anomaly
detector [8] is used for the graph embedding technique to find
anomalies.
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TABLE II: Baseline Models and Validation Parameters

[ SNo. |

Method Name | [ Parameters J. \

1 NetWalk [8] Sensitivity Analysis

2 StrGNN [11] AUC-ROC with Varying Anomaly Rate
3 AddGraph [22] AUC-ROC with Varying Epochs

4 TADDY [24] Computational Cost Analysis

5 Node2vec [26] Accuracy with Varying Epochs

6 DeepWalk [25] Precision with Varying Epochs

7 Spectral Clustering [28] Scalability

8 RustGraph [35] Ablation Analysis

VIII. HYPER-PARAMETER TUNING AND SENSITIVITY
ANALYSIS

To investigate the impact of hyper-parameter tuning on
the proposed method, a comprehensive analysis is performed.
The analysis considers a Small Scale Dataset i.e Bitcoin-
Alpha [15] and considers Snapshot Size and Training Ratio,
as the two hyper-parameters. Additionally, a Large Scale
Dataset i.e. Epinions-Trust [18], is considered for validation
on the same hyper-parameters. Experiments are performed
with 10% anomaly rate while the remaining parameters remain
as default.

A. Analysis on Small Scale Dataset

1) Sensitivity Analysis based on Snapshot Size: The snap-
shot sizes impact the model as lower snapshot size leads to
low information retrieval and model underfitting, whereas very
large snapshot sizes often leads to over-fitting. The results on
the identified dataset is presented in Table III for the proposed
and two of the most recent methods. A careful observation
reveals that at smaller screenshot sizes, limited number of
nodes result in limited structural information and thereby
impacting the models performance. Interestingly, with larger
screenshots, the temporal information is significantly improved
resulting in improved models performance. The proposed
method is able to outperform the compared methods with
significant margin where the highest performance is marked
at 0.93 and 0.90 for respective edges of the evaluation sizes.
The results reiterate the importance of cross-coupled temporal,
spatial, and centrality-based information which the proposed
method considers for improved outcome.

TABLE III: Small Scale Dataset Sensitivity Analysis - Snap-
shot Size

Method | Bitcoin-Alpha [15]
Snapshot Sizes — 100 500 1000 2000 5000
TADDY [24] 0.7842 | 0.9240 | 0.9427 | 0.9423 | 0.8994
RustGraph [35] 0.9353 | 0.9412 | 09376 | 0.9207 | 0.8975
Proposed Model 0.9383 | 0.9441 | 09365 | 0.9212 | 0.9017
2) Sensitivity Analysis Based on Training Ratios: With an

anomaly score of 10% and for a set of varying training ratios
(20%, 30%, 40%, 50% or 60%), a thorough comparative
analysis is made between the proposed method, TADDY [24]
and RustGraph [35]. Fig. 4 shows the box-plot analysis of
the results obtained for the identified methods. It is observed
that with the increase in training ratio, a stepp proliferation
is seen in the AUC score, validating the model’s ability to
analyze and find the best fit. The variance in the proposed
model decreases with increase in training ratio, whereas no

such shift is observed in TADDY [24] and RustGraph [35],
proving the dexterity of the proposed method to capture the
maximum information to achieve better results.

B. Analysis on Large Scale Dataset

1) Sensitivity Analysis based on Snapshot Size: The Table
IV presents a comprehensive performance analysis of TADDY,
RustGraph, and the Proposed Model on the Epinions-Trust
dataset. As evident from the results, the proposed method is
able to consistently outperform the other methods, with its
performance peaking at the largest snapshot size of 5000,
demonstrating scalability and robustness. The models high
performance even with large datasets is the outcome of it’s
graph-based diffusion technique, which samples fixed-size,
cross-coupled circumstantial node sets for target edges, and its
centrality-enabled spatial-temporal node encoding. The results
validate the claim that the dynamic graph-based transformer is
able to input a rich representation, capturing extensive spatial-
temporal attributes within a single encoder. It is empirical
to note that hyperparameter tuning plays a pivotal role in
optimizing these encodings, influencing how effectively the
transformer captures and integrates spatial-temporal dependen-
cies.

TABLE IV: Large Scale Dataset Sensitivity Analysis - Snap-
shot Size

Method | Epinions-Trust [18]
Snapshot Sizes — 100 500 1000 2000 5000
TADDY [24] 0.8437 | 0.9387 | 0.9553 | 0.8902 | 0.9184
RustGraph [35] 0.8809 | 0.9399 | 0.8974 | 0.9042 | 0.9201
Proposed Model 0.9147 | 0.9492 | 0.9525 | 0.9591 | 0.9710

2) Sensitivity Analysis Based on Training Ratios: The Fig.
5 shows the models performance with respect to TADDY
[24] and RustGraph [35], on the Epinions-Trust dataset across
varying training ratios. The models encoding strategy allows
a rich input representation making the dynamic graph-based
transformer to simultaneously capture spatial and temporal
dependencies in a single encoder. Furthermore, with hyperpa-
rameter tuning, the models ability is optimized to generalize
across different training ratios, ensuring efficient learning even
with limited training data. Results show that the proposed
model consistently outperforms the other methods, with its
performance improving as the training ratio increases, peaking
at the highest ratio of 90%. The proposed model’s robust
encoding, enhanced by effective tuning, ensures superior
adaptability and scalability, making it particularly well-suited
for datasets with varying training ratios like Epinions-Trust.

IX. PERFORMANCE VALIDATION

The performance analysis of the proposed method against
the identified baseline techniques, is presented on a set of
evaluation metrics. Specifically, AUC-ROC, Accuracy, Average
Precision, Scalability, Computation Cost, Memory Usage and
Ablation Analysis, are used as the metrics for performance
validation. All the methods are implemented and validated on
the identified datasets for the predefined parameters.
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Fig. 4: Small Scale Dataset Sensitivity Analysis - Training Ratio

A. AUC-ROC with Varying Anomaly Rate

The performance comparison of the proposed method in
terms of AUC-ROC value with varying anomaly rates is
presented in Table V and Fig. 6. The values are presented
for all the six identified datasets i.e Digg [16], Bitcoin-Alpha
[15], UCI Messages [14], Enron Email [17], Epinions-Trust
[18] and AS-Topology [19], for all the baseline methods
on three different anomaly rates of 1%, 5% and 10%. As
evident from the AUC measure on the anomaly scores in
the Table V and Fig. 6, the proposed method outperforms
the state-of-the-art techniques with a clear margin. The best
performance margin of the proposed method is reported at
0.9436 (maximum) on the Bitcoin-Alpha [15] dataset (small
scale) with an anomaly score of 10% and for Epinions-Trust
[18] dataset (large scale) where the value peaks at 0.9785 at
10% anomaly rate. The performance validates the claim of the
proposed method of being scale-invariant. Overall, the best
results are observed with Bitcoin-Alpha and Epinions-Trust,
with most stable results for each type of anomaly composition
with AUC-ROC score averaging to be 94.36% and 0.9785%
respectively. The results prove the models performance with
varying anomaly rates on other datasets as well where the
results are marked for UCI Messages [14] dataset at an average
AUC-ROC score of 86.76%. For a smaller anomaly rate,
i.e. 1%, UCI Messages dataset (small scale) gives the best
improvement of 0.5% and Enron Email [17] shows an average
improvement of 8.7%, when compared with the state-of-the-
art methods. For the largest dataset under consideration i.e.
Epinions-Trust [18], the proposed method is able to achieve
an average AUC-ROC score of 95.78% which is significantly
better than most the compared methods.

B. AUC-ROC with Varying Epochs

The Fig. 7 presents the AUC-ROC performance of the
proposed approach with varying epochs. The dataset used for
the validation is UCI Messages [14] and the anomaly rate is
considered to be 1%. The proposed method is able to counter
over-fitting and the results can be verified from the AUC-ROC
and Loss performance with varying epochs. The presented
results are obtained by running the model through various
embedding techniques, such as fime embedding, combining

time embedding with diffusion based spatial embedding, time
with distance based spatial embedding, time embedding with
centrality embedding (referred as T, T + Dif, T + Dif, T +
Dis, T + C, respectively in the graph) and a combination of
all four. The findings are consistent with the claims for the
proposed method having superior AUC-ROC score and also
has minimum loss rate.

C. Accuracy with Varying Epochs

The Fig. 8 presents the accuracy performance of the pro-
posed approach with varying epochs. The dataset used for
the validation is Bitcoin-Alpha [15] and the anomaly rate
is considered to be 1%. The presented results are obtained
by running the model through various embedding techniques,
such as time embedding, combining time embedding with
diffusion based spatial embedding, time with distance based
spatial embedding, time embedding with centrality embedding
(referred as T, T + Dif, T + Dif, T + Dis, T + C, respectively
in the graph) and a combination of all four. The results prove
that the proposed method is able to achieve accuracy of as
high as 96% which is a fairly high value and validates the
performance claims made for the proposed method.

D. Precision with Varying Epochs

The Fig. 9 presents the average precision performance of
the proposed approach with varying epochs. The dataset used
for the validation is Bitcoin-Alpha [15] and the anomaly rate
is considered to be 1%. The presented results are obtained
by running the model through various embedding techniques,
such as time embedding, combining time embedding with
diffusion based spatial embedding, time with distance based
spatial embedding, time embedding with centrality embedding
(referred as T, T + Dif, T + Dif, T + Dis, T + C, respectively
in the graph) and a combination of all four. A careful obser-
vation of the results show a steady increase at start, which
reflects improvement while training and a stable value above
0.5 clearly depicts that the model has converged with high
precision without over-fitting.
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E. Scalability

The performance reprot of all the methods, presented in
Table V, clearly shows that the proposed model is highly
scalable and is able to give steady performance even for large
scale datasets. The impact of subgraph sampling and efficient
node encoding strategy allows each node, within the sampled
subgraph, to compute various embeddings i.e. centrality-based,
temporal, and spatial. This impacts in proliferation in the
models performance even when the anomaly percent is high
and the size of the network grows to more than 130000 nodes.
Another important component is the Dynamic Graph Trans-
former Module, which incorporates a self-attention mechanism
and allows pairwise interactions among the nodes and node
feature transformations, leading to improved performance and
outperforming the state-of-the-art approaches. It is pertinent

to note that while the performance of the proposed method
is very good, at small scale datasets such as UCI Messages
[14] and Bitcoin-Alpha [15], the models performance furhther
improves with large scale datasets such as Enron Email [17]
and Epinions-Trust [18].

F. Computational Cost Analysis

To present a comprehensive analysis of the computational
cost, we analyze the computational complexity of each com-
ponent of the proposed anomaly detection framework. For
Subgraph Sampling, the complexity primarily stems from the
number of edges e and the neighborhood size k, expressed as
O(e - k). In Node Encoding, each node within the sampled
subgraph is processed to compute various embeddings such
as centrality-based, temporal, and spatial, resulting in a com-
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plexity of O(n - ¢) where n is the number of nodes and ¢
is the constant time for encoding each node. The core of the
model, the Dynamic Graph Transformer Module, incorporates
a self-attention mechanism with a complexity of O(n? - d)
due to pairwise interactions among the nodes, where d is
the dimension of embeddings. For Anomaly Detection, the
complexity is O(e - d), mainly involving a sigmoid activation

Fig. 8: Anomaly Detection Performance Comparison with
Varying Epochs: Accuracy.

computed over edge features. Summarizing, the overall com-
putational complexity of the system, which primarily involves
processing the interactions within subgraphs and node feature
transformations, is dominated by the transformer module and
is expressed as O(n? - d + e - d), showcasing a significant
computational demand especially for large-scale graphs.
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TABLE V: Anomaly Detection Performance Comparison: AUC-ROC Measure

Method | UCI Messages [14] Bitcoin-Alpha [15] Digg [16]
Anomaly Percent — 1% 5% 10% 1% 5% 10% 1% 5% 10%
NetWalk [8] 0.7758 | 0.7647 | 0.7226 | 0.8385 | 0.8357 | 0.8350 | 0.7562 | 0.7175 | 0.6836
StrGNN [11] 0.8179 | 0.8252 | 0.7959 | 0.8667 | 0.8627 | 0.8162 | 0.8254 | 0.8271 | 0.8574
AddGraph [22] 0.8083 | 0.8090 | 0.7688 | 0.8665 | 0.8403 | 0.8498 | 0.8341 | 0.8470 | 0.8369
TADDY [24] 0.8912 | 0.8398 | 0.8370 | 0.9451 | 0.9341 | 0.9423 | 0.8614 | 0.8545 | 0.8440
Node2vec [26] 0.7371 | 0.7433 | 0.6960 | 0.6910 | 0.6802 | 0.6785 | 0.7364 | 0.7081 | 0.6508
DeepWalk [25] 0.7512 | 0.7390 | 0.6978 | 0.6985 | 0.6874 | 0.6793 | 0.7080 | 0.6881 | 0.6396
Spectral Clustering [28] | 0.6324 | 0.6103 | 0.5795 | 0.7401 | 0.7275 | 0.7167 | 0.5949 | 0.5823 | 0.5591
RustGraph [35] 0.9128 | 09117 | 0.9124 | 09447 | 0.9348 | 0.9207 | 0.8795 | 0.8577 | 0.8624
Proposed Work 0.9141 | 0.8487 | 0.8402 | 0.9453 | 0.9357 | 0.9436 | 0.8680 | 0.8601 | 0.8695
Method | Enron Email [17] Epinions-Trust [18] AS-Topology [19]

Anomaly Percent — 1% 5% 10% 1% 5% 10% 1% 5% 10%
NetWalk [8] 0.7562 | 0.7175 | 0.6836 | 0.8385 | 0.8357 | 0.8350 | 0.7758 | 0.7647 | 0.7226
StrGNN [11] 0.8162 | 0.8254 | 0.8271 | 0.8574 | 0.8667 | 0.8627 | 0.8179 | 0.8252 | 0.7959
AddGraph [22] 0.8341 | 0.8470 | 0.8369 | 0.8665 | 0.8403 | 0.8498 | 0.8083 | 0.8090 | 0.7688
TADDY [24] 0.8614 | 0.8545 | 0.8440 | 0.9451 | 09341 | 0.9423 | 0.8912 | 0.8398 | 0.8370
Node2vec [26] 0.7364 | 0.7081 | 0.6508 | 0.6910 | 0.6802 | 0.6785 | 0.7371 | 0.7433 | 0.6960
DeepWalk [25] 0.7080 | 0.6881 | 0.6396 | 0.6985 | 0.6874 | 0.6793 | 0.7512 | 0.7390 | 0.6978
Spectral Clustering [28] | 0.5949 | 0.5823 | 0.5591 | 0.7401 | 0.7275 | 0.7167 | 0.6324 | 0.6103 | 0.5795
RustGraph [35] 0.8795 | 0.8577 | 0.8624 | 0.9447 | 09348 | 0.9207 | 09128 | 09117 | 0.9124
Proposed Work 0.8680 | 0.8601 | 0.8695 | 0.9453 | 0.9357 | 0.9436 | 09141 | 0.8487 | 0.8402
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Fig. 9: Anomaly Detection Performance Comparison with
Varying Epochs: Average Precision

G. Ablation Analysis

The ablation investigation of the proposed framework is
presented in order to examine how each element of the
spatial, temporal and centrality node encoding contributes to
it’s overall performance. The dataset used for the validation
are UCI Messages [14], Bitcoin-Alpha [15], Enron Email [17]
and Epinions-Trust [18] and the anomaly rate is considered to
be 1%. Based on the findings, the following observations can
be drawn:

1) The temporal encoding is observed to be the most
important for the node encoding as this alone impacts
about 50% of the AUC-ROC score.

2) In identifying anomalies, all the three; temporal encod-

ing, centrality encoding as well as spatial encoding,
serve a slightly smaller role.

3) Eliminating one of them would, in most situations, result
in a modest decline in performance.

4) Combining all forms of encoding typically yields the
most significant AUC-ROC values.

5) Considering each encoding one by one, is of very less
significance as it contains maximum loss.

6) Considering the loss curve to be diverging and minimiz-
ing the loss, it can be inferred that the model is able to
avoid over-fitting. Over-fitting, in this case, refers to the
phenomenon where the model is extensively capturing
noise or specific patterns from the training data, hinder-
ing its ability to generalize to unseen data or alter the
shift in the graph structure along with time. This leads
to poor model performance after training. The proposed
model deals with over-fitting by implementing effective
regularization steps in the dynamic graph transformer
and early stopping criteria in loss function.

X. CONCLUSION AND FUTURE DIRECTIONS

This work presents an innovative transformer-based frame-
work for dynamic graph anomaly detection. The proposed
work addresses the challenges of capturing spatial, temporal,
and centrality-based cross-coupled information. The designed
end-to-end anomaly detection system consists of four com-
ponents: subgraph sampling based on edges, node encoding
based on multiple embedding strategies, dynamic graph trans-
former and pooling module, and binary cross entropy based
anomaly detector. The proposed methodology leverages a sin-
gle transformer model that captures the cross-coupled spatial,
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centrality and temporal details within dynamic networks. This
allows effective representation of the functions of nodes in
a developing graph space through an informative and detailed
node encoding. The proposed method achieves superior perfor-
mance across six diverse datasets, demonstrating robustness,
scalability and accuracy. By outperforming existing techniques
in key metrics such as AUC-ROC, accuracy, and precision, the
approach highlights its scalability and effectiveness in both
small and large-scale scenarios.

We continue to work towards extending the framework
to address challenges such as handling sparsity in dynamic
graphs and adapting the model to multi-modal graph data
with heterogeneous node and edge types. Working towards
the model’s practicality for real-time and large-scale scenarios,
healthcare systems would be considered. Advanced metrics
such as memory usage, interpretability, robustness to adversar-
ial attacks, and anomaly explainability may be used to provide
deeper insights into the model’s performance. An interesting
approach to enhance the framework would be to capture long-
term temporal dependencies, which could improve its effec-
tiveness in detecting complex patterns in evolving networks.
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