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ABSTRACT

This thesis consists of three chapters, studying the role of reciprocity and the
nature of conditional cooperation.

In Chapter 1, we theoretically investigate how reciprocity can be modelled so
that it remains compatible with a wide range of experimental findings. We intro-
duce a new definition of kindness with two components in our model: intentional
kindness and consequential kindness. We also propose a new definition of efficient
strategy that resolves paradoxes found in earlier behavioural models. Finally, we
show that our framework reflects the results of a host of laboratory games, includ-
ing the ultimatum game and the sequential prisoner’s dilemma, which neither
standard theory nor existing reciprocity models can fully explain.

In Chapter 2, we experimentally study conditional cooperation, an instance of
reciprocity that is particularly applicable to social dilemmas. Reciprocity can be
broadly defined as taking a more altruistic action in response to a more generous
action. This chapter aims to better understand the nature of conditional cooperation
and in turn the nature of reciprocity, given that existing models of reciprocity fail
to explain some of the empirical regularities. We use sequential prisoner’s dilemma
games to conduct a thorough study on payoffs that can potentially affect conditional
cooperation. We experimentally investigate conditional cooperation by considering
generosity separately in terms of first-mover payoffs and second-mover payoffs,
which has not been done previously. We find that both aspects of generosity are
present and affect the choices of the second-mover. The findings suggest the need
for richer frameworks of reciprocity than those are currently used.

In Chapter 3, we further analyze the nature of conditional cooperation in
sequential prisoner’s dilemma games using revealed preference methods. We disen-
tangle context-free quasi-monotone preferences—where individuals prefer choices
that improve their own payoff at least as much as they do for others—from con-
ditional cooperation. By definition, conditional cooperation is context-dependent
and closely tied to reciprocity. To capture this, we propose the concept of reciprocal
preferences, which reflects how varying contexts affect conditional cooperation.
Our model offers a method for identifying conditional cooperation in experimental
settings.
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1
KINDNESS MATTERS: A THEORY OF RECIPROCITY

1.1 Introduction

There is considerable laboratory and real-world evidence suggesting that people

care about the behavioural intentions and consequences of others. They are willing

to bear a personal cost to reward kind behaviour (known as positive reciprocity)

and, conversely, to punish unkind behaviour (known as negative reciprocity). For

example, tourists tip the tour guide after a pleasant journey even though they are

unlikely to encounter the tour guide again, charities can increase the propensity of

potential donors to donate when solicitation letters are accompanied by gifts (Falk,

2007), while responders may reject unfair offers in ultimatum games, even though

the theoretically optimal response would be to accept them (Güth et al., 1982).

In the growing body of work on experimental games over the last three decades,

reciprocity considerations have cast doubt on the classic assumptions of rationality

and material self-interest1. All these observations raise a fundamental question:

What determines kind and unkind behavior?

1See, for example, work on the dictator game (Andreoni & Bernheim, 2009), the ultimatum game
(Güth et al., 1982, Thaler, 1988, Falk et al., 2003, Falk & Fischbacher, 2006), the prisoner’s dilemma
(Clark & Sefton, 2001, Ahn et al., 2007, Dhaene & Bouckaert, 2010, Klempt, 2012, Charness et al.,
2016, Engel & Zhurakhovska, 2016, Orhun, 2018, Baader et al., 2024), and the gift-exchange game
(Fehr & Schmidt, 1999, Berg et al., 1995).
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CHAPTER 1. KINDNESS MATTERS: A THEORY OF RECIPROCITY

There have been papers that aim to answer this question. Among these studies,

two prominent classes can be distinguished: one is models on distributional con-

cerns (Fehr & Schmidt, 1999, Bolton & Ockenfels, 2000), which focus more on the
consequences of the behaviour. Such models suggest that decision makers care not

only about their own final material payoffs but also about the final material payoffs

of other players. This raises a problem for some experimental studies (Falk et al.,

2003, Dhaene & Bouckaert, 2010), as individuals in fact also take into account

the intentions of other players. This leads to the second class of models, which

centers on intentional concerns (Rabin, 1993, Dufwenberg & Kirchsteiger, 2004),

emphasizing the intentions of the behaviour. Such models highlight that decision

makers consider the intentions behind other players’ actions.

In his seminal paper, Rabin (1993) introduces the intention-based reciprocity

model for simultaneous-move games, proposing a formal definition of kindness

based on beliefs and the reference point. Building on this framework, Dufwenberg

& Kirchsteiger (2004) extend the model to sequential games. In both models,

players form beliefs about the intentions of others and evaluate their kindness

accordingly. An action is viewed as kind (or unkind) if it yields an intended material

payoff that is greater (or smaller) than a specific reference point. This reference

point is simply defined as the average of the highest and lowest material payoffs

that the decision maker could potentially receive.

The model developed by Dufwenberg & Kirchsteiger (2004) provides an intuitive

and influential framework for understanding kindness in strategic interactions.

However, some existing experimental studies (Falk et al., 2003, Orhun, 2018)

suggest that the model may face limitations in fully explaining the observed

experimental findings.

The issues raised in Dufwenberg & Kirchsteiger (2004) can be effectively illus-

trated by the four ultimatum games shown in Figure 1.1, originally from Falk et al.

(2003). They investigated the behavior of the responder (R) in response to the pro-

poser’s (P) O1 offer. Consider two games in Figures 1.1a and 1.1b. According to the

model proposed by Dufwenberg & Kirchsteiger (2004), the O1 offer in Figures 1.1b

should be perceived as less kind than the O1 offer in Figures 1.1a. Therefore, we

would expect a higher proportion of responders to reject (choose n) the O1 offer in

Figure 1.1b than in Figure 1.1a. However, the experimental findings contradict

2



1.1. INTRODUCTION

this prediction: 44.4% of responders rejected the O1 offer in Figure 1.1a, whereas

only 26.7% did so in Figure 1.1b.

Moreover, consider Figures 1.1c and 1.1d. Dufwenberg & Kirchsteiger (2004)

predicts that the O1 offer in Figures 1.1d should be perceived as more kind than the

O1 offer in Figures 1.1c. Therefore, if we observe some responders rejecting the O1

offer, we would expect fewer responders to do so in Figure 1.1d than in Figure 1.1c.

However, the experimental results indicate that there is no statistically significant

difference between the two games. Moreover, 18% of responders rejected the O1

offer in Figure 1.1c, where the proposer has no alternative options—i.e., intentions

are not present.

8
2

05
0
0

5 0

y n y n

RR

P

O1 O2

(a) Ultimatum game – (5,5)

8
2

02
0
0

8 0

y n y n

RR

P

O1 O2

(b) Ultimatum game – (2,8)

8
2

08
0
0

2 0

y n y n

RR

P

O1 O2

(c) Ultimatum game – (8,2)

8
2

010
0
0

0 0

y n y n

RR

P

O1 O2

(d) Ultimatum game – (10,0)

Figure 1.1: The mini-ultimatum games from Falk et al. (2003)

To address the issues raised in the existing literature, in this paper, we first
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CHAPTER 1. KINDNESS MATTERS: A THEORY OF RECIPROCITY

investigate the efficient strategy before considering the kindness of other players.

As stated in Rabin (1993) and Dufwenberg & Kirchsteiger (2004), “wasteful play”

should not be included in the evaluation of kindness. Our new definition success-

fully resolves the paradox that arises in their definitions of efficient strategy (a

more detailed discussion is provided in Section 1.5.1). For instance, our definition

considers the O2 offer to be inefficient in Figure 1.1d, and thus it should be excluded

from kindness evaluations. Consequently, we should observe consistent behavior by

the responders in their replies to the O1 offer in both Figure 1.1c and Figure 1.1d.

Next, given the limited explanatory power of existing models based on exper-

imental evidence, we revisit the central issue of when one’s behaviour can be

perceived as kind in our model from two perspectives: intentional kindness and

consequential kindness. Our definition of kindness allows us to explain a wide

range of experimental games—such as the ultimatum game (Falk et al., 2003) and

the sequential prisoner’s dilemma (Orhun, 2018)—which cannot be explained by

existing behavioural models.

To capture other players’ intentions, Dufwenberg & Kirchsteiger (2004) define

the intentional kindness of others based on what those players could give to the

decision maker. In other words, the definition remains limited to the payoffs of the

decision maker alone. The definition provided by Dufwenberg & Kirchsteiger (2004)

is undoubtedly crucial, but we argue that it is one-sided and incomplete. Building on

their framework, in our model, we propose a new definition of intentional kindness

that further incorporates the status of the other players—that is, the material

payoffs of other players are also taken into account when assessing intentional

kindness. To explain: it is clear that the responder would receive more if the

proposer chose the O2 offer in Figure 1.1b than in Figure 1.1a. In this sense, the

proposer’s choice of the O1 offer appears less kind in Figure 1.1b than in Figure 1.1a.

However, one must also consider the proposer’s potential payoffs. Choosing the O2

offer results in a much worse outcome for the proposer in Figure 1.1b (a material

payoff of 2) than in Figure 1.1a (a material payoff of 5). Thus, the proposer has an

excuse for not choosing the O2 offer because “one cannot unambiguously infer from

his unwillingness to propose an unfair offer to himself that he wanted to be unfair

to the responder” (Falk et al., 2003).

To achieve this, we introduce a new reference point (more details in Sec-
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1.2. LITERATURE REVIEW

tion 1.3.3). In this reference point, two elements of intentions are included:

1. What the decision maker can get: this depends on the decision maker’s

material payoffs and reflects whether other players are being (un)kind.

2. What the decision maker should get: this depends on the material payoffs of

the other players and reflects the extent to which they are being (un)kind.

Apart from the intentions of other players, the consequences of an action

constitute another central component of our model. These consequences refer to

the final payoff distributions resulting from the decision maker’s action and help

explain why people may still respond negatively even in the absence of intentions:

people care about what they could have obtained relative to others. They experience

disutility from receiving less than others. That is why some responders still reject

the O1 offer even when it is the default option (Figure 1.1c). Our model also includes

consequential kindness to make the model complete.

The rest of the paper is organized as follows: Section 1.2 reviews the literature.

In Section 3.4, we present our model, which incorporates consequential kindness

and intentional kindness into the decision maker’s utilities. We also develop the

concept of expected reciprocity equilibrium (ERE) and prove its existence. Sec-

tion 1.4 applies our model to several experimental games: the ultimatum game

(Falk et al., 2003), the sequential prisoner’s dilemma and the sequential prisoner’s

dilemma with punishment (Orhun, 2018). These games are selected because ex-

isting behavioural models fail to explain the corresponding experimental findings.

We show that our model is consistent with the experimental results. Section 1.5

discusses the differences between our model and those of Rabin (1993) and Dufwen-

berg & Kirchsteiger (2004), such as the efficient strategies and the implications for

equilibrium. Section 1.6 concludes.

1.2 Literature Review

In order to explain behavior that deviates from pure self-interest and strict ratio-

nality, two main classes of models can be distinguished: consequence-based models

and intention-based models. Consequence-based models (Fehr & Schmidt, 1999,

5



CHAPTER 1. KINDNESS MATTERS: A THEORY OF RECIPROCITY

Bolton & Ockenfels, 2000, Charness & Rabin, 2002) claim that fairness refers to

the final distribution of material payoffs. A decision maker’s behaviour is driven

not only by their own material payoffs, but also by how much others gain relative to

them. For example, Fehr & Schmidt (1999) assume that an agent feels envy if other

players’ material payoffs exceed their own, and feels guilt or discomfort when other

players receive less. Moreover, the agent experiences greater disutility when an-

other player gains more than when they themselves gain more than another player.

The model of Bolton & Ockenfels (2000) assumes that the decision maker cares

about their relative status, and that their utility depends on their own material

payoff relative to the average payoff of all players. This class of models captures the

primary determinants of other-regarding behaviour. A similar model is proposed by

Falk & Fischbacher (2006). Although their model includes beliefs and intentions,

the perception of kindness is determined by expected material payoffs: if “player i
believes that player j aims to let them get more out of the exchange than player

j wants for themselves,” then player i perceives player j as kind. The model also

incorporates the intention factor, but it uses a set of predefined values to determine

how a player seeks to behave kindly or unkindly.

Another class is intention-based reciprocity models, built on the framework of

psychological games (Geanakoplos et al., 1989, Battigalli & Dufwenberg, 2009),

focuses on underlying intentions as a key influence on preferences (Rabin, 1993,

Dufwenberg & Kirchsteiger, 2004, Falk & Fischbacher, 2006). In a normal-form

setting, Rabin (1993) uses the decision maker’s beliefs about other players’ actions,

as well as their beliefs about the other players’ beliefs regarding their own actions,

to assess kindness. Empirical studies have revealed surprising effects of move

order (Cooper et al., 1993, Weber et al., 2004, Camerer, 1997, Dhaene & Bouckaert,

2010), where outcomes differ substantially from those in simultaneous-move games.

This highlights the importance of sequential moves in the study of reciprocity.

Dufwenberg & Kirchsteiger (2004) address this issue in their sequential reciprocity

model, which extends Rabin’s model to sequential games. They introduce three

key changes compared to Rabin (1993), thereby proposing a different structure of

preferences for the decision maker. One controversial change is their definition

of an efficient strategy, which is independent of players’ beliefs—whereas Rabin’s

definition is belief-dependent. The limitations of Rabin’s definition are discussed in

6



1.2. LITERATURE REVIEW

Dufwenberg & Kirchsteiger (2004). Regarding the belief-independent definition,

Isoni & Sugden (2019) argue that it leads to a paradox in trust games. Although

Dufwenberg & Kirchsteiger (2019) responded to this critique by proposing a new

definition, the paradox remains unresolved. Another debated change involves belief-

updating rules, whereby a player’s evaluation of their opponents’ kindness depends

on their most updated beliefs at each decision node. Jiang & Wu (2019) argue that

the belief-updating rule in Dufwenberg & Kirchsteiger (2004) is not appropriate

for games with more than two players. They propose an alternative rule that

categorizes players’ beliefs based on whether perceived kindness is evaluated using

their most updated forms.

The experimental literature provides extensive evidence on the effects of reci-

procity (Dawes & Thaler, 1988, Falk, 2007). One typical experiment is the ulti-

matum game, in which the proposer makes an offer and the responder decides

whether to accept or reject it (Güth et al., 1982, Thaler, 1988, Blount, 1995). Con-

trary to predictions based on pure self-interest, experimental results suggest that

proposers often make generous offers, and responders frequently reject positive

but unequal offers. As a responder might put it: “I would rather give up some

material payoffs than accept an unfair offer.” Falk et al. (2003) explore the nature

of fairness through four mini-ultimatum games. They find that people evaluate

fairness based not only on the consequences of actions, but also on the perceived

intentions behind them. A similar result is observed in the moonlighting game

(Falk et al., 2008), in which player A first chooses a number a, denoting the transfer.

If a ≥ 0, A gives B the amount a; if a < 0, A takes a from B. In the case where a ≥ 0,

the experimenter triples the amount, so B receives 3a. After observing A’s choice,

player B can respond with a reward or punishment. They find that 40% subjects

exhibit both positively and negatively reciprocal responses. Another widely studied

experimental setting is the prisoner’s dilemma. For example, Clark & Sefton (2001)

and Dhaene & Bouckaert (2010) show that reciprocity influences individual be-

haviour. Ahn et al. (2007) find that players in advantageous positions are less likely

to cooperate to reward their opponent. Baader et al. (2024) find that variation

in cooperative behaviour with payoffs aligns with the predictions of consequence-

based models. However, Orhun (2018) show that existing reciprocity models fail to

explain subjects’ behaviour when the second mover has the opportunity to punish
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uncooperative behaviour.

When we discuss reciprocity, the central question often concerns how kindness

is conceptualized. In addition to the models mentioned above, Çelen et al. (2017)

propose a new definition of kindness based on the notion of blame: suppose I were

in the other player’s position and consider whether I would choose an action that

is more or less kind than the one actually chosen. If I would choose a kinder ac-

tion, I blame the opponent; otherwise, I blame myself. Dufwenberg et al. (2013)

incorporate the concept of vengeance and develop the notion of vengeance equi-

librium to reflect negative reciprocity. Sohn & Wu (2022) extend the Dufwenberg

& Kirchsteiger (2004) model by introducing uncertainty, exploring the threshold

of cooperation, and proposing an extended sequential reciprocity equilibrium. Fi-

nally, Battigalli & Dufwenberg (2022) review the literature on belief-dependent

motivations within the framework of psychological game theory.

1.3 The Model

Model Overview — our model introduces three main components that distinguish

it from existing models (Rabin, 1993, Dufwenberg & Kirchsteiger, 2004). The

first component is the efficient strategy, which serves as the model’s starting point.

Before evaluating kindness, we identify all efficient strategies—a step whose impor-

tance is discussed in Section 1.5.1. The second and third components are intentional

kindness and consequential kindness, respectively. Intentional kindness is the core

of our model and plays a crucial role in explaining observed experimental findings.

We propose a new definition of intentional kindness and introduce a novel reference

point standard for its evaluation. The third component, consequential kindness,

incorporates the envy element from Fehr & Schmidt (1999), thereby completing

the model.

1.3.1 Baseline framework

Our discussion in this paper will be confined to two-player, multi-stage, extensive-

form games with finite actions at each stage and complete and perfect information.

Therefore, the player’s choice appears sequentially and can be fully observed.

8
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Focusing on multi-stage games with observable actions helps the formulation of

strategies and beliefs, while preserving the model’s general relevance, as such

games are the primary focus of most applied and experimental research.

Formally, let N = {1,2} be the set of players, H be the set of choice profiles, or

histories. A i,h be the set of actions for player i ∈ N at h ∈ H. Player i’s behavioural

strategies is denoted by σi ∈×h∈H∆(A i,h)=:∆i. It assigns at each history h ∈ H a

probability distribution over a set of pure actions of player i ∈ N. Define∆=∏
i∈N∆i.

Furthermore, player i’s pure strategy is denoted by si ∈ Si.

With σi ∈∆i, h ∈ H, σi,h denotes the strategy that prescribes the same choice as

σi, except for the choice that decides history h that is made with probability 1. The

material payoff of player i is given by πi :∆→R. The material payoff means cash

or some other measurable quantity (e.g. the number of vouchers), which denotes

the selfish payoffs that we generally use in the classical game theory.

Moreover, our discussion in this paper includes the utility from intentions

which reflect a player’s psychological consideration. Like other intention-based

reciprocity models (Rabin, 1993, Dufwenberg & Kirchsteiger, 2004), therefore,

we apply the framework of psychological game theory (Geanakoplos et al., 1989,

Battigalli & Dufwenberg, 2009). That is, when playing the game, player i’s beliefs

about others’ strategies (first-order belief) and about others’ beliefs about their

own strategy (second-order belief) are important as they can influence the player’s

inference about others’ intentions. Furthermore, in sequential games, the choice

that a player has made can be fully observed by their opponents at each stage.

Hence, the updating rule is also necessary (more explanations can be found in

Dufwenberg & Kirchsteiger (2004)). With this objective in mind, we define two

types of beliefs (first-order belief and second-order belief) with updating rules2.

In this paper, as we mainly consider a two-player game, for notational conve-

nience, we use i and j to refer to the two different players.

2Some scholars, such as Lianjie Jiang et al. (2018), argue that the Dufwenberg & Kirchsteiger
(2004) definition of updating rules causes a series of problems, but these drawbacks are of no
relevance to the two-stage games studied in this work.
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CHAPTER 1. KINDNESS MATTERS: A THEORY OF RECIPROCITY

Definition 1 (Beliefs and updating rules). Let bi ∈ Bi =∆ j be player i’s first-order
belief and bi,h be the updated first-order belief that specifies player j’s behavioural
strategy that leads to history h. ci ∈ Ci =∆i denotes player i’s second-order belief
and ci,h denotes the updated second-order belief that specifies player i’s behavioural
strategy that leads to history h.

Example. Ultimatum game-(5,5) in Figure 1.1a. Definition 1 describes that after

observing some actions, each player update their first-order belief and second-

order belief to match the past actions. Assume the responder initially forms the

first-order belief bR with bR(O1) = 0.3 and bR(O2) = 0.7. After observing the O1

offer, the responder updates their belief to bR,O1(O1) = 1 and bR,O1(O2) = 0. In

the same fashion, suppose the responder forms the initial second-order belief

cR with cR(y|O1) = 0.4 and cR(n|O1) = 0.6. Once the responder has made their

choice, assume y after the O1 offer, then they update their second-order belief with

cR,y|O1(y|O1)= 1 and cR,y|O1(n|O1)= 0.

Notice that Definition 1 implies that players give up their past probabilistic

beliefs when pure actions are realized. As a result, the actions of others are always

interpreted as intentional and deliberate choices, rather than as mistakes or

random deviations.

1.3.2 Efficient strategy

The idea of reciprocity suggests that we would like to reward those who give us

more (interpreted as kind) and punish those who give us less (interpreted as un-

kind). However, what if the only reason that other people give us more is that they

can also benefit from this action? How do we identify the purpose of their action

and define their kindness? both Rabin (1993) and Dufwenberg & Kirchsteiger

(2004) emphasize that before evaluating one’s kindness, we should first rule out all

wasteful strategies that no one is motivated to play. They argue that an appropriate

definition of an efficient strategy can help. Nonetheless, as discussed in Section 1.1

and further explored in Section 1.5, existing definitions of efficient strategy cause

a range of problems. Especially for so-called punishment without cost:

10
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Punishment without cost. Assume that the material payoff of player i is
πi(ai,h,a j,h) and that of player j is π j(ai,h,a j,h). If, for some a′

i,h ̸= ai,h, it holds that
πi(ai,h,a j,h) = πi(a′

i,h,a j,h) and π j(ai,h,a j,h) < π j(a′
i,h,a j,h), then the action ai,h is

referred to as punishment without cost relative to a′
i,h.

For the ultimatum game in Figure 1.1d, after proposer’s choice of the O2 offer,

responder’s choice of n (reject the O2 offer) can be viewed as punishment without

cost compared to y (accept the O2 offer).

As we have mentioned in Section 1.1, the O1 offer in Figure 1.1d is indeed the

same as the O1 offer in Figure 1.1c from the perspective of the responder. So what

is the implication? In Figure 1.1c, the O1 offer and the O2 offer are the same for the

proposer. Clearly, we are not able to read any intention from the proposer’s action.

In Figure 1.1d, although the proposer has two different options, the experimental

results reported by Falk et al. (2003) implies that that the O2 offer in Figure 1.1d

does not influence the responder’s inference about the proposer’s intentions. It

suggests that having the O2 offer in Figure 1.1d cannot make the O1 offer more

kind/unkind from the perspective of the responder. Why does the responder behave

this way?

To understand this phenomenon, let us try to infer the responder’s consideration

in Figure 1.1d. On the one hand, the responder will receive zero material payoff

regardless of whether they accept or reject if the proposer chooses the O2 offer. On

the other hand, the responder has the chance to receive a material payoff of 2 if

they accept the O1 offer. Therefore, the O2 offer can never be a kind behaviour. Now,

given the chance to punish this unkind behaviour without any cost (the material

payoffs of rejecting or accepting the O2 offer are both zero), the responder should

choose n since no one is motivated to reward an unkind behaviour3.

Correspondingly, if the responder believes that the proposer believes the re-

sponder never rewards an unkind behaviour (means the O2 offer must lead to

n), then the proposer should never select the O2 offer from the perspective of the

responder since this would lead both players to the worst material payoff pair (0,0).

Hence, the O1 offer in Figure 1.1d will be the only choice for the proposer from the

perspective of the responder. In other words, the O2 offer should be considered a

3In Falk et al. (2003) experiment, around 90% chose n after O2.
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“wasteful play” that should not be taken into consideration in Figure 1.1d when

the responder considers the underlying intentions of the proposer. That is why the

reponders behave the same in Figure 1.1c and Figure 1.1d after the O1 offer.

Similar situations frequently arise in other games and settings. It is essential

to rule out such wasteful strategies before evaluating intentional kindness—a goal

also pursued by Rabin (1993) and Dufwenberg & Kirchsteiger (2004). To address

this issue, we introduce the concept of the potential worst outcome (PWO).

PWO as a sequential rationality refinement. To rule out all wasteful

strategies, the idea of sequential rationality seems to be feasible. We can define a

special second-order belief that assigns the probability 1 to a strategy that satisfies

sequential rationality. But we noticed that it sometimes does not work as expected,

e.g., punishment without cost. Based on our inference and discussion, we propose a

refinement of sequential rationality by adding the idea of “potential worst outcome”

to define a special second-order belief to rule out all wasteful strategies. To this end,

we adopt three steps to meet our purpose: in step (i), we find the most advantageous

strategy that should be unique for player i (by sequential rationality); in step (ii), if

σi does not satisfy (i) because σi might be not unique, then player i may have the

chance to punish their opponents without cost. Here we suppose that the player

i would punish their opponent to satisfy our definition of “worst outcome”; and

in step (iii), if σi does not satisfy (ii) because σi is still not unique, then there

exist multiple strategies that bring both players the same material payoffs. The

payoffs of players are indifferent between these strategies, thus i chooses randomly.

Definition 2 (Special second-order belief). For all h ∈ H, σi ∈∆i and σ j ∈∆ j, let
∆̂i,h ≡ argmaxσi,h∈∆i,h

πi(σi,h,σ j,h) and define cpwo
i ∈ Cpwo

i ⊆ ∆̂i,h as follows:

σi,h ∈ Cpwo
i


if either (i) πi(σi,h,σ j,h)>πi(σ′

i,h,σ j,h) ∀ σ′
i,h ∈∆i,h − {σi,h}

or if (ii) π j(σi,h,σ j,h)<π j(σ′
i,h,σ j,h) ∀σ′

i,h ∈ ∆̂i,h − {σi,h}

or if (iii) πk(σi,h,σ j,h)=πk(σ′
i,h,σ j,h) ∀ k ∈ {i, j} ∀σ′

i,h ∈ ∆̂i,h.

Example. Ultimatum game-(10,0) in Figure 1.1d. To find cpwo
R , notice that

πR(y|O1)>πR(n|O1) and thus cpwo
R (y|O1)= 1, However, if we consider the history

12
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of play is the O2 offer, we find that πR(y|O2)=πR(n|O2). Then we need to move to

Definition 2(ii)4. Since πP (n|O2)<πP (y|O2), then we get cpwo
R (n|O2)=1.

Definition 2 provides us with a way to rule out wasteful strategies. Furthermore,

we apply this special second-order belief Cpwo
i for player i to define the efficient

strategy for player j.

Definition 3 (Efficient strategy). Define an efficient strategy set for j ∈ {1,2} as
follows:

Epwo
j =

 σ j ∈∆ j

if ∄ σ′
j ∈∆ j such that for all h ∈ H and cpwo

i ∈ Cpwo
i :

(i) πk(σ′
j,h, cpwo

i )≥πk(σ j,h, cpwo
i ) ∀k ∈ {i, j} and

(ii) πk(σ′
j,h, cpwo

i )>πk(σ j,h, cpwo
i ) for some k ∈ {i, j}

.

Definition 3 excludes a strategy σ j such that if there exists at least one σ′
j

which describes the choice that leads to Pareto-superior outcomes given the special

second-order belief Cpwo
i .

Example. To illustrate this definition, we still use ultimatum game-(10,0) in

Figure 1.1d. Recall that we have obtained cpwo
R (y|O1)=1 and cpwo

R (n|O2)=1 by

Definition 2. From the perspective of the responder, according to the Definition 3,

playing the O2 offer is not efficient now since (0,0)< (8,2).

Thus only the O1 offer will be taken into consideration in Figure 1.1d, recall

that the O1 offer and the O2 offer are indifferent in Figure 1.1c. The behaviour for

the responder now should be the same between two games. This result is consistent

with our inference and the experimental results.

In addition to the games discussed above, our definition successfully addresses

some other potential problems encountered with existing definitions. We discuss

this in detail in Section 1.5.

4This is the difference compared with the sequential rationality. If we apply the idea of the
sequential rationality, then the responder has no preference between y and n when the proposer
plays the O2 offer. However, we want to evaluate the player’s intention, so our definition 2(ii) serves
the purpose.
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1.3.3 Kindness

Kindness consideration is important to understand decision maker’s behaviour. In

our model, we consider the kindness by two elements: intentions and consequences.

According to our model, the utility consists of three parts: the decision maker’s

material payoffs, intentional kindness Ψi and consequential kindness Φi.

1.3.3.1 The intentional kindness

Having defined the efficient strategy, we can move to one important part of kind-

ness - intentions behind the behaviour. We are not the first one to propose that

intentions matter as discussed in Section 1.1. But we have also argued that ex-

isting ideas of underlying intentions retains some potential drawbacks and can

not explain some experimental findings. So we interpret the intentional kindness

again and propose our view of the underlying intentions.

What is the intentional kindness? We do not expect others to sacrifice their
own material payoffs to help (or hurt) us, but once they do, we perceive them as
intentionally kind (or unkind). In response, we are willing to bear a cost to reward
(or punish) them in return.

As aforementioned in Section 1.1, in two ultimatum games shown in Figure 1.1a

and Figure 1.1b, the responder may reject the the O1 offer if they perceive the

proposer as acting unkindly. This raises two questions: what factors determine the

responder’s perception of being treated kindly or unkindly, and to what extent?

It is easy to answer the first question: apart from the possibility that they can

receive 2 or 0 (if the proposer chooses the O1 offer), the responder can potentially

get 5 in Figure 1.1a and 8 in Figure 1.1b (if the proposer chooses the O2 offer).

Such consideration makes the O1 offer in both games to be unkind.

In terms of to what extent that the proposer is unkind, from the responder’s

perspective, the proposer would receive 8 if they choose the O1 offer, but only 5 if

they choose the O2 offer in Figure 1.1a, and just 2 if they choose the O2 offer in

Figure 1.1b. Given this, the proposer’s decision to choose the O1 offer in Figure 1.1b
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may appear more acceptable than in Figure 1.1a, as no one is expected to help

others at a significant cost on their own payoff.

Our view of the intentional kindness captures two questions outlined above.

Following Rabin (1993) and Dufwenberg & Kirchsteiger (2004), we continue to use

the idea of a reference point to capture intentional kindness. However, instead of

simply using the average of the lowest and highest possible payoffs, we adopt a

different standard to define the reference point to evaluate intentional kindness.

Definition 4 (Reference point). Let the reference point of player i be

πr
i (ci)=∑

s j∈Epwo
j

ϑ(ci, s j) ·πi(ci, s j).

Intention function ϑ(ci, s j). Generally, ϑ(ci, s j) has the following four prop-

erties: (i) ϑ(ci, s j) is non-decreasing in π j(ci, s j),
∂ϑ(ci ,s j)
∂π j(ci ,s j)

≥ 0 where s j ∈ Epwo
j ,

and non-increasing in π j(ci, s̃ j),
∂ϑ(ci ,s j)
∂π j(ci ,s̃ j)

≤ 0 where s̃ j ∈ Epwo
j − {s j}; (ii) if we have

π j(ci, s j) ≥ π j(ci, s̃ j), then we must have ϑ(ci, s j) ≥ ϑ(ci, s̃ j); (iii) we must have

ϑ(ci, s j) > 0 ∀s j ∈ Epwo
j ; and (iv) we have

∑
s j∈Epwo

j
ϑ(ci, s j) = 1. The first two prop-

erties guarantee that others would like to choose the action that brings them a

higher material payoff; the last two properties ensure that the reference point is

located between the lowest and highest material payoff that player i might receive.

For our purpose, the logistic quantal response function (McKelvey & Palfrey, 1995)

can be an appropriate one5: ϑ(ci, s j)= exp[λ·π j(ci ,s j)]∑
ŝ j∈Epwo

j
exp[λ·π j(ci ,ŝ j)]

, as it satisfies all four of

our properties; for simplicity, this specific function will be used with λ=1 in the

rest of the paper.

Reference point, as a crucial part in the kindness evaluation, should reflect two

things: what decision maker i can get (depends on the decision maker’s material

payoffs) and what decision maker i should get (depends on the material payoffs

of other player j). Our definition of reference point suggests such considerations

where πi(ci, s j) measures what player i can get and ϑ(ci, s j) measures what player

i should get and to what extent player j sacrifices their own material payoff in

5Other functions can also be applied as the intention function as long as they satisfy the four
properties.
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helping player i. It is convincing that player j is more likely to choose the action

that can bring themselves a higher material payoff from the perspective of player

i. The intention function ϑ(ci, s j) serves the purpose.

We introduce the new reference point for two main reasons. (1). The drawback

of the existing definition of the reference point is that using “equitable payoff” as a

simple principle to determine kindness means that people do not consider their

decisions deeply and analytically (Messick, 1995). They simply take a quick read

on a situation and then make their decision. However, In most experimental games

and real-world observations, this heuristic processing produces incoherent results,

especially when there is an option for costly punishment (e.g. prisoner’s dilemma

with punishment, ultimatum games). Moreover, if we have more than two actions,

“equitable payoff” might be pointless as it is very easy to reject kind behaviour when

the highest material payoff is too large and easy to accept behaviour that is not

quite kind when the lowest material payoff is very small. (2). our reference point

takes into consideration a player’s material payoff as well as that of their opponent.

It is convincing in explaining the player’s psychological concerns. Besides, applying

our definition in Section 1.4, the efficiency is approved by the experimental results

where the “equitable payoff” fails to predict such empirical results.

Having defined the reference point, we now turn to the intentional kindness

term.

Definition 5 (Intention part). Player i’s belief about how intentionally kind player
j ̸= i is to i at history h ∈ H is given by the following function:

k j(bi,h, ci,h)=πi(bi,h, ci,h)−πr
i (ci,h),

Having πr
i (ci,h) as a reference standard, k j(bi,h, ci,h)> 0 suggests that player

i perceives player j as intentionally kind, k j(bi,h, ci,h) < 0 suggests that player

i perceives player j as intentionally unkind, and k j(bi,h, ci,h) = 0 suggests that

player i perceives player j as neither intentionally kind nor intentionally unkind.

Having introduced Definitions 4 and 5, we can specify player i’s utility from the

intentional kindness intention term. We use Ψi to denote the intentional kindness.
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Definition 6 (Intentional kindness). Player i’s utility from the intentional kindness
at history h ∈ H is defined by:

Ψi(σi,h,bi,h, ci,h)=βi ·k j(bi,h, ci,h) ·π j(σi,h,bi,h),

where βi is an exogenously given non-negative number, which measures how
sensitive player i is to the intention concerns with respect to player j.

A value of βi=0 indicates that player i does not care about whether player

j intends to help or hurt them, while βi>0 means that player i cares about the

underlying intentions of player j and prefers to give player j more material payoff

for kind behaviour and less material payoff for unkind behaviour. The larger βi is,

the more player i cares about the underlying intentions.

1.3.3.2 The consequential kindness

With the intentional kindness termΨi, we find that for most experimental games, it

provides us with a reasonable explanation of the player’s behaviour. However, there

still exists some shortcomings. For example, the experimental results in Figure 1.1c

(Falk et al., 2003) suggest that if we only consider the intention term, then the

responder should always accept the offer since there does not exist any intentions

for the proposer as the proposer is forced to propose the (8,2) offer. In reality, this is

not the case: some responders still reject the offer in the experiment. Therefore, the

intentional kindness term Ψi alone fails to explain players’ reciprocal behaviour.

A large amount of experimental and theoretical evidence demonstrates the

importance of relative gains between players (Fehr & Schmidt, 1999, Bolton &

Ockenfels, 2000, Charness & Rabin, 2002, Falk et al., 2003), especially for those

who are inequity-averse. Fehr & Schmidt (1999) argue that individual behaviour

is driven not only by selfishness but also by concerns for others’ well-being. In

their model, the utility of one player comprises three parts: their own material

payoff, the disutility for gaining less than others, and the disutility for gaining

more than others. From the experiment of (Falk et al., 2003), the authors do find

that non-negligible portions of responders reject the (8,2) offer even it is the only

offer that the proposer can provide, however, almost all responders accept the

offer that takes responders higher material payoffs than the proposer. It is very
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intuitive that if the (2,8) offer is the only offer for the proposer, the responder

have no incentive to reject the offer. This is especially evident in sequential games,

where no player is motivated to choose an action that reduces their own payoff in

order to reduce inequity.

Therefore, in our model, we have the following assumption. In addition to the

purely selfish players, there exist players who dislike unequal outcomes. Specif-

ically, they think they are experiencing consequential unkindness if they are

worse off in material payoffs than their opponents. To illustrate our idea more di-

rectly, we introduce the following notation. We set L i(σi,h,bi,h)=min{πi(σi,h,bi,h)−
π j(σi,h,bi,h),0}, which describes that player i might suffer disutility if and only

if they gain less than player j (a negative difference). This is exactly the envy

component of Fehr & Schmidt (1999) model. We employ the term Φi to denote the

consequential kindness.

Definition 7 (Consequential kindness). Player i’s utility from the consequential
kindness at history h ∈ H is defined by

Φi(σi,h,bi,h)=αi ·L i(σi,h,bi,h),

where αi is an exogenously given non-negative number, which measures how sen-
sitive player i is to the consequence concerns with respect to player j. Different
individuals and different opponents might have different values of αi.

A value of αi=0 indicates that player i does not care about how much player j
might receive compared to what they receive, while αi >0 indicates that player i
suffers disutility when obtaining less than others.

1.3.4 The utility function and the equilibrium

Having defined two important kindness elements, the consequence part Φi and the

intention part Ψi, we can move to the utility of player i in sequential games.
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Definition 8 (The utility function). The utility of player i at history h ∈ H is a
function Ui :∆i ×Bi ×Ci →R defined by

Ui(σi,h,bi,h, ci,h)=πi(σi,h,bi,h, ci,h)+Ψi(σi,h,bi,h, ci,h)+Φi(σi,h,bi,h),

where Ψi represents player i’s utility from the intentional kindness and Φi

represents player i’s utility from the consequential kindness.

The value of αi and βi are large (small) for these who care (do not care) about

reciprocity. The values αi =βi = 0 suggest that player i does not care about kind-

ness, in which case the problem is reduced to classic game theory.

We have by now fully incorporated the reciprocity concerns into our model. We

then look for equilibrium in which player i chooses optimal σi that maximizes their

utility at the given history h. The players’ initial first and second order beliefs

are required to be correct, and will be updated based on the updating rules as

explained in definition 1.

Definition 9 (Expected reciprocity equilibrium). The profile σ∗ = (σ∗
i )i∈N is an

expected reciprocity equilibrium (ERE) if for all i ∈ N and for each history h ∈ H it
holds that

(i) σ∗
i,h ∈ argmax

σi∈∆i,h(σ∗)
Ui(σi,bi,h, ci,h)

(ii) bi =σ∗
j for all j ̸= i

(iii) ci =σ∗
i for all j ̸= i

The equilibrium indicates that at history h each player makes the optimal

decisions given equilibrium strategy and beliefs at other histories. Moreover, first

and second order beliefs are correct and are updated as the game progresses.

Theorem. An expected reciprocity equilibrium always exists.
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The proof follows the strategy in Dufwenberg & Kirchsteiger (2004). The key

point is that that the perceived intentional kindness at some history h depend on

the beliefs and second order beliefs about the actions following all histories. In

other words, the behaviour in unreached histories has effects on the preferences.

So, the backward induction that are usually used for proofs in standard game

theory fails. As in the Dufwenberg & Kirchsteiger (2004), the existence proof can

be addressed by analyzing all histories simultaneously. The detailed proof can be

found in Appendix A.1.

1.4 Applications

In this section we apply our model to two well known and experimentally tested

games: the ultimatum game and the sequential prisoner’s dilemma game. We

discuss the predictions of our model in these games and compare them with those of

Dufwenberg & Kirchsteiger (2004). All games we will analyze are extensive games,

and we mainly focus on the second mover’s behaviour based on the corresponding

experimental settings.

We start with the four mini-ultimatum games introduced as examples in Sec-

tions 1.1 and 3.4, depicted in Figures 1.1a–1.1d. These games were originally

proposed by Falk et al. (2003), who observed that the rejection rate of the O1 offer

decreases progressively from Figure 1.1a to Figure 1.1c. These games illustrate

not only the role of negative reciprocity motives in shaping responder behavior, but

also how contextual variations influence the strength of these motives.

Next, we review the sequential prisoner’s dilemma games with and without

punishment, in which the material payoff structures and original form are taken

from the experimental study of Orhun (2018). These games can help us to under-

stand the positive reciprocity and why decision makers bear a cost to help others.

The experimental results show that the chance of punishment for the second player

decreases their perception of how kind the first player is, which is in agreement

with our predictions (the detailed predictions of Dufwenberg & Kirchsteiger (2004)

can be found in Orhun (2018) paper).

For each game in the following analysis, we begin by presenting the game

structure and the corresponding experimental findings. We then briefly summarize
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the predictions derived from Dufwenberg & Kirchsteiger (2004) and from our own

model. Detailed calculations and extensive proofs are provided in Appendix A.2.

1.4.1 Negative reciprocity: four mini-ultimatum games
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Figure 1.2: Four mini-ultimatum games from Falk et al. (2003)

The ultimatum game is one of the most well-known games that reflects negative

reciprocity. As discussed in previous sections, in the ultimatum game, the proposer

as the first mover allocates a fixed amount of money between them and the re-

sponder. The responder as the second mover either accepts or rejects the offer. If

they accept, the resulting payoffs follow the allocation made by the proposer. In

case of rejection, the payoffs are zero for both the proposer and the responder. The

standard economic theory (rational material payoff maximisers) predicts that the

21



CHAPTER 1. KINDNESS MATTERS: A THEORY OF RECIPROCITY

responder should accept any non-zero offer. While researchers have experimentally

observed that there is a large share of participants reject the non-zero offer (Falk

et al., 2003). Rejection always implies that the responder would like to sacrifice

their own material payoff to punish the proposer ( negative reciprocity). Therefore,

when the responder decides to accept or reject the allocation is crucial.

The experimental ultimatum games analyzed in this section are the same as

those previously introduced in Section 1.1. For ease of reference, we reproduce

these games in Figure 1.2.

Table 1.1: Rejection rate of the O1 offer across games in Figure 1.2

games Rejection Rate (%)

(a) 44.4
(b) 26.7
(c) 18.0
(d) 8.9

The games in Figure 1.2 are proposed by Falk et al. (2003). Experimental

results from Table 1.1 indicate that the rejection rate (by choosing n) after the O1

offer decreases from game (a) to game (d). Falk et al. (2003) find that the differences

in rejection rates between any two games are statistically significant, except for

the difference between game (c) and game (d), which is not significant (p = 0.369,

two-sided). Therefore, the rejection rates across the four games follow this order:

game (a) > game (b) > game (c) = game (d).

Moreover, the rejection rates of the O2 offer are as follows. Nobody rejected the

O2 offer in game (a), and only one subject rejected the O2 offer in game (b). Almost

90% rejected the O2 offer in game (d).

By adopting our model and Dufwenberg & Kirchsteiger (2004) model, predic-

tions can be summarized as follows:

Comparison 1. Efficient Strategy:

Dufwenberg & Kirchsteiger (2004): in games (a) - (d), all strategies are efficient.

Our model: in games (a) - (c), all strategies are efficient; in game (d), for those

strategies of proposer that assign positive probability to the O2 are not efficient.
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Dufwenberg & Kirchsteiger (2004) definition of efficient strategy (see Sec-

tion 1.5.1) implies that all available strategies are efficient. Therefore, choosing

the O1 offer in game (d) can be viewed as a kind action, as accepting the O1 offer

provides the responder with higher material payoffs compared to any response

following the O2 offer. Therefore, if we observe some responders rejecting the O1

offer (by choosing y), we would expect fewer responders to do so in game (d) than

in game (c).

By adopting our model, Definition 2 and Definition 3 tell us that the O2 offer

is not efficient in game (d). If the O2 offer is not efficient, it will not be taken into

account when responder evaluates the kindness of the O1 offer. That is, game (c)

and game (d) are essentially the same for the responder when facing the O1 offer.

Therefore, the rejection rate between game (c) and game (d) should be indifferent.

The prediction from our model is consistent with the experimental findings.

More detailed comparisons about the different definitions of efficient strategies

will be discussed in Section 1.5.1.

Comparison 2. game (a) vs. game (b):

Dufwenberg & Kirchsteiger (2004): the responder is more likely to accept (by

choosing y) the O1 offer in game (a) than in game (b).

Our model: the responder is more likely to accept (by choosing y) the O1 offer

in game (b) than in game (a).

From the perspective of accepting the O1 offer in game (a) and game (b), our

model and that of Dufwenberg & Kirchsteiger (2004) yield completely opposite

predictions.

In their model, the kindness of the proposer depends entirely on the responder’s

own payoff. Specifically, the maximum payoff for the responder is 5 (y after the O2

offer) in game (a) and 8 (y after the O2 offer) in game (b). Choosing the O1 offer

in game (b) yields a payoff that is further from this maximum than in game (a).

As a result, the O1 offer in game (b) is perceived as less kind than the O1 offer

in game (a), making the responder less likely to accept it. Therefore, their model

predicts that the responder is more likely to accept the O1 offer in game (a) than in

game (b). Detailed mathematical calculations are provided in Appendix A.2.
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In our model, by contrast, the perceived kindness of the proposer depends on

both the responder’s payoffs and the proposer’s payoffs. Specifically, in addition to

considering what the responder could receive—as in Dufwenberg & Kirchsteiger

(2004)—our model also accounts for what the responder should receive, by assigning

different weights to the proposer’s possible choices. Intuitively, the O1 offer should

be more likely to be chosen in game (b) than in game (a), because the O2 offer is

significantly worse for the proposer in game (b) than in game (a). It is therefore

more reasonable to expect the proposer to choose the O1 offer in game (b). As a

result, the responder should be more likely to accept the O1 offer in game (b) than

in game (a). Detailed mathematical calculations are provided in Appendix A.2.

Moreover, both our model and that of Dufwenberg & Kirchsteiger (2004) predict

that the responder is more likely to accept the O1 offer in game (c) and game (d)

than in game (a) and game (b). In games (c) and (d), neither model attributes

negative intentions to the proposer. In contrast, choosing the O1 offer in games (a)

and (b) is perceived as reflecting negative intentions. As a result, the O1 offer is

more likely to be accepted in games (c) and (d) than in games (a) and (b).

The prediction from our model is totally consistent with the experimental find-

ings – the rejection rates across the four games: game (a) > game (b) > game (c) =
game (d).

Comparison 3. game (c) vs. game (d):

Dufwenberg & Kirchsteiger (2004): the responder will always accept the O1

offer (by choosing y) in game (c) and game (d).

Our model: the responder will reject the O1 offer (by choosing n) in game (c)

and game (d) only if αR > 1/3.

Dufwenberg & Kirchsteiger (2004) suggest that in the absence of any intentions,

the responder will behave like a rational player. This is why their model predict

choice y following the O1 offer in game (c). In the case of game (d), as previously

mentioned, the O1 offer is considered a kind action in their model, and thus, no

one would be expected to reject a kind offer.

In our model, we make different predictions. First note that based on definition

of efficient strategy, the O1 offer is the only reasonable offer for proposer, so the
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intentional kindness part kP is zero for the responder after the O1 offer in both

game (c) and game (d). Furthermore, the O1 offer is an unequal offer as accepting

it takes responder less than the proposer. The utility of playing y after the O1

offer: UR(y|O1) = 2+ (2− 8)αR and of playing n after the O1 offer: UR(y|O1) =
0+ (0−0)αR . Therefore, if αR > 1/3, UR(y|O1)<UR(n|O1) must hold. This implies

that the responder will reject the O1 offer when αR > 1/3. The result indicates that

the aversion against inequitable outcomes plays a role. This is the same as the

experimental findings where 18% of responders reject the O1 offer when proposer

has no options.

This is also why our model incorporates consequential kindness: even with-

out intentions, people’s behavior may still deviate from the predictions of purely

rational choice.

1.4.2 Positive reciprocity: the sequential prisoner’s dilemma
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Figure 1.3: The sequential prisoner’s dilemma with/without punishment

In the sequential prisoner’s dilemma, the first mover can either cooperate or defect.

After observing the first mover’s choice, the second mover faces the same choice.

The standard subgame-perfect solution is that both parties defect. However, many

experimental studies reveal that mutual cooperation might be another possible

solution (Ahn et al., 2001, Dhaene & Bouckaert, 2010, Charness et al., 2016, Engel
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& Zhurakhovska, 2016, Gächter et al., 2021, Baader et al., 2024, Schneider &

Shields, 2022).

In this section we analyse the sequential prisoner’s dilemma with and without

punishment, as shown in Figure 1.3, the settings are proposed by Orhun (2018).

Their experimental results reflect the issues from the existing models6. In Fig-

ure 1.3, m = 1.5 means that player 2 has the option to punish player 1 (with cost)

if player 1 treats them unkindly by choosing D. With m = 6.5, punishment is not

available, while player 2 has a chance to reward player 1’s unkind behaviour D at

a cost.

Table 1.2: Results of the game shown in Figure 1.3

Version 2 Choice (c/p|D) (%) 2 Choice (c|C) (%)

m = 1.5 25.00 34.55
m = 6.5 04.17 56.52

Table 2 lists the players’ behaviour in experiments on the game from Figure 1.3

with different values of m. First, we notice that almost no subject (4.17%) would

like to reward player 1’s unkind behaviour D at a cost (choice (c|D) and m = 6.5),

while one quarter subjects would like to punish player 1’s unkind behaviour D
at a cost (choice (p|D) and m = 1.5). More importantly, the experimental results

suggest that more player 2s choose to cooperate following player1’s cooperation

when punishment for player 1’s defection is absent than when it is available.

Comparison 4. m = 1.5 vs. m = 6.5:

Dufwenberg & Kirchsteiger (2004): Player 2 is more likely to cooperate (c) given

player 1’s cooperation (C) when m = 1.5 than when m = 6.5.

Our model: Player 2 is more likely to cooperate (c) given player 1’s cooperation

(C) when m = 6.5 than when m = 1.5.

Orhun (2018) remarks the predictions of Dufwenberg & Kirchsteiger (2004)

under different treatments (see Appendix A.2). The prediction from Dufwenberg &
6The Dufwenberg & Kirchsteiger (2004) model predicts a more positive reciprocity environment

in the case with m = 1.5 than when m = 6.5. Hence, player 1 is more kind when m = 1.5 than when
m = 6.5.
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Kirchsteiger (2004) model suggests that player 2 is more likely to cooperate (by

choosing c) given that player 1’s cooperation (player 1 chose C) when m = 1.5 than

when m = 6.5. The reason is that the chance of punishment potentially reduces

the minimum payoff (is 1 when m = 6.5, is smaller than 1 when m = 1.5 as player

2 may choose to punish player 1’s defection) of player 2. This further implies the

kindness of player 1 in m = 1.5 is larger than m = 6.5 from the perspective of

player 2. Therefore, player 2 will be more likely to cooperate after cooperation

when m = 1.5 than m = 6.5.

Unfortunately, the experimental results tell a different story from the pre-

dictions of Dufwenberg & Kirchsteiger (2004). To understand why punishment

decreases player 2’s propensity to cooperate after player 1’s cooperation, let us try

to infer player 1’s intentions. In the treatment with m = 6.5, player 2 may interpret

player 1’s cooperation as a willingness to sacrifice their own material payoff to

benefit player 2—that is, cooperation signals kindness. However, such intentions

are less apparent when m = 1.5, as player 2 cannot clearly infer player 1’s motives.

There are two possible reasons for player 1 to cooperate. One is the same as in

the m = 6.5 treatment. The other is more strategic: to avoid punishment. Conse-

quently, player 2 is more likely to cooperate after player 1 cooperates in the m = 6.5

treatment (56.52%) than in the m = 1.5 treatment (34.55%).

Our model fully captures this idea. To see this, our model suggests a higher

reference point when m = 1.5 than when m = 6.5. As noted in Definition 5, a higher

reference point implies a lower value of perceived kindness from player 1, which

in turn leads to a weaker reciprocal response. Therefore, Player 2 is more likely

to cooperate after cooperation when m = 6.5 than when m = 1.5. Our prediction is

consistent with the experimental findings. Detailed mathematical calculations are

provided in Appendix A.2.

There are more experimental sequential prisoner’s dilemma games can be

explained by our model. For example, one can apply the same method to check Ahn

et al. (2007) sequential prisoner’s dilemma games with asymmetric payoffs. Our

model also get the same predictions as their experimental findings suggest.
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1.5 Discussion

1.5.1 Comparison of efficient strategy

1.5.1.1 Three definitions of efficient strategy

The definition of efficient strategy in Rabin (1993) is a set that depends on player

i’s beliefs. It can be expressed as:

ERabin
i (bi)=

 σi ∈∆i

if ∄ σ′
i ∈∆i such that:

(i)πk(σ′
i,bi)≥πk(σi,bi) for all k ∈ {i, j}

(ii)πk(σ′
i,bi)>πk(σi,bi) for some k ∈ {i, j}


This definition indicates that player i’s action is efficient if and only if it is

Pareto efficient given the first-order belief bi. Consider Figure 1.4 for a = 2.5

as an example (similar example also provided in Dufwenberg & Kirchsteiger

(2019)). Assume that player 1 believes player 2 will choose d following D. Assume

furthermore that player 1 assigns probability p to the prospect that player 2 will

choose c following C. Now ask: is player 1 kind? According to the ERabin
i (bi), the

answer is yes if and only if p ≤ 1/2; if p > 1/2 then choice D no longer sits in

ERabin
i (bi). Since Rabin (1993) cares about normal-form games, thus they do not

have belief updating rules like in Dufwenberg & Kirchsteiger (2004) and our model,

it retains some limitations when we study the extensive-form games (see discussion

in Dufwenberg & Kirchsteiger (2004) paper as well).
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Figure 1.4: The sequential prisoner’s
dilemma
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In order to extend the study to a more general analysis, Dufwenberg & Kirch-

steiger (2004) have proposed another definition of efficient strategy that does not

depend on player’s beliefs; they use the following definition:

EDK
i =

 σi ∈∆i

if ∄ σ′
i ∈∆i such that:

(i)πk(σ′
i,h,σ j,h)≥πk(σi,h,σ j,h) for all h,σ j,k ∈ {i, j}

(ii)πk(σ′
i,h,σ j,h)>πk(σi,h,σ j,h) for some h,σ j,k ∈ {i, j}


In this definition, they point out that player i’s strategy should be efficient if it

is Pareto efficient for at least one strategy for player j. That is, a strategy is not

efficient if there is another strategy that leads to a higher material payoff for any

player in the game. This definition performs better than Rabin (1993) definition

in many situations, but we will see that it still retains a series of limitations and

paradoxes.

In our definition, to understand the truly intentional kindness of the player (if

they aim to be kind or avoid punishment), we propose a special second-order belief

Cpwo
i through Definition 2, which is based on the intuition of the potential worst

outcome. The definition can help us to select the efficient strategies:

Epwo
j =

 σ j ∈∆ j

if ∄ σ′
j ∈∆ j such that for all cpwo

i ∈ Cpwo
i and h ∈ H:

(i) πk(σ′
j,h, cpwo

i )≥πk(σ j,h, cpwo
i ) ∀k ∈ {i, j} and

(ii) πk(σ′
j,h, cpwo

i )>πk(σ j,h, cpwo
i ) for some k ∈ {i, j}



1.5.1.2 Paradox with the definition of efficient strategy

When considering players’ intentions, some strategies are inherently wasteful.

Before evaluating the kindness of other players, it is essential to rule out such

strategies. To address this, three definitions are proposed as above. However,

existing definitions also raise certain issues.

Let us take the game in Figure 1.4, with a = 0 and a = 2.5, as one example.

Note that player 1’s C can always benefit player 2 compared with player 1’s D
since player 2 can receive more material payoffs no matter what their response is

(4,5> 1,2.5), but with different intentions under different a. In the case of a = 2.5,

29



CHAPTER 1. KINDNESS MATTERS: A THEORY OF RECIPROCITY

player 1 can receive at least 2.5 (if player 2 plays d) when player 1 chooses D.

On the other hand, if player 1 plays C, they might receive 1 (if player 2 plays d)

although they might get a positive payoff of 4 (if player 2 plays c). Here we might

infer that since player 1 puts themselves in a fragile position to help player 2

obtain a larger payoff, player 1 is kind. When a = 2.5, we can see the limitation

of ERabin
i (bi) as discussed before. Our definition and Dufwenberg & Kirchsteiger

(2004)’s definition both indicate that C and D are efficient. Under Rabin’s definition,

however, the action D is efficient only when player 1’s first-order belief b1(c|C)

is greater than 1/2, otherwise only C is efficient. Therefore, ERabin
i (bi) rules out

some strategies that are efficient. Moreover, ERabin
i (bi) excessively depends on the

player’s beliefs, so is not suitable for the study of sequential games as discussed in

Dufwenberg & Kirchsteiger (2004).

On the other hand, in the case of a = 0, the worst outcome of playing D is 0 (when

player 2 plays d)7, which is strictly worse than playing C regardless of player 2’s

response. Therefore, we cannot infer any intentional kindness of player 1 even

though they choose C. Under this scenario, we can see drawbacks of Dufwenberg &

Kirchsteiger (2004)’s definition of efficient strategy. Our definition suggests that D
is inefficient, which is consistent with our inference. In Dufwenberg & Kirchsteiger

(2004), however, both C and D are efficient. Dufwenberg & Kirchsteiger (2004)’s

definition predicts the same value of kindness for player 1 no matter what the

value of a is. This is a contradiction.

Isoni & Sugden (2019) also propose a paradox of trust when studying reciprocity

with existing models. They argue that although Dufwenberg & Kirchsteiger (2004)’s

model is compatible with the properties of the trust world, it does not provide a

psychologically convincing explanation for why reciprocal kindness can clarify

the trust world8. In Figure 1.5, for example, having G1: (x, y)= (1/2,−1/2) and G2:

(x, y)= (1/2,1/2). The paradox appears once we apply their definition. Intuitively, if

send is perceived as a kind behaviour in G1, then send should also be perceived as

kind in G2, as the only distinction between the two games is that material payoff

for keep after send for player 2 is smaller in G1 than in G2. But in Dufwenberg &

7This is in fact the only realistic result, since no one is willing to hurt themselves to help an
unkind person.

8They further argue that Dufwenberg & Kirchsteiger (2004)’s new definition in Dufwenberg &
Kirchsteiger (2019) still cannot explain the trust world.
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Kirchsteiger (2004), hold is not efficient in G2 (suggesting that send should result

in 0 kindness) and hold is efficient in G1 (suggesting that send should result in

positive kindness). Again, this contradicts intuition.

This evidence encourages us to propose a more appropriate methodology to

avoid the contradiction, especially when one is able to punish others. Definitions 2

and 3 serve our purpose and provide us with a plausible explanation. If we apply

our definition of efficient strategy, in the game in Figure 1.4, D is efficient when

a = 2.5 but is not efficient when a = 0. In Figure 1.5, for both G1: (x, y)= (1/2,−1/2)

and G2: (x, y)= (1/2,1/2), only send is efficient. Thus the paradox is resolved.

1.5.1.3 Connections between the three definitions

As we have mentioned, Rabin (1993) definition depends on the players’ beliefs9.

It might reject some actions that truly matter, and might cause contradictions in

sequential games. Dufwenberg & Kirchsteiger (2004)’s definition does not indicate

too much psychological concerns and it leads to paradoxes in many games as indi-

cated in Isoni & Sugden (2019).

Comparison 5. Consider the efficient minimum material payoff of player i ∈ N.

Then we must have:

Epwo
j ⊆ EDK

j and min
σ j∈EPWO

j

πi(σ j,σi)≥ min
σ j∈EDK

j

πi(σ j,σi).

Our definition and that of Dufwenberg & Kirchsteiger (2004) are both indepen-

dent of the players’ initial beliefs. However, our definition of an efficient strategy

depends on a specific second-order belief. To prove Comparison 1, first note that

the Dufwenberg & Kirchsteiger (2004) model initially assumes all strategies are

possible. They then exclude a strategy σ′
j if there exists another strategy σ j that

yields Pareto-superior outcomes for all possible strategies (∆i) of the other player.

In our model, we first define Cpwo
i , which is a subset of ∆i, i.e., Cpwo

i ⊆ ∆i.

Therefore, when comparing whether strategy σ′
j yields Pareto-superior outcomes

relative to σ j, any strategy deemed efficient under our definition must also be

9In our study, we mainly discuss extensive-form games, thus in this section, we compare
different definitions of efficient strategy in the sequential environment.
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efficient under Dufwenberg & Kirchsteiger (2004)’s definition—but vice versa.

Therefore, Epwo
j ⊆ EDK

j .

Furthermore, because our model excludes more (or equal) strategies than

Dufwenberg & Kirchsteiger (2004) model, the minimum material payoff under

efficient strategy in our definition should be less than or equal to Dufwenberg

& Kirchsteiger (2004)’s definition. This Comparison also suggests that a player’s

behaviour would be perceived as less kind and predicts less positive reciprocity in

our model than in Dufwenberg & Kirchsteiger (2004) if we use the same reference

point standard.

Comparison 6. If there is a game such that ERabin
i = Epwo

i = EDK
i after ruling

out a set of strategies, then these strategies must be strictly worse than all other

strategies for both players.

To see this, according to three definitions of efficient strategy. ERabin
i depends on

the player’s beliefs, so when one strategy is not strictly better than another strategy

for both players, each strategy might be efficient or even both strategies might be

efficient strategies (because it depends on the player’s beliefs). On the other hand,

for Epwo
i and EDK

i , the efficient strategy is fixed because it is independent of the

player’s initial beliefs. Therefore, if there is a game such that ERabin
i = Epwo

i = EDK
i

after ruling out a set of strategies, then these strategies must lead both players to

strictly worse payoffs. In Figure 1.5, for example, with G2 : (x, y)= (1/2,1/2), hold
must be a wasteful strategy. Therefore, under any of ERabin

i , Epwo
i or EDK

i , only

send is efficient.

1.5.2 Revisiting the sequential prisoner’s dilemma

In the last subsection, we have discussed the differences between the three defini-

tions of efficient strategies. In this section, we also want to discuss the intentional

kindness in our model and in Dufwenberg & Kirchsteiger (2004).

In Dufwenberg & Kirchsteiger (2004), players derive direct utility from their

own material payoffs and psychological utility from perceived kindness. In the

most basic formulation of kindness, a player’s kindness is calculated relative to
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a reference point. In their model, this reference point is defined by a specific

version of the equitable payoff rule—namely, the average of the player’s highest

and lowest possible material payoffs. If a player chooses an action that results in

a final material payoff for the decision maker that exceeds this reference point,

they are perceived as kind. Otherwise, they are not. Notably, in their framework,

the decision maker considers only their own material payoffs. In other words, a

player’s kindness or unkindness is assessed solely based on how their actions affect

the decision maker’s outcome, without accounting for how much this player gives

up their own material payoff to help or hurt the decision maker.

To more directly illustrate how our model differs from that of Dufwenberg &

Kirchsteiger (2004), we use a simple sequential prisoner’s dilemma as a demonstra-

tion. To be the standard sequential prisoner’s dilemma, we assume that 4> n > 1

and 4> m > 1

4
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c d c d
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Figure 1.6: The standard sequential prisoner’s dilemma

Prediction 1. Dufwenberg & Kirchsteiger (2004)

(1) Player 2 is more likely to cooperate (c) after player 1’s cooperation (C) when

n decreases.

(2) Player 2’s behavior after player1’s cooperation (c) remains unchanged when

m varies.
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Prediction 2. (our model)

Player 2 is more likely to cooperate (c) after player 1’s cooperation (C) when

(1) n decreases, and

(2) m increases.

See proof in Appendix A.3.

First, when the value of n varies, our model and Dufwenberg & Kirchsteiger

(2004) predict the same result. A smaller value of n suggests a larger kindness from

the player 1 (suppose player 1 chooses C) as player 1’s cooperation helps player

2 avoid a worse situation of getting n. Thus player 1 deserves a more generous

response.

The second aspect concerns the value of m. Dufwenberg & Kirchsteiger (2004)

suggests that no matter how the value of m changes, player 2’s behavior following

player 1’s cooperation remains unchanged. This contradicts both our intuition and

the experimental results (also the findings presented in Chapter 2). When m is

larger, choosing D should be a safer option for player 1. Therefore, when player 1

still chooses C, they appear more kind, which in turn prompts a more cooperative

response from player 2. Our model makes such a prediction.

Our prediction also highlights the different impacts of n and m. This may

help explain why some studies (e.g., Baader et al. (2024)) do not find evidence

of reciprocity, as they typically employ symmetric sequential prisoner’s dilemma

games where m = n. Our result also points to a new experimental direction for

investigating the existence of reciprocity and, more importantly, what constitutes

reciprocity.

1.6 Conclusion

In this paper, we propose a model of reciprocity that aims to explain a decision

maker’s reciprocal behaviour by introducing new definitions of efficient strategy,

intentional kindness, and consequential kindness.

Our definition of efficient strategy successfully solves the paradox in the trust

game (Isoni & Sugden, 2019) and successfully explains the results of a range of

experimental studies (Falk et al., 2003). We also compare our definition with two

34



1.6. CONCLUSION

well-known definitions of efficient strategy from Rabin (1993) and Dufwenberg &

Kirchsteiger (2004). Then, we split kindness into two parts: intentional kindness

and consequential kindness. We argue that when a decision-maker evaluates the

intentional kindness of others, they consider not only their own payoffs but also

the extent to which others sacrifice their own payoffs to help or harm them. This

is also what experimental studies suggest (Falk et al., 2003, 2008, Orhun, 2018,

Ahn et al., 2007). We incorporate this idea with a new definition of reference point.

Our model also incorporates consequential kindness, assuming that players care

about the distribution of outcomes as well. Then we finish our model and develop

the concept of ERE and prove its existence.

We apply our model to some famous experimental games such as the ultimatum

game, the sequential prisoner’s dilemma with/without punishment. Our model is

in line with these experimental findings.

According to our theoretical framework, there are several possible further

directions can be studied. First, we could focus on a more general case, with more

players and more stages in the game. It must be more complicated if players

need to interact with more people and play more stages. For example, we could

consider whether the updating rules still work in this case (Jiang & Wu, 2019).

Moreover, reciprocity under uncertainty is also important since players often have

limited information about their opponents (Sohn & Wu, 2022). Finally, we could

test whether our model produces the correct predictions in additional experimental

settings; for example, most of experimental work on sequential prisoner’s dilemma

games always starts with symmetric games (Baader et al., 2024, Mengel, 2018).

As we have previously discussed, a bidirectional impact may shape the decision

maker’s choices.
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2
ON THE NATURE OF CONDITIONAL COOPERATION

2.1 Introduction

Conditional cooperation has been a phenomenon documented in both economic

literature (Fischbacher et al., 2001, Frey & Meier, 2004, Cubitt et al., 2017) and

outside economics (Axelrod & Hamilton, 1981, Rand & Nowak, 2013). Conditional

cooperation implies that a player is more prone to cooperate (in a social dilemma)

if they believe that that their counterpart would be cooperating. Given it’s defini-

tion conditional cooperation has been associated with reciprocity and should be

context dependent. While conditional cooperation has been indirectly documented

in various social dilemmas if we consider its context-dependent character (or reci-

procity), there is somewhat a lack of clean evidence for it that is not confounded by

pro-social preferences and other motives. This paper provides this evidence using a

novel experimental design. Moreover, we aim at further studying the link between

reciprocity and conditional cooperation.

The prisoners dilemma is the standard setting for studying conditional coop-

eration (Dal Bó & Fréchette, 2011). Figure 2.1 presents the standard prisoners

dilemma (PD) as used for studies of repeated games. However, an important issue

when studying conditional cooperation in repeated context using the prisoners
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dilemma is that path dependence might have an overwhelming effect (Cooper et al.,

1996, Dal Bó & Fréchette, 2019). Thus, more recent studies introduced a sequential

PD (SPD) as depicted on Figure 2.2 to study conditional cooperation (Baader et al.,

2024). In this setting the action of the first-mover is known to the second-mover

before she is taking her choice. Thus, second-mover choosing to cooperate after

the first-mover has chosen to cooperate, despite it being less profitable, constitutes

conditional cooperation.

More importantly, it is crucial to recognize that the traditional experimental

setting of symmetric SPDs may cause a non-negligible confound when studying

the nature of conditional cooperation, as different payoff parameters may influence

conditional cooperation in totally different directions. Therefore, one key distinction

between our experimental design and the existing experimental literature on SPDs

is that we do not require the game to be symmetric (e.g., xCC
1 = xCC

2 is not required).

Our experimental design allows us to identify the effects of all payoff parameters

separately, thereby avoiding any confound and enabling a cleaner test of conditional

cooperation.

Player 2

Player 1

Cooperate

Cooperate

Defect

Defect

xCC
1 , xCC

2

xDC
1 , xDC

2

xCD
1 , xCD

2

xDD
1 , xDD

2

Figure 2.1: The prisoner’s dilemma

xCC
1

xCC
2

xDD
1xDC

1
xCD

2

xCD
1

xDC
2 xDD

2

First-mover

Second-mover Second-mover

Cooperate Defect

Cooperate Defect Cooperate Defect

Figure 2.2: The sequential PD

Conditional Cooperation In order to detect the evidence for the presence of

conditional cooperation we ask the subjects to make decisions in various modified

dictator games and SPDs. The modified dictator games (simple money allocation

task between them and another subject in the room) imitate both cooperation path

(i.e., after first-mover’s cooperation) and defection path (i.e., after first-mover’s

defection) of the SPD. Hence, we can perform direct within-subject comparisons of

conditional cooperation controlled for other motives by contrasting their decisions

in cooperation path or defection path of SPD to their decision in the corresponding

modified dictator game (DG). We find that, on average, subjects are 10 percentage
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points more likely to cooperate in SPD than in the corresponding modified dictator

games in the cooperation path. Moreover, contrasting the subjects’ decisions on

defection path in SPD to the corresponding modified dictator games we find no

evidence of significant difference. The observation on the defection path is reason-

able as these who chose (xDC
1 , xDC

2 ) indicates that they are extremely pro-social

given that xDC
1 >> xDC

2 . Consequently, no much difference observed between the

two games, suggesting that the second-mover’s behavior following defection is

relatively stable. Therefore, when analyzing conditional cooperation, it is sufficient

to focus on the second-mover’s response to the first-mover’s cooperation. Taken

together, these observations provide clear evidence of conditional cooperation in

our analysis.

Reciprocity Reciprocity can be linked to conditional cooperation in multiple

ways. The most straight-forward is the idea that if a first-mover chooses to co-

operate, then they are performing a generous action, and thus deserve positive

payback. However, depending on the extent to which this action – cooperation by

the first-mover – is perceived as generous, some indirect effects of reciprocity might

be present.

In particular, when contrasting two games a second-mover might be more prone

to conditionally cooperate in the game where they would face a much worse outcome,

xDD
2 if both players defected (Figure 2.1 and Figure 2.2), as the perceived generosity

of an action – the first-mover cooperation – should increase with the magnitude

of the favor it does to that individual (the second-mover). This is also widely

documented in existing reciprocity literature (see Dufwenberg & Kirchsteiger,

2004). However, little discussed in the literature is that the perceived generosity

of an action should also depend on how much one has to abandon to do the favor.

In the PD / SPD context this could be measured by xDD
1 (Figure 2.1 and Figure

2.2), which is the payoff a first-mover would receive if both players defected. The

intuition is that a large xDD
1 should imply that defection is actually a relatively safe

option for first-mover since the second-mover is likely to respond to cooperation by

defecting. Hence if the first-mover performs a more trusting action by cooperating,

they are more deserving of a positive response.

Note that xDD
1 , xDD

2 is, to some extent, a relevant outcome payoff, as we observe
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second-mover defecting in 79.37% of cases after the first-mover defected. Although

the effects of xDD
1 , xDD

2 on conditional cooperation have been studied by Baader

et al. (2024), their findings provide limited evidence supporting xDD
1 , xDD

2 as an

explanation for conditional cooperation. This limitation may come from their use

of a symmetric SPD, where xDD
1 = xDD

2 , potentially leading to a confound.

An even more interesting effect is the effect of (xDC
1 , xDC

2 ) payoff (Figure 2.1

and Figure 2.2). While it is likely to be rather irrelevant in the case of an SPD, it

is instrumental in standard repeated PD since first-mover defecting and second-

mover cooperating would have positive probability. Hence, demonstrating that this

payoff affects the rate of conditional cooperation in SPD would be strong indicator

also for PD. Note that effect of this payoff can be measured in isolation only using

the asymmetric SPD, as in the symmetric case it would also affect the (xCD
1 , xCD

2 )

payoff (Figure 2.1 and Figure 2.2) which arises when the first-mover cooperates

and the second-mover defects.

Hence, in order to measure the effects of these payoffs we use a series of

asymmetric SPDs, changing each payoff separately. In particular, we expect the

second-mover to be more reciprocal, if first-mover has chosen to cooperate, when

the payoffs after the first-mover’s defection are (i) more attractive to first-mover

(first-mover gets more), and (ii) less attractive to second-mover (second-mover gets

less). We find evidence supporting the reciprocal patterns in our data. That is, the

second-mover is more reciprocal for corresponding changes in xDD
1 and xDD

2 and

xDC
2 , but we find little support of the effect of xDC

1 .

Literature Initially the idea of conditional cooperation has been introduced by

Fischbacher et al. (2001). This manner of behavior has been documented in various

social dilemmas, including PDs (static one-shot, repeated and sequential) (Schmidt

et al., 2001, Engel & Zhurakhovska, 2016, Gächter et al., 2024) as well as linear

public good games (Thöni & Volk, 2018, Kirchkamp & Mill, 2020, Bilancini et al.,

2022, Katuščák & Miklánek, 2023). Note that PD presents a better opportunity to

manipulate one’s beliefs about another person cooperation because there is less

strategic uncertainty and rather clear meaning behind each of the payoffs. Hence,

various studies have focused on different payoff manipulations of the payoff matrix

in the PD (see Mengel (2018) for the overview of the literature). Moreover, there
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are several theories about indexes that predict well the cooperation rates (see e.g.

Rapoport (1967), Ahn et al. (2001), Mengel (2018), Gächter et al. (2021)).

However, for the studies of conditional cooperation SPD presents a better de-

sign, because it fixes the beliefs of second-mover by the fact that she takes her

decision after observing the action of first-mover. Thus, several studies have pro-

vided evidence in support of conditional cooperation using the SPDs. In particular,

increasing the gains from both players’ cooperation leads to the higher cooperation

by both first-mover and second-mover (Schneider & Shields, 2022). The rate of

conditional cooperation is higher when free-riding results in greater losses on the

first-mover and smaller gains for the second-mover (see Baader et al., 2024). More-

over, if the defection is made more attractive for both first-mover and second-mover

it results in lower rate of conditional cooperation (see Clark & Sefton, 2001). How-

ever, most of the previous studies used symmetric SPDs. This restriction implies

that when changing some of the payoffs on the cooperation path, the corresponding

payoffs on defection path would also change. Therefore, we resort to the study of

asymmetric SPDs, which have been relatively little used previously (see Ahn et al.,

2007).

Structure The remainder of the paper is organized as follows. Section 2 provides

the details of the experimental design, procedures and establishes the hypotheses

Section 3 presents the experimental results. Section 4 discusses the existing theo-

ries. Section 5 concludes. Additional empirical results and further analysis will be

provided in the Appendix B.

2.2 Experimental Design, Hypotheses and
Procedures

2.2.1 Sequential prisoner’s dilemma

2.2.1.1 Design

Our experiment uses a sequential version of the Prisoner’s Dilemma (see Figure

2.3) where the first-mover chooses to Cooperate or Defect, and after observing this
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choice the second-mover responds with either Cooperate or Defect.

xCC
1

xCC
2

xDD
1xDC

1
xCD

2

xCD
1

xDC
2 xDD

2

First-mover

Second-mover Second-mover

Cooperate Defect

Cooperate Defect Cooperate Defect

Figure 2.3: Sequential prisoner’s dilemma

We argue that the SPD is better suited to studying other-regarding preferences

and reciprocity than the more familiar simultaneous version of the game (see

Figure 2.1). In the simultaneous version the presence of cooperation may be due

to different motives, such as inequity aversion or altruism or reciprocity. While

reciprocity requires a subject to be responding to a belief about their opponent’s

choice, so that they cooperate if they believe their opponent will also cooperate, and

defect if they believe their opponent will also defect (Rabin, 1993). Accurate beliefs

are hard to obtain in the lab even though there are some methods that are theoret-

ically perfect (Hossain & Okui, 2013, Charness et al., 2021). So it is problematic

to interpret cooperation in the simultaneous version. In the SPD, second-movers

respond to observed choices, thus there is no concern about unobserved beliefs,

enabling us to test how their choice is conditional on first-mover’s choice.

The key component of SPD is depicted in Figure 2.3. To make this game tree

into a prisoner’s dilemma the payoffs should satisfy the following properties: xCD
2 >

xCC
2 > xDD

2 > xDC
2 , xDC

1 > xCC
1 > xDD

1 > xCD
1 and xCC

1 + xCC
2 > {xCD

1 + xCD
2 , xDC

1 + xDC
2 }.

Note that we are using the asymmetric (sequential) prisoners dilemma to make

sure that we can change payoffs one-by-one thus providing a cleaner test.

In each SPD, mutual cooperation maximizes the players’ joint earnings, yielding

payoffs of xCC
1 to the first mover and xCC

2 to the second mover. However, once

the first mover cooperates, the second mover can increase her own earnings by

41



CHAPTER 2. ON THE NATURE OF CONDITIONAL COOPERATION

defecting, which leaves the first mover with xCD
1 and gives the second mover xCD

2 .

If the first mover instead defects, the second mover’s best reply is likewise to defect,

producing payoffs of xDD
1 and xDD

2 for the first and second movers, respectively.

Because each player is assumed to maximize only her own payoff—and this is

common knowledge—the game has a single equilibrium: the first mover defects,

and the second mover defects regardless of the first mover’s action.

A

B

Your choice
(First Mover)

Second Mover
choice

Second Mover paymentYour payment

A

A

B

B

20 tokens

600 tokens

1000 tokens

200 tokens

600 tokens

1000 tokens

200 tokens

180 tokens

Round 3 out of 32

Second Mover
choice

(a) first-mover

A

B

First Mover
choice

Your choice
(Second Mover)

Your choice
(Second Mover)

First Mover payment Your payment

A

A

B

B

580 tokens

1000 tokens

180 tokens

600 tokens

180 tokens

200 tokens

600 tokens

1000 tokens

Round 25 out of 32

(b) second-mover

Figure 2.4: Interface of the experiment: SPD

In the experiment, each subject had to make decisions in 16 such SPD games

with varying payoffs. Every subject takes decisions for in both the first- and

second-mover roles. Moreover, we use the strategy method to elicit the second-

movers choices in order to ensure that we collect complete data and minimize path

dependence. An example of the interface is provided in Figure 2.4. The left panel

shows the interface for the first-mover decisions while the right panel shows the

interface for the second-mover decisions. The order of the games is randomized

during the experiment.

Table 2.1 presents the parametrization of the 16 SPDs. We note two important

features of this parametrization. First, we ensure that payoffs change one-by-one

thus allowing for the cleaner direct evidence. Second, we can proceed with direct

tests for several hypotheses. For example, the difference between G1 and G2 is

only in xDD
2 , thus allowing a direct of conditional cooperation depending on on

this payoff parameter. For example, existing reciprocity theories (Dufwenberg &

Kirchsteiger, 2004) would imply that the second-mover is more likely to conditional

cooperate in G1 compared to G2.
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Table 2.1: Payoff parameters in SPDs

Game xCC
1 xCC

2 xCD
1 xCD

2 xDC
1 xDC

2 xDD
1 xDD

2

G1 600 600 180 1000 1000 180 200 200
G2 600 600 180 1000 1000 180 200 580
G3 600 600 180 1000 1000 180 580 200
G4 600 600 180 1000 1000 180 580 580
G5 600 600 180 1000 700 180 200 200
G6 600 600 180 1000 1000 20 200 200
G7 600 600 180 1000 700 20 200 200
G8 600 600 180 700 1000 180 200 200
G9 600 600 20 1000 1000 180 200 200
G10 600 600 20 700 1000 180 200 200
G11 600 850 180 1000 1000 180 200 200
G12 850 600 180 1000 1000 180 200 200
G13 850 850 180 1000 1000 180 200 200
G14 600 600 180 700 700 180 200 200
G15 600 600 20 1000 1000 20 200 200
G16 600 600 20 700 700 20 200 200

2.2.1.2 Hypotheses

We aim to explore why second-mover chooses to cooperate after the first-mover has
cooperated by systematically varying the payoffs one-by-one. To formulate our

hypotheses, we classify the payoffs into two dimensions based on the properties of

the SPD. The first dimension covers payoffs in the cooperation path (first-mover

chose to cooperate), that is, xCC
1 , xCC

2 , xCD
1 , and xCD

2 . The second dimension covers

payoffs in the defection path (first-mover chose to defect), that is, xDC
1 , xDC

2 , xDD
1

and xDD
2 .

We start with a simple case—the cooperation path—where the associated pay-

offs are directly related to the final outcomes of both first- and second-movers. If we

consider only payoff changes in the cooperation path while holding the payoffs in

the defection path fixed, then, even though reciprocity exists, the level of reciprocity

in the two games will remain the same. In behavioral economics, there are fruitful

discussions on how these payoffs influence people’s decisions (Fehr & Schmidt,

1999, Becker, 1976). Further discussions on this topic will be provided in Section 4.
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First, we propose the following hypotheses.

Hypothesis 1. In any two SPDs a and b, if first-mover cooperates,

(i) if xCC
2 (a)> xCC

2 (b), the second-mover will be more likely to cooperate in SPD
a than SPD b;

(ii) if xCC
1 (a)> xCC

1 (b) and xCC
1 (a)≤ xCC

2 (a), the second-mover will be more likely
to cooperate in SPD a than SPD b;

(iii) if xCC
1 (a)> xCC

1 (b) and xCC
1 (a)> xCC

2 (a), the second-mover will be more likely
to defect in SPD a than SPD b;

(iv) if xCD
2 (a)> xCD

2 (b), the second-mover will be more likely to defect in SPD a
than SPD b;

(v) if xCD
1 (a)> xCD

1 (b), the second-mover will be more likely to defect in SPD a
than SPD b;

These hypotheses are intuitive. Hypothesis (1.i) suggests that second-mover

will be more likely to cooperate when her payoff from her cooperation increases.

Hypothesis (1.iv) suggests that second-mover will be less cooperative when her

payoff from her defection increases. Hypotheses (1.i) and (1.iii) imply that second-

mover prefers an outcome that can increase her payoff. This is consistent with

most existing utility models (for example, Fehr & Schmidt, 1999, Becker, 1976,

Dufwenberg & Kirchsteiger, 2004)

Hypotheses (1.ii) and (1.iii) posit that second-mover will be more likely to coop-

erate when the first-mover’s payoff from second-mover’s cooperation increases, but

only if first-mover’s payoff is smaller than the payoff of second-mover. Otherwise,

the second-mover will be less cooperative. This implies that people are willing to

help others but may resist situations where others gain more than they do. This is

captured by the idea that people is inequity averse (Fehr & Schmidt, 1999).

Similarly, hypothesis (1.v) posits that the second-mover will be more likely to

defect when the first-mover’s payoff from the second-mover’s defection increases.

This can be explained in two ways. First, the second-mover experiences less in-

equity by defecting when xCD
1 increases (recall that xCD

2 > xCD
1 always holds in

our experiment). Second, the second-mover can excuse her decision to defect and

feel less guilty by defecting as now first-mover’s payoff from her defection is not
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that bad. But part (v) of the hypothesis is relatively strong given the fact that

xCD
2 ≫ xCD

1 in our experiment even after increasing xCD
1 .

Then we can start with a more interesting case — the defection path — where

the associated payoffs are not directly related to the final outcomes of both first-

and second-movers if the first-mover cooperates. In this case, we would be consider-

ing whether “off path of play” payoffs have an effect on conditional cooperation. We

use the same method as before and consider only payoff changes in the defection

path while holding the payoffs in the cooperation path fixed. In this case even

though other-regarding preferences may be present, their effect would remain the

same in the two games. In behavioral economics, there are discussions focusing on

reciprocity that aim to explain how it works. Further discussions will be provided

in Section 4. We propose the following hypotheses.

Hypothesis 2. In any two SPDs a and b, conditional on first-mover’s cooperation,

(i) if xDD
2 (a)> xDD

2 (b), the second-mover will be less likely to cooperate in SPD a
than SPD b;

(ii) if xDD
1 (a)> xDD

1 (b), the second-mover will be more likely to cooperate in SPD
a than SPD b;

(iii) if xDC
2 (a)> xDC

2 (b), the second-mover will be less likely to cooperate in SPD
a than SPD b;

(iv) if xDC
1 (a)> xDC

1 (b), the second-mover will be more likely to cooperate in SPD
a than SPD b;

Hypothesis (2.i) can be interpreted through the existing literature on reciprocity

(Dufwenberg & Kirchsteiger, 2004). A common explanation is that the perceived

generosity of an action should increase with the magnitude of the favor one does

for others. The second-mover’s payoff after defection is xDD
2 . If this value increases,

then perceived generosity will be decreasing as first-mover’s cooperation could

not significantly increase second mover’s payoff. Therefore, second-mover will be

more likely to defect as she is likely to consider the first-mover’s cooperation as a

generous action.

When evaluating first-mover’s generosity, second-mover’s associated payoff has
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captured most researchers’ attention, while surprisingly ignoring the effect of the

first-mover’s payoff. A recent important exception is He & Wu (2023). However,

the perceived generosity of an action should also depend on how much one has

to sacrifice to do the favor. In other words, when defection is a safer choice for

first-mover, first-mover’s cooperation could be considered to demonstrate significant

generosity, as they expose themselves to the risk of being defected against. Thus,

second-mover should be more cooperative to reciprocate first-mover’s generosity.

This suggests that the concept of reciprocity should not only consider the magnitude

of the favor one does for others but also the extent to which one sacrifices to perform

the favor. He & Wu (2023) focus on the maximum payoff, so their model yields

hypothesis (2.iv).

However, one should expect that xDD
1 is more salient, given the fact that defec-

tion following defection is a more likely occurrence (for example, 79.37% choices in

our experiment are defection after defection). So we also present hypothesis (2.ii).

Hypothesis (2.iii) has very similar property to hypothesis (2.i) but has not yet

been studied to our knowledge. One reason is that, theoretically (see for example

Dufwenberg & Kirchsteiger, 2004), cooperation after defection is unlikely, as first-

mover defection would most likely lead the second-mover to also defect (negatively

reciprocate). Thus, defection after defection should be the most likely outcome to be

expected. If this is the case, then xDC
2 should have no effect on the second-mover’s

behavior. In our experiment, we still begin by hypothesizing that there are some

effects, as we argue that people’s behavior could be more complex. They may still

want to reciprocate to others if others help them avoid a worse outcome.

2.2.2 Modified dictator game (DG)

2.2.2.1 Design

Widely disseminated conclusions about observations of cooperation in laboratory

experiments have motivated the development of utility theories intended to im-

prove the empirical validity of game theory. For example, some models incorporate

perceptions of others’ intentions into the utilities and claim that kindness matters

(Rabin, 1993, Dufwenberg & Kirchsteiger, 2004, Falk & Fischbacher, 2006), while

other models incorporate fairness into the utilities (Fehr & Schmidt, 1999, Becker,
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1976) (see Section 4 for more details). However, even though all models provide

seemingly reasonable explanations for conditional cooperation, it is still unclear

where these decisions are originally from.

xCC
1

xCC
2

xDD
1xDC

1
xCD

2

xCD
1

xDC
2 xDD

2

Dictator

Cooperate Defect Cooperate Defect

(a) C-path DG (b) D-path DG

xCC
1

xCC
2

xDD
1xDC

1
xCD

2

xCD
1

xDC
2 xDD

2

Cooperate Defect Cooperate Defect

Second-moverSecond-mover

First-mover

Cooperate Defect

Dictator

Figure 2.5: Modified dictator games based on SPD game payoffs

As a motivating example, in our SPD experiment, if we observe that a second-

mover cooperates after cooperation and defects after defection, can we directly

conclude that their decisions are actually conditional on the first-mover’s behavior?

The answer is no, as we have already mentioned that, according to different utility

models, second-mover’s actions could be motivated by reciprocity that is conditional

on the behavior of others or by general other-regarding preferences characterized

by altruism or inequity aversion that are not conditional on the behavior of others.

If we want to state that people’s behavior is also context-dependent and that

conditional cooperation exists, we should implement other experimental designs to

help us discriminate between these two motives.

Therefore, in this section, we employ a simple binary modified dictator game to

control for other-regarding preferences. In a dictator game, there are two players:
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CHAPTER 2. ON THE NATURE OF CONDITIONAL COOPERATION

the dictator and the silent receiver. The silent receiver is an inactive player who can

not make any decisions. The dictator can choose between two options, Cooperate
or Defect, thereby determining the payoffs for both players (see the bottom half of

figure 2.5). (In the experiment, these choices are labeled neutrally in as A and B,

see Figure 2.6)

A

B

Second Mover Payment

Second Mover choice

First Mover payment

200 tokens 580 tokens

180 tokens 1000 tokens

Figure 2.6: Interface of the experiment: DG

We include 14 modified dictator games with different payoff combinations based

on the 16 SPD games as depicted in Figure 2.5 and Table 2.2. The parametrization

of the modified dictator games mirrors the scenarios the second-mover would

encounter if first-mover chose to cooperate or defect. Each SPD can generate two

modified dictator games: C-path DG that has the same payoff structure as in

the SPD after first-mover’s cooperation and D-path DG that has the same payoff

structure as in the SPD after first-mover’s defection. In the experiment, each

subject is asked to make decisions in the role of the dictator. However, the computer

randomly assigns their actual role (either the dictator or the silent receiver) at the

end of the experiment.

We do not ask subjects to make two decisions per round in the modified dictator

games, unlike in the SPD tasks (see Figure 2.4(b)). There are two main reasons

for this. First, although we mirror the payoff structures of the SPDs, the modified

dictator games are designed to be context-free. Including both decisions in one

round would introduce potentially additional information and irrelevant context,

which goes against the property of dictator games and will confuse subjects. Sec-

ond, reducing the number of decisions helps streamline the experiment. Recall

that there are 16 SPDs—if we preserved the two-decision structure, the modi-

fied dictator games would require 32 decisions. Many of these would share the

same payoff structures, leading to unnecessary repetition and inefficient use of the

experimental budget.
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Table 2.2: Payoff parameters in DGs

Game xCC
1 xCC

2 xCD
1 xCD

2 xDC
1 xDC

2 xDD
1 xDD

2

D1 600 600 180 1000 - - - -
D2 600 600 180 700 - - - -
D3 600 600 20 1000 - - - -
D4 600 600 20 700 - - - -
D5 600 850 180 1000 - - - -
D6 850 600 180 1000 - - - -
D7 850 850 180 1000 - - -
D8 - - - - 1000 180 200 200
D9 - - - - 1000 180 200 580
D10 - - - - 1000 180 580 200
D11 - - - - 1000 180 580 580
D12 - - - - 700 180 200 200
D13 - - - - 1000 20 200 200
D14 - - - - 700 20 200 200

2.2.2.2 Hypotheses

We hypothesize that conditional cooperation exists. The idea is that in SPD games,

the source of cooperation can be from either conditional cooperation (associated

with reciprocity) or unconditional other-regarding preferences (such as altruism

and inequality aversion). In contrast, modified dictator games lack the context of

the other player’s (first-mover’s) behavior, resulting in the absence of conditional

cooperation or reciprocity as a source of cooperation. Therefore, in modified dictator

games, cooperation can only arise from unconditional other-regarding preferences.

In other words, a difference in the cooperation rates in modified dictator game

versus the corresponding SPD (i.e., with the same feasible payoffs for each player)

indicated context-dependence or conditionality of the (second-mover’s) decision

making. Thus, a higher rate of (second-mover) cooperation on the cooperation path

in the SPD compared to the corresponding C-path DG would indicate the presence

of conditional cooperation in the SPD due to reciprocity. This leads to the following

hypothesis.
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Hypothesis 3. When facing the same feasible choices in SPD and DG,

(i) the second-mover will be more likely to cooperate in the cooperation path of
the SPD than in the corresponding C-path DG;

(ii) the second-mover will be less likely to cooperate in the defection path of the
SPD than in the corresponding D-path DG.

As we have mentioned before, the only difference between SPD and associated

modified dictator game is the context dependence. It can be explained by reciprocity.

Reciprocity comprises two directions. The first is ‘positive reciprocity’, which sug-

gests that “if someone is generous to me, I will be generous as well and reciprocate

by cooperating”. Applying it to our context of SPDs and modified dictator games,

there is positive reciprocity in the cooperation path of the SPD. So we should

observe behavior indicated in hypothesis (3.i). The second direction is negative

reciprocity, which means that “if someone treats me poorly, I will respond by being

less generous to them, i.e., defect”. In the context of SPD and DG, there is negative

reciprocity in the defection path of the SPD, as the first-mover’s defection always

results in the second-mover receiving the lowest payoff in SPD. So we should

observe behavior indicated in hypthesis (3.ii).

2.2.3 Belief elicitation

We also ask subjects to provide their beliefs about the first-mover’s decisions and

second-mover’s decisions. Belief elicitation is secondary research question in this

paper, but it is also useful for us to evaluate subject’s behavior. Therefore, we

choose 7 SPDs1 to elicit their beliefs (see Appendix B for more details). This part of

the experiment is designed in a simple and straightforward manner, using a non-

incentivized, interval-based approach (Manski, 2004). We elicit beliefs to account

for the fact that they tend to be noisier than preferences, especially when it comes

to beliefs about conditional cooperation. Figure 2.7 presents one case that subjects

will face in the experiment.

1We do not elicit beliefs for all SPDs in the experiment for two main reasons. First, the belief
elicitation is not incentivized and is implemented in a simple questionnaire. Second, the 7 SPDs we
selected are sufficient to understand how subjects form their beliefs.
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A

B

First Mover
choice

Second Mover
choice

First Mover payment

A

A

B

B

600 tokens

180 tokens

1000 tokens

200 tokens

700 tokens

600 tokens

200 tokens

180 tokensSecond Mover
choice

1. Assume Second Mover knows First Mover chose A, what do you think is the percent chance that Second Mover would

choose A?

0%-20% 21%-40% 41%-60% 61%-80% 81%-100%

2. Assume Second Mover knows First Mover chose B, what do you think is the percent chance that Second Mover would

choose A?

0%-20% 21%-40% 41%-60% 61%-80% 81%-100%

Second Mover payment

Figure 2.7: Interface of the experiment: Beliefs

2.2.4 Procedures

The experiment is arranged in three consecutive blocks. First, subjects are faced

with 14 modified dictator games. Next, they take the decisions in 16 SPDs. Finally,

subjects were presented with belief elicitation and a short post-experimental survey.

The experiment lasted on average 60 minutes. The order of blocks were fixed to

allow participants to gradually transition from simple individual decisions to more

complex strategic tasks. All tasks within blocks were randomized.

To compute their payments, one game from block 1 and one game from block

2 would be chosen at random for payment. The roles in each block would also

be randomized. The belief elicitation was not incentivized. The average payment

subjects received was £14.15 (including £5 of show up fee).

The experimental interface is implemented using the oTree software (Chen

et al., 2016). The sessions were conducted May to July 2023 in the University

of Essex using the general sample of the undergraduate students. 152 subjects

participated in the experiment, among them 15.13% were economics students, and

50.66% were female.
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2.3 Results

The analysis in this section is structured as follows. We start by presenting clean

evidence about conditional cooperation. Next, we proceed by testing second-mover’s

cooperation after (first-mover) cooperation with varied payoffs in cooperation path

and second-mover’s cooperation after (first-mover) cooperation with varied payoffs

in defection path. Finally, we also examine first-mover’s behavior and test whether

they consider reciprocity in their decisions. All other descriptive statistics can be

found in Appendix B.

2.3.1 Detecting conditional cooperation
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(a) In the cooperation path
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Figure 2.8: Difference between DG and corresponding SPDs

Notes: Each bar in the graphs represents the average di f f S&D (the sum of di f f S&D divided by the number
of participants). If the bar value is above zero, it suggests that subjects are, on average, more cooperative in
SPD than in DG. If the bar value is below zero, it suggests that subjects are, on average, more cooperative in
DG than in SPD. The whiskers identify the 95% confidence interval.

Recall that the experiment contains within-subject treatment in which a subject

had to make the decisions in the DGs that correspond to every potential cooperation

and defection path of in SPD. Contrasting each subject’s decisions across these

games allows us to present the direct evidence on conditional cooperation. To do so

we create a subject-level variable di f f S&D that equals 1 if subject cooperated in
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SPD and did not in the DG, −1 if subject cooperated in DG and did not in SPD, and

0 if subject made a same decision in both SPD and DG.

Figure 2.8 presents the results of the analysis of this variable corresponding

to the cooperation path (Figure 2.8a) and defection path (Figure 2.8b). One may

notice that in our design for one DG we may have more than one corresponding

SPD, so we include the maximum difference and minimum difference between the

DG and corresponding SPDs.

In the cooperation path (Figure 2.8a) we find that subjects are in aggregate

more likely to cooperate in SPD than in the corresponding DG (p=0.010, Wilcoxon

signed-rank test).

In contrast, when looking at the difference in cooperation in defection path (Fig-

ure 2.8b), we do not see any significant difference (p=0.534, Wilcoxon signed-rank

test). Moreover, there is no consistent effect being present as the variable goes both

ways. This direct evidence shows that there is context dependence of the decisions

but this context dependence is only present in the cooperation path. That is rather

clear evidence in favor of us observing the conditional cooperation and not just

choice driven by unconditional pro-social preferences.

Experimental Result 1. When facing the same feasible choices in SPD and DG,

second-mover is more likely to cooperate in the cooperation path in the SPD than

in the C-path DG, while there is no consistent effect present in the defection path.

2.3.2 Second-mover’s cooperation with varied payoffs in the
cooperation path

In this section, we will discuss Hypothesis 1, which concerns the second-mover’s

cooperation level conditional on first-mover’s cooperation if we change payoffs

in the cooperation path. We use the same idea as in the last section, recall that

our experiment contains 16 SPD games with payoff changes one by one. We use

the within subject design and directly compare each subjects’ choices across the

relevant different games.

We begin by considering the differences among all relevant games in this section.

We found that a Cochrane’s Qtest rejects the null hypothesis that the rate of
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CHAPTER 2. ON THE NATURE OF CONDITIONAL COOPERATION

conditional cooperation is the same across all relevant games (Q= 112.22, p<0.001).

A detailed analysis reveals that the rate changes systematically with payoffs.

Figure 2.9 presents the results of the analysis of this variable corresponding to

the cooperation path. The Figure compares the proportions of cooperation after

cooperation if we change the payoffs in the the cooperation path in low payoff

values (light bars) and high payoff values (dark bars). Four sub figures denote four

different payoff parameters in the SPD games.
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Figure 2.9: Second-mover’s cooperation: in the cooperation path

Notes: The Figure compares the proportions of second-mover’s cooperation after first-mover’s cooperation if we
change the payoffs in the the cooperation path with low payoff values (light bars) and with high payoff values
(dark bars). The whiskers identify the 95% confidence interval. ∗p < 0.1;∗∗ p < 0.05;∗∗∗p < 0.01 (McNemar’s
test)

In all subsequent analyses, we first conduct an aggregate test of each hypothesis.
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For example, when examining the effect of xCC
2 , we pool G1 and G12 and compare

them with G11 and G13 to test whether increasing xCC
2 raises the second mover’s

cooperation. We then report the all pairwise (binary) comparisons, G1 vs. G11 and

G12 vs. G13.

Figure 2.9a presents the case in which xCC
1 changes. Here we do not run the

aggregate test as G1 to G12 and G11 to G13 have different properties. From

G1 to G12, second-mover’s payoff is becoming smaller than first-mover, while

second-mover’s payoff is always greater or equal to first-mover from G1 to G12.

We further find that increasing xCC
1 weakly increases the rate of cooperation only

when xCC
2 ≥ xCC

1 (McNemar tests: G11 vs. G13: p=0.082 and G1 vs. G12: p=0.164).

A plausible explanation is inequity aversion (Fehr & Schmidt, 1999): from G1 to

G12, the second-mover’s payoff becomes lower than that of the first-mover, which

may discourage cooperation.

Only xCD
1 disconfirms Hypothesis 1. We find that in aggregate there is no

significant difference on second-mover’s cooperation after (first-mover) cooperation

when changing xCD
1 (p=0.7976, Wilcoxon signed-rank test). All binary comparisons

likewise show no significant differences (McNemar tests: all p > 0.327). One

explanation for why second-mover did not cooperate differently with respect to

change in xCD
1 could be that there is a large payoff difference in defection after

cooperation. The fact that xCD
2 ≫ xCD

1 in SPD suggests that if the second-mover is

selfish, a small change in xCD
1 is unlikely to affect her chances of cooperating after

cooperating. Thus we do not observe a significant change in their behavior.

Figures 2.9c suggest that in aggregate increases in xCC
2 make the second-mover

more likely to cooperate after cooperation (p<0.01, Wilcoxon signed-rank test). All

binary comparisons also confirm our Hypothesis 1 (McNemar tests: G1 vs. G11:

p=0.052 and G12 vs. G13: p<0.01).

Figures 2.9d suggest that in aggregate increases in xCD
2 make the second-mover

more likely to cooperate after cooperation (p<0.01, Wilcoxon signed-rank test). All

binary comparisons also confirm our Hypothesis 1 (McNemar tests: all p < 0.018).

These results confirm the hypothesis and are also quite intuitive—the second-

mover always has an incentive to choose the action that yields a higher payoff for

themselves.
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Experimental Result 2. The second-mover is more likely to cooperate after first-

mover’s cooperation if their payoff from cooperation xCC
2 increases or from defection

xCD
2 decreases. Additionally, they are more likely to cooperate if first-mover’s payoff

xCC
1 increases, but only when first-mover’s payoff does not exceed their own after

the increase. However, no consistent effect is observed when xCD
1 increases.

2.3.3 Second-mover’s conditional cooperation with varied
payoffs in the defection path
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Figure 2.10: Second-mover’s conditional cooperation: in the defection path

Notes: The Figure compares the proportions of cooperation after cooperation if we change the payoffs in the
the defection path with low payoff values (light bars) and with high payoff values (dark bars). The whiskers
identify the 95% confidence interval. ∗p < 0.1;∗∗ p < 0.05;∗∗∗p < 0.01 (McNemar’s test)
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We now consider Hypothesis 2, which relates to the effect on conditional cooperation

from changes in the payoffs on the “off-path of play” defection path (where first-

mover defects). We use the same analysis method as in the previous section. Figure

2.10 presents direct evidence of changes to conditional cooperation when the

payoffs in the defection path are varied. Four sub figures denote four different

payoff parameters in the defection path in the SPD games.

First, a Cochrane’s Qtest rejects the null hypothesis that the rate of cooperation

is the same across all relevant games (Q= 111.395, p < 0.001). This result suggests

that “off-path of play” plays an important role. In other words, cooperation is not

solely driven by unconditional pro-social preferences, but also by context-dependent

motivations such as reciprocity.

With the exception of payoff xDC
1 , the results are in line with those indicated

by Hypothesis 2. As shown in Figure 2.10a, we find that in aggregate there is no

significant difference in conditional cooperation when xDC
1 is changed (p<0.151,

Wilcoxon signed-rank test). Moreover, all binary comparisons are also not statis-

tically significant (McNemar tests: all p>0.164). This may be attributed to the

fact that cooperation after defection is very unlikely (less than 20% cases in our

experimental results) and second-mover does not take the effect of xDC
1 into much

consideration. While if we look at Figure 2.10b, xDD
1 , we do find the same effect

as we stated in Hypothesis (2.ii). We find that in aggregate increasing xDD
1 will

decrease conditional cooperation (p<0.011, Wilcoxon signed-rank test). Moreover,

a binary comparison also confirms Hypothesis (2.ii)(G1 vs. G3: McNemar test:

p=0.010). Here the binary comparison of G2 vs. G4 is not that significant is rea-

sonable as the value of xDD
2 is already large enough in these two games, so first’s

mover’s cooperation will become not that generous. It is worth noting that no

theoretical model currently predicts this effect of changes in xDD
1 as existing works

(Rabin, 1993, Dufwenberg & Kirchsteiger, 2004, He & Wu, 2023) focus more on

second-mover’s payoffs when talking about the reciprocity. For further discussion,

see Section 2.4.

The result of a change in xDD
2 is not surprising, we find both that in aggregate

(p<0.01, Wilcoxon signed-rank test) and binary comparison (McNemar tests: all

p<0.001) suggest that increasing xDD
2 would decrease conditional cooperation. This

is in line with what intention-based reciprocity models (Dufwenberg & Kirch-
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steiger, 2004) predict. An increase in xDD
2 can promote second-mover’s conditional

cooperation because xDD
2 essentially highlights how generous that first-mover is.

More interestingly, we also find similar effect when we change xDC
2 . We find

a trend that in aggregate increasing xDC
2 will decrease conditional cooperation

(p=0.091, Wilcoxon signed-rank test). Moreover, one binary comparison also con-

firms Hypothesis (2.iii) (G6 vs. G1: McNemar test: p=0.031). Overall, we do observe

that the increasing xDC
2 can also increase conditional cooperation. This effect is not

provided as a predictions from any of the existing theoretical models.

Experimental Result 3. The second-mover is less likely to cooperate conditional

on first-mover’s cooperation when xDD
2 or xDC

2 increase. They will be more likely to

cooperate when xDD
1 increases, while there is no consistent effect from changing

xDC
1 .

2.3.4 First-mover’s cooperation with varied payoffs in the
defection path

Although our main focus is on second-mover’s response to cooperation, first-mover’s

cooperation rates also vary substantially across the 16 SPD games, ranging from

23.7% up to 42.1%2.

Here, we find a strong effect associated with xDC
2 . We find that in aggregate

increasing xDC
2 will decrease first-mover’s cooperation (p<0.01, Wilcoxon signed-

rank test). Moreover, two out of three binary comparison also confirms this finding

(G7 vs. G5 and G15 vs. G9: McNemar test: all p<0.033). It is direct to infer first-

mover’s considerations: first-mover may believe that second-mover is less likely

to cooperate after cooperation if xDC
2 increases (suppose reciprocity is common

knowledge), and the first-mover may also develop a higher belief in second-mover’s

likelihood of cooperation after defection when xDC
2 goes to large even though

cooperation after defection is theoretically unlikely. So first-mover is more likely to

defect to pursue the highest payoff for themselves in the game (recall that xDC
1 is

larger than any other first-mover’s possible payoffs).

2a Cochrane’s Qtest rejects the null hypothesis that the rate of cooperation is the same across
all relevant games (Q= 293.559, p<0.001)
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Figure 2.11: First-mover’s cooperation: in the defection path

Notes: The Figure compares the proportions of unconditional cooperation if we change the payoffs in the the
defection path with low payoff values (light bars) and with high payoff values (dark bars). The whiskers
identify the 95% confidence interval. ∗p < 0.1;∗∗ p < 0.05;∗∗∗p < 0.01 (McNemar’s test)

In Figure 2.11d We find that in aggregate increasing xDD
2 will increase first-

mover’s cooperation (p<0.01, Wilcoxon signed-rank test). Moreover, all binary

comparison also confirms this finding (McNemar tests: all p<0.081). This is in

contrast with our experimental results. As we argue second-mover will be more

reciprocal if xDD
2 decreases, we may except first-mover to be more cooperative.

However, one can not ignore the fact that the first-mover may tend to be optimistic

in holding a higher belief in second-mover’s likelihood of cooperation when they

choose to defect, especially when xDD
2 is not too large. As a result, first-mover is

more likely to choose defection if xDD
2 decreases.
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Moreover, although we find little evidence in separate binary comparisons

(McNemar tests: all p>0.164), we do find evidence that in aggregate a higher xDC
1

leads to a lower first-mover cooperation rate (p=0.013, Wilcoxon signed-rank test).

This may be because an increase in xDC
1 provides the first-mover with a potential

higher payoff after defection. We also find a similar pattern with xDD
1 variation

(in aggregate: p=0.045, Wilcoxon signed-rank test; binary comparisons: McNemar

tests: all p>0.175).
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Figure 2.12: Reciprocity in Beliefs

Notes: The first pair of bars, the second pair of bars, and the third pair of bars show the cases if we change
xDD

2 , xDC
2 and xDC

1 , respectively. The whiskers identify the 95% confidence interval.

Our experiment also contains a brief belief elicitation part, where we can obtain

first-mover beliefs about the second-mover’s behavior. Figure 2.12 denotes the (first-

mover) subject’s beliefs about the second-mover’s cooperation after cooperation

when changing the payoffs after first-mover’s defection. The first bar, the second

bar, and the third bar show the cases if we change xDD
2 , xDC

2 and xDC
1 , respectively.

We do not find a significant difference in how xDD
2 , xDC

2 and xDC
1 influence

first-mover beliefs about reciprocity (all p > 0.12, Wilcoxon signed-rank test). Note

here that our beliefs measures are expected to be noisier than the subject’s choices,

given that we did not incentivize belief elicitation.

Experimental Result 4. The first-mover is more likely to cooperate if xDC
2 , xDC

1

and xDD
1 decrease, while they are more likely to cooperate if xDD

2 increases.
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2.3.5 First-mover’s cooperation with varied payoffs in the
cooperation path
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2
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Figure 2.13: First-mover’s cooperation: in the cooperation path

Notes: The Figure compares the proportions of unconditional cooperation if we change the payoffs in the the
cooperation path with low payoff values (light bars) and with high payoff values (dark bars). The whiskers
identify the 95% confidence interval. ∗p < 0.1;∗∗ p < 0.05;∗∗∗p < 0.01 (McNemar’s test)

In this subsection, we examine first-mover’s behavior while considering the effect

of varying payoffs on the cooperation path (first-mover cooperates). The results are

very intuitive, when first-mover’s payoff after their cooperation, xCC
1 , increases, we

find that in aggregate increasing it will increase first-mover’s cooperation (p<0.042,

Wilcoxon signed-rank test). Moreover, one binary comparison also confirms this

finding (G11 vs. G13: McNemar test: p=0.024). The plausible reason that the
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difference between G1 and G12 is not significant is that increasing from G1 to G12

will make the first mover’s payoff to be higher than the second-mover and this

may discourage second-mover to cooperate after cooperation. Therefore, there is a

potential confound that may decrease the difference.

Similarly, when first-mover’s payoff after their cooperation, xCD
1 , increases, we

find that in aggregate increasing it will increase first-mover’s cooperation (p<0.028,

Wilcoxon signed-rank test). Moreover, one out of three binary comparisons also

confirms this finding (G1 vs. G9: McNemar test: p=0.082).

When second-mover’s payoff after first mover’s cooperation, xCC
2 , increases, we

find that in aggregate increasing it will increase first-mover’s cooperation (p<0.068,

Wilcoxon signed-rank test). Moreover, one out of two binary comparisons also

confirms this finding (G12 vs. G13: McNemar test: p=0.021). This might because

increasing xCC
2 from G12 to G13 will decrease the difference between two players

and thus first-mover believes that the second-mover will be more likely to cooperate

after cooperation.

When second-mover’s payoff after first mover’s cooperation, xCD
2 , increases, we

find that in aggregate increasing it will decrease first-mover’s cooperation (p<0.041,

Wilcoxon signed-rank test). Moreover, one out of three binary comparisons also

confirms this finding (G14 vs. G5: McNemar test: p=0.067). This might because first-

mover may form the belief that increasing xCD
2 will decrease the second-mover’s

cooperative probability. Therefore, first-mover will be more likely to defect if xCD
2

increases.

These findings would suggest that first-mover’s belief about second-mover’s

decision is formed correctly on the cooperation path.

We can also look at first-mover’s beliefs about second-mover’s behavior. Figure

2.14 denotes the subject’s beliefs about second-mover’s behavior after cooperation

when changing the payoffs on the cooperation path. The first bar, the second bar,

and the third bar state the cases if we change xCD
2 , xCC

2 , and xCC
1 respectively (all

p<0.01, Wilcoxon signed-rank test). These result align with the results on decisions

that we noted above.
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Figure 2.14: Beliefs when varying C-path payoffs

Notes: The first pair of bars, the second pair of bars, and the third pair of bars show the cases if we change
xCD

2 , xCC
2 , and xCC

1 respectively. The whiskers identify the 95% confidence interval.
∗p < 0.1;∗∗ p < 0.05;∗∗∗p < 0.01 (Wilcoxon signed-rank test)

Experimental Result 5. The first-mover is more likely to cooperate if xCC
1 , xCD

1 ,

or xCC
2 increase or if xCD

2 decreases.

2.4 Discussion

To explain the observed cooperation in our experiment, researchers have suggested

that people exhibit (unconditional) prosocial preferences (outcome-based models)

and reciprocal preferences (intention-based models), and have incorporated these

concerns into game-theoretic models.

Outcome-based models capture concerns over the distribution of final payoffs.

A well-known example is the altruism model proposed by Becker (1976), which

suggests that the decision maker cares about others’ outcomes. The utility function

is expressed as Ui = xi +θ · x j where θ ∈ (0,1). This model reflects two key features:

first, individuals prefer choices that increase the payoffs of any player; second,

decisions are context-free—meaning the second mover’s behavior is not influenced

by the first mover’s action. The second feature is common for all outcome-based

models. While the first feature cannot account for our experimental findings—for

instance, increasing xCC
1 may actually make the second mover less likely to cooper-

ate. A similar finding is also reported by Charness & Rabin (2002). We find that

the inequity aversion model proposed by Fehr & Schmidt (1999) provides a good fit

for explaining the variability of payoffs along the cooperation path. The model can
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be simply expressed as Ui(x)= xi −αimax{x j − xi,0}−βimax{xi − x j,0} where i = 1,

2 and j ̸= i; βi ≤αi. This utility function suggests that subjects will experience the

disutility when inequitable distribution occurs. They experience inequity if they

are worse off in material payoffs than others, and they also feel inequity if they are

better off. Consequently, the second mover may become less willing to cooperate as

xCC
1 increases, provided that xCC

2 < xCC
1 after the change.

Outcome-based models do not account for the defection path; instead, they

only capture the second mover’s baseline preferences, which should be identical

to those observed in modified dictator games. Conditional cooperation, however,

should not be considered part of these baseline preferences, as it depends on the

first mover’s behavior and differs fundamentally from the modified dictator game

setup. Intention-based models provide a more suitable explanation. In his seminal

paper, Rabin (1993) suggests that individuals are willing to bear a cost to reward

those they perceive as kind. This model was later extended to sequential games

by Dufwenberg & Kirchsteiger (2004). Their model suggest that the variability of

payoffs along the defection path can affect the conditional cooperation. However,

their model exclusively care xDD
2 while ignore the effect of the first mover’s payoffs

following first mover’s defection. A current study by He & Wu (2023) extends the

work of Cox et al. (2008) and incorporates the role of sacrifice in reciprocity. Their

model suggests that the first mover following defection can efficiently influence

the conditional cooperation. However, the model still does not fully account for all

payoff changes in our experiment, as it focuses solely on the maximum values from

opportunity sets. Thus the model overlooks the effect of xDD
1 . The model emphasizes

maximum payoffs while neglecting the fact that some of these outcomes are less

likely to occur. Even though the prediction is not perfectly consistent with our

experimental results, it provides insight into the role of sacrifice in reciprocity. In

other words, the first-mover’s payoff should also be taken into consideration when

considering reciprocity.

2.5 Conclusion

This paper experimentally examines the presence of conditional cooperation, and

provide the link between conditional cooperation and reciprocity. By comparing the
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sequential prisoner’s dilemma with the corresponding dictator game, we present a

clean evidence of the presence of conditional cooperation.

We further examine why people (conditionally) cooperate. We address this

question experimentally from two perspectives. First, we consider the effect of

direct payoff changes where the associated payoffs are directly related to the

final outcomes of both first- and second-movers. Not surprisingly, our results are

consistent with the inequity aversion model (Fehr & Schmidt, 1999). Second, we

explore the effects of indirect payoff changes where the associated payoffs are

not directly related to the final outcomes of both first- and second-movers. This

can be explained by reciprocity. However, we find that existing models cannot

fully account for our findings. The existing models (Cox et al., 2008, He & Wu,

2023, Dufwenberg & Kirchsteiger, 2004) either inaccurately estimate or completely

overlook the influence of the first-mover’s payoff on perceptions of generosity.

The theory of reciprocity has been extensively used to understand various

applied economic problems in the last two decades, for example, public good invest-

ment (Dufwenberg & Patel, 2017, Fischbacher & Gächter, 2010), and charitable

giving (Bekkers & Wiepking, 2011, Karlan & List, 2007). Our findings suggest a

need for richer frameworks of reciprocity than that are currently used.
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REVEALED PREFERENCE ANALYSIS OF

CONDITIONAL COOPERATION IN SEQUENTIAL

PRISONER’S DILEMMA GAMES

3.1 Introduction

A large body of evidence shows that decision-makers often deviate from maximizing

their own monetary payoffs; they are willing to forgo their selfish interests to help

others. This behavior can be well illustrated by a sequential prisoner’s dilemma

(see Figure 3.1), in which one player (the first-mover) moves first, and the other

player (the second-mover) observes this action before making their own choice.

Each player must choose between cooperation and def ection. In such games, if

both players aim to maximize their own payoffs, defection is the best response

for each. However, experimental studies find that a large proportion of second-

movers choose to cooperate after observing first-mover cooperation—even in one-

shot, anonymous, and controlled environments.1 To explain this, the concept of

1This suggests that factors such as reputation, repeated interaction, and tit-for-tat strategies
are not necessary for cooperative behavior. See, for example, Rapoport & Chammah (1965), Ahn
et al. (2001), Clark & Sefton (2001), Ahn et al. (2007), Dhaene & Bouckaert (2010), Charness et al.
(2016), Engel & Zhurakhovska (2016), Miettinen et al. (2020), and Gächter et al. (2021).
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conditional cooperation is widely used (see Thöni & Volk (2018) for a review).

It suggests people are willing to cooperate if others do so as well. However, more

recent studies point out that conditional cooperation does not necessarily reflect

stable personality traits: decision-makers may not always conditional cooperate,

and such behavior may depend heavily on the specific experimental setting and

parameters (Baader et al., 2024). In other words, conditional cooperation is still

a reduced-form and abstract motive that may not fully capture the diversity of

motivations behind non-selfish behavior.

xCC
1

xCC
2

xDD
1xDC

1
xCC

2

xCC
1

xDC
2 xDD

2

First-mover

Second-mover Second-mover

Cooperate Defect

Cooperate Defect Cooperate Defect

Figure 3.1: The sequential prisoner’s dilemma

The definition of conditional cooperation suggests that decision maker’s be-

havior is dependent on others’ behaviour, thus it should be context dependent.

While if we observe a second-mover decides to cooperate after first mover’s coop-

eration, can we claim that this second-mover’s cooperation is truly because of the

first-mover’s cooperation? The answer is obviously negative. There are numerous

studies suggest that people do not maximize selfish interest may also come from

unconditional social preferences, such as inequity aversion, efficiency concerns,

reputation concerns (Fehr & Schmidt, 1999, Bolton & Ockenfels, 2000, Andreoni

& Bernheim, 2009), even when there is no strategic interactions with others (e.g.,

dictator games Engel (2011)). Therefore, to understand the conditional cooperation,

one must carefully disentangle it from unconditional social preferences.

As aforementioned, conditional cooperation can not be identified as a preference
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itself as it is still an abstract concept. To explore the real motive for people to

conditionally cooperate, reciprocity, as a conditional preference, can be linked to

conditional cooperation. The most straight-forward is the idea that first-mover’s

cooperation already performs a generous enough action, and thus deserve positive

payback.

The idea of reciprocity has been extensively studied by economists for decades

since Güth et al. (1982). Many reciprocity-related experimental works (Fehr et al.,

1993, Clark & Sefton, 2001, Falk et al., 2003, Güth & Kocher, 2014) spark the

development of theoretical models (Rabin, 1993, Dufwenberg & Kirchsteiger, 2004,

Cox et al., 2008). Roughly speaking, all of them posit that first-mover’s generosity

depends on to which extent that second-mover can receive (only second-mover

related payoffs) while ignore the first-mover’s real intentions. That is, first-mover’s

potential payoffs should also play a role. For example, a large xDD
1 should imply that

defection is actually a relatively safe option for first-mover since the second-mover

is likely to respond to cooperation by defecting. Hence if the first-mover performs a

more trusting action by cooperating, they are more deserving of a positive response.

To explain how reciprocity shapes conditional cooperation—and to disentan-

gle conditional cooperation from unconditional social preferences—we employ a

revealed preference approach to theoretically clarify the nature of conditional

cooperation. To this end, in our model, we use quasi-monotone preferences to repre-

sent baseline motivations in an unconditional decision-making environment. Sec-

ond—and this constitutes our main contribution—we define reciprocal preferences

to capture the perceived generosity of the first-mover, which in turn influences

the second-mover to act more or less cooperatively in response to the first-mover’s

cooperation.

In Chapter 1 of this thesis, we developed a theoretical model of reciprocity,

where the consequential component is linked to quasi-monotone preferences, and

the intentional component is connected to the concept of reciprocal preferences,

which we explore further in this chapter. Here, we offer a more general definition of

reciprocal preferences. In Chapter 1 section 1.5.2, we presented predictions for the

sequential prisoner’s dilemma, where xDC
1 and xDC

2 were found to have no effect

on conditional cooperation. However, in Chapter 2, we observe some effects. The

reciprocal preferences proposed in this chapter account for these findings.
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The rest of the paper is organized as follows: Section 2 reviews the literature.

Section 3 presents our revealed preference analysis. Section 4 discusses more

existing theoretical models, and Section 5 concludes.

3.2 Literature Review

We provide a brief literature review. The concept of conditional cooperation was

first introduced by Fischbacher et al. (2001). Since then, this behavior has been

documented across various experimental contexts to explain subjects’ decisions, par-

ticularly in public goods games (Muller et al., 2008, Thöni & Volk, 2018, Kirchkamp

& Mill, 2020, Bilancini et al., 2022, Katuščák & Miklánek, 2023) and sequential

prisoner’s dilemmas (Clark & Sefton, 2001, Ahn et al., 2007, Miettinen et al.,

2020). In a more recent study, Baader et al. (2024) experimentally show that

conditional cooperation does not reflect stable personality traits; individuals may

exhibit different behavioral patterns even in similar settings. For example, varying

payoff parameters can shift behavior from defection to cooperation or vice versa.

Therefore, understanding the nature of conditional cooperation is crucial.

Reciprocity is central to many social interaction environments. A large body of

evidence shows that people routinely deviate from payoff maximization in ways

that can be explained by reciprocity. For instance, Falk et al. (2003) experimentally

found that, in ultimatum games, an unequal offer is much more likely to be

rejected if the proposer could have made a more equitable offer, compared to cases

where only more unequal offers were available. Orhun (2018) showed that greater

defection rate following cooperation was observed in sequential prisoner’s dilemmas

when the second mover had the ability to punish the first mover’s defection. Game

theory based approaches have been used to explore the foundations of reciprocity

(e.g., Rabin (1993), Dufwenberg & Kirchsteiger (2004), Falk & Fischbacher (2006)).

However, He & Wu (2023), using sender–receiver games, argued that existing

models of reciprocity overemphasize the role of the second mover (receiver) while

neglecting the role of the first mover (sender). These findings suggest the need for

a more generalized model of reciprocity.

Moreover, in the discussion of cooperation, or more generally, non-selfish be-

haviour, it does not necessarily stem from reciprocity alone. There is a growing body
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of research suggesting that people also exhibit unconditional social preferences,

such as inequity aversion (Fehr & Schmidt, 1999), altruism (Becker, 1976), and

concern for others’ welfare (Charness & Rabin, 2002). Importantly, reciprocity must

coexists with such unconditional prosocial preferences.

We consider cooperation to consist of both unconditional cooperation driven by

prosocial preferences (Fehr & Schmidt, 1999) and conditional cooperation based on

reciprocity. We apply this framework to sequential prisoner’s dilemma games.

3.3 Theory

We focus our analysis on the sequential prisoners dilemma. This game has two

players {1,2}= N, each of whom has two actions cooperate or defect. The extensive

form game is presented in Figure 3.1. The payoffs are determined by both players’

decisions and follow the standard sequential prisoners dilemma but not necessary

symmetric2. Each outcome is specified by payoffs for both players x = (x1, x2), where

x1 represents the monetary payoff for the first-mover, and x2 one for the second-

mover. For simplicity, the subscript 2 is intentionally assigned to the second-mover

and subscript 1 to the first-mover for consistency. Denote by X ⊆R2+ the feasible

space of payoffs. Given the sequential nature of the game we proceed by defining

the games for the first- and second-movers separately. All proofs omitted from this

section are provided in the Appendix C.1.

Before we proceed with defining formally the notions of consistency for the first-

and second-mover. Each players i ∈ {1,2} is endowed with the preference relation

⪰i, that is a binary relation that is complete and transitive.3 Denote by ≻i the

strict (asymmetric) part of this relation and by ∼i the indifference part.

Another supplementary construct we need is the quasi-monotonicity (Castillo

et al., 2019). That is the relaxation of standard monotonicity that accounts for

possible split motives. Denote the partial order of quasi-monotonicity by Q. Then,

for x, y ∈ X we have xQ i y if x ≥ y and xi − yi ≥ x j − yj. That is, it is not sufficient

2Payoff structures: xCD
2 > xCC

2 > xDD
2 > xDC

2 , xDC
1 > xCC

1 > xDD
1 > xCD

1 and xCC
1 + xCC

2 > {xCD
1 +

xCD
2 , xDC

1 + xDC
2 }. We are not requiring xCC

1 = xCC
2 , xDD

1 = xDD
2 , xCD

1 = xDC
2 , and xCD

2 = xDC
1

3A binary relation is complete if every pair is comparable. A binary relation is transitive if
for every three alternatives x, y, z such that x ⪰i y and y⪰i z there also is x ⪰i z.
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that both players got higher payoffs but also that player i got an increase that is

at least as large as that of the player j got. Figure 3.2 provides a visual depiction

of quasi-monotonicity order. The shaded area presents the set of points that are

better than the point x.

xi

x

x j

Slope of 1

Figure 3.2: Quasi-monotonicity

3.3.1 Second-mover consistency

In any two-stage extensive-form game, the first-mover faces a menu of possible

final payoff allocations and must choose among them. In the sequential prisoner’s

dilemma, this environment is even simpler: the first-mover decides whether to

cooperate or defect. Such menu is the context in which the first-mover’s action

takes place.

Given the game form on the Figure 3.1, the second-mover is faced with a simple

decision. We also focus only on preferences over the outcomes on the cooperation

path, i.e. if the first-mover chosen to cooperate. We make this simplifying assump-

tion in order not to further abuse the notation and also in light of the fact that if the

first-mover has chosen to defect then there is no scope for conditional cooperation.4

4Moreover, in experimental work on sequential prisoner’s dilemma, there are very few second-
movers would like to choose cooperation after defection, defection after defection makes up the bulk
of elicited choices (87% in aggregate), see Gächter et al. (2021) and Baader et al. (2024). Baader
et al. (2024) even proposed a modified sequential prisoner’s dilemma game that exclude cooperation
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However, in order to encompass reciprocity as the motive we need to define the

preferences to be context dependent. In the standard case, if the first-mover chooses

to cooperate and the second-mover chooses to cooperate (defect), they receive the

payoffs of xCC (xCD). We represent this outcome as a tuple to reflect the relevant

features,

x= (xCa, xDb,a,b), where xCa, xDb ∈ X and a,b ∈ {C,D}.

In this representation the first element stays for the realized outcome, while the

second element represent the relevant context. The second element (xDb) shows

the the counterfactual/context-dependent payoffs, note that this payoff can serve

as the benchmark for how “tempting” it was for the first-mover to choose defection

and how “kind” it was in terms of helping the second-mover. Note that in our game

xDb may correspond to either xDC or xDD , we do not impose a strict constraint

on this term. However, if one wishes to focus on only part of the context, one can

restrict attention to the relevant component 5. Finally, a represents the action

second-mover has taken in order to come to the outcome. This part of the vector

is important because the reciprocity can only be seen as the motive when talking

about the second-mover choosing to cooperate.

This representation helps us thinking second-mover’s preferences as two parts.

First, we maintain the first assumption that the preference relation

is quasi-monotone, if x = (xCa, xDb,a,b) and x̃ = (x̃Ca, xDb,a,b) such that

xCaQ2 x̃Ca we have x⪰2 x̃.

This assumption is important for us to capture subjects’ unconditional baseline

preferences even there is no context (i.e., xDb =;). In other words, if xDb does not

play a role in second-mover’s decisions (or context does not matter), we should

observe that (xCa, xDb,a,b)∼2 (xCa,;,a,b). This would suggest a standard experi-

menter’s strategy to exclude the the unconditional preferences that can be used

to test the nature of conditional cooperation (conditional preferences). With more

details, (xCa,;,a,b) suggests an environment that the first-mover is actually a

after defection. Therefore, we deem this decision as trivial.
5For example, following the implications of Dufwenberg & Kirchsteiger (2004), we know that

the authors care only about the second-mover’s payoff in the case of mutual defection; therefore,
one can replace xDb with xDD

2 .
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silent player, second-mover can solely determine the final payoffs allocations (i.e.,

modified dictator games).

Some existing studies have shown that (xCC, xDb,C,b) ̸∼2 (xCC,;,C,b), suggest-

ing that context matters and reciprocity plays a key role in explaining such context.

For example, Cox et al. (2008) Axiom R and Axiom S implies (xCC, xDb,C,b) should

be more altruistic than (xCC,;,C,b), suggesting second-mover will be more likely

to cooperate in sequential prisoner’s dilemma than modified dictator games.6 More

details about Cox et al. (2008) and other models can be found in Section 3.4.

To keep the structure and assumptions as minimal and tractable as possible, we

do not introduce additional axioms and instead take (xCC, xDb,C,b)⪰2 (xCC,;,C,b)

from Cox et al. (2008). This can be easily explained by the fact that the first-

mover’s cooperation is always perceived as a kind action in the sequential prisoner’s

dilemma; therefore, there is no reason for the second-mover to cooperate in the

modified dictator game but defect in the sequential prisoner’s dilemma.

x

x2

x1

Figure 3.3: Reciprocity

We now understand that context plays a role, but how it operates remains

ambiguous. As pointed out in He & Wu (2023), the model in Cox et al. (2008) lacks

a measure of the intensity of reciprocity.

6This is also what we found in Chapter 2
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To define the reciprocal preference relation we need another supplementary

relation we denote by R2. This relation is defined as xR2 y for x, y ∈ X if x2 ≤ y2 and

x1 ≥ y1. Figure 3.3 illustrates the relation presented by R2.

Here, we maintain our second assumption that the preference relation

is reciprocal if for every x= (xCC, xDb,C,b) and x̃= (xCC, x̃Db,C,b) such that

xDbR2 x̃Db we have x⪰2 x̃.

The idea behind reciprocity is two-fold. First, a lower second-mover’s payoff

following the first-mover’s defection implies that the first-mover’s cooperation is

particularly generous, as it helps the second-mover avoid a potentially low enough

payoff. As a result, the second-mover is more likely to reciprocate with cooperation.

This perspective is well documented in existing reciprocity models (Dufwenberg &

Kirchsteiger, 2004). Second, a higher first-mover’s payoff after defection suggests

that defection is actually a relatively safe option for the first-mover. Therefore,

when the first-mover chooses to cooperate instead, first-mover’s cooperation is

perceived as especially generous, thus the return action should also be more

cooperative. Figure 3.3 presents the visual depiction of the reciprocity. Shaded

areas present the points deemed more generous than point x.

Definition 1. Second-mover is consistent if she is endowed with reciprocal and
quasi-monotone preference relation.

3.3.2 First-mover consistency

Although our main focus is on second-mover’s response to cooperation, the pref-

erences of first-mover are also very interesting. Preferences for the first-mover

are defined over slightly more complex space. When taking action the first-mover

effectively chooses a binary lottery.

La = (xaC, xaD , q) ∈ X × X × [0,1],

where xaC ∈ X is the outcome if the second-mover decides to cooperate, xaD ∈ X is

the outcome if the second-mover decides to defect, q ∈ [0,1] is the subjective belief
that second-mover would cooperate and a ∈ {C,D}. Denote by L the space of all
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such binary lotteries. Thus the preferences of the first-mover (⪰1) are defined over

all such binary lotteries. Hence, in order to define first-mover consistency we need

to define both preference and belief components.

Preferences. We require the first-mover’s preferences to respect quasi-monotonicity

and stochastic dominance. A preference relation respects quasi-motonicity if for

every La = (xaC, xaD , q) and L̃a = (x̃aC, x̃aD , q) such that xaCQ1 x̃aC and xaDQ1 x̃aD

we have La ⪰1 L̃a. A preference relation respects stoschastic dominance if for

every La = (xaC, xaD , q) and L̃a = (x̃aC, x̃aD , q̃) such that (xaC,;,1)⪰1 (x̃aC,;,1), and

(;, xaD ,0)⪰1 (;, x̃aD ,0), and q ≥ q̃ we have La ⪰1 L̃a.

Beliefs. Recall that belief is represented by q : X ×X ×{C,D}→ [0,1]. That is, the

second-mover determines the probability of cooperation, depending on the action

taken by the first-mover. Note that this belief function is not directly observable

to the researcher, thus we are required to impose some discipline over it. We

start by making the known preference restrictions assumption, that is first-

mover believes that second-mover has consistent (quasi-monotone and reciprocal)

preference relation. We also require the belief function to be consistent, that

is if x ⪰2 x̃, then q(x) ≥ q(x̃), where ⪰2 is the believed preference relation of the

second-mover.

Consistency. As we mentioned above the first-mover consistency requires im-

posing conditions on both preferences and belief components.

Definition 2. First-mover is consistent if she is endowed with preference relation
that respects quasi-monotonicity and stochastic dominance as well as a consistent
belief function.

3.3.3 Testing the Theory

To provide the formal tests for the theories we need to start with defining the set

of data available. As per usual the revealed preference data set consists of budgets

and choice. In this case the budget

Bt = {xCC,t, xCD,t, xDC,t, xDD,t}, where xaa′ ∈ X and t ∈ T

75



CHAPTER 3. REVEALED PREFERENCE ANALYSIS OF CONDITIONAL COOPERATION IN

SEQUENTIAL PRISONER’S DILEMMA GAMES

consists of the four outcomes that specify the game, where T is a finite set of

observations. The choice

at = {at
1,at

2} ∈ {C,D}2

are the actions taken by the first- and second-movers denoted by at
1 and at

2 corre-

spondingly. Recall that for the sake of simplicity we only consider the action taken

by second-mover conditionally by the first-mover choosing to cooperate. Then, a

data set is a finite collection of such observations

D = {at,Bt}t∈T .

Denote by ⪰̂ ∈ Y ×Y the revealed preference relation7 over an abstract

set Y , where ≻̂ and ∼̂ denote the strict and indifferent parts of ⪰̂. A revealed

preference relation is acyclic if for every sequence y1, . . . , yn ∈Y such that yj⪰̂yj+1

for every j ≤ n−1 with at least one comparison being strict, there is no yn⪰̂y1. This

definition of acyclicity is equivalent to the standard definition of Generalized Axiom

of Revealed Preference from Varian (1982) and Suzumura (1976) consistency. Thus

to define the tests for the theory we are going to simply define the corresponding

revealed preference relation and impose the acyclicity condition over it.

Second-mover consistency. In order to define the revealed preference relation

we need to construct to supplementary sets. We refer to them as cooperation and

defection sets. The cooperation set defines the collection of outcomes in which

second-mover would be more prone to cooperate than in observation t ∈ T, that is

Ct = {x ∈ X : xCCQ2xCC,t and xDbR2xDb,t}.

The defection set is the collection of points in which subject is more prone to

defect, that is

D t = {x ∈ X : xCDQ2xCD,t}

Finally based on the total data set we can derive the data set for the second-mover,

D2 = {at
2, {xt

C,xt
D}}t∈T .

Based on the total set of payoffs in the game we derive the outcomes that correspond

to the second-mover choosing to cooperate or defect in a particular instance.
7Recall that preference relation is a reflexive binary relation.
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Definition 3. Let ⪰̂2 be the second-mover’s revealed preference relation, then
x⪰̂x̃ if at least one of the conditions satisfies:

(i) ∃t ∈ T : x= xt
a and x̃= xt

ã such that at = a, or

(ii) ∃t, s ∈ T : x= xs
C and x̃= xt

C such that x ∈ Ct, or

(iii) ∃t, s ∈ T : x= xs
D and x̃= xt

D such that x ∈ D t,

for every x, x̃ ∈ X .

The complication in defining the revealed preference relation comes from the

necessity to define the downward closure of the budget. This construct is relatively

straightforward and commonly used in the revealed preference literature (see

Forges & Minelli, 2009 and Nishimura et al., 2017). However, since the outcomes

in our cases are context dependent and the partial orders governing the downward

closures depend on the type of action taken, we have to define them separately. To

finalize this part we need to define the notion of rationalizability. A data set D2 is

rationalizable if there is a second-mover consistent preference relation ⪰2 such

that xt
at ⪰2 xt

a for every t ∈ T

Proposition 3.1. A data set D2 is rationalizable if and only if second-mover’s
revealed preference relation is acyclic.

First-mover consistency. We start by defining the data set. Note that data set

can only include the parts observable to the researcher, thus we cannot include q
that is a subjective belief function. Hence, a first-mover’s data set is

D1 = {at
1, {(xCC,t, xCD,t), (xDC,t, xDD,t)}}t∈T .

Next stage is to define the revealed preference relation, that also has to be defined

solely over the observables. For the brevity of notation let

xC = (xCC, xCD) and xD = (xDC,xDD).

Let us also note that based on the data set the first-mover can also define the

corresponding xC and xD for the second-mover. Recall that these are important

because we need to take care about consistency of the belief function as well.
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Definition 4. Let ⪰̂1 be the first-mover’s revealed preference relation, then
x⪰̂x̃ if at least one of the conditions satisfies:

(i) ∃t ∈ T :x=xt
a and x̃=xt

ã such that at = a, or

(ii) ∃t, s ∈ T :x=xs
C and x̃=xt

C such that xQ1x̃, xs
C ∈ Ct, and xt

D ∈ Ds, or

(iii) ∃t, s ∈ T :x=xs
D and x̃=xt

D such that xQ1x̃.

for every x, x̃ ∈ X .

To finalize the statement we need to define the what does it mean for the data

set to be rationalizable. A data set D1 is rationalizable if there is a first-mover

consistent preference relation and first-mover consistent belief function such that

for every (xt
at , qt

at)⪰1 (xt
a, qt

a) for every t ∈ T.

Proposition 3.2. If a data set D1 is rationalizable then first-mover’s revealed
preference relation is acyclic.

3.3.4 Reduced form implications

Prediction 1 (Reduced-form implications from the revealed-preference model).

1. Suppose the first-mover has both cooperation and defection available, then

the second-mover will be more likely to cooperate after observing cooperation,

compared to a variant where the first-mover could only cooperate (passive

player).

2. Consider two sequential prisoner’s-dilemma games. The second-mover is

more likely to cooperate after the first-mover’s cooperation in game A than in

game B if one of the following holds:

a) the increase of xCC
2 from game B to game A is at least as much as the

increase of xCC
1 ;

b) xDC
1 is larger in game A than game B;

c) xDD
1 is larger in game A than game B;

d) xDC
2 is smaller in game A than game B;
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e) xDD
2 is smaller in game A than game B.

3. The second-mover is more likely to defect after the first-mover’s cooperation

in game A than in game B if the increase of xCD
2 from game B to game A is at

least as much as the increase of xCD
1 .

Prediction 1-(1) follows our assumption that (xCC, xDb,C,b)⪰2 (xCC,;,C,b). In

other words, when the first-mover cooperates, the presence of context (if defection is

also available to the first-mover) makes the second-mover more likely to cooperate

than when there is no context (defection is not valid for the first-mover). This

prediction is crucial for any empirical test of conditional cooperation, as it verifies

whether such contextual effects on second-mover behavior actually exist. This is

exactly what we find in Chapter 2, Section 3.1.

Prediction 1-(2)(a) follows from the assumption of quasi-monotone preferences,

suggesting that if both players can benefit from cooperation, the second-mover will

be willing to cooperate—but only if they benefit more than the first-mover. This

behavior is exactly what we observed in Chapter 2, Section 3.1. Predictions 1-(2)(b)

and -(2)(c) follow from the assumption of reciprocal preferences that focus on the

context-dependent payoff of the first-mover. Although these predictions are not

documented in the existing theoretical literature (we will discuss this in the next

section), our model generates them, and Prediction 1-(2)(c) is also supported by

the empirical findings in Chapter 2, Section 3.3. Predictions 1-(2)(d) and -(2)(e)

also rely on reciprocal preferences, but focus on the context-dependent payoff of

the second-mover. Prediction 1-(2)(e) is straightforward and well documented in

the existing literature (e.g., Dufwenberg & Kirchsteiger (2004)), while few existing

models make prediction-(2)(d). However, our model does, and it is also supported

by the empirical findings in Chapter 2, Section 3.3.

Prediction 1-(3) follows from the assumption of quasi-monotone preferences, but

focuses on when subjects are more likely to defect. From the experimental findings

in Chapter 2, Section 3.2, we find that second-mover is more likely to defect when

her own payoff increases, but there is no consistent effect when only first-mover’s

payoff increases. A plausible explanation is that, by design, the second-mover’s

payoff always exceeds the first-mover’s payoff whenever the second-mover defects

after the first-mover cooperates.
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3.4 Predictions From Existing Behavioral Models

The rest of the section outlines the predictions of the sequential prisoner’s dilemma

game derived from six established behavioral models. Although some additional

definitions and assumptions are necessary to present these models, we aim to

minimize them to ensure analytical tractability. All proofs omitted from this section

are provided in the Appendix C.2.

3.4.1 Cox et al. (2008)

Cox et al. (2008) provide a revealed preference-based approach to classify indi-

viduals in terms of altruism, assuming that their preferences can be represented

by differentiable utility functions. We take their idea to the sequential prisoner’s

dilemma and check their predictions.

Cox et al. (2008) use willingness to pay (WTP) to denote the amount of payoff

that the second-mover is willing to give up in order to increase the first-mover’s

payoff by a unit. Note that given general utility function form involving trade-off

between own payoff and the other’s payoff, one can always measure WTP. Consider

preference orderings in terms of the trade-off between two players that are smooth

and convex in R2+, then they define the Definition 1:

Definition 1. (Cox et al., 2008) . Preference ordering A is said to be more altruistic
than (MGT) B if WTPA ≥WTPB.

Define an opportunity set F which belongs to a set of possible opportunity sets

F .

Definition 2. (Cox et al., 2008) Opportunity set C is said to be more generous
than (MGT) another opportunity set D if (a) x∗2,C−x∗2,D ≥ 0 (b)x∗2,C−x∗2,D ≥ x∗1,C−x∗1,D

x∗2,C (x∗1,C) is the highest payoff that second-mover (first-mover player) can get

from the opportunity set C. Definition 2 delivers two key messages. (a) Opportunity

set C is more generous than D if C can improve the monetary payoff for the second-
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mover compared to D, and (b) this is true as only if the first-mover does not increase

her own potential payoff more than the first-mover. This implies that a mutually

beneficial action can not be generous as this is the expected behavior from the

first-mover.

Consider a SPD, F = {C,D}, (a) x∗2,C − x∗2,D = xCD
2 − xDD

2 ≥ 0 (b)x∗2,C − x∗2,D =
xCD

2 − xDD
2 ≥ x∗1,C − x∗1,D = xCC

1 − xDC
1 . Then we can conclude that the first-mover’s

cooperation is more generous than first-mover’s defection.

AXIOM R. (Cox et al., 2008) Let the first-mover choose the actual opportunity set

for the second-mover from F . If C, D ∈ F and C MGT D, then AC MAT AD .

This axiom is intuitive. It suggests that if the first-mover chooses more gen-

erously, the second-mover will be more altruistic. By applying this Axiom to our

games. Note that we have already obtained that C MGT D from Definition 2,

therefore, C MAT D. This implies that second-mover is more likely to cooperate

after first-mover’s cooperation than after first-mover’s defection. This result is

proved by experimental literature in the sequential prisoner’s dilemma that less

than 15% subjects will cooperate after defection while around 40% subjects will

cooperate after cooperation (Miettinen et al., 2020, Baader et al., 2024).

However, there is no additional information on whether the second-mover would

feel differently from the cooperation chosen by the first-mover given different games

with different parameters. In other words, we are not able to observe how generous

that the first-mover is based on this model.

Cox et al. (2008) model also implies a distinction between context-dependent

and context-free scenarios, highlighting how the environment influences revealed

preferences.

To formalize the intuition, consider when the first-mover has no choice and

we write F = {F0} with corresponding the second-mover preferences AF0 . Their

alternative axiom provides an explanation when the first-mover has no choice:

AXIOM S. (Cox et al., 2008) Let the first-mover choose the actual opportunity set

for the second-mover from the F . Then: AC MAT AC0 if C MGT D for all D ∈F ,

and AD0 MAT AD if C MGT D for all C ∈F .
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Axiom S posits that the effect of Axiom R is stronger when the second-mover

faces an opportunity set that is either the most or least generous among the avail-

able options. The Axiom S suggests the following prediction which is the same as

ours:

Prediction 2. (Cox et al., 2008) Suppose the first-mover has both cooperation and

defection available, then the second-mover will be more likely to cooperate after

observing cooperation, compared to a variant where the first-mover could only

cooperate (passive player).

This prediction is the same as Prediction 1-(1) derived from our model and is

confirmed by the empirical findings in Chapter 2, Section 3.1, where we found that

subjects are significantly—by 10 percentage points—more likely to cooperate in the

sequential prisoner’s dilemma than in the corresponding modified dictator games,

following the first-mover’s cooperation.

3.4.2 He & Wu (2023)

He & Wu (2023) point out a flaw in Cox et al. (2008) model—it lacks a measure

of the intensity of generosity. They extend their model with an additional definition.

Definition 3. (He & Wu, 2023)

Case 1: Consider three opportunity sets: H, G, E. Suppose H MGT E and G

MGT E. We say H MGT E more than G MGT E if (1) x∗2,H ≥ x∗2,G and (2) x∗1,G ≥ x∗1,H .

Case 2: Consider three opportunity sets: H, G, E. Suppose H MGT G and H

MGT E. We say H MGT G more than H MGT E if (1) x∗2,E ≥ x∗2,G and (2) x∗1,G ≥ x∗1,E.

AXIOM R’. (He & Wu, 2023)

Case 1: suppose H, E ∈ F1 = {H,E} and G, E ∈ F2 = {G,E}. If H MGT E more

than G MGT E, then AH|E MAT AG|E
Case 2: suppose H, G ∈ F ′

1 = {H,G} and H, E ∈ F ′
2 = {H,E}. If H MGT G more

than H MGT E, then AH|G MAT AH|E
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He & Wu (2023) extend Cox et al. (2008) framework to a more general environ-

ment, allowing for the potential comparison of two distinct sequential prisoner’s

dilemma games. In their model, Case 1 exhibits similarities to the quasi-monotone

preferences in our framework, while Case 2 exhibits similarities to our reciprocal

preferences. However, He & Wu (2023) restrict their analysis to the maximum

monetary payoffs of each opportunity set. We will now present the predictions

derived from their model.

Prediction 3. (He & Wu, 2023) Consider two sequential prisoner’s-dilemma games.

The second-mover is more likely to cooperate after the first-mover’s cooperation in

game A than in game B if one of the following holds:

1. xCD
2 is larger in game A than game B;

2. xDC
1 is larger in game A than game B;

3. xCC
1 is smaller in game A than game B;

4. xDD
2 is smaller in game A than game B;

He & Wu (2023) is perhaps the first to propose that the first-mover’s context-

dependent payoff matters. Their Prediction 3-(1) corresponds to our Prediction

1-(3), yet we obtain the opposite result. Prediction 3-(1) violates our intuition and is

also rejected by the experimental evidence reported in Chapter 2, Section 3.2. This

discrepancy arises because their model considers only maximum payoff values,

ignoring other possible outcomes. Prediction 3-(2) aligns with our Prediction 1-

(2)(b). However, the stronger effect of xDD
1 documented in Chapter 2, also Prediction

1-(2)(c), is absent from their framework, again because the model focuses solely on

maximum payoffs.

Prediction 3-(3) corresponds to our Prediction 1-(2)(a); however, we make no

such prediction when only xCC
1 is changed. Chapter 2, Section 3.2 shows that

altering xCC
1 alone does not necessarily increase the cooperation rate. Prediction 3-

(4) aligns with our Prediction 1-(2)(e) and with the experimental evidence reported

in Chapter 2, Section 3.3. It is also the standard prediction generated by reciprocity

models such as Dufwenberg & Kirchsteiger (2004).
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Although the model in He & Wu (2023) is not fully consistent with our exper-

imental results in Chapter 2, it offers valuable insights into the role of sacrifice

in reciprocity. Specifically, it highlights that the first-mover’s context dependent

payoff should also be considered when evaluating reciprocal behavior.

3.4.3 Charness & Rabin (2002)

Suppose that all individuals have a conditional concern for welfare, as expressed

by the goal function in Charness & Rabin (2002). Applied to our setting, this goal

function can be written as

U2(x)=
(1−ρ)x2 +ρx1, if x2 ≥ x1

(1−σ)x2 +σx1, if x2 < x1

The function includes parameters ρ and σ, both non-negative and constrained

by σ≤ 1
2 , ρ ≤ 1, and σ≤ ρ. This utility formulation reflects conditional altruism,

where the weight assigned to the other player’s payoff depends on who earns more.

From the utility function, then we can conclude:

Prediction 4. (Charness & Rabin, 2002)

1. The second-mover’s choice will be the same following the first-mover’s cooper-

ation, regardless of whether defection is available to the first-mover.

2. Consider two sequential prisoner’s-dilemma games. The second-mover is

more likely to cooperate after the first-mover’s cooperation in game A than in

game B if one of the following holds:

a) xCC
2 is larger in game A than game B;

b) xCC
1 is larger in game A than game B;

c) xCD
2 is smaller in game A than game B;

d) xCD
1 is smaller in game A than game B.

In Charness & Rabin (2002), the model assumes unconditional social prefer-

ences only. This yields Prediction 4-(1), which contrasts with our Prediction 1-(1)

and with the experimental evidence reported in Chapter 2, Section 3.1.
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Prediction 4-(2)(a) aligns with our Prediction 1-(2)(a), which is also proved in

Chapter 2, Section 3.2. Prediction 4-(2)(b) corresponds to our Prediction 1-(2)(a);

however, we make no such prediction when only xCC
1 is changed. As reported in

Chapter 2, Section 3.2, changing xCC
1 alone does not necessarily increase the coop-

eration rate. The same comments with Predictions 4-(2)(c) and -(2)(d). Prediction

4-(2)(c) aligns with our Prediction 1-(3), which is also proved in Chapter 2, Section

3.2. Prediction 4-(2)(d) corresponds to our Prediction 1-(3); however, there is no

consistent effect when only xCD
1 increases from the experimental reports in Chapter

2, Section 3.2.

Some other models also present a similar prediction. For example, Becker (1976)

model of (unconditional) altruism. The goal function is given by: Ui = xi+θ·x j where

θ ∈ (0, 1). This suggests that the second-mover derives higher utility whenever

either player’s payoff increases.

3.4.4 Dufwenberg & Kirchsteiger (2004)

In his seminal paper, Rabin (1993) proposes the first model of reciprocity in normal

form games. It is further extended to extensive form games by Dufwenberg &

Kirchsteiger (2004).

In Dufwenberg & Kirchsteiger (2004) model, the utility of a player depends

on the sum of her material payoff and her reciprocity payoff: U2 =π2 + r2k21λ212.

Here π2 denotes the material payoff, r2 denotes her sensitivity to reciprocity (a

non-negative parameter), k21 is a kindness function of the second-mover to the

first-mover, and λ212 is a kindness function of the first-mover to the second-mover.

In their model k21 is determined by the first-mover’s payoff and λ212 is determined

by the second-mover’s payoff. Thus we can analyze two terms separately and

provide the predictions.

The kindness function of the second-mover to the first-mover if second-mover

decides cooperation after cooperation is given by k21(c|C)= xCC
1 − (xCC

1 + xCD
1 )/2=

(xCC
1 − xCD

1 )/2 where (xCC
1 + xCD

1 )/2 is defined as a reference point in their model

that is used to measure second-mover’s kindnesses to first-mover corresponding

to different choices. The same method we obtain k21(d|C)= xCD
1 − (xCC

1 + xCD
1 )/2=

−(xCC
1 −xCD

1 )/2. Moreover, the model suggests that λ212 must be greater than zero as
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first-mover’s cooperation must be perceived as a kind action. Therefore, an increase

in xCC
1 (or a decrease in xCD

1 ) makes the second-mover more likely to cooperate, as

this change causes the kindness term k21(c|C) to increase and k21(d|C) to decrease.

The kindness function of the first-mover to the second-mover if second-mover

decides cooperation after cooperation is given by λ212(c|C)= xCC
2 − (xCC

2 + xDD
2 )/2=

(xCC
2 − xDD

2 )/2 where (xCC
2 + xDD

2 )/2 is defined as a reference point that is used

to measure how kind that the first-mover is to the second-mover. Here, we can

observe the extent to which the second-mover benefits compared to the first-mover’s

defection. The same method we obtain λ212(d|C) = xCD
2 − (xCD

2 + xDD
2 )/2 = (xCD

2 −
xDD

2 )/2. As k21(d|C) < 0, a decrease in xDD
2 makes the first-mover more kind and

second-mover will be less likely to defect. But the net impact of xCD
2 is not directly

observable because it presents a trade-off, leading to a reduction in the reciprocity

payoff but an enhancement in the direct material payoff.

Moreover, Dufwenberg & Kirchsteiger (2004) model also implies that the second-

mover will be more likely to cooperate after first-mover’s cooperation when defection

is also available to the first-mover than cooperation is the only choice for the first-

mover. To see this, if cooperation is the only choice for the first-mover, then the

model suggest that λ212 = 0, thus U2 =π2, defection will be the only best response

for the second-mover.

To conclude, Dufwenberg & Kirchsteiger (2004) would make the following pre-

dictions:

Prediction 5. (Dufwenberg & Kirchsteiger, 2004)

1. Suppose the first-mover has both cooperation and defection available, then

the second-mover will be more likely to cooperate after observing cooperation,

compared to a variant where the first-mover could only cooperate (passive

player).

2. Consider two sequential prisoner’s-dilemma games. The second-mover is

more likely to cooperate after the first-mover’s cooperation in game A than in

game B if one of the following holds:

a) xCC
2 is larger in game A than game B;
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b) xCC
1 is larger in game A than game B;

c) xCD
1 is smaller in game A than game B;

d) xDD
2 is smaller in game A than game B.

3. Consider two sequential prisoner’s-dilemma games. The second-mover will

behave the same after the first-mover’s cooperation in game A and in game B

if only xDD
1 , xDC

1 , and xDC
2 vary.

We first note that Prediction 5-(1) makes the same prediction as Predictions 1

and 2, and is also confirmed by the experimental findings in Chapter 2, Section 3.1.

Prediction 5-(2)(a) aligns with Prediction 1-(2)(a) and is also confirmed by the

experimental results in Chapter 2, Section 3.2. Prediction 5-(2)(b) corresponds to

our Prediction 1-(2)(a); but we make no such prediction when only xCC
1 is changed.

As reported in Chapter 2, Section 3.2, changing xCC
1 alone does not necessarily

increase the cooperation rate. Prediction 5-(2)(c) corresponds to our Prediction

1-(3); however, there is no consistent effect when only xCD
1 increases as shown in

Chapter 2, Section 3.2. Prediction 5-(2)(d) corresponds to Prediction 1-(2)(c) and is

supported by the experimental results in Chapter 2, Section 3.3.

Prediction 5-(3) suggests that xDD
1 , xDC

1 , and xDC
2 have no effect on the second-

mover’s decisions, because these payoffs are assumed not to enter the second-

mover’s utility function directly. This implication contradicts our Predictions 1-

(2)(c), 1-(2)(b), and 1-(2)(d), respectively, and it is also at odds with the experimental

evidence reported in Chapter 2. The discrepancy arises because Dufwenberg &

Kirchsteiger (2004) posit that the perceived generosity of the first-mover depends

only on the second-mover’s payoff, thereby neglecting the first-mover’s potential

payoffs, and they also rule out the possibility of cooperation after a defection.

3.4.5 Fehr & Schmidt (1999)

In Fehr & Schmidt (1999) model, they assume that in addition to purely selfish

subjects, there are subjects who will experience the disutility when inequitable

distribution occurs. They experience inequity if they are worse off in material terms

than others, and they also feel inequity if they are better off. According to their

model,we have the following goal utility function for the second-mover:
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U2(x)= x2 −α2max{x1 − x2,0}−β2max{x2 − x1,0}

where β2 ≤α2 and 0≤β2 < 1. In other words, players dislike inequity, and more

so when they are worse off than the others.

In the environment of the sequential prisoner’s dilemma game, following Fehr

& Schmidt (1999) model, the utility for different choice would be:

U2(c|C)= xCC
2 −α2max{xCC

1 − xCC
2 ,0}−β2max{xCC

2 − xCC
1 ,0}

U2(d|C)= xCD
2 −α2max{xCD

1 − xCD
2 ,0}−β2max{xCD

2 − xCD
1 ,0}

The second-mover would like to cooperate conditional on the first-mover’s

cooperation if:

U2(c|C)>U2(d|C)

Then we can conclude:

Prediction 6. (Fehr & Schmidt, 1999)

1. The second-mover’s choice will be the same following the first-mover’s cooper-

ation, regardless of whether defection is available to the first-mover.

2. Consider two sequential prisoner’s-dilemma games. The second-mover is

more likely to cooperate after the first-mover’s cooperation in game A than in

game B if one of the following holds:

a) xCC
1 is larger in game A than game B, and xCC

1 is smaller than xCC
2 in

game A;

b) xCC
2 is larger in game A than game B;

c) xCD
1 is smaller in game A than game B, and xCD

1 is smaller than xCD
2 in

game B;

d) xCD
2 is smaller in game A than game B.
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Prediction 6-(1) suggests a non-existence of conditional cooperation/conditional

social preferences that contradicts the Prediction 1-(1) as well as experimental

findings in Chapter 2, Section 3.1. Prediction 6-(2)(a) matches our Prediction 1-

(2)(a) and is supported by the experimental results in Chapter 2. Notably, this is

the only model in this section that yields such a prediction. Predictions 6-(2)(b) and

6-(2)(d) aligns with our Predictions 1-(2)(a) and 1-(3), respectively, and with the

findings reported in Chapter 2, Section 3.2. Prediction 6-(2)(c) corresponds to our

Prediction 1-(3); however, Chapter 2, Section 3.2 shows no consistent effect when

only xCD
1 is increased.

3.4.6 More models

There are also other models that aim to capture the idea of reciprocity. For ex-

ample, Cheung (2025) propose a recent model that examines revealed reciprocity.

According to their model, when a second-mover gives more to the first-mover due to

context, the second-mover is not following baseline preferences (Fehr & Schmidt,

1999, Bolton & Ockenfels, 2000, Charness & Rabin, 2002, Becker, 1976), but rather

a more altruistic preference, as in Cox et al. (2008). Their model suggests that if

experimenters find that people behave differently in sequential prisoner’s dilemma

games compared to modified dictator games (as discussed in Chapter 2), we can

argue that context matters and that conditional cooperation exists. Otherwise, if

behavior does not differ, we can conclude that context does not matter, and people

act as unconditional decision makers. The model by Cheung (2025) explains the

situation and also provides an experimental strategy, similar to the one used in

Chapter 2. While the model does not make specific predictions about the compari-

son between the two games, we do not comment on the prediction of their model

here.

Reciprocity suggests that behavior changes in a particular direction depending

on how generous another person has been. As proposed by Heufer et al. (2020) in

another model, they use the Agreement Axiom similar to Cox et al. (2008) to give

empirical meaning to the idea that one becomes more or less generous depending

on the behavior of the other person. In other words, contexts can influence behavior.
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3.5 Conclusion

Conditional cooperation in the sequential prisoner’s dilemma is consistent with

concerns about reciprocity. However, second-mover cooperation after first mover

cooperation can be interpreted in two different ways. One is outcome-based idea

that captures concerns over distributions. An example is inequity aversion Fehr

et al. (1993) which allows people to compare their payoff with others and prefer

payoffs that are more equal— Note that, even though the potential payoffs are

formed by the first mover’s cooperation, second mover’s decision is independent

of first mover’s cooperative behaviour. Another explanation is the intention-based

account, which reflects concern for the first mover’s intentions. A typical example is

reciprocity, which suggests that the second mover is more likely to cooperate if the

first mover demonstrates kindness (Rabin, 1993, Dufwenberg & Kirchsteiger, 2004).

Note that cooperation already implies that the first mover is acting generously. In

this case, the second mover’s behaviour does depend on the first mover’s action,

giving rise to conditional cooperation.

To disentangle the two effects and understand their importance in explaining

cooperation, we distinguish between context-independent and context-dependent

preferences. We use the concept of quasi-monotone preferences to represent the

context-independent component, suggesting that the second mover cares about

the final payoff distribution, regardless of how it is generated. Moreover, we argue

that conditional cooperation should be context-dependent and can be linked to

reciprocity. We therefore propose a reciprocal preference to explain conditional

cooperation in the sequential prisoner’s dilemma. The reciprocal preferences dis-

cussed in this chapter are connected to the intentional component of reciprocity

introduced in Chapter 1. However, the definition presented here is more general

and is supported by the experimental findings in Chapter 2.

The two preferences we proposed in the paper captures the workhorse criterion

to identify conditional cooperation from an experiment-comparing the second

mover’s choice in a sequential prisoner’s dilemma game to the case where the first

mover plays no role in determining cooperation or defection.

Finally, we compare several prominent models of social preferences, including

those that capture inequity aversion (Fehr & Schmidt, 1999), welfare concerns
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(Charness & Rabin, 2002), altruism (Becker, 1976), and reciprocity (Dufwenberg &

Kirchsteiger, 2004, He & Wu, 2023, Cox et al., 2008). These models offer valuable

insights into the nature of social preferences, but each overlooks some certain

effects. This highlights the need for further experimental work to detect whether

the missing elements play an important role in shaping behaviour (Baader et al.,

2024).
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Katuščák, P. & T. Miklánek (2023). What drives conditional cooperation in public

good games? Experimental Economics, 26(2), 435–467.

Kirchkamp, O. & W. Mill (2020). Conditional cooperation and the effect of punish-

ment. Journal of Economic Behavior & Organization, 174, 150–172.

Klempt, C. (2012). Fairness, spite, and intentions: Testing different motives behind

punishment in a prisoners’ dilemma game. Economics Letters, 116(3), 429–431.

Manski, C. F. (2004). Measuring expectations. Econometrica, 72(5), 1329–1376.

McKelvey, R. D. & T. R. Palfrey (1995). Quantal response equilibria for normal

form games. Games and economic behavior, 10(1), 6–38.

Mengel, F. (2018). Risk and temptation: A meta-study on prisoner’s dilemma games.

The Economic Journal, 128(616), 3182–3209.

Messick, D. M. (1995). Equality, fairness, and social conflict. Social Justice Research,

8(2), 153–173.

Miettinen, T., M. Kosfeld, E. Fehr, & J. Weibull (2020). Revealed preferences in a

sequential prisoners’ dilemma: A horse-race between six utility functions. Journal
of Economic Behavior & Organization, 173, 1–25.

Muller, L., M. Sefton, R. Steinberg, & L. Vesterlund (2008). Strategic behavior and

learning in repeated voluntary contribution experiments. Journal of Economic
Behavior & Organization, 67(3-4), 782–793.

Nishimura, H., E. A. Ok, & J. K.-H. Quah (2017). A comprehensive approach to

revealed preference theory. American Economic Review, 107(4), 1239–1263.

Orhun, A. Y. (2018). Perceived motives and reciprocity. Games and Economic
Behavior, 109, 436–451.

Rabin, M. (1993). Incorporating fairness into game theory and economics. The
American economic review, 1281–1302.

Rand, D. G. & M. A. Nowak (2013). Human cooperation. Trends in cognitive
sciences, 17(8), 413–425.

97



BIBLIOGRAPHY

Rapoport, A. (1967). A note on the“ index of cooperation” for prisoner’s dilemma.

Journal of Conflict Resolution, 11(1), 100–103.

Rapoport, A. & A. M. Chammah (1965). Prisoner’s dilemma: A study in conflict
and cooperation, Volume 165. University of Michigan press.

Schmidt, D., R. Shupp, J. Walker, T. Ahn, & E. Ostrom (2001). Dilemma games:

game parameters and matching protocols. Journal of Economic Behavior & Orga-
nization, 46(4), 357–377.

Schneider, M. & T. Shields (2022). Motives for cooperation in the one-shot prisoner’s

dilemma. Journal of Behavioral Finance, 23(4), 438–456.

Sohn, J.-y. & W. Wu (2022). Reciprocity with uncertainty about others. Games and
Economic Behavior, 136, 299–324.

Suzumura, K. (1976). Remarks on the theory of collective choice. Economica,

381–390.

Thaler, R. H. (1988). Anomalies: The ultimatum game. Journal of economic
perspectives, 2(4), 195–206.

Thöni, C. & S. Volk (2018). Conditional cooperation: Review and refinement.

Economics Letters, 171, 37–40.

Varian, H. R. (1982). The nonparametric approach to demand analysis. Economet-
rica: Journal of the Econometric Society, 945–973.

Weber, R. A., C. F. Camerer, & M. Knez (2004). Timing and virtual observability

in ultimatum bargaining and “weak link” coordination games. Experimental
Economics, 7, 25–48.

98



A
P

P
E

N
D

I
X

A
APPENDIX TO CHAPTER 1

A.1 Proof of the Theorem

Proof. The proof adopts the approach of Dufwenberg & Kirchsteiger (2004), given

the close similarity between the two model environments.

Recall that we have defined that ∆ is players’ behavioural strategy space and

A i,h is i’s set of actions at history h ∈ H. Define xi,h ∈ ∆(A i,h), and σi/xi,h be i’s
strategies that specifies the choice xi,h, and otherwise the same as σi.

Define the local best response correspondence and the best response correspon-

dence f i,h :∆→∆(A i,h) and f :∆→×(i,h)∈N×H by:

f i,h(σ)=argmax
xi,h∈∆A i,h

Ui(σi/xi,h,bi,h, ci,h)

f (σ)=×(i,h)∈N×H f i,h(σ)

As ×(i,h)∈N×H f i,h(σ) and ∆ are topologically equivalent, we can define an equiv-

alent function γ :∆→∆ and look for a fixed point. A fixed point under γ satisfies

the ERE conditions since player i at h maximizes their utility (condition (1) of

Definition 9), and the first- and second order beliefs are correct and updated along

the path given h (conditions (2) and (3) of Definition 9).
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Since ∆(A i,h) is non-empty (recall that if i owns no information set then ∆(A i,h)

is taken to be singleton) and compact and Ui is continuous (since πi , Ψi, and

Φi are all continuous; also recall that although our model and Dufwenberg &

Kirchsteiger (2004) selects efficient strategies, they are independent of beliefs).

Then Berge’s maximum principle suggests that f i,h is non-empty, closed-valued,

and upper hemi-continuous. Next, f i,h is convex as ∆(A i,h) is convex and Ui is

indeed linear in i’s own strategy. Therefore, f i,h is non-empty, closed-valued, upper

hemi-continuous, and convex-valued. These properties extend from to f i,h to f and

γ. According to Kakutani’s fixed point theorem, γ admits a fixed point. Therefore,

the ERE must exist.

A.2 Applications

Dufwenberg & Kirchsteiger (2004) primarily focus on analyzing a single case for

each game type and do not explicitly compare multiple games, such as four games

illustrated in Figures 1.1a–1.1d. To address this gap and facilitate comparison

across multiple games, we first clarify our comparison strategy, which is also

applicable in Dufwenberg & Kirchsteiger (2004) model:

Consider any two games game (i) and game (ii) with the same game type, in

which equilibrium analysis implies that an individual will choose strategy s if

their sensitivity parameter β (measuring how much they care about intentions)

exceeds certain thresholds a in game (i) and b in game (ii). Here, a and b are game-

specific thresholds and are calculated by the model. Suppose a > b; then, for any

individual with a given β, if this person chooses strategy s in game (i), they must

also choose strategy s in game (ii), but not vice versa. Consequently, if one assumes

a distribution of reciprocity parameters, s will be more likely to be chosen in game

(ii) than in game (i), which in turn implies that a greater proportion of individuals

will choose s in game (ii) than in game (i). This logic also applies analogously

when β is below certain thresholds, or when considering another parameter α,

representing how much individuals care about consequences.
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Four mini-ultimatum games

Result A1. In games (a) - (b), if the proposer chooses O2, the responder will accept

the offer (by choosing y) in every ERE.

Proof. Result A1 shows the responder would like to accept a sufficiently kind

and fair offer. In games (a)-(b), we notice that if the proposer chooses O2, the

responder will never experience disutility by our definition of the consequence part:

ΦR(y|O2) = 0 and ΦR(n|O2) = 0. Then we can look at proposer’s intentions. The

proposer chooses y after O2 can take the highest material payoff in the whole game

for the responder (ΨR > 0), while n after O2 can take the lowest material payoff in

the whole game for the responder (ΨR < 0). Therefore, the utility of the responder

by choosing y after O2 is always greater than choosing n after O2. The responder

must accept the offer (by choosing y) in every ERE.

Result A2. In game (a), when αR ≤ 1/3 and proposer chooses O1, the following

holds in all ERE:

(1) if βR < (2−6αR )(1+e5)
40e5 , the responder will accept the offer (by choosing y).

(2) if βR > (2−6αR )(e8+e5)
24e5 , the responder will reject the offer (by choosing n).

(3) if (2−6αR )(1+e5)
40e5 ≤ βR ≤ (2−6αR )(e8+e5)

24e5 , the responder will choose randomly.

Proof. Note that we have stated that if proposer chooses O2, the responder will

always accept the offer (by choosing y) in every SRE (Result A1).

In order to calculate how kind responder believes proposer is after choosing O1,

we have to specify responder’s belief of proposer’s belief about responder’s choice

after O1. Denote this by q ∈ [0,1]1.

1In principle we also need responder’s belief about proposer’s behavior, i.e. bR . However, the
belief updating rules suggest when responder already knows what proposer has done, responder’s
belief has to be in accordance with the truth.
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In the ultimatum game in game (a), we obtain the responder’s utility given that

proposer chooses O1:

UR(y|O1)= 2−6αR +8βR ·kP

UR(n|O1)= 0+0αR +0βR ·kP

where kP = 2q+0− [ e8q+0(1−q)

e8q+0(1−q)+e5 ·2q+ e5

e8q+0(1−q)+e5 ·5]= e5

e8q+e5 · (2q−5). Note that

here kP is less than 0 since q ∈ [0,1].

Reading two equations, we first note that find that the responder will never

accept the offer if αR> 1/3 as UR(y|O1) <UR(n|O1). That is why we assume that

αR ≤ 1/3.

When having αR ≤ 1/3, the responder would like to choose y if and only if

UR(y|O1) > UR(n|O1). Because all beliefs must be correct, q=1 must hold when

UR(y|O1)>UR(n|O1). Therefore:

2−6αR +8βR ·kP > 0+0αR +0βR ·kP

2−3βR · e5

e8 + e5 ·8−6αR > 0

βR < (2−6αR)(e8 + e5)
24e5 (A.1)

Similarly, the responder would like to choose n if and only if UR(y|O1) <
UR(n|O1) and q=0, therefore:

2−6αR +8βR ·kP < 0+0αR +0βR ·kP

2−6αR +8βR · −5e5

1+ e5 < 0

βR > (2−6αR)(1+ e5)
40e5 (A.2)

According to above two thresholds, we find that (2−6α)(e8+e5)
24e5 > (2−6α)(1+e5)

40e5 . It

means that when β ∈ [ (2−6α)(1+e5)
40e5 , (2−6α)(e8+e5)

24e5 ], there is no difference for the pro-

poser to choose either y or n. Therefore, the proposer will choose randomly. For

β ̸∈ [ (2−6α)(1+e5)
40e5 , (2−6α)(e8+e5)

24e5 ], we revise our (A.1) and (A.2) as follows (Result A2):

The responder would like to choose y when:
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βR < (2−6αR)(1+ e5)
40e5 (A.3)

The responder would like to choose n when:

βR > (2−6αR)(e8 + e5)
24e5 (A.4)

To explain the result, as stated in Dufwenberg & Kirchsteiger (2004), the

intermediate value of β is characterized by self-fulfilling prophecies. Assume the

beliefs are such that the offer is rejected, which will make the offer a very unkind

action of proposer. This in turn leads responder to be unkind to proposer(reject the

offer). On the other hand, if the beliefs imply acceptance of the offer, the offer is

not so unkind, and this in turn leads responder to accept the offer.

Result A3. In game (b), when αR ≤ 1/3 and proposer chooses O1, the following

holds in all ERE:

(1) if βR < (2−6αR )(1+e2)
64e2 , the responder will accept the offer (by choosing y).

(2) if βR > (2−6αR )(e8+e2)
48e2 , the responder will reject the offer (by choosing n).

(3) if (2−6αR )(1+e2)
64e2 ≤ βR ≤ (2−6αR )(e8+e2)

48e2 , the responder will choose randomly.

Proof. The proof process is exactly the same as Result A2, we briefly state the

calculations:

In the ultimatum game (b), we obtain the responder’s utility given that proposer

chooses O1:

UR(y|O1)= 2−6αR +8βR ·kP

UR(n|O1)= 0+0αR +0βR ·kP

where kP = 2q+0− [ e8q+0(1−q)

e8q+0(1−q)+e2 ·2q+ e2

e8q+0(1−q)+e2 ·8]= e2

e8q+e2 · (2q−8). Note that

here kP is less than 0 since q ∈ [0,1].

As in result A2, we assume that αR ≤ 1/3.
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When having αR ≤ 1/3, the responder would like to choose y if and only if

UR(y|O1) > UR(n|O1). Because all beliefs must be correct, q=1 must hold when

UR(y|O1)>UR(n|O1). Therefore:

2−6αR +8βR ·kP > 0+0αR +0βR ·kP

2−6βR · e2

e8 + e2 ·8−6αR > 0

βR < (2−6αR)(e8 + e2)
48e2 (A.5)

Similarly, the responder would like to choose n if and only if UR(y|O1) <
UR(n|O1) and q=0, therefore:

2−6αR +8βR ·kP < 0+0αR +0βR ·kP

2−6αR +8βR · −8e2

1+ e2 < 0

βR > (2−6αR)(1+ e2)
64e2 (A.6)

According to above two thresholds, we find that (2−6αR )(e8+e2)
48e2 > (2−6αR )(1+e2)

64e2 .

It means that when β ∈ [ (2−6αR )(1+e2)
64e2 , (2−6αR )(e8+e2)

48e2 ], there is no difference for the

proposer to choose either y or n. Therefore, the proposer will choose randomly. For

β ̸∈ [ (2−6αR )(1+e2)
64e2 , (2−6αR )(e8+e2)

48e2 ], we revise our (A.5) and (A.6) as follows (Result A3):

The responder would like to choose y when:

βR < (2−6αR)(1+ e2)
64e2 (A.7)

The responder would like to choose n when:

βR > (2−6αR)(e8 + e2)
48e2 (A.8)

Results A2-A3 provide us with a very plausible and empirically supported

explanation. They show that as long as responder is sufficiently motivated by

intentions, responder choice depends on the behavior of the proposer. Result A2

shows that as long as the responder is not too inequity-averse (α< 1/3) and does

not care too much about intentions (βR < (2−6α)(1+e5)
40e5 ), they would accept the unfair
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O1 offer. But if the responders care about the intentions (βR > (2−6α)(e8+e2)
48e2 ), they

will reject this unkind O1 offer. The same in result A3.

Proof of Comparison 2.

Proof. We have obtained the different thresholds of choosing y and n in games (a)

and (b) when α< 1/3. To compare the y rate and n rate in game (a) and game (b),

we can compare (A.3) and (A.7), (A.4) and (A.8).

First, we compare two different thresholds: (A.7) -(A.3) we obtain (2−6α)(1+e2)
64e2 −

(2−6α)(1+e5)
40e5 = (2−6α)( 1

64 − 1
40 + 1

64e2 − 1
60e5 )< 0. This implies that those who choose y

in game (a) must also choose y in game (b), but not vice versa.

Then, we compare another two different thresholds: (A.8) - (A.4) we obtain
(2−6α)(e8+e2)

48e2 − (2−6α)(e8+e5)
24e5 = (2−6α) (e6−2e3−1)

48 > 0. This implies that those who choose

n in game (b) must also choose n in game (a), but not vice versa. Furthermore, for

any intermediate case, we have proved that they would choose randomly.

In the ultimatum game (c), there does not exist any intention for the proposer,

because he can not choose any intentional action, thus the intention term ΨR = 0.

In the ultimatum game (d), because O2 is not efficient, there does not exist any

intention for the proposer, so the intention term ΨR = 0.

Hence, in games (c) and (d), we only consider the consequence term ΦR =−6α

for choosing y and ΦR = 0 for choosing n, the utility of proposer:

UR(y|O1)= 2−6αR

UR(n|O1)= 0+0

Therefore, the responder chooses y after O1 if UR(y |O1)>UR(n |O1), that is,

if α < 1
3 , regardless of the value of βR; and the responder chooses n after O1 if

UR(y|O1)<UR(n|O1), that is, α> 1/3; and proposer would like to choose randomly

after O1 if UR(y|O1)=UR(n|O1), that is, α= 1/3.

Taken together, these results yield our model of Comparison 2.
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The sequential prisoner’s dilemma

General sequential prisoner’s dilemma (m = 6.5)

We discuss the general sequential prisoner’s dilemma with m = 6.5 in this section.

We now move to the detailed calculations. We focus on player 2’s behaviour, which

can be summarized by two results::

Result A4. If player 1 defects (by choosing D), player 2 will always defect (by

choosing d) as a response in every ERE.

Proof. To explain player 2’s behavior in this result, note that if player1 chooses

D, then for any possible response by player 2, their payoff will always be lower

than if player 1 had played C. This implies that, regardless of what player1 be-

lieves player 2 will choose, player 1 cannot be considered kind when playing D.

Moreover, consider the two possible consequences: Φ2(d|D) = 0 and Φ2(c|D) =
α2 · (0.5−6.5)− (1−4) = −3α2. Therefore, both the reciprocity payoff (from inten-

tional and consequential kindness) and the material payoff lead player 2 to choose

d.

Result A5. If player 1 cooperates (by choosing C), the following holds in all ERE:

(1) if β2 > (2+12α2)(e5.5+e4))
5e4 , player 2 will cooperate (by choosing c).

(2) if β2 < (2+12α2)(e3+e4)
10e4 , player 2 will defect (by choosing d).

(3) if (2+12α2)(e3+e4)
10e4 ≤β2 ≤ (2+12α2)(e5.5+e4))

5e4 , player 2 will cooperate (by choosing c)

with probability p that satisfies 2+12α2 = 5β2(2− p) e4

e5.5p+3(1−p)+e4 .

Proof. Note that we have stated that if player 1 chooses D, player 2 will always

defect (by choosing d) in every SRE (Result A4).
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For simplicity, in this section, we first set player 2’s belief about player 1’s belief

about his choice c after C is p ∈ [0,1]. According to our model, we obtain player 2’s

utility given player 1 chose C:

U2(c|C)= 1.5+α2(1.5−5.5)+5.5β2 ·k1

U2(d|C)= 2+α2(2−3)+3β2 ·k1

where k1 = [p ·1.5+(1−p) ·2]−[ e5.5p+3(1−p)

e5.5p+3(1−p)+e4 (p ·1.5+(1−p) ·2)+ e4

e5.5p+3(1−p)+e4 ·1]=
(p ·1.5+ (1− p) ·2−1) e4

e5.5p+3(1−p)+e4 .

The player 2 would like to choose c if U2(c|C) > U2(d|C). Because all beliefs

must be correct, we get p=1, and we then have:

1.5−3α2 +5.5β2 ·k1 > 2+3β2 ·k1

2+12α2 −5β2
e4

e5.5 + e4 < 0

β2 > (2+12α2)(e5.5 + e4))
5e4 (A.9)

The player 2 would like to choose d if U2(c|C) <U2(d|C). Because all beliefs

must be correct, we get p=0, and we then have:

1.5−3α2 +5.5β2 ·k1 < 2+3β2 ·k1

2+12α2 −10β2
e4

e3 + e4 > 0

β2 < (2+12α2)(e3 + e4)
10e4 (A.10)

When (2+12α)(e3+e4)
10e4 ≤β≤ (2+12α)(e5.5+e4)

5e4 , neither cooperation nor defection can be

part of an equilibrium. In order to have an equilibrium that involves randomized

choice, the utility of cooperation must be equal to the utility of defection. That is,

U2(c|C)=U2(d|C).

1.5−3α2 +5.5β2 ·k1 = 2+3β2 ·k1

2+12α2 = 5β2(2− p)
e4

e5.5p+3(1−p) + e4 (A.11)
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Sequential prisoner’s dilemma with punishment (m = 1.5)

Next, we move to the sequential prisoner’s dilemma with punishment where

m = 1.5. The same reason as when m = 6.5, player 1 is viewed as unkind if they

play D. The difference here is that player 2 might choose punishment after D to

punish the unkind behaviour at a cost to themselves. Therefore, we set q ≥ 0 (q
denotes the probability of punishment after player 1’s defection) when m = 1.5.

In this section, we still focus on player 2’s behaviour, and our predictions can be

summarized as follows:

Result A6. If player 1 defects (by choosing D), defection (by choosing d) for player 2

is not the unique ERE.

Proof. When the player 2 has the chance to punish player 1’s defection, the process

would be slightly different as the defection is not the unique ERE given player

defects. So in this section, we set the player 2’s belief about player 1’s belief about

his choice c after C is p. In addition, we set the player 2’s belief about player 1’s

belief about his choice punishment after D is q.

First, consider that if player 1 decides D, we can obtain player 2’s utility as

follows:

U2(p|D)= 0.5+α2(0.5−1.5)+1.5β2 ·k1

U2(d|D)= 1+α2(1−4)+4β2 ·k1

where k1 = [q·0.5+(1−q)·1]−[ e5.5p+3(1−p)

e5.5p+3(1−p)+e1.5q+4(1−q) (p·1.5+(1−p)·2)+ e1.5q+4(1−q)

e5.5p+3(1−p)+e1.5q+4(1−q) (q·
0.5+ (1− q) ·1)] = (q ·0.5+ (1− q) ·1− p ·1.5− (1− p) ·2) e5.5p+3(1−p)

e5.5p+3(1−p)+e1.5q+4(1−q) . Because

q, p ∈ [0,1], k1 < 0 is satisfied.

So now player 2 would like to choose d if U2(p|D)<U2(d|D). To verify Result

9, we need to prove that U2(p|D)<U2(d|D) is not always held. When choosing d
after D, we must have q=0, so:

0.5+1.5β ·k1 < 1−2α+4β ·k1

−2.5β ·k1 < 0.5−2α (A.12)
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Since k1 is less than 0 and β2 ≥ 0, so we can get −2.5β2 ·k1 ≥ 0. Furthermore,

we know α2 ≥ 0. It suggests that if α2 > 0.25, the equation (A12) will never be

satisfied. Therefore, if player 1 defects (by choosing D), defection (by choosing d)

for player 2 is not the unique equilibrium.

Result A7. If player 1 cooperates (by choosing C), the following holds in all ERE:

(1) if β2 > (2+12α2)(e5.5+e1.5q+4(1−q))
5(1+q)e1.5q+4(1−q) , player 2 will cooperate ( by choosing c).

(2) if β2 < (2+12α2)(e3+e1.5q+4(1−q))
5(2+q)e1.5q+4(1−q) , player 2 will defect (by choosing d).

(3) if (2+12α2)(e3+e1.5q+4(1−q))
5(2+q)e1.5q+4(1−q) ≤ β2 ≤ (2+12α2)(e5.5+e1.5q+4(1−q))

5(1+q)e1.5q+4(1−q) , player 2 will cooper-

ate (by choosing c) with a probability p that satisfies 2+ 12α2 = 5β2(2− p +
q) e1.5q+4(1−q)

e5.5p+3(1−p)+e1.5q+4(1−q) .

Proof. We move to our main discussion of the player 2’s behaviour given player

cooperates. The only difference compared to Result 8 is that we have the player 2’s

belief about player 1’s belief about his choice punishment after D is q ≥ 0.

We then obtain player 2’s utility given player 1 chooses C:

U2(c|C)= 1.5+α2(1.5−5.5)+5.5β2 ·k1

U2(d|C)= 2+α2(2−3)+3β2 ·k1

where k1 = [p ·1.5+ (1− p) ·2]− [ e5.5p+3(1−p)

e5.5p+3(1−p)+e1.5q+4(1−q) (p ·1.5+ (1− p) ·2)+ (q ·0.5+
(1− q)) e1.5q+4(1−q)

e5.5p+3(1−p)+e1.5q+4(1−q) ]= (p ·1.5+ (1− p) ·2− q ·0.5− (1− q)) e1.5q+4(1−q)

e5.5p+3(1−p)+e1.5q+4(1−q) .

The player 2 would like to choose c if U2(c|C) > U2(d|C). Because all beliefs

must be correct, p=1 must hold, so:

1.5−3α2 +5.5β2 ·k1 > 2+3β2 ·k1

2+12α2 −5β2(1+ q)
e1.5q+4(1−q)

e5.5 + e1.5q+4(1−q) < 0

β2 > (2+12α2)(e5.5 + e1.5q+4(1−q))
5(1+ q)e1.5q+4(1−q) (A.13)
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The player 2 would like to choose d if U2(d|C) > U2(c|C). Now p=0, and we

have:

1.5−3α2 +5.5β2 ·k1 < 2+3β2 ·k1

1+6α2 −5β2(1+0.5q)
e1.5q+4(1−q)

e3 + e1.5q+4(1−q) > 0

β2 < (2+12α2)(e3 + e1.5q+4(1−q))
5(2+ q)e1.5q+4(1−q) (A.14)

When (2+12α)(e3+e1.5q+4(1−q))
5(2+q)e1.5q+4(1−q) ≤β≤ (2+12α)(e5.5+e1.5q+4(1−q))

5(1+q)e1.5q+4(1−q) . The player 2 would like to

choose c with probability p if U2(c|C)=U2(d|C). We have:

1.5−3α2 +5.5β2 ·k1 = 2+3β2 ·k1

2+12α2 = 5β2(2− p+ q)
e1.5q+4(1−q)

e5.5p+3(1−p) + e1.5q+4(1−q) (A.15)

The sequential prisoner’s dilemma v.s. with punishment

Proof of Comparison 4.

Proof. Recall that we have shown in the treatment with m = 1.5 that α2 > 0.25

implies q = 1 (see the proof of Result A6). In contrast, in the treatment with m = 6.5,

we must have q = 0 regardless of the value of α2 (Result A4).

Therefore, to prove Comparison 4, we should prove that the threshold in (A.13)

is greater than (A.9); threshold in (A.14) is greater than (A.10); for the same values

of α2 and β2 will have a higher cooperation rate p in (A.11) than in (A.15).

First, we compare two different thresholds:(A.13) - (A.9), we obtain (e5.5+e4−2.5q)(2+12α)
5(1+q)e4−2.5q −

(e5.5+e4)(2+12α)
5e4 , notice α is a non-negative value. We set D = (2+12α)[ (e5.5+e4−2.5q)

5(1+q)e4−2.5q −
(e5.5+e4)

5e4 ] where q ∈ (0,1]. Let us derive the smallest value of D. We can find the FOC

with respect to q: ∂D
∂q = (2+12α)−2.5e4−2.5q·5(1+q)e4−2.5q−[5e4−2.5q+5(1+q)(−2.5)e4−2.5q](e5.5+e4−2.5q)

[5(1+q)e4−2.5q]2

= (2+12α) e8−5q·(−5+7.5e1.5+2.5q)+12.5·q·e9.5−2.5q)
[5(1+q)e4−2.5q]2 > 0 since q ∈ (0,1] and α2 ≥ 0. Then let

us look at when q = 0, then D = (2+12α)[ (e5.5+e4)
5e4 − (e5.5+e4)

5e4 ]= 0. As a result, D > 0.

This means that the threshold value of β2 with m = 1.5 is greater than for m = 6.5.

Thus, more player 2s will choose c with m = 6.5 than with m = 1.5.
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Next, we compare two different thresholds:(A.14) - (A.10), similarly, we obtain

D = (2+12α)(e3+e1.5q+4(1−q))
5(2+q)e1.5q+4(1−q) − (2+12α)(e3+e4)

10e4 =2+12α
5 · ( e2.5q−1+1

2+q − e−1+1
2 ) where α≥ 0 and q ∈

(0,1]. Let us derive the smallest value of D. First, ∂D
∂q = 2+12α

5 ·(2.5e2.5q−1(2+q)−(e2.5q−1+1)
(2+q)2 )=

2+12α
5 · (4e2.5q−1+2.5qe2.5q−1−1

(2+q)2 ) > 0 since q ∈ (0,1] and α2 ≥ 0. D = 0 when q=0. Then

D > 0. This means that the threshold value of β2 now with m = 1.5 is greater than

for m = 6.5. Thus, more player 2s will choose d with m = 1.5 than with m = 6.5.

Finally, we compare the two treatments and show that, for the same values

of α2 and β2, whether the cooperation rate p is higher in equation (A.11) than in

equation (A.15).

We set M = 2+12α
5β = 2−p+q

e2.5p+2.5q−1+1 . The equation (A.11) is the case where q = 0 and

that equation (A.15) is the case where q ∈ [0,1].

Notice that M is a fixed value, so we only need to show that an increase in q
leads to a decrease in p.

Notice that M is a fixed value, ∂M
∂p = −(e2.5p+2.5q−1+1)−2.5e2.5p+2.5q−1(2−p+q)

(e2.5p+2.5q−1+1)2 < 0 means

that p decreases will lead to M increasing. On the other hand, we also found that
∂M
∂q = (e2.5p+2.5q−1+1)−2.5e2.5p+2.5q−1(2−p+q)

(e2.5p+2.5q−1+1)2 = 1−2.5e2.5p+2.5q−1(1.6−p+q)
(e2.5p+2.5q−1+1)2 < 0 means that p de-

creases will lead to M increasing. Therefore, when q is nonzero, to keep M the

same as when q = 0, p must decrease. This suggests that for the same person (M
is fixed), they are more willing to cooperate when m = 6.5 than when m = 1.5.

To summarize these three cases, player 2s is more likely to cooperate given that

player 1 cooperates when m = 6.5 than when m = 1.5.

Dufwenberg & Kirchsteiger (2004) in Applications

The model by Dufwenberg & Kirchsteiger (2004) differs from ours in three main

aspects: (1) their notion of efficient strategy differs from ours (see Section 1.5);

(2) they do not incorporate consequential kindness; and (3) their definition of

intentional kindness is different.

In Dufwenberg & Kirchsteiger (2004) model, player i’s utility is

Ui(σi,h,bi,h, ci,h)=πi(σi,h,bi,h)+βi ·κi j(σi,h,bi,h) ·λi ji(bi,h, ci,h)
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where ki j measures how kind player i is being to player j by choosing ai, and

λi ji captures how kind player i thinks player j is being to player i.

The kindness of player i to player j is the difference between the material

payoff player i expects player j to obtain due to his action ai and an equitable

payoff for player j: κi j(ai,bi j) = π j(σi,bi j)− 1
2 {max(π j(σi,bi j))+min(π j(σi,bi j))},

where σi ∈ EDk and the equitable payoff is defined as half minimum and half

maximum payoff player j could obtain as a result of actions available to player

i. The perception of how kind player i thinks player j is being to player i is

λi ji(bi j, ci ji)=πi(bi j, ci ji)− 1
2 {max(πi(bi j, ci ji))+min(πi(bi j, ci ji))}.

Ultimatum games (a) and (b)
Note first that if the proposer chooses O1, responder can give the proposer at

least 0 and at most 8, Therefore, the responder’s kindness of y is 4, and of n is -4.

To calculate how kind responder believes proposer is after choosing O1, we have

to specify the belief p ∈ [0,1] that denotes responder believes that the proposer

believes the responder would choose after O1. Then responder’s belief about how

much payoff proposer intends to give to responder by choosing O1 is 2p+0(1− p)=
2p, and since responder’s payoff resulting from proposer’s choice of O2 would be

5 (note that we can prove that y in the equilibrium choice after O2), responder’s

belief about proposer’s kindness from choosing O1 is 2p− [0.5(2p+5)]= p−2.5.

This implies that when proposer decides O1 and the second order belief is p,

responder’s utility of y is given by 2+βR ×4× (p−2.5), whereas of n is 0+βR ×
(−4)× (p−2.5). The former is larger than the latter if 2+βR ×8× (p−2.5) > 0.

In equilibrium, the second order belief must be correct. Hence, if in equilibrium

responder decides y, the condition must hold for p = 1. This is the case if βR < 1/6.

On the other hand, if in equilibrium responder decides n, the condition must not

hold for p = 0. This is the case if βR > 1/10. The same idea as in Result A2, we can

have the following observation:

Game (a). in Dufwenberg & Kirchsteiger (2004), when proposer chooses O1, the

following holds in all SRE:

(1) if βR < 1/10, the responder will accept the offer (by choosing y).
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(2) if βR > 1/6, the responder will reject the offer (by choosing n).

(3) if 1/10≤βR ≤ 1/6, the responder will choose randomly.

Similarly, we obtain a similar result for Game (b)

Game (b). in Dufwenberg & Kirchsteiger (2004), when proposer chooses O1, the

following holds in all SRE:

(1) if βR < 1/16, the responder will accept the offer (by choosing y).

(2) if βR > 1/12, the responder will reject the offer (by choosing n).

(3) if 1/16≤βR ≤ 1/12, the responder will choose randomly.

Compare results in game (a) and game (b), it is obvious that the offer will be

more likely to be accepted in game (a) than game (b) from the condition (1) from

two games. The offer will be more likely to be rejected in game (b) than game (a)

from the condition (2) from two games. Overall, responder is more likely to accept

O1 offer in game (a) than game (b).

Sequential prisoner’s dilemma

One can apply the same logic as in the Ultimatum Game (a) to derive the

following results. For reference, see Dufwenberg & Kirchsteiger (2004) and Orhun

(2018), the latter of which also provides detailed calculations for both treatments.

Treatment m=6.5. in Dufwenberg & Kirchsteiger (2004), If player 1 cooperates

(by choosing C), the following holds in all SRE:

(1) if β2 > 4/5, player 2 will cooperate ( by choosing c).
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(2) if β2 < 2/5, player 2 will defect (by choosing d).

(3) if 2/5 ≤ β2 ≤ 4/5, player 2 will cooperate (by choosing c) with a probability

p = 2− 4
5β2

.

Treatment m=1.5. in Dufwenberg & Kirchsteiger (2004), If player 1 cooperates

(by choosing C), the following holds in all SRE:

(1) if β2 > 2/5, player 2 will cooperate ( by choosing c).

(2) if β2 < 2/5, player 2 will defect (by choosing d).

Compare results in two treatments, it is obvious that player 2 will be more

likely to cooperate in treatment m=1.5, as β2 > 2/5 player 2 must cooperate in

treatment m=1.5 while not true in treatment m=6.5.

A.3 Discussion

Proof of Prediction 1 (Dufwenberg & Kirchsteiger, 2004)

Proof. Note first that if player 1 chooses C, player 2 can give the player 1 at least

1 and at most 4, Therefore, the player 2’s kindness of c is 1.5, and of n is -1.5.

To calculate how kind player 2 believes player 1 is after choosing C, we have to

specify the belief p ∈ [0,1] that denotes player 2 believes that the player 1 believes

the player 2 would choose after C. Then player 2’s belief about how much payoff

player 1 intends to give to player 2 by choosing C is 4p+5(1− p)= 5− p, and since

player 2’s payoff resulting from player 1’s choice of D would be n (note that we can

prove that d in the equilibrium choice after D), player 2’s belief about player 1’s

kindness from choosing C is 5− p− [0.5(5− p+n)]= 0.5(5− p−n).

This implies that when player 1 decides C and the second order belief is p, player

2’s utility of c is given by 4+βR×1.5×0.5(5−p−n), whereas of y is 5+βR×(−1.5)×
0.5(5−p−n). The former is larger than the latter if −1+βR×3×0.5(5−p−n)> 0. In

equilibrium, the second order belief must be correct. Hence, if in equilibrium player
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2 decides c, the condition must hold for p = 1. This is the case if βR > 1
6−1.5n . On the

other hand, if in equilibrium player 2 decides n, the condition must not hold for p

= 0. This is the case if βR < 1
7.5−1.5n . When 1

7.5−1.5n ≤β2 ≤ 1
6−1.5n , U2(c|C)=U2(d|C),

so p = 5−n− 2
3β2

So we can see that if n decreases, the threshold of βR > 1
6−1.5n also decreases.

This implies more player 2s will choose to cooperate; the threshold of βR < 1
7.5−1.5n

also decreases. This implies less player 2s will choose to defect; Moreover p =
5−n− 2

3β2
will increases if n decreases. Taken together, a lower value of n leads to

greater cooperation rate from player 2s. We can not find any effects on the player

2’s cooperation after cooperation when m varies,

Proof of Prediction 2

Proof. The same as in Section 1.4, we can easily prove that if player 1 chooses D,

player 2 will always defect (by choosing d) in every SRE.

We first set player 2’s belief about player 1’s belief about his choice c after C is

p ∈ [0,1]. According to our model, we obtain player 2’s utility given player 1 chose

C:

U2(c|C)= 4+4β2 ·k1

U2(d|C)= 5+1β2 ·k1

where k1 = [p ·4+ (1− p) ·5]− [ e4p+(1−p)

e4p+(1−p)+em (p ·4+ (1− p) ·5)+ em

e4p+(1−p)+em · n] =
em

e4p+(1−p)+em · (5− p−n).

The player 2 would like to choose c if U2(c|C) > U2(d|C). Because all beliefs

must be correct, we get p=1, and we then have:

4+4β2 ·k1 > 5+1β2 ·k1

3β2 ·k1 −1> 0

β2 > e4 + em

3em(4−n)
(A.16)

The player 2 would like to choose d if U2(c|C) <U2(d|C). Because all beliefs

must be correct, we get p=0, and we then have:
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4+4β2 ·k1 < 5+1β2 ·k1

3β2 ·k1 −1< 0

β2 < e+ em

3em(5−n)
(A.17)

When e+em

3em(5−n) ≤ β2 ≤ e4+em

3em(4−n) , neither cooperation nor defection can be part

of an equilibrium. In order to have an equilibrium that involves randomized

choice, the utility of cooperation must be equal to the utility of defection. That is,

U2(c|C)=U2(d|C).

4+4β2 ·k1 = 5+1β2 ·k1

3β2 ·k1 −1= 0

1= 3β2
em

e3p+1 + em · (5− p−n) (A.18)

From(16) and (17), we can see that if n decreases, the threshold of β2 also de-

creases. This implies that, in equation (16), more player 2s will choose to cooperate,

while in equation (17), fewer player 2s will defect. For any intermediate case, if n
decreases, the whole right term of equation (18) will increases, then to maintain

the condition in equation (18), p must increase (as increasing p can decrease the

whole right term of equation (18)). Taken together, a lower value of n leads to

greater cooperation rate from player 2s.

The same idea, a higher value of m leads to greater cooperation rate from player

2s.
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B.1 Summary of Experimental Results

B.1.1 Decision description

Table B.1: Summary of the DG results

Dictator Game Cooperation Rate
D1 21.71%
D2 44.74%
D3 36.84%
D4 48.68%
D5 40.79%
D6 19.74%
D7 44.74%
D8 26.97%
D9 20.39%

D10 35.53%
D11 13.82%
D12 33.55%
D13 12.50%
D14 14.47%
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Table B.2: Summary of the SPD results

SPD Game
Second Mover First Mover

CAC rate CAD rate Cooperation

G1 36.84% 23.03% 30.92%

G2 25.66% 21.05% 38.16%

G3 46.05% 28.95% 24.34%

G4 29.61% 13.82% 31.58%

G5 41.45% 26.97% 32.24%

G6 45.39% 16.45% 35.53%

G7 43.42% 14.47% 42.11%

G8 47.37% 23.03% 32.89%

G9 40.79% 27.63% 23.68%

G10 50.66% 23.68% 29.61%

G11 44.74% 22.37% 32.24%

G12 30.92% 23.03% 32.89%

G13 51.97% 23.68% 42.76%

G14 53.29% 26.32% 40.13%

G15 40.78% 16.45% 32.89%

G16 62.50% 15.13% 33.55%

Notes: CAC denotes the cooperation after cooperation; CAD denotes the cooperation after defection.
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Table B.3: CAC: distribution of elicited beliefs

Guess CAC strategy

Game
probability (%) that SM will cooperate after cooperation

∈ [0,20] ∈ [21,40] ∈ [41,60] ∈ [61,80] ∈ [81,100]

G1 26.32 14.47 26.32 20.39 12.50

G2 20.39 22.37 23.68 22.37 11.18

G6 20.39 21.71 25.00 19.74 13.16

G7 19.74 15.79 27.63 21.05 15.79

G8 14.47 13.16 24.34 26.32 21.71

G13 11.18 14.47 19.74 34.21 20.39

G11 15.13 13.16 26.97 30.92 13.82

Notes: CAC denotes the cooperation after cooperation.

Table B.4: CAD: distribution of elicited beliefs

Guess CAD strategy

Game
probability (%) that SM will cooperate after defection

∈ [0,20] ∈ [21,40] ∈ [41,60] ∈ [61,80] ∈ [81,100]

G1 34.87 15.79 21.05 14.47 13.82

G2 44.74 16.45 17.76 10.53 10.53

G6 51.32 7.89 14.47 14.47 11.84

G7 59.21 7.24 13.82 7.89 11.84

G8 34.21 17.76 23.03 12.50 12.50

G13 34.21 20.39 21.71 11.18 12.50

G11 35.53 18.42 18.42 17.11 10.53

Notes: CAD denotes the cooperation after defection.

B.1.2 Subjects’ behaviour

Table B.5 (Teble B.6) shows the cooperation rate after cooperation of SM (coopera-

tion of FM) when we change the payoff parameters in the baseline game.
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Table B.5: Rates of cooperation after cooperation

xDD
1

xDD
1 =200 xDD

1 =580 ∆(xDD
1 )

xDD
2

xDD
2 =200 36.84% 46.05% +9.21%***

xDD
2 =580 25.66% 29.61% +3.95%

∆(xDD
2 ) −11.18% *** −16.45%***

Panel–(a)

xDC
1

xDC
1 =700 xDC

1 =1000 ∆(xDC
1 )

xDC
2

xDC
2 =20 43.42% 45.39% +1.97%

xDC
2 =180 41.45% 36.84% −4.61%

∆(xDC
2 ) −1.97% −8.55%**

Panel–(b)

xCD
1

xCD
1 =20 xCD

1 =180 ∆(xCD
1 )

xCD
2

xCD
2 =700 50.66% 47.37% −3.29%

xCD
2 =1000 40.79% 36.84% −3.95%

∆(xCD
2 ) −9.87%** −10.53%***

Panel–(c)

xCC
1

xCC
1 =600 xCC

1 =850 ∆(xCC
1 )

xCC
2

xCC
2 =600 36.84% 30.92% −5.92%

xCC
2 =850 44.74% 51.97% +7.24%*

∆(xCC
2 ) +7.89%** +21.05%***

Panel–(d)

Note : ∗p < 0.1;∗∗ p < 0.05;∗∗∗p < 0.01 (McNemar’s test);
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Table B.6: Cooperation rate of FM

xDD
1

xDD
1 =200 xDD

1 =580 ∆(xDD
1 )

xDD
2

xDD
2 =200 30.92% 24.34% −6.58%

xDD
2 =580 38.16% 31.58% −6.58%

∆(xDD
2 ) +7.24%* +7.24%**

Panel-(a)

xDC
1

xDC
1 =700 xDC

1 =1000 ∆(xDC
1 )

xDC
2

xDC
2 =20 42.11% 35.52% −6.58%

xDC
2 =180 32.24% 30.92% −1.32%

∆(xDC
2 ) −9.87%** −4.61%

Panel-(b)

xCD
1

xCD
1 =20 xCD

1 =180 ∆(xCD
1 )

xCD
2

xCD
2 =700 29.61% 32.89% +3.29%

xCD
2 =1000 23.68% 30.92% +7.24%*

∆(xCD
2 ) −5.92% −1.97%

Panel-(c)

xCC
1

xCC
1 =600 xCC

1 =850 ∆(xCC
1 )

xCC
2

xCC
2 =600 30.92% 32.89% +1.97%

xCC
2 =850 32.23% 42.76% +10.53%**

∆(xCC
2 ) +1.32% +9.87%**

Panel-(d)

Note : ∗p < 0.1;∗∗ p < 0.05;∗∗∗p < 0.01 (McNemar’s test)
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B.2 Experimental Instructions
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Main Instructions

Welcome to ESSEXLab
 Welcome and thank you for participating in this experiment!
 Please read these instructions carefully.
 Please switch off your mobile phone and place all of your personal belongings away.
 Please do not attempt to browse or refresh the web or use programs unrelated to

the experiment. Use the computer only as instructed.
 Should you have any questions, please, raise your hand. Our researchers will come to

you and answer your questions.
 From now on, communication with other participants is forbidden. If you do not conform

to these rules, we are sorry to have to exclude you from the experiment.

Guidelines
 The experiment should take about 60 minutes.
 You have each earned a £5 payment for showing up on time.
 You can earn more. How much you earn in this experiment depends on your

decisions, the decisions of other participants and random chance.
 This experiment consists of two Blocks and a Survey. Each block will be precluded by a

set of instructions as well as a short comprehension check.

How final earnings are computed
 You will receive £5 for showing up on time (as the show-up fee).
 At the end of the experiment one round from each block will be randomly selected for

your additional payment.
 All rounds in each block are equally likely to be selected.
 You will be paid privately and in cash at the end of the experiment.

Good Luck!



BLOCK 1: Instructions

Structure of the block
 You will face 14 rounds in this block.
 Each round is independent of other rounds.
 Each round is equally likely to be selected for your payment.
 Thus, it is important for you to take each round seriously.

Structure of the round
 In each round there are two players: First Mover and Second Mover.
 First Mover is the only active player.
 First Mover decides what action to take: A or B.
 First Mover’s decision determines the payment for both First Mover and Second

Mover.
 An example below illustrates the payment structure:

 In this example, if First Mover decides:

o A, then First Mover will earn 400 tokens and Second Mover will earn 350
tokens

o B, then First Mover will earn 500 tokens and Second Mover will earn 150
tokens.

 In each round, once you made a decision you can proceed to the next round.
 In each round you will be presented with the new payment structure within the same

decision problem:

o The only decision is done by First Mover picking A or B.
o Payments corresponding to each of actions vary.



Payment
Your payment in Block 1 is determined as follows.
 One of the rounds will be randomly selected for your payment.
 You are randomly matched with the other participant in this room.
 You are randomly assigned a role: First Mover or Second Mover.
 The decision of First Mover is implemented.
 You will only see outcomes at the end of the experiment.
 Your payment: 1 token = 1 penny



BLOCK 2: Instructions

Structure of the block
 In this block there are two active players: First Mover and Second Mover.
 In this block you will face 32 rounds:

o 16 assuming the role of First Mover, and,
o 16 assuming the role of Second Mover.

 Each round is independent of other rounds when assuming the role of First Mover
or Second Mover.

 Each round is equally likely to be selected for your payment .
 Thus, it is important for you to take each round seriously.

Structure of the round
 There are two active players in each round, where

o First Mover:
 moves first
 chooses A or B

o Second Mover:
 moves after knowing the choice of First Mover, then
 decides to choose A or B

 The table below provides an example of the payoff structure depending on the decisions
of First Mover and Second Mover:



 That is, if First Mover chooses:

o A, then if Second Mover chooses:
 A, then First Mover will earn 350 tokens and Second Mover will earn

400 tokens;
 B, then First Mover will earn 150 tokens and Second Mover will earn

500 tokens.
o B, then if Second Mover chooses:

 A, then First Mover will earn 550 tokens and Second Mover will earn
180 tokens;

 B, then First Mover will earn 320 tokens and Second Mover will earn
200 tokens.

Decision of First Mover

 As First Mover you need to take a decision of A or B
 You will be presented with the following interface:

 In each round, once you made a decision you can proceed to the next round.

Decision of Second Mover

 As Second Mover you need to take two decisions,

o Choose A or B given First Mover has chosen A
o Choose A or B given First Mover has chosen B



 You will be presented with the following interface:

 That is, you need to take two decisions:

o Choose A or B if First Mover chose A (the Yellow row)
o Choose A or B if First Mover chose B (the Gray row)

 Note that both decisions are important to determine your payment because until the
end of the experiment you do not know what First Mover will choose.

 In each round, once you made your decisions you can proceed to the next round.



Payment
Your payment in Block 2 is determined as follows.
 You are randomly,

o matched with the other participant in the room.
o assigned a role: First Mover or Second Mover.

 One of the rounds will be randomly selected for payment.
 The decision you and the other participant made will be implemented (in the

corresponding roles) and thus the payoff will be determined. Two examples should make
this clear.

o Example 1. Assume that the computer randomly selects you to be First
Mover. This implies that your payoff relevant decision will be your First
Mover’s decision. Assume that you choose A as the First Mover’s decision in
the above example screen (Decision of First Mover). Assume that the other
participant matched with you makes the following Second Mover’s decisions:
he/she chooses A if you choose A, and chooses B if you choose B. As a
consequence, you will earn 350 Tokens and the other participant will earn
400 Tokens.

o Example 2. Assume that the computer randomly selects the other participant
to be the First Mover. This implies that your payoff relevant decision will be
your Second Mover’s decision. Assume that you make the following Second
Mover’s decisions: you choose B if the First Mover chooses A, and choose B
if the First Mover chooses B in the above example screen (Decision of
Second Mover). Assume that the other participant matched with you chooses
A as the First Mover’s decision. As a consequence, you will earn 500 Tokens
and the other participant will earn 150 Tokens.

 You will only see outcomes at the end of the experiment.
 Your payment: 1 token = 1 penny
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C.1 Proof of Propositions

Proof of Proposition 3.1. Let’s start the proof of the ‘only if ’ part of the Proposition

1.

Assume D2 can be rationalized by some complete and transitive order ⪰2 that

contains Q2 ∪R2 and satisfies

xt
at ⪰2 xt

a ∀ t, ∀a ∈ At. (1)

Suppose, for contradiction, that the revealed preference relation ⪰̂2 admits a cycle
of length k ≥ 2 in which all are weak and at least one is strict. That is, the following

contains at least one link that is ≻̂2.

x1⪰̂2x2, x2⪰̂2x3, . . . , xk−1⪰̂2xk, xk⪰̂2x1, k ≥ 2. (2)

For each strict comparison xi⪰̂2xi+1 , Definition 3 provides an observable choice
problem A i such that (a) xi ∈ c(A i) (the actual choice), (b) xi+1 ∈ A i

In fact, for (i) of Definition 3, A i is the original opportunity set of the observation

generating the comparison. For (ii)–(iii) the comparison is produced by downward

closure via Q2 or R2; the observation delivering xi as the chosen alternative again

furnishes A i with (b) satisfied by construction.
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Because of (1) and (b), xi ⪰2 xi+1 for every i = 1, . . . ,k. Chaining it yields

x1 ⪰2 x2 ⪰2 · · · ⪰2 xk. (3)

Next, xk ∈ c(Ak) while x1 ∈ Ak by (b) and last part of (2); from (1) we have xk ⪰2 x1.

Together with (3) this implies

x1 ∼2 xk. (4)

However, the assumed cycle (2) contains at least one strict relation x j≻̂2x j+1; the

construction above then gives x j ≻2 x j+1, contradicting (4) once the chain is closed.

Therefore ⪰̂2 cannot contain a strict cycle; it is acyclic.

Let’s start the proof of the “if” part of the Proposition 1. We take the idea from

Nishimura et al. (2017).

Assume ⪰̂2 is acyclic. Let S2 := ⪰̂2 ∪ Q2 ∪ R2 be the union of (i) all revealed

comparisons, (ii) the monotonicity preorder Q2, and (iii) the reciprocity preorder

R2. Define S̃2 := tran(S2) where x S̃ y whenever a finite S2–chain connects x to y.

Because ⪰̂2, Q2, and R2 are each reflexive and acyclic, their union is acyclic; taking

its transitive closure cannot create a strict cycle, so S̃2 is a reflexive, transitive,

acyclic —i.e. a partial order. Then by Szpilrajn’s Theorem there exists a complete,

transitive weak order ⪰2 satisfying S̃2 ⊆⪰2.

Because ⪰2 already contains Q2 and R2, it is itself second mover consistent. And

because it contains ⪰̂2, for every observation (t,at) and every unchosen action a we

have xt
at ⪰2 xt

a, so ⪰2 rationalizes D2.

Proof of Proposition 3.2. Recall that a data set D1 is rationalizable if there is a

first-mover consistent preference relation and first-mover consistent belief function

such that

(xt
at , qt

at)⪰1 (xt
a, qt

a)∀ t, ∀a ∈ At. (5)

Assume, toward a contradiction, that the revealed preference relation ⪰̂1 admits

a cycle of length k ≥ 2 in which all are weak and at least one is strict. That is, the

following contains at least one link that is ≻̂1.

(x1, q1) ⪰̂1 (x2, q2), (x2, q2) ⪰̂1 (x3, q3), . . . , (xk, qk) ⪰̂1 (x1, q1). (6)
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For each link pick the choice problem A i provided by Definition 4: (a) (xi, qi) ∈
c(A i) and (b) (xi+1, qi+1) ∈ A i. It implies (xi, qi) ⪰1 (xi+1, qi+1), for i = 1, . . . ,k.

Chaining it yields

(x1, q1) ⪰1 (x2, q2) ⪰1 · · · ⪰1 (xk, qk). (7)

Consider the last comparison in the cycle (6). Then (xk, qk) ∈ c(Ak) while

(x1, q1) ∈ Ak by (b); from (5) we have (xk, qk) ⪰2 (x1, q1). Together with (7) this

implies

(x1, q1)∼1 (xk, qk) (8)

Since the assumed cycle (6) contains at least one strict relation (x j, q j)≻̂1(x j+1, q j+1);

the construction above then gives (x j, q j)≻1 (x j+1, q j+1). Contradicting (8) once the

chain is closed. Therefore ≻̂1 cannot contain a strict cycle; it is acyclic.

C.2 Proof of Predictions

Proof of Prediction 1. First, Prediction 1-(1). Recall that the assumption of the pref-

erence relation we made: (xCC, xDb,C,b) ⪰2 (xCC,∅,C,b). This suggests that the

realized outcome xCC is (weakly) preferred when the context-dependent outcome

xDb exists to the same realized outcome xCC but when context do not exit.

In two sequential prisoner’s dilemma games A and B. First, note that we have

quasi-monotone preferences: if x= (xCa, xDb,a,b) and x̃= (x̃Ca, xDb,a,b) such that

xCaQ2 x̃Da we have x ⪰2 x̃. This implies that if xCC,AQ2xCC,B, cooperation after

cooperation in game A will be (weakly) preferred to game B. xCC,AQ2xCC,B further

implies xCC,A
2 − xCC,B

2 ≥ xCC,A
1 − xCC,B

1 (Prediction 1-(2)(a)). In the same manner, if

xCD,AQ2xCD,B, defection after cooperation in game A will be (weakly) preferred to

game B. xCD,AQ2xCD,B further implies xCD,A
2 − xCD,B

2 ≥ xCD,A
1 − xCD,B

1 (Prediction

1-(3)).

Then, note that we have reciprocal preference: if x = (xCC, xDb,C,b) and x̃ =
(xCC, x̃Db,C,b) such that xDbR2 x̃Db we have x⪰2 x̃. This implies that if xDb,AQ2xDb,B,

cooperation after cooperation in game A will be (weakly) preferred to game B.

xDb,AQ2xDb,B further implies xDb,A
1 ≥ xDb,B

1 and xDb,A
2 ≤ xDb,B

2 and b can be either

cooperation or defection. Thus we have (Predictions 1-(2)(a)-(d)).
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Proof of Prediction 2. let F = {C,D} denote the opportunity sets generated by the

first-mover’s C or D. By Definition 2, we have already concluded that C MGT D.

Axiom R then implies AC MAT AD , and Axiom S strengthens the comparison when

the passive baseline {C} (only cooperation is possible) is used as reference. Since

“more altruistic than” maps to a higher likelihood of cooperation in their revealed-

preference analysis, the second mover cooperates weakly more often after C than

in the passive variant, proving the prediction 2.

Proof of Prediction 3. He & Wu (2023) refine Cox’s generosity order. Consider two

sequential prisoner’s dilemma games A and B. Let FA = {CA,D} and FB = {CB,D}

. Consider the case 1 in Definition 3. If, say, (1) xCD
2,A ≥ xCD

2,B (Prediction 3-(1)) and

(2) xCC
1,A ≤ xCC

1,B (Prediction 3-(3)), then CA MGT D more than CB MGT D. Axiom

R′ therefore yields ACA |D MAT ACB|D , i.e. the second mover is more altruistic

(cooperative) in game A than game B.

The same reasoning applies to the case 2 of Definition 3. Let FA = {C,DA}

and FB = {C,DB}. If, say, (1) xDC
1,A ≥ xDC

1,B (Prediction 3-(2)) and (2) xDD
2,A ≤ xDD

2,B (Pre-

diction 3-(4)), then C MGT DA more than C MGT DB. Axiom R′ therefore yields

AC|DA MAT AC|DB .

Proof of Prediction 4. First, note that the payoffs after first mover’s defection will

not enter the second mover’s utility. Thus will have no effect on second mover’s

behaviour after cooperation (Prediction 4-(1)).

Consider the Prediction 4-(2)(a), consider in two sequential prisoner’s dilemma

games A and B, suppose that xCC
2A > xCC

2B , there are three possible cases: (1) xCC
2B >

xCC
1 (2) xCC

2A < xCC
1 (3) xCC

2B < xCC
1 and xCC

2A ≥ xCC
1 .

Case (1): given the utility function provided in Section 4.3, U2A(C|C) = (1−
ρ)xCC

2A +ρxCC
1 , U2B(C|C)= (1−ρ)xCC

2B +ρxCC
1 . Since xCC

2A > xCC
2B , we have U2A(C|C)≥

U2B(C|C)

Case (2): given the utility function provided in Section 4.3, U2A(C|C) = (1−
σ)xCC

2A +σxCC
1 , U2B(C|C)= (1−σ)xCC

2B +σxCC
1 . Since xCC

2A > xCC
2B , we have U2A(C|C)≥

U2B(C|C)
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Case (3): given the utility function provided in Section 4.3, U2A(C|C) = (1−
ρ)xCC

2A +ρxCC
1 , U2B(C|C)= (1−σ)xCC

2B +σxCC
1 . Since xCC

2A > xCC
2B , and σ≤ 1/2≤ ρ ≤ 1,

therefore U2A(C|C)≥U2B(C|C).

All cases suggest a higher utility of cooperation after cooperation in game A

than Game B, plus that U2(C|C) >U2(D|C) is possible given the utility function.

Therefore, we can confirm the Prediction 4-(2)(a). The same reasoning applies to

the Prediction 4-(2)(c).

Consider the Prediction 4-(2)(b), consider in two sequential prisoner’s dilemma

games A and B, suppose that xCC
1A > xCC

1B , there are three possible cases: (1) xCC
1B >

xCC
2 (2) xCC

1A < xCC
2 (3) xCC

1B ≤ xCC
2 and xCC

1A > xCC
2 .

Case (1): given the utility function provided in Section 4.3, U2A(C|C) = (1−
σ)xCC

2 +σxCC
1A , U2B(C|C)= (1−σ)xCC

2 +σxCC
1B . Since xCC

1A > xCC
1B , we have U2A(C|C)≥

U2B(C|C)

Case (2): given the utility function provided in Section 4.3, U2A(C|C) = (1−
ρ)xCC

2 +ρxCC
1A , U2B(C|C)= (1−ρ)xCC

2 +ρxCC
1B . Since xCC

1A > xCC
1B , we have U2A(C|C)≥

U2B(C|C)

Case (3): given the utility function provided in Section 4.3, U2A(C|C) = (1−
σ)xCC

2 +σxCC
1A , U2B(C|C)= (1−ρ)xCC

2 +ρxCC
1B . Since xCC

1A > xCC
1B , and σ≤ 1/2≤ ρ ≤ 1,

therefore U2A(C|C)≥U2B(C|C).

All cases suggest a higher utility of defection after cooperation in game A than

game B. Therefore, we can confirm the Prediction 4-(2)(b). The same reasoning

applies to the Prediction 4-(2)(d).

Proof of Prediction 5. In Dufwenberg & Kirchsteiger (2004) model, player i’s utility

is

U2(a2,b21, c212)=πi(ai,b21)+ r i ·κ21(ai,b21) ·λ212(b21, c212)

According to their model, and the kindness term we discussed in the Section

4.4. we can conclude the following the second-mover’s utility given the first-mover’s

cooperation:

U2(C|C)= xCC
2 + r2 · [xCC

1 −1/2(xCC
1 + xCD

1 )] · [xCC
2 −1/2{xCC

2 + xDD
2 }]

U2(D|C)=xCD
2 + r2 · [xCD

1 −1/2(xCC
1 + xCD

1 )] · [xCD
2 −1/2{xCD

2 + xDD
2 }]

134



C.2. PROOF OF PREDICTIONS

First, let us check Prediction 5-(1). From the utilition function, we find that xDD
2 -

the payoff after first mover’s defection directly enters second mover’s utility. Note

that [xCC
1 −1/2(xCC

1 +xCD
1 )]> 0, [xCD

1 −1/2(xCC
1 +xCD

1 )]< 0, [xCC
2 −1/2{xCC

2 +xDD
2 }]> 0,

and [xCD
2 −1/2{xCD

2 +xDD
2 }]> 0 because of the properties of the sequential prisoner’s

dilemma. Then we can conclude that if xDD
2 increases, second mover will be more

likely to cooperate (Prediction 5-(2)(d)). Moreover, xDD
2 plays a positive role in

improving the cooperation (Prediction 5-(1)).

In the same manner, we can conclude that xCC
2 increases, second mover will

be more likely to cooperate (Prediction 5-(2)(a)). xCC
1 increases, second mover will

be more likely to cooperate (Prediction 5-(2)(b)). xCD
1 decreases, second mover will

be more likely to cooperate (Prediction 5-(2)(c)). The effect of a change in xCD
2 ,

however, is ambiguous. A higher xCD
2 raises the second mover’s own payoff, but

it simultaneously reduces [xCD
2 −1/2{xCD

2 + xDD
2 }], so the net impact on behaviour

cannot be signed.

Moreover, we can not find any effects of xDD
1 , xDC

1 and xDC
2 as they can not affect

the utility.

Proof of Prediction 6. First, note that the payoffs after first mover’s defection will

not enter the second mover’s utility. Thus will have no effect on second mover’s

behaviour after cooperation (Prediction 6-(1)).

Consider the Prediction 6-(2)(a), consider in two sequential prisoner’s dilemma

games A and B, suppose that xCC
1A > xCC

1B , there are three possible cases: (1) xCC
1B >

xCC
2 (2) xCC

1A < xCC
2 (3) xCC

1B ≤ xCC
2 and xCC

1A > xCC
2 .

Case (1): given the utility function provided in Section 4.5, U2A(C|C)= xCC
2 −

α2(xCC
1A − xCC

2 ), U2B(C|C)= xCC
2 −α2(xCC

1B − xCC
2 ), we have U2A(C|C)<U2B(C|C)

Case (2): given the utility function provided in Section 4.5, U2A(C|C)= xCC
2 −

β2(xCC
2 − xCC

1A ), U2B(C|C)= xCC
2 −β2(xCC

2 − xCC
1B ), we have U2A(C|C)>U2B(C|C)

Case (3): given the utility function provided in Section 4.3, U2A(C|C)= xCC
2 −

α2(xCC
1A −xCC

2 ), U2B(C|C)= xCC
2 −β2(xCC

2 −xCC
1B ). Here, we can not make any compar-

ison without know the exact value of α2 and β2

Combine cases (1)-(3), we can conclude that if the second mover is more likely

to cooperate after the first mover’s cooperation in game A than in game B, then
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only Case (2) can promise it (Prediction 6-(2)(a). The same reasoning applies to the

Prediction 6-(2)(c).

For the Prediction 6-(2)(b), consider two sequential prisoner’s dilemma games

A and B, suppose that xCC
2A > xCC

2B , there are three possible cases: (1) xCC
2B > xCC

1 (2)

xCC
2A < xCC

1 (3) xCC
2B < xCC

1 and xCC
2A ≥ xCC

1 .

Case (1): given the utility function provided in Section 4.5, U2A(C|C)= xCC
2A −

β2(xCC
2A − xCC

1 ), U2B(C|C) = xCC
2B −β2(xCC

2B − xCC
1 ), because β2 < 1, we must have

U2A(C|C)>U2B(C|C).

Case (2): given the utility function provided in Section 4.5, U2A(C|C)= xCC
2A −

α2(xCC
1 −xCC

2A ), U2B(C|C)= xCC
2B −α2(xCC

1 −xCC
2B ), we must have U2A(C|C)>U2B(C|C)

Case (3): given the utility function provided in Section 4.5, U2A(C|C)= xCC
2A −

β2(xCC
2A −xCC

1 ), U2B(C|C)= xCC
2B −α2(xCC

1 −xCC
2B ), we must have U2A(C|C)>U2B(C|C)

Taken cases (1) - (3) together, we find that xCC
2A > xCC

2B would lead the second

mover to be more likely to cooperate in game A than game B. (Prediction 6-(2)(b)).

The same reasoning applies to the Prediction 6-(2)(d).
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