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A B S T R A C T

Autonomous dynamic systems (ADS) have become a key area of research in the field of robotics,
aiming to enable robots to acquire human-like operational skills and perform complex tasks in dynamic
environments without external intervention. Despite significant progress, current technologies have
yet to enable robots to fully achieve autonomous skill transfer in real-world applications. The
prevailing approach to bridge this gap is Learning from Demonstration (LfD), where robots learn by
observing and imitating expert demonstrations. Dynamic systems-based methods, particularly those
utilizing Lyapunov stability theory, have shown great potential in effectively encoding human motor
skills, ensuring the stability, accuracy, and generalization of learned behaviors during the learning
process. This survey provides an overview of the recent advancements in dynamic systems for skill
transfer, focusing on methods that enable robots to replicate human actions, as demonstrated by
experts. We present a classification of existing dynamic systems approaches, highlight landmark
studies, and discuss their key features, advantages, and limitations. This paper also explores the
applications of these methods and identifies major challenges that remain in both theoretical and
practical aspects of robot skill learning.

1. Introduction
In the context of robotics and manufacturing automation,

enabling robots to autonomously execute complex tasks with
human-like precision and adaptability is a central objective.
Recent advancements in robotic technologies have expanded
their application to various dynamic and unstructured en-
vironments, including homes [1], offices [2, 3] and hospi-
tals [4]. As the demand for robots to perform increasingly
sophisticated and human-like tasks rises, Learning from
Demonstration (LfD) has emerged as a key strategy for
achieving this goal. LfD enables robots to acquire new skills
by observing and imitating expert demonstrations [5, 6],
offering significant potential for enhancing operational flex-
ibility, efficiency, and seamless integration of robots into
diverse industrial environments.

Encoding human motion skills through dynamic systems
(DS) learning has been widely demonstrated to be an ef-
fective method for capturing human actions. This approach
not only describes and models complex motion patterns
but also enhances the adaptability and flexibility of robots
in variable environments. These systems mainly leverage
Lyapunov stability theory (or Contraction and Koopman
theory [7, 8]) to ensure the integration of accuracy, stability,
and generalization during the learning process. If it is shown
to be strictly decreasing along the trajectory of the system,
the stability of the system with respect to a fixed point [9] (or
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Figure 1: The intuitive understanding of dynamic systems.
The blue trajectory shows the movement of the robot’s end
effector when starting from its current state. The evolution of
this trajectory is defined by the DS (1), which is illustrated
with a vector field of red arrows in the rest of the space.

differential stability in trajectory tracking [10, 11]) is proven.
An intuitive explanation of the dynamic system is shown in
Fig. 1.

The design of these certificate functions is highly valu-
able for control system designers, as they can prove that
even complex and nonlinear control systems can maintain
safety and stability. Although certificate theories like the
Lyapunov stability theory have existed for over a century,
general numerical methods for constructing certificates have
only emerged in the past decade or so. Even then, many
of the proposed methods are still computationally chal-
lenging(e.g., relying on solving high-dimensional partial
differential equations (PDEs) numerically [9] and solving
high-order dynamic systems [12–14]). Without efficient and
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general methods, learning Lyapunov functions requires con-
siderable effort in manually designing them for specific
dynamic systems. Even in the best case, this manual tuning
requires a great deal of intuition and luck to determine
the appropriate function form (e.g., a polynomial of fixed
degree) and parameters (e.g., polynomial coefficients) for the
Lyapunov function.

Precisely, the key to learning dynamic systems for en-
coding human motion skills lies in finding a Lyapunov func-
tion that is both safe and stable to guide the learning process.
In recent years, various new techniques for automatically
learning Lyapunov functions have emerged. For some simple
linear systems, Lyapunov functions can be constructed using
Sums of Squares (SOS) methods [12]. For slightly more
complex nonlinear systems, approaches such as weighted
sum of asymmetric quadratic functions (WSAQF) [15] or
simple feedforward networks (Extreme Learning Machines
[16]) can approximate Lyapunov functions. However, these
methods often have limitations and are challenging to ex-
tend to more complex or higher-dimensional systems. To
address these challenges, research in control theory, machine
learning, and robotics has increasingly turned to neural net-
works for learning and approximating Lyapunov functions in
recent years [17–19]. However, the challenge of designing
Lyapunov functions is not the only obstacle in complex
robotic dynamic systems. As the field progresses, research
is increasingly focusing on demonstration-based learning
methods, seeking to generate verifiable control strategies
alongside the learned Lyapunov stability certificates. These
methods not only aim to capture expert demonstration be-
haviors but also ensure that the learned dynamic systems
possess stability and adaptability.

In recent years, research on ADS has gained widespre-
ad attention and made significant progress, but no com-
prehensive survey has yet covered the latest developments
in learning ADS from demonstrations. Ravichandar (2020)
[20] provides an overview in his review of machine learn-
ing methods that enable robots to learn from and imitate
experts, with a primary focus on behavior cloning (BC)
and reinforcement learning (RL) [21]. The review (2023)
[22] discusses control Lyapunov functions. Another review
(2023) [23] provides an overview of movement primitives
(MP) and Experience Abstraction (EA) but does not cover
methods related to ADS. Our goal is to provide a compre-
hensive review of the latest developments in learning stable
dynamic systems from demonstrations, offering a concise in-
troduction for both practitioners seeking to apply these tools
to real-world robotic problems and scholars. We primarily
focus on two types of methods for learning dynamic systems
from demonstrations: those based on Lyapunov functions
and those based on diffeomorphisms, while also discussing
research on second-order dynamic systems. To provide a
clearer overview, this review is organized as follows:

1) Section II provides the relevant background of the
dynamic system, including the definition and stability.

2) Section III categorizes ADS methods according to
their implementation, reviews the representative methods,

Figure 2: The original DS learned from 2-dimensional LASA
dataset [24] using regression such as Gaussian processes
regression (GPR) [25], and so on [26–28]. However, directly
constructing the DS through regression techniques often leads
to the emergence of spurious attractors and system divergence.

and concludes the latest research progress in higher-order
ADS. Furthermore, it analyzes the relationship between the
quality of DS generation and the learned Lyapunov function.

3) Section IV explores various robot application areas
as well as methodological tradeoffs. Section V concludes by
discussing some open challenges and future directions in this
area.

4) Finally, for ease of reproduction and further research,
we have compiled the relevant implementation code avail-
able on GitHub2.

2. System Models and Problem Description
This section will first introduce the concepts of dynamic

systems, system stability definition, second-order dynamic
systems, and evaluation metrics.

2.1. Dynamic system
Consider a system with the following dynamics:

�̇� = 𝑓 (𝑥) (1)

where 𝑥 ∈ 𝑋 ⊂ ℝ𝑛 is the state vector (𝑋 is the set of
all allowable 𝑥), and 𝑓 (⋅) ∶ ℝ𝑛 ↦ ℝ𝑛 is a continuous
function. Here, 𝑥(𝑡) is for short as 𝑥 in convenience. It
is an autonomous system since 𝑓 (𝑥) is only related to 𝑥,
rather than time. The stability of system (1) indicates that
𝑥 asymptotically approaches a fixed point, which is also
referred to as an equilibrium point 𝑥∗.

It is worth noting that not all dynamic systems are
stable. The most common scenario is that a system may
be inherently unstable, as illustrated in Fig. 2, but it can
be controlled to achieve stability. This situation is typically
modeled as:

�̇� = 𝑔(𝑥) = 𝑓 (𝑥) + 𝑢(𝑥) (2)

where 𝑓 (⋅) ∶ ℝ𝑛 ↦ ℝ𝑛 and 𝑢(⋅) ∶ ℝ𝑛 ↦ ℝ𝑛 is relate to 𝑥.
2Most of the code for the state-of-art approach has been made publicly

available to us at https://github.com/fjyggg/review/tree/master/.
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In the context of these dynamics, the task of control
system designers is to find a control law 𝑢(𝑥), or directly
learn a stable dynamic system 𝑔(𝑥), so that the learned
dynamic system �̇� = 𝑓𝑐(𝑥) exhibits the desired properties
(e.g., stability). In this paper, both 𝑢(𝑥) or 𝑔(𝑥) rely on the
learned Lyapunov function 𝑉 (𝑥), and 𝑉 (𝑥) will guide the
behavior of the system to achieve goals such as stability,
safety, or generalization. Next, we will define these goals
in turn and illustrate how they can be achieved through
Lyapunov functions.

2.2. Stability of dynamic systems
In this paper, we consider global asymptotic stability

(GAS) because, in real-world robotics end-to-end applica-
tions, it is often expected that the system has a unique goal
direction, which implies that an equilibrium point exists and
that the system can be ensured to evolve towards that goal
by imposing stability constraints.

Compared to Eq. (2), GAS provides a more intuitive defi-
nition. According to Lyapunov stability theory and LaSalle’s
invariance principle [29], GAS [30] is defined as follows:

Theorem 1: Consider the dynamic system �̇� = 𝑓 (𝑥) with
equilibrium point 𝑥∗. Suppose there exists a positive-definite,
radially unbounded, and continuously differentiable Lya-
punov function 𝑉 (𝑥) defined on ℝ𝑛 that satisfies:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑉 (𝑥) = 0 ⇔ 𝑥 = 𝑥∗,

𝑉 (𝑥) > 0 ⇔ ∀𝑥 ∈ 𝑋 ⧵ {𝑥∗},
𝑑𝑉 (𝑥)
𝑑𝑡

⩽ 0 ⇔ ∀𝑥 ∈ 𝑋.

(3)

Let 𝑆 = {𝑥 ∈ ℝ𝑛
|�̇� (𝑥) = 0}. If the only solution that re-

mains identically in 𝑆 is 𝑥(𝑡) ≡ 𝑥∗ (i.e., only the equilibrium
point x * is an invariant set), then the equilibrium 𝑥∗ is GAS.

The proofs can be found in most control textbooks and
are omitted here, but the primary insights are: 1) if 𝑉 is
monotonically decreasing and bounded below, then it must
eventually approach its minimum value at 0; 2) the goal
of 𝑑𝑉 (𝑥)

𝑑𝑡 ⩽ 0 is to make the learned Lyapunov function
𝑉 (𝑥) consistent with the demonstrated preference that the
demonstrated trajectory evolves from the region of high-
value of 𝑉 (𝑥) to its low-value region.

In dynamic system approaches, the focus is generally
on teaching robots goal-directed motion skills. Most robotic
tasks can be formulated as goal-directed motions or combi-
nations of different goal-directed motions. To ensure con-
sistency with goal-directed movements, it is necessary to
guarantee that ADS �̇� = 𝑓 (𝑥) must be GAS.

Recalling from Eq. (3), any Lipschitz strategy that se-
lects or learns control inputs from these sets will necessarily
stabilize the system. Since these conditions are affine in 𝑢,
a common approach is to choose quadratic programming
(QP), which searches for the minimum corrective control

such that 𝑢 satisfy 𝑑𝑉 (𝑥)
𝑑𝑡 ⩽ 0, for example

min
𝑢

𝑢𝑇 𝑢

𝑠.𝑡.
(

𝜕𝑉 (𝑥)
𝜕𝑥

)𝑇
(𝑓 (𝑥) + 𝑢) ⩽ −𝜌(𝑥)

(4)

where 𝑉 (𝑥) is the Lyapunov functions, 𝜌(𝑥) is any positive-
definite functions. Some common choices for 𝜌(𝑥) can be
found in [15, 31].

Another common approach is to directly estimate the
stable ADS �̇� = 𝑔(𝑥), which can be formulated as the
following optimization problem:

min
𝜃

𝐽 (𝜃) =
𝑁
∑

𝑛=1

𝑇𝑛
∑

𝑡=1

‖

‖

𝑔(𝑥𝑡,𝑛, 𝜃) − �̇�𝑡,𝑛‖‖
2
2

𝑠.𝑡.
(

𝜕𝑉 (𝑥)
𝜕𝑥

)𝑇
𝑔(𝑥, 𝜃) ⩽ −𝜌(𝑥)

(5)

where 𝜃 is the learnable parameter of the ADS �̇� = 𝑔(𝑥).
Both methods (4) or (5) introduce constraints related to

the Lyapunov function to ensure convergence. Specifically,
these constraints dictate that the trajectory of the learned
ADS 𝑔(𝑥) must transition from a high-energy region to a
low-energy region. Therefore, the choice of the Lyapunov
function 𝑉 (𝑥) can greatly affect the quality of the learned
ADS. This leads to the crucial question of how to construct
suitable Lyapunov functions. In Section 3, we will catego-
rize the ADS methods according to the different ways of
constructing Lyapunov functions.

2.3. Second-order dynamic system
In our previous discussion of dynamic system and sta-

bility, we assumed that dynamic system is first-order. How-
ever, in many applications, most motion systems are of the
second order, such as closed-loop robotic position tracking
systems and even the more complex human motion systems.
This often necessitates modeling the second-order dynamic
systems as follows:

[

�̇�
�̈�

]

= 𝑓1

([

𝑥
�̇�

])

𝑜𝑟 �̈� = 𝑓2

([

𝑥
�̇�

])

(6)

The left-hand side of Eq. (7) resembles the brute-force
modeling method described in [12–14], and attempts to
apply a first-order dynamic system approach for learning.
This approach is fundamentally inadequate as it neglects
the crucial interplay between the state variables and their
higher derivatives. It is important to note that this model-
ing approach may encounter limitations in task execution,
particularly in its implementation of trajectory intersection
tasks, potentially leading to incomplete task fulfillment [14].
Another modeling approach has not yet been fully explored,
although there is a proposal for feedback linearization [32]
to implement it. We will introduce some existing work on
second-order dynamic systems in Section 3.4.
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Figure 3: Historical timeline of ADS research in LfD and ADS methodology classification. The contraction metric is regarded as a
special type of Lyapunov function, so methods (CDSP [8], NCDS [36]) related to contraction are classified into the first category.
Method supplement not abbreviated in the paper, ESDS [37], I-SEDS [38, 39], NN-DS [40], PUMA [41].

2.4. Evaluation metrics
In practice, demonstration data are often obtained through

expert demonstrations and consist of sampled trajectories.
For dynamic systems requiring velocity or acceleration
information, these quantities can typically be inferred or
estimated from the trajectory data. One source of benchmark
data is the LASA dataset [24] from Khansari-Zadeh, which
includes two-dimensional trajectories describing handwrit-
ing patterns, as well as Sayantan Auddy’s HELLO WORLD
dataset [33] and second-order LAIR handwritten dataset
[14]. These benchmark data are often used to evaluate the
accuracy and effectiveness of the algorithms.

Several common metrics are used to evaluate the sim-
ilarity between dynamic system trajectories. Root Mean
Square Error (RMSE) is a widely employed measure of
accuracy, providing a simple quantitative assessment of the
difference between predicted and actual values. In certain
contexts, such as two-dimensional curve comparisons, the
Swept Error Area (SEA) [15] is often used. A more versatile
approach is Dynamic Time Warping Distance (DTWD) [34],
which is particularly useful for handling nonlinear temporal
distortions. Another, less commonly applied, method for
evaluating dynamic systems is the Fréchet Distance (FD)
[35], which measures the similarity between two trajectories
by considering the continuous matching of points along their
paths.

3. Classification and Introduction of ADS
In this section, we discuss the two main classes of

methods for learning ADS from demonstrations, catego-
rized by the construction of Lyapunov functions: the direct
method (learning Lyapunov functions) (Section 3.1) and the
indirect method (learning diffeomorphisms) (Section 3.2),
and present their previous work and recent progress. A
focus is made on the landmark methods (Section 3.1.1 and

3.2.1), and some simulation examples and comparisons are
given (Section 3.1.2 and 3.2.2). Additionally, we analyze
the relationship between Lyapunov generation efficiency and
DS quality (Section 3.3). Finally, we discuss advances in
more complex scenarios, including dynamic systems with
intersections and second-order dynamic systems (Section
3.4). The aim is to emphasize the development of the latest
techniques in ADS. The timeline and classification of ADS
development are shown in Fig. 3.

3.1. Learning Lyapunov functions methods
As previously mentioned, the first category of DS meth-

ods optimizes the original DS by introducing Lyapunov
functions to achieve the desired optimization goal. The core
of this approach lies in learning Lyapunov functions that are
consistent with expert demonstrations and guide the learning
process of the ADS.

An early method is the Stable Estimator of Dynamic
Systems (SEDS) [12], which assumes that the demonstra-
tions conform to a Lyapunov (or energy) function defined
by the squared distance to the target, thus being restricted to
motions that monotonically converge to the target over time.
Under strict stability constraints, the precision of learning
motion modeling from demonstrations is low, leading to a
dilemma between precision and stability, known as a trade-
off between precision and stability. The Control Lyapunov
Function-based Dynamic Movements (CLF-DM) proposed
by Khansari-Zadeh et al. [15] relaxes the requirement of a
stability criterion by assuming the Lyapunov function in the
form of WSAQF. The parameters of the Lyapunov function
are learned independently of the (unstable) dynamics and
subsequently used online to generate stability controls [42].
Matteo et al. introduced Reshaping Dynamic Systems (RDS)
[37, 43], which can alter the trajectory of a dynamic system
to follow the demonstrated trajectory while retaining its final
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stability properties. However, since this process is incre-
mental, it implies a higher computational burden with each
retrieval training iteration. Figueroa et al. proposed the lin-
ear variable parameter dynamic system (LPV-DS) type and
its learning framework based on Gaussian mixture models
(GMM) with good convergence to complex nonlinearities,
but with low model accuracy and low online computational
efficiency [44, 45]. To address the above challenges, sun
et al. introduced the Directionality-Aware Mixture Model
(DAMM) and demonstrated that LPV-DS integrated with
DAMM can achieve higher reproduction accuracy, better
computational efficiency, and near real-time/online learning
[46]. Harish et al. proposed Contracting Dynamic System
Primitives (CDSP) to ensure incremental stability through
an updated approach [8]. CDSP introduces positive definite
contraction metrics as a special Lyapunov function instead
of directly learning Lyapunov functions. However, CDSP
limits the category of contraction measures to a polynomial
sum of squares [36]. Jonas et al. proposed a Gaussian Process
State Space Model (GPSSM) that learns under stability
constraints, enforcing convergence through a data-driven
Lyapunov function [47, 48]. Despite the advances in the
traditional methods described above, their limitations in
global stability and expressive power remain significant.

With the rapid development of neural network technol-
ogy, researchers have begun to explore new methods of
learning Lyapunov functions using neural networks, aiming
to address the limitations of traditional approaches in terms
of global stability and expressive power. Among these ef-
forts, Andre et al. proposed learning Lyapunov functions
using Extreme Learning Machines (ELM) [16, 49, 50].
However, their use of sampling-based methods only provides
approximate solutions to the problem of global asymptotic
stability, with no theoretical guarantees. To overcome this
limitation, in [18], an input convex neural network (ICNN)
[51, 52] is utilized to parameterize data-driven Lyapunov
functions for eliminating local minima. However, the draw-
back is that the strong convexity guarantee weakens the
expressive power of the neural network model. In [31],
Jin et al. proposed learning Lyapunov functions through
radial basis function neural networks (NS-QLF), theoreti-
cally ensuring the stability of the learned dynamic system.
However, the uniqueness of its extremal points is obtained
through weak conditions. Subsequently, Jin et al. [19] pro-
posed a neural energy function with a unique minimum
(NEUM) proof of global asymptotic stability, solving the
challenge of constructing a Lyapunov function consistent
with non-self-intersecting demonstrations. The introduction
of NEUM marked a milestone contribution to the field.
Dionis Beyond these approaches, Totsila et al. [53] proposed
an Autonomous Neural Dynamic Policy (ANDP), which
integrates general neural network strategies into dynamic
system-based policies, bridging the gap between the two.
This method combines differentiability and flexible gener-
ality, enabling it to accept any observational input while
ensuring asymptotic stability. In addition, some other au-
thors have proposed to learn complex, possibly periodic,

and perturbation-resistant motions by replacing regression
models with Neural ordinary differential equations (ODEs)
[54, 55]. At the same time, an anticipatory strategy is incor-
porated, enabling the robot to precisely track time-varying
target trajectories. However, these methods have limited
generalization capability.

This first class of ADS methods consists of three main
steps: the first step is to learn the Lyapunov function 𝑉 (𝑥)
consistent with the provided demonstration motion; the sec-
ond step is to construct the ODS. Finally, the original dy-
namic system is corrected using the learned Lyapunov func-
tion consistent with the demonstration, applying additional
correction speeds to ensure stability and convergence of the
system.

NEUM [19] is a landmark method in this class of ap-
proaches and has laid the foundation for subsequent meth-
ods. The following discussion will focus on this method,
while a comparison of other ADS methods can be found in
the figure at the end of this section.

3.1.1. Neural energy function with a unique minimum
Although the WSAQF method provides a way to con-

struct a Lyapunov that is consistent with the demonstration,
its Lyapunov function tends to appear rigid under com-
plex demonstrations and requires an excessively large L to
support it, which is clearly not the best approach. With
the development of neural networks, the proposal of ICNN
seems to have found a general expression for the Lyapunov
function. However, its disadvantage is that it needs to guar-
antee strong convexity, which weakens the expressiveness of
neural network models. Based on ICNN, the NEUM method
proposed by Jin et al. perfectly overcomes this issue, and
this framework basically lays down a data-driven universal
expression for the Lyapunov function.

The NEUM method model the Lyapunov function as
follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑉 (𝑥) = 𝑉1(𝑥) − 𝑉1(0) + 𝑉2(𝑥)
𝑉2(𝑥) = 𝛼𝑥𝑇 𝑥
𝑉1(𝑥) = 𝜔𝑇 𝑓 (𝑥)

𝑓 (𝑥) =
[

𝑓1(𝑥),⋯ , 𝑓𝑘(𝑥),⋯ , 𝑓𝑑𝐻 (𝑥)
]𝑇

𝑓𝑘(𝑥) = 𝜎(𝑎𝑇𝑘 𝑧(𝑥) + 𝑏𝑘)
𝑧(𝑥) =

[

||𝑥||1+𝜀2 ||𝑥||𝜀2𝑥
𝑇 ]𝑇

(7)

where 𝛼 ∈ ℝ++ is a positive scalar, 𝑉1(𝑥) is represented by
a neural network with the weight parameter 𝜔 ∈ ℝ𝑑𝐻 and
the feature 𝑓 (𝑥) ∶ ℝ𝑑𝑥 → ℝ𝑑𝐻 . The activation function 𝜎(𝑠)
is chosen to be the well-known “tanh” function. Function
𝑧(𝑥) ∶ ℝ𝑑𝑥 → ℝ𝑑𝑥+1 is a manually designed encoder,
𝜀 ∈ ℝ++ is a positive scalar, 𝑎𝑘 ∈ ℝ𝑑𝑥+1 and 𝑏𝑘 ∈ ℝ are
feature parameters. Function 𝑉1(𝑥) is the learnable part of
𝑉 (𝑥), and 𝑉2(𝑥) is used to ensure the radially unbounded
property of the 𝑉 (𝑥).
Lemma 1: 𝑉 (𝑥) denoted by (14) is positive definite, radially
unbounded, continuously differentiable, and has a unique
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minimum at the origin if the following parameters are sat-
isfied:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎𝑘,1 > 0

𝑎2𝑘,1 −
𝑑𝑥+1
∑

𝑖=2
𝑎2𝑘,𝑖 > 0,∀𝑘 ∈

[

1,… , 𝑑𝐻
]

𝜔𝑘 ≻ 0

(8)

For a detailed proof of the derivation, please refer to [19].
The NEUM purpose is to make the learned 𝑉 (𝑥) consistent
with the demonstration preferences. That is, the demon-
stration trajectories evolve from high-energy-value areas to
low-energy-value areas. Mathematically, this purpose can be

described as
( 𝜕𝑉 (𝑥𝑡,𝑛,𝜃)

𝜕𝑥𝑡,𝑛

)𝑇
�̇�𝑡,𝑛 < 0,∀

(

𝑥𝑡,𝑛, 𝑥𝑡,𝑛
)

∈ 𝐷, where
𝜃 is the learnable parameter of NEUM containing the feature
parameters

{

𝑎𝑘, 𝑏𝑘
}

and weight parameter 𝜔.
Two approaches for learning the Lyapunov function are

proposed by NEUM. In the first approach, the features 𝑓 (𝑥)
are manually designed to satisfy the constraints in Lemma 1.
In this case, the learning problem is convex by designing an
appropriate objective function. In the second approach, the
feature parameters

{

𝑎𝑘, 𝑏𝑘
}

and the weight parameter 𝜔 are
learned by a constrained learning algorithm. In this case, the
learning problem is not convex, and the features 𝑓 (𝑥) can be
automatically fitted to the demonstration set.

1)The first learning approach: In this learning approach,
the feature parameters

{

𝑎𝑘, 𝑏𝑘
}

are fixed and only the weight
parameter 𝜔 is learnt, i.e., 𝜃 = {𝜔}, which can be obtained
by solving an optimisation problem:

min
𝜔

𝐽 (𝜔) =
∑

𝑡,𝑛
log

⎛

⎜

⎜

⎝

𝑒
𝛽
(

𝜕𝑉 (𝑥𝑡,𝑛,𝜃)
𝜕𝑥𝑡,𝑛

)𝑇
�̇�𝑡,𝑛

+ 1
⎞

⎟

⎟

⎠

𝑠.𝑡. 𝜛1 ⩽ 𝜔 ⩽ 𝜛2

(9)

where 𝜛1 and 𝜛2 are any positive scalars. According to the
rules of composition of convex functions [56], 𝐽 (𝜔) is easily
proved to be convex.

2)The second learning approach: In this learning ap-
proach, both feature parameters

{

𝑎𝑘, 𝑏𝑘
}

and weight param-
eter 𝜔 will be learned, which can be obtained by solving an
optimization problem:

min
𝜃

𝐽 (𝜃)=
∑

𝑡,𝑛
tanh

⎛

⎜

⎜

⎜

⎝

( 𝜕𝑉 (𝑥𝑡,𝑛,𝜃)
𝜕𝑥𝑡,𝑛

)𝑇
�̇�𝑡,𝑛

‖�̇�‖2
‖

‖

‖

‖

𝜕𝑉 (𝑥𝑡,𝑛,𝜃)
𝜕𝑥𝑡,𝑛

‖

‖

‖

‖2

⎞

⎟

⎟

⎟

⎠

+𝐿2 ‖𝜃‖
2
2

𝑠.𝑡.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎𝑘,1 > 0

𝑎2𝑘,1 −
𝑑𝑥+1
∑

𝑖=2
𝑎2𝑘,𝑖 > 0,∀𝑘 ∈

[

1,… , 𝑑𝐻
]

𝜔𝑘 ≻ 0

(10)

where 𝐿2 ‖𝜃‖
2
2 is the 𝐿2 regularization term.

Note that the objective functions 𝐽 (⋅) of both methods
have nested activation functions on top of (16), which has

two advantages: firstly, it avoids the misinterpretation of
the learning algorithm caused by using (16) directly as the
evaluation function. Second, it is more helpful to weigh the
accuracy and generalization of the learned 𝑉 (𝑥).

After learning 𝑉 (𝑥), GAS ADS �̇� = 𝑔(𝑥) can be ob-
tained by introducing an additional input 𝑢 into the original
ADS, where the input 𝑢 can be obtained by online solving
the convex optimization problem with equation (4):

min
𝑢

𝑢𝑇 𝑢

𝑠.𝑡 (𝑓 (𝑥) + 𝑢)𝑇
𝜕𝑉 (𝑥)
𝜕𝑥

⩽ −𝜌(𝑥)
(11)

It is important to note that the constraint in (11) only
ensures the stability requirements of the dynamic system.
However, should other constraints be considered, such as the
existence of certain position/velocity constraints for robot
operation in the real world ([19]-Eq. (47)) or the need to
avoid obstacles in the environment, etc., these constraints are
necessary and can be included in the constraint framework.
This setup is applicable to all ADS methods, including the
second category. Some constraints are defined as follows:

{

(𝑎) (𝑜 (𝑥) + 𝑢)𝑇 𝑥 ⩽ 0, ‖𝑥‖2 = 𝑟𝑡ℎ𝑟𝑒𝑠
(𝑏) 𝑣−

2(𝑥) ⩽ (𝑜 (𝑥) + 𝑢)𝑇 (𝑜 (𝑥) + 𝑢) ⩽ �̄�2(𝑥) (12)

The constraint (11) is used to ensure globally asymptot-
ically stable. The left part of constraint (12.a) is the time
derivative of the ||𝑥||22, and thus it is a position constraint for
the ADS. Specifically, when the condition ||𝑥||22 = 𝑟𝑡ℎ𝑟𝑒𝑠 is
activated, constraint (12.a) will force a contraction velocity
to ensure the constraint ||𝑥||2 ⩽ 𝑟𝑡ℎ𝑟𝑒𝑠. As a result, when 𝑥
falls into the region 𝑅 = ||𝑥||2 ⩽ 𝑟𝑡ℎ𝑟𝑒𝑠, it will never leave
from 𝑅. The constraint (12.b) is a velocity constraint for
the ADS, and 𝑣−(𝑥), �̄�(𝑥) is the lower and upper bound of
the velocity. Just some examples are given here. In the real
world with actual physical constraints, the actual constraints
need to be designed according to the corresponding physical
constraints.

3.1.2. Simulation and summary
Based on the analysis above, it can be concluded that the

key aspect of the first class of methods is to go about learn-
ing a Lyapunov function that is highly consistent with the
demonstration and possesses the global minimum property.
The quality of the learned Lyapunov function will directly
influence the accuracy of the learned control input 𝑢(𝑥)
during the correction process.

Fig. 4 illustrates the Lyapunov function and dynamic
system learning results for various ADS methods applied
to the LASA handwriting dataset. These methods include
QLF, WSAQF [15], NILC [16], ICNN [18], GPSSM [47],
NSQLF [31], and NEUM [19]. In Tab 1, we also performed
a quantitative analysis of these methods, specifically using
the “S” trajectories in the LASA dataset as an example.
These trajectories were sampled at 20-point intervals and
contained 6 trajectories totaling 300 data points. As shown
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Figure 4: The Lyapunov function and dynamic system learning results for various ADS methods in the first class, including QLF,
WSAQF [15], NILC [16], ICNN [18], GPSSM [47], NSQLF [31], NEUM [19] in LASA dataset, where QLF denotes the quadratic
Lyapunov function of the form 𝑥𝑇𝑃𝑥.

Table 1
Lyapunov function for the ADS method in the first category
generates speed and DS quality results(Taking the “S”-shaped
trajectory in the LASA dataset as an example)

.
Methods Convergence Iterations LF learning Violation Local DS generation

accuracy time/s points minima quality

QLF 1e-9 200 4.73 138 % low
WASQF 1e-9 200 27.15 33 % middle
NILC 1e-9 27 136.28 23 % middle
ICNN 1e-9 100 470.18 61 % middle

GPSSM 1e-9 230 11.14 1 ✓ high
NSQLF 1e-9 29 38.9 11 ✓ high
NEUM 1e-9 1000 59.27 11 % high

in Fig. 4(a), blue points highlight violations of the properties
defined in Theorem 1, with a higher density of blue points
indicating suboptimal Lyapunov function learning. Notably,
some methods, such as NSQLF and GPSSM, exhibit local
optima, underscoring their limitations in ensuring a globally
unique minimum and highlighting their deficiencies as ADS
solutions. Fig. 4(b) further confirms these observations, re-
vealing that simpler methods, such as QLF, are effective for
learning straightforward demonstration trajectories. How-
ever, for more complex trajectories, advanced approaches
like NEUM demonstrate superior performance. This com-
parison underscores the necessity of selecting appropriately
complex methods based on the trajectory complexity to
achieve reliable and accurate ADS learning.

Although we believe that the NEUM provides the pos-
sibility for broad, stable dynamic system identifications,
the gap between the Lyapunov function learning and dy-
namic system identification still exists. The above methods

have learned stable estimators by controlling the Lyapunov
method, i.e., introducing the correct term into the original es-
timator when the energy along the system is not decreasing,
which, in fact, leads to the switching of the dynamic system.
We propose an innovative idea to address this issue: whether
it is possible to discard the hierarchical learning architecture
of the original ADS method and instead use the gradient of
the learned Lyapunov function to directly design a suitable
ADS, which seemed to be impossible before the NEUM
method was proposed because of the lack of a method to
learn a Lyapunov function that is highly consistent with
the demonstration. By using this strategy, the learned ADS
architecture can be formulated as:

�̇� = 𝑓 (𝑥) = 𝐺(𝑥)�̇� (𝑥) (13)

where 𝐺(𝑥) can be a machine learning or neural network
approach whose main goal is to learn ADS that are consistent
with real dynamic systems. Furthermore, this framework
can effectively eliminate issues such as local attractors and
divergence.

3.2. Learning diffeomorphism methods
As highlighted in the first category of methods, directly

learning Lyapunov functions from demonstrations presents
significant challenges. This has motivated researchers to
investigate alternative approaches, such as learning complex
Lyapunov functions indirectly by learning diffeomorphisms.
This approach has received increasing attention in recent
years.
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However, diffeomorphisms, by their definition, must
satisfy the conditions of bijectivity, smoothness and invert-
ibility. One of the early approaches in this direction was
proposed by Nicolas et al., who combined locally weighted
translations to implement diffeomorphic transformations
[34]. However, this method is limited to learning from a sin-
gle (or average) demonstration. Neumann et al. proposed the
𝜏-SEDS method [57], which learns diffeomorphic transfor-
mations from multiple demonstrations, mapping the proofs
into a space with negligible deformations by introducing
quadratic stability constraints. However, 𝜏-SEDS relies on
WSAQF to define diffeomorphic transformations, thereby
imposing constraints on the hypothesis class. Urain J. et
al. proposed using invertible neural networks [58, 59] to
fit a diffeomorphism, mapping linear motions into complex
motions [60, 61]. Conversely, the opposite approach is to
map complex motions into linear motions. Euclideanizing
Flows (E-FLOW) [62, 63] linearizes demonstrations using
flexible function approximators such as kernel methods [64]
and neural networks [65], making them behave like diffeo-
morphisms generated by linear DS. However, methods based
on deep networks require longer training times and intensive
hyperparameter search. Saveriano et al. proposed a method
called Riemannian manifold into a stable dynamic system
(SDS-RM) [66]. Through GMM [67–69], the differential
diffeomorphism transformation of stable dynamic systems
evolving on the Riemannian manifold [70] was achieved.
Rodrigo et al. introduced the use of contrastive learning loss
[14] in deep neural networks to train models that resemble
diffeomorphism, a method they coined Convergent Dynam-
ics from Demonstration (CONDOR). This approach enables
the network to effectively learn complex motions while
improving its accuracy. However, while CONDOR demon-
strates the ability to handle complex trajectories, it does
not provide a rigorous proof of the stability of the learned
dynamic systems. Instead, it relies on soft constraints during
optimization to approximate stability [41]. Furthermore,
Rodrigo et al. proposed a more flexible learning framework
by reformulating stability conditions and introducing triplet
loss [41], which effectively addresses problems in non-
Euclidean state spaces. Based on E-FLOW, by introducing
residual structures into the neural network architecture [71],
zhang et al. effectively solved the invertibility of diffraction
and ensured the superiority of both the accuracy and stability
of DS. Recent work by Zhi et al. [72] has introduced the
Stable Periodic Diagrammatic Teaching (SPDT) framework,
which models robotic motion using orbitally asymptotically
stable (O.A.S.) dynamical systems. The framework’s core
innovation lies in employing diffeomorphisms - differen-
tiable and invertible transformations such as invertible neu-
ral networks - to deform existing O.A.S. systems, thereby
stabilizing motion trajectories. This approach effectively
overcomes the well-documented limitation in prior literature
[73] where only simple periodic skills could be learned.

The first class of methods corrects the system by directly
learning a Lyapunov function that is consistent with the
demonstrated preferences. In contrast, the second class of

Figure 5: The based-diffeomorphism ADS methods subdivi-
sion. (a) Mapping between simple and complex trajectories,
(b) Mapping between simple and complex DSs. The classic
methods on the left include FDM [34], while on the right,
there are E-Flow [62], I-Flow [60], and so on.

methods focuses more on going through the learning of
a mapping that ensures the GAS of the dynamic system
by transforming the complex problem into a simple linear
problem, and then utilizing a simple quadratic Lyapunov
function (which does not need to be learned). Since the
learning process of the mappings has implicitly encoded sta-
bility constraints in the optimization objective, the method
requires only a single-step optimization training to achieve
both motion mimicry and stability guarantees. According to
the different mapping objects, there are two sub-methods:
one explores the mapping between simple and complex
trajectories, while the other establishes the mapping between
complex and simple DS. An intuitive description is provided
in Fig. 5.

E-FLOW [62] is a representative method in this class of
approaches and has laid the foundation for such methods to
some extent, while a comparison of other diffeomorphism-
based ADS approaches is provided in the figure at the end of
this section.

3.2.1. Euclideanizing Flows
Inspired by work on density estimation [74], E-FLOW

utilizes a class of parametric differential homography meth-
ods for learning a variety of actions that can be adapted to
different tasks with minimal parameter tuning. By encoding
a complex human action as a dynamic system, it is connected
to a simple gradient descent dynamic system in potential
space using a learnable differential homography method.
This connection allows the stability performance of the
manually specified dynamic system to be directly carried
over to the learned dynamic system.

Before introducing the algorithm, it is first necessary
to understand a concept: the flow-based diffeomorphisms
method. By definition, a differential pass must be both
bijective and continuously differentiable. To achieve this, E-
FLOW adds structure to the learning problem, i.e., diffeo-
morphism by a combination of 𝐾 differential deformations
𝜑 = 𝜑1◦𝜑2◦⋯◦𝜑𝐾 , each of which is given by coupling
layer 𝜑𝑘 ∶ ℝ𝑛 → ℝ𝑛 [74]. Fig. 6 illustrates the architecture
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of the coupling layers. Each coupling layer 𝜑𝑘 splits the
input 𝑧𝑘−1 into two parts and applies a scaling function 𝑠𝑘
and a translation function 𝑡𝑘 to one of them to obtain the
output 𝑧𝑘. This approach ensures that the inverse operation
of the transformation is easy to compute, thus guaranteeing
the reversibility and stability of the model. It is specified as
follows:

𝑧𝑘=
[

𝑧𝑎𝑘
𝑧𝑏𝑘

]

=
[

𝑧𝑎𝑘−1
𝑧𝑏𝑘−1⊙exp

(

𝑠𝑘(𝑧𝑎𝑘−1)
)

+𝑡𝑘(𝑧𝑎𝑘−1)

]

=𝜑(𝑧𝑘−1) (14)

where the scaling and translation functions are given by
a single-layer neural network whose layers resemble an
approximate kernel machine [75]. There are many similar
coupling layer architectures [76–78] and modifications, such
as adding attention mechanisms [13], etc.

After understanding the concept of the flow-based dif-
feomorphisms, consider a simple gradient descent dynamic
system �̇� = 𝑓 (𝑦) = −∇𝑦Φ(𝑦) with a potential function
Φ ∶ ℝ𝑛 → ℝ. The choice of the potential function can
be some potential function, such as a quadratic potential
function 𝑥𝑇 𝑥 that provides a guarantee of ideal stability.
This potential function generates unit-velocity straightline
motions to the globally asymptotically stable equilibrium
point 𝑦∗. The diffeomorphism acts to deform these straight
lines to arbitrarily curved motions converging to 𝑥∗, where
the demonstrations converge. The change of coordinates
defined by the diffeomorphism 𝜑 can then describe the same
dynamics in the 𝑥-coordinate:

�̇� = −𝐺𝜑(𝑥)−1∇𝑥Φ(𝜑(𝑥)) = 𝑓𝜑(𝑥) (15)

where the induced Riemannian metric in the domain is given
by 𝐺𝜑(𝑥) = 𝐽𝜑(𝑥)𝑇 𝐽𝜑(𝑥) ∈ ℝ𝑛×𝑛

++ . The aforementioned
dynamics is known as natural gradient descent, which is the
steepest descent on a Riemannian manifold [79, 80], with
respect to the potential function Φ◦𝜑.

With a parameterized diffeomorphism 𝜑𝜃 , the learning
problem reduces to solving:

�̂� = argmin
𝜃

1
∑𝑁

𝑖=1 𝑇𝑖

𝑁
∑

𝑖=1

𝑇𝑖
∑

𝑡=1

‖

‖

‖

�̇�𝑖,𝑡 − 𝑓𝜑𝜃
(𝑥𝑖,𝑡)

‖

‖

‖

2

2
(16)

where 𝑁 and 𝑇𝑖 are the maximum number of demonstration
trajectories and the corresponding trajectory length, respec-
tively.

3.2.2. Simulation and summary
From the analysis of the methods described above, it

can be concluded that the primary focus of the second class
of approaches is learning mappings. This includes point-to-
point mappings between complex and simple trajectories, as
well as mappings between complex and simplified dynamic
systems. The quality of these learned mappings plays a
crucial role in determining the overall performance and
accuracy of the learned dynamic system.

Fig. 7 presents the dynamic system learning results for
various ADS methods in the second class, providing a more

Figure 6: The architecture of the coupling layers [62].

Figure 7: The dynamic system and Lyapunov function learning
results for various ADS methods in the second class, including
FDM [34], 𝜏-SEDS [57], E-FLOW [62], CONDOR [14] in LASA
handwriting data set. There are also simulations of some of the
ADS methods that are not shown in the figure, but they can
be found in the GitHub repository we uploaded.

intuitive understanding of their performance. The methods
compared include FDM [34], 𝜏-SEDS [57], E-FLOW [62],
and CONDOR [14], evaluated on the LASA handwriting
dataset. The results shown in Fig. 7(a) support the conclu-
sions drawn. In Fig. 7(b), the blue dots represent data points
that violate the property outlined in Lemma 1, with a higher
concentration of blue dots indicating poorer performance of
the Lyapunov function derived from the diffeomorphisms.
From these results, it is evident that the accuracy of WSAQF
significantly improves after incorporating diffeomorphism
processing, as demonstrated in the second panel of Fig. 7(a).
On the other hand, FDM is limited to single inter-trajectory
mappings. The CONDOR method, while effective, suffers
from the issue of local minima due to its weak stability
interpretation, as highlighted in Fig. 7(c), where multiple
local minima are observed in the velocity vector diagram.
It is crucial to note that diffeomorphism-based methods
are particularly well-suited for handling complex trajectory
distributions. In contrast, for simpler cases, methods like
QLF are often sufficient.

Finally, To provide a clear overview of the development
of DS methods in LFD, as well as performance metrics, we
present a detailed representation in Tab.2.
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Table 2
Summary of the main dynamic system methods.

Methods Lyapunov DS quality Global Training General- Advantages Disadvantagesform minimum time ization

SEDS [12] SOS middle ✓ short bad Easy to handle Difficult to handle
simple trajectories complex trajectories

CLF-DM [15] WSAQF middle ✓ short bad Good applicability Accuracy is determined by
to complex trajectories the number of asymmetric terms

NILC [16] ELM middle ✓ long middle High accuracy at GAS has no
high sampling rate theoretical guarantee

GPSSM [47] SOS high % short bad Enhancing the convergence Global uniqueness is
of the model’s motion not guaranteed

ICNN [18] ICNN middle ✓ long middle Strong nonlinear properties Weak representation
of Lyapunov function of ICNN models

CDSP [8] Contraction middle ✓ short middle Accurately model a wider Restrictive and difficult to
metric class of motions model highly complex shapes

NS-QLF [31] Neural-shaped high % short bad Relatively good accuracy Global uniqueness is
quadratic form and generalization not guaranteed

NEUM [19] Neural network high ✓ middle good Strong nonlinear properties Require substantial
form of Lyapunov function computation time

LPV-DS [44] P-QLF middle ✓ short middle Good convergence for Low model accuracy and low
complex nonlinearities computational efficiency

N-ODE [54] WSAQF high % short middle Easily capture invariant Global uniqueness
features of target trajectories cannot be guaranteed

RDS [43] - middle ✓ long bad Higher replication Higher computational burdenaccuracy

𝜏-SEDS [57] - middle ✓ short middle modular implementation Diffeomorphic candidate
without much coding effor transformation simple

FDM [34] Diffeomorphic high ✓ long middle Higher precision Learning single-
matching* trajectory motion only

I-FLOW [60] INN* high ✓ long middle High accuracy, not limited Require substantial
to point-to-point tasks computation time

E-FLOW [62] INN* high ✓ long good Highly accurate Require substantial
and generalisable computation time

SDS-RM [66] GMM* middle ✓ short middle Fast calculation speed Inability to converge precisely
to the target point

CONDOR [14, 41] DNN* high % long middle Good non-linear properties Weak stability
good generalisation high computational burden

1. The upper part of the table represents the set of methods for the first class, while the lower part represents the set of
methods for the second class.
2. - represents that the form of the Lyapunov function is determined by the selected DS method.
3. * represents the diffeomorphisms of the Lyapunov function SOS.

3.3. DS with intersections and Second-order DS
As discussed in Section 2.3, there is currently no uni-

versal framework to address the learning of DS with inter-
sections and second-order DS, as shown in Fig. 8, but some
works have begun to tackle this issue.

In [38, 39], Jin et al. learned a cross-dynamic system
using a dimension enhancement method based on mani-
fold immersion. Although the method is clever, an inherent
dilemma of this approach is that models learned under stabil-
ity constraints may produce inaccurate reproductions when
given demonstrations that violate Lyapunov functions. With
the same idea of dimensional enhancement, Zhang et al.
proposed a Neural Liénard System (Neural LS) [81], which
utilizes Liénard-type differential equations to construct a
dynamic system with stability and unique characteristics.
By describing the additional dimension as a function of the
Liénard system’s state, this method extends the applicability
of Neural LS to higher dimensions while endowing it with
the capability to represent trajectories with intersections. In
[13], Zhang et al. constructed a dynamic system using a

Figure 8: Self-intersection demonstration in the Hello World
dataset [33]. Trajectory shapes such as “e”, “r”, and “d” have
one to multiple intersections.

neural network-based approach, considering both the posi-
tion, velocity and acceleration of demonstrations, enabling
the proposed DS to learn complex intersecting motions still.
However, this method of forcibly defining inputs and out-
puts lacks concrete mathematical guarantees and practical
significance. For this problem, Ratliff et al. [82] introduced
the Riemannian Motion Strategy (RMP), which generates
second-order DS whose behavior is inherently related to
the Riemannian metric. In addition, Bernardo et al. [83]
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proposed a nonlinear DS learning method based on a pure
geometric framework, where the curvature of the Rieman-
nian manifold captures the inherent non-linearity of second-
order dissipative DS. However, the limitation of this method
is that not all 𝑑-dimensional manifolds can be isometrically
embedded into a 𝑑 + 1-dimensional Euclidean space, which
restricts the nonlinearity complexity it can effectively learn.

Although foundational work in this area is still limited,
the current methods provide valuable insights for learning
higher-order DS.

3.4. Lyapunov generation efficiency and DS
quality analysis

During the training generation of Lyapunov functions,
we compare the performance of different methods in terms
of generation speed and quality. As shown in Tab 1 and Tab
2, the length of the training time in Tab 2 is compared to the
time in Tab 1. The first method learns the Lyapunov function
through direct optimization, which is faster. However, when
dealing with complex tasks, this method requires the use of
complex neural network models in order to learn Lyapunov
functions consistent with the trajectory, which increases the
computational time. The second method indirectly generates
the Lyapunov function by learning the diffeomorphism.
Since the diffeomorphism usually relies on a neural network
for learning and requires more training epochs to ensure the
quality of the generated function, this method is slower but
can effectively handle more complex dynamic systems.

Current research is mainly based on a small amount of
demonstration data (usually a few demonstration trajecto-
ries), so the generation speed has not become a major bottle-
neck. As can be seen in Tab 1, training with a small data set
takes only a few tens of seconds to a few minutes. However,
as the amount of data increases and the model size expands,
training efficiency will gradually become a challenge that
cannot be ignored. Future research can explore methods such
as parallel computing, approximation algorithms, and incre-
mental learning to ensure the quality of generated dynamic
systems while improving training efficiency, thus adapting
to the needs of larger and more complex tasks.

4. Applications of ADS
In the preceding sections, we have provided an overview

of the theoretical advancements in ADS. We will focus on
the applications of these methods to real-world robotics
tasks, in particular, how to encode human motor skills
through learning and transfer these skills to robot operations,
illustrated by relevant legends, as shown in Fig. 9. In addi-
tion, we add a critical comparative analysis of the tradeoffs
between the various approaches for applied environments.
These additions highlight the applicability of ADS beyond
the benchmark dataset.

4.1. Manufacturing
In manufacturing applications, DS-based learning meth-

ods, in particular the use of Lyapunov functions to con-
struct globally stable control models, have been widely used

to encode human motor skills and migrate them to robot
operations. This approach offers significant advantages in
terms of improved production adaptability and portability,
and is particularly suitable for robots that are able to learn
from a small number of examples. These robots are able
to collect task motion trajectory data through kinesthetic
teaching or teleoperation and, in turn, learn how to perform
complex tasks in real-world environments. In particular,
global stability control based on Lyapunov functions not
only ensures the safety and stability of the robot’s task ex-
ecution, but also provides strong generalization capabilities,
reduces the need for reprogramming, and effectively reduces
production downtime [19]. For example, in operations such
as pick-and-place [31, 84], peg insertion [85, 86], polishing
[73, 87], and assembly [19] that use the ADS method,
robots such as Franka Emika Panda are able to achieve high
accuracy and robustness by learning task motion trajectories
(or impedance parameters) and stability control of dynamic
systems, and excelled in complex tasks such as assembly
and polishing [88]. In contrast, traditional pre-programming
methods, time-varying trajectory deviations of MP methods
[23], and internal force effects and rigidity shocks faced by
tasks such as assembly may cause failure of high-precision
assembly tasks and damage to the robot body.

However, despite the excellent performance of the Lya-
punov function in these tasks, its applications in high-
dimensional tasks still faces some challenges, especially in
three-dimensional space. Model complexity, external dis-
turbances, and environmental changes in high-dimensional
environments may affect the robustness and stability of the
model. For example, in the polishing task, the robot needs to
precisely control the force and angle, and the uncertainty of
the environment may lead to a degradation of the control
system’s performance. Therefore, although the Lyapunov
function provides theoretical support in ensuring system
stability, its effectiveness in real robotics applications still
depends on model tuning and environment adaptation.

4.2. Assisting and healthcare robotics
In recent years, learning methods based on dynamic sys-

tems have been increasingly applied to assistive and medical
robots, especially in tasks such as autonomous ultrasound
scanning, feeding, and robotic surgery [19, 87]. Similar to
manufacturing applications, medical robots are often learned
using kinesthetic teaching or teleoperation, where motion
trajectories are extracted from a small number of examples to
perform complex operations. However, unlike robotic tasks
in manufacturing, assistive and medical robots often require
higher accessibility and interaction with humans, which also
brings higher safety requirements. In a medical environment,
robots not only need to perform highly precise tasks, but also
ensure the safety of patients and medical staff. Therefore,
providing convergence and stability guarantees for learning
strategies, such as using Lyapunov functions to ensure the
global stability and robustness of the system, is the key to
ensuring that robots can operate safely and efficiently. For
example, during robotic surgery, Lyapunov functions can
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Figure 9: The various robot applications of ADS methods. (a) manufacturing task: pick and place [66], peg insertion [31, 86]
assembly operations, polishing [73, 87, 88]. (b) assisting and healthcare robotics: Ultrasound scanning [19, 89], assisted surgery.
(c) Human-robot interaction: collaborative transportation [90]. (d) Security control: obstacle avoidance [12, 14].

be used to optimize the stability of the robot during tasks
such as high-precision cutting and suturing, reducing the
risk caused by unstable operation. Although Lyapunov func-
tions can provide theoretical stability guarantees in high-
dimensional spaces, especially in the real-time decision-
making process of complex surgical operations, the amount
of computation and the complexity of adjusting strategies
may become limiting factors.

4.3. Human-robot interaction and collaboration
In addition to allowing robots to autonomously complete

tasks in different fields, the dynamic system approach is also
widely used to enable robots to work closely with humans.
In this process, the focus of dynamic system learning is
no longer just the relationship between position and speed,
but also other dynamic factors such as force [90]. Effective
collaboration requires the robot to generate ideal movements
that complement human actions, which not only improves
the fluency of the collaboration, but also ensures safety. In
human-robot collaboration scenarios such as collaborative
material handling and collaborative assembly [91, 92], the
robot’s movements need to be highly coordinated with hu-
man movements, especially in situations where the envi-
ronment changes frequently, or the task requirements are
complex. Such tasks often require the robot to quickly adapt
and adjust in a dynamic environment, and this process can be

modeled and optimized using a dynamic system approach.
The active dynamic system learning method enables the
robot to automatically compensate for disturbances during
manipulation, thereby achieving more accurate and stable
motion control. In addition, human-robot interaction ap-
plications also increase the demand for compliant robot
control, especially in tasks that require delicate adjustments
[93]. By learning appropriate joint torque, stiffness and
damping parameters [40, 88, 94, 95] through a dynamic
system approach, robots can flexibly adapt to the needs
of human collaboration. In particular, by coupling robot
dynamics and impedance control models through the state-
driven mechanism of ADS, combined with the forward-
looking optimization capability of Model Predictive Control
(MPC) [96, 97], robots can be synergistically optimized for
force-control accuracy and dynamic response. Such force
control operations are essential for tasks such as robot tra-
jectory tracking and surface lettering.

4.4. Security control
Learning and generalizing obstacle avoidance trajecto-

ries is crucial for safe robot control. In robotic obstacle
avoidance tasks, the Control Barrier Function (CBF) [98],
and modulation matrices [99] have been shown to be ef-
fective methods for autonomous dynamic system obstacle
avoidance in such approaches [100–102]. Specifically, CBF
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ensures the safety of the generated trajectory by enforcing
forward invariance of the safety set. To prevent additional
control inputs from compromising the system’s stability,
a CLF-CBF framework combining the Control Lyapunov
Function (CLF) and CBF has been proposed. In this frame-
work, the CLF is used to design the stability control strat-
egy for the robotic arm, while the CBF ensures that the
system remains stable while satisfying safety constraints
simultaneously. The modulation matrix method, on the other
hand, achieves effective obstacle avoidance by precisely
modulating the dynamic system[86, 103, 104].

However, despite the theoretical stability guarantees pro-
vided by these methods, there are still some shortcomings in
practical applications. In real-time obstacle avoidance, the
computational complexity of the CLF-CBF framework is
relatively high, which may lead to real-time problems. At
the same time, the obstacle avoidance interval introduced
by CBF may cause the dynamic system to fall into a local
optimal solution, which may lead to task failure. The mod-
ulation matrix method, although it can effectively cope with
complex environments, relies on accurate system modeling
and may require frequent adjustments when facing unknown
or rapidly changing obstacles, which places higher demands
on computing power and real-time control.

4.5. Comparative analysis of ADS methods
In this subsection, we will analyze the key trade-offs

between different ADS methods across various application
domains, building on the comparative insights introduced in
earlier sections. This will help readers select the appropriate
method based on their specific requirements and constraints.

The applications of ADS in robotics involve several
fundamental trade-offs spanning all domains: 1) Stability
vs. Flexibility: Methods based on Lyapunov functions and
control barrier functions provide strong stability guarantees
but may limit the system’s adaptability to new situations.
Conversely, more flexible learning-based approaches may
offer better adaptability but with reduced stability assur-
ances; 2) Computational Complexity vs. Real-Time Perfor-
mance: High-dimensional tasks and complex environments
require sophisticated models, which often demand signifi-
cant computational resources—potentially impacting real-
time performance, a critical requirement in most robotics ap-
plications; 3) Generalization vs. Task-Specific Performance:
Methods that generalize well across multiple tasks may
underperform compared to specialized solutions designed
for specific applications.

Different domains have distinct requirements. For ex-
ample, In manufacturing environments, trade-offs manifest
particularly in precision vs. speed: High-precision tasks,
such as peg insertion, polishing, or assembly, require slower,
more controlled motions, whereas throughput demands of-
ten push for faster operations. Additionally, structured vs.
unstructured environments play a role: Well-structured set-
tings allow simpler models to perform better, while in-
creasingly unstructured environments necessitate more com-
plex and adaptive approaches, such as NEUM methods or

second-class diffeomorphism-based techniques. In medical
robotics, greater emphasis is placed on safety margins vs.
performance: Conservative control parameters ensure pa-
tient safety but may limit surgical effectiveness or dura-
tion. Another consideration is human-in-the-loop vs. full
autonomy, where the required level of human supervision
reflects both technical and ethical considerations. In human-
robot interaction and collaborative scenarios, predictability
vs. adaptability is key: Predictable robot behavior enhances
human trust but may reduce the system’s ability to adapt
to human variability. Additionally, physical compliance vs.
task efficiency must be weighed: Softer, safer interactions of-
ten come at the cost of slower or less precise task execution.
For safety-critical applications, ADS methods must incorpo-
rate safety control techniques to enable obstacle avoidance
and safety assurance. However, formally verifiable methods
are often simpler but may struggle to handle complex real-
world scenarios effectively. There is also a trade-off between
safety guarantees and computational tractability.

This discussion underscores that selecting an ADS meth-
od for a given application requires careful consideration of
domain-specific requirements and constraints. There is no
universally optimal approach; instead, the best solution care-
fully balances competing needs for each application, poten-
tially combining different methods to fulfill corresponding
tasks.

5. Challenges and future directions
The evaluation of various methods primarily hinges on

their ability to deliver practical value in real-world appli-
cations. The Movement Primitive (MP) methods [105–110]
have been extensively validated over many years, proving
their stability and practicality across a variety of real-world
applications [111–114]. These methods can effectively op-
erate in complex environments, offering reliable solutions,
and have been widely applied in fields such as industrial
automation, robotic control [115], and medical assistance
[116]. In contrast, while ADS methods are innovative and
theoretically advanced, they are still in the early stages of
practical application. Many of their core technologies and
algorithms remain immature. Although ADS methods may
demonstrate strong performance in controlled laboratory
settings, they often encounter significant challenges when
applied in real-world environments, such as environmental
complexity, data uncertainty, and real-time processing re-
quirements. These factors undermine the stability and reli-
ability of ADS methods outside the laboratory setting.

This section will outline the challenges and future direc-
tions for the advancement of the ADS method.

5.1. The dilemma of generalization
Generalization in robotic learning can be classified into

two types: intra-task generalization and inter-task general-
ization. Intra-task generalization refers to an algorithm’s
ability to adapt to new conditions within a given task, such
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as varying initial and target locations, different object place-
ments, or changing environmental factors. In contrast, inter-
task generalization involves transferring learned skills to
new, but related tasks. Dynamic systems-based approaches
often rely on expert demonstrations to collect training data.
However, because these demonstrations typically do not
cover the entire task space, robots may encounter situations
where the input distribution deviates from the demonstra-
tion distribution. This mismatch can result in poor intra-
task generalization and failure in inter-task generalization.
To address this challenge, it is essential to develop learn-
ing methods capable of extrapolating acquired knowledge
to novel scenarios. Moreover, these methods must include
mechanisms for evaluating the applicability of learned poli-
cies to new environments. In practical terms, this means that
robots must be able to recognise when they can operate au-
tonomously and when user intervention is required, striking
a balance between generalization with system reliability.

5.2. Hyperparameter selection
Hyperparameter selection remains a significant chal-

lenge in machine learning-based approaches for learning the
mapping between representations and actions. While this is-
sue is common across many machine learning methods, it is
particularly critical in LfD, where automatic hyperparameter
tuning is needed to enhance usability, especially for non-
expert users. One of the main motivations for applying LfD
is to enable non-experts to program robotic systems, but the
necessity for manual hyperparameter adjustment limits the
accessibility of this approach.

In dynamic system-based approaches, hyper-parameters
can be found in many representations of Lyapunov func-
tion construction and diffeomorphism architectures. From
Fig.2, it can be seen that since 2019, the representations of
Lyapunov functions are often modeled by neural networks.
In these cases, the hyper-parameters include the number of
hidden layers and neurons per layer. Modeling complex, non-
linear demonstration data may require more hidden units,
whereas simpler demonstrations may need fewer. Similarly,
in diffeomorphism architectures, it is often necessary to set
the hyper-parameters along with the parameters for stabil-
ity guarantees to learn the mapping relationship between
two distributions via a neural network. But before 2019,
automatic hyper-parameter selection can be achieved using
machine learning methods with learning rules that trade-off
between model fitting and complexity (e.g., Gaussian pro-
cesses). However, their availability as a strategy function is
limited by their computational complexity and the challenge
of guaranteeing system stability.

5.3. High-order ADS
In first-order systems, we are mainly concerned with

the position and velocity of the system, and these variables
can intuitively describe the state of motion of the object.
However, in second-order systems, the introduction of accel-
eration makes the motion state of the system more complex.
Acceleration is a quantity that describes the change of veloc-
ity, and its introduction not only increases the dimensionality

of the system but also makes the dynamic properties of the
system richer. Of the above-mentioned methods, all are for
first-order systems (position, velocity). However, when these
methods are applied to more complex second-order systems
(position, velocity, acceleration) (e.g., cross-motion), most
of the methods become less effective or applicable. Some
literature [13, 38, 39] models the second-order dynamic
system in the form of the left-hand side of the Eq. (7).
However, as mentioned earlier, these methods fail to provide
a clear physical interpretation of the generated equation.
Similarly, the DNN architecture used in CONDOR [14]
for second-order systems suffers from weak interpretability,
further limiting its practical application and understanding.

Therefore, future research should focus on developing
more interpretable, scalable methods capable of address-
ing the unique challenges of second and even higher-order
dynamics, ultimately enabling more reliable and adaptive
robotic control in real-world applications.

5.4. Robust multitasking applications
In multitasking applications, LfD enables robots to

perform multistep tasks by partitioning demonstrations into
subtasks, goals, phases, keyframes, or skills/prototypes [117–
122], [123, 124], [125, 126], [127–129]. Most of these
abstractions assume that sequentially achieving subgoals
will lead to the desired outcome. However, the successful
imitation of many manipulation tasks with spatial and
temporal constraints cannot be reduced solely to motor-level
imitation, unless the learned motor strategies also satisfy
these constraints. This is particularly relevant when robots
are expected not only to imitate, but also to generalize, adapt,
and maintain robustness against human-imposed perturba-
tions that occur during task learning and execution. For
instance, while the method in [130] guarantees the learning
of stable motion strategies with convergence, this guarantee
is limited to the motion level. DS-based methods, such as
trajectory segmentation, behavioral decision trees [131],
and dynamic regression models [84], have been applied in
multi-skill learning. However, these methods face challenges
in reliably abstracting subtasks. Even when abstractions
are provided, DS methods that lack invariant or reachable
properties struggle to ensure robust task execution and
replay. Task robustness refers to a system’s ability to han-
dle perturbations during execution without causing failure
or significant deviation. However, the methods mentioned
above are limited to motion-level adaptation. While they
guide the robot to complete tasks, they often do not fully
account for broader task-level perturbations, which could
lead to failures or inefficiencies in real-world applications.

5.5. Embodied intelligence
Within the field of embodied intelligence, the application

of LfD is particularly evident in several key areas: behavior
imitation, task planning and environmental adaptation [132].
As LfD methods, particularly those based on ADS, continue
to evolve, they offer the potential to significantly enhance
the autonomy and decision-making abilities of robots. This
can drive advancements in both the theoretical foundations
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and practical applications of embodied intelligence. For in-
stance, the integration of ADS facilitates the development of
more robust, flexible, and adaptive robotic systems capable
of performing complex tasks in dynamic, real-world envi-
ronments, especially humanoid robots [12]. By improving
the stability, generalization, and efficiency of learning strate-
gies, ADS-based techniques can help robots autonomously
adapt to new scenarios and perform tasks with high precision
and reliability.

However, in the real world, robotic systems still face
significant challenges in goal specification due to perceptual
and generalization difficulties coupled with severe data
scarcity. Future research should prioritize exploring deeper
integration between ADS and multimodal architectures,
which could drive paradigm-shifting advances in embod-
ied intelligence: At the perception level, visual foundation
models (e.g., ViT [133], CLIP [134]) can empower ADS
with scene understanding and feature encoding capabili-
ties, establishing vision-action closed-loop systems. At the
decision-making level, large language models (LLMs) [135]
can parse natural language instructions into ADS dynamic
parameters through semantic reasoning, enabling language-
guided behavior generation. At the control level, diffusion
models [136] can collaborate with ADS through synergistic
optimization—where the former generates candidate tra-
jectory distributions while the latter ensures motion sta-
bility—thereby significantly improving imitation learning’s
sample efficiency and generalization performance. Though
this integrated framework will encounter challenges like
modality alignment and real-time computation, its demon-
strated “perception-cognition-control” triad offers a veri-
fiable technical pathway for humanoid robots performing
complex tasks in open-world environments. Future studies
should further investigate hierarchical ADS architectures
and physics-informed joint training paradigms. These ad-
vancements will propel embodied intelligence systems from
mere functional implementation to genuine cognitive emer-
gence in unstructured settings.

6. Conclusion
This paper provides a comprehensive review of recent

advancements in autonomous dynamic systems for demon-
stration learning, proposing a classification framework that
distinguishes between two primary categories: Lyapunov
function-based methods and diffeomorphism-based meth-
ods. For each category, we summarize the key features,
advantages, and limitations, placing particular emphasis on
foundational methods that have notably propelled progress
in the field, and provided intuitive simulation comparison
demonstrations. Additionally, the paper explores the re-
search landscape of dynamic systems with intersection prop-
erties (DS) and second-order dynamic systems. To facilitate
further exploration and experimentation, we also present
simulation results and provide open-source code.

Furthermore, the paper explores emerging industrial ap-
plications of ADS methods, with a particular focus on sec-
tors such as manufacturing, medical robotics, human-robot
interaction, and security control. We discussed the potential
benefits provided by these methods, the trade-off analysis
between methods, and the challenges they face in practical
deployment. The paper identifies several key challenges that
remain, such as improving the generalization of skill learn-
ing, optimizing hyperparameter selection, enabling higher-
order skill learning, and advancing multi-task learning for
complex robotic tasks. These areas of development are cru-
cial for enhancing the stability and safety of robotic skill
learning, driving further innovation in embodied intelli-
gence, and supporting advancements in industrial automa-
tion and related fields.
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