Journal of Time Series Analysis

| ORIGINAL ARTICLE GETZED

'.) Check for updates

WILEY

Nonparametric Detection of a Time-Varying Mean

Fabrizio Iacone! (2 | A. M. Robert Taylor?

!Universita degli Studi di Milano, Milan, Italy, and University of York, York, UK | 2Essex Business School, University of Essex, Colchester, UK

Correspondence: A. M. Robert Taylor (robert.taylor@essex.ac.uk)
Received: 7 March 2025 | Revised: 5 June 2025 | Accepted: 6 June 2025

Funding: The authors received no specific funding for this work.

Keywords: periodogram | portmanteau test | time-varying mean | trimmed estimator

ABSTRACT

We propose a nonparametric portmanteau test for detecting changes in the unconditional mean of a univariate time series which
may display either long or short memory. Our approach is designed to have power against, among other things, cases where
the mean component of the series displays abrupt level shifts, deterministic trending behaviour, or is subject to some form of

time-varying, continuous change. The test we propose is simple to compute, being based on ratios of periodogram ordinates, has

a pivotal limiting null distribution of known form which reduces to the multiple of a y; random variable in the case where the

series is short memory, and has power against a wide class of time-varying mean models. A Monte Carlo simulation study into

the finite sample behaviour of the test shows it to have both good size properties under the null for a range of long and short

memory series and to exhibit good power against a variety of plausible time-varying mean alternatives. Because of its simplicity,

we recommend our periodogram ratio test as a routine portmanteau test for whether the mean component of a time series can

reasonably be treated as constant.
JEL Classification: C12, C22, C52

1 | Introduction

For many macroeconomic and financial time series, the
assumption that the mean of the series is constant is unrealistic,
and incorrectly specifying the mean component of the series to
be constant can have very serious consequences for the reliability
of statistical modelling and inference and for forecasts generated
by the fitted model. Well-known early contributions include Per-
ron (1989), who showed that an unmodelled abrupt level shift in
the intercept or abrupt change in the drift term renders the famil-
iar Dickey-Fuller unit root test unreliable, resulting in spurious
non-rejection of the unit root null hypothesis. Teverovsky and
Taqqu (1997) showed that an unmodelled level shift can generate
properties similar to long memory in a series that is otherwise
weakly dependent. This phenomenon, also known as spurious
long memory in the applied literature, is widely documented

for stock market data in, inter alia, Lobato and Savin (1998),
Mikosch and Starica (2004), Diebold and Inoue (2001), Granger
and Hyung (2004), Perron and Qu (2010). Recent evidence of
possibly spurious long memory in macroeconomic and finan-
cial data is discussed in Iacone et al. (2022). Implications of
unmodelled breaks in the mean for forecasting are considered in
Clements and Hendry (1998).

These examples highlight the importance of testing whether the
mean of a time series is stable over the sample or not. The exoge-
nous level shift model, in which the mean of the process changes
abruptly at some deterministic point in the sample, offers a
very simple representation of the instability, and has the advan-
tage of being relatively easy to analyse. According to Aue and
Horvath (2013) and Horvath and Rice (2014), tests for change
points in the mean of a series date back to the 1940s, and have
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been applied across a wide range of fields, including climatol-
ogy; see also Reeves et al. (2007). Wenger et al. (2019) provide
a comparison of some of the techniques that have been proposed
to detect the presence of a level shift in long memory series.

The abrupt, discontinuous, exogenous change in the mean
implied by the level shift model may occasionally be justified: for
example the drop of the discharge from the Nile at Aswan might
be due to the construction of a dam that was completed in 1902,
although Cobb (1978) warns that this change may also be due
to other factors, such as a reduction in rainfall. In most cases,
however, it is more plausible that changes in the mean occur grad-
ually over time. This seems likely to be the case, for example, for
the US inflation rate, which recorded a moderate increase until
the early 1980s, when the Volcker-Greenspan era of inflation rate
targeting by the US Federal Reserve reversed the trend. A sec-
ond limitation of the level shift model is that conventional tests
for the null hypothesis of a constant mean against the alternative
of a level break model have to assume a value for the maximum
number of potential breaks, and have limiting null distributions,
and hence critical values, which depend on this choice; see, for
example, Bai (1999). A third drawback surrounds whether the
breaks in observed time series can reasonably be assumed to have
been generated exogenously.

Given the likely drawbacks of the simple level shift model, it is not
surprising that tests have been developed in the literature which
allow for a wider class of functional forms for the mean under
the non-constant alternative. Two notable such tests are the V.S
test of Giraitis et al. (2006), and the W test of Qu (2011). We con-
tribute to this strand of the literature by developing a new test for
the null hypothesis that the unconditional mean of a univariate
time series process is constant, based on the ratio of selected ordi-
nates of the periodogram of the series. In particular, our proposed
test exploits a key feature of a time-varying mean in the frequency
domain, namely, that its periodogram concentrates most of its
power at the lowest spectral frequencies. This phenomenon was
originally noted by Kiinsch (1986) in the context of small mono-
tonic trends, but has also been discussed by Iacone (2010) for
single level shifts, McCloskey and Perron (2013) for multiple level
shifts, Perron and Qu (2010) for infrequent breaks, and Qu (2011)
for smoothly varying trends. Taken together, these cases consti-
tute a wide range of plausible models for the trend component of
a series. In the presence of a time-varying mean of this kind, the
periodogram diverges for some of the lowest frequencies, while
for a constant mean it does not, and this is the key feature that
is exploited in the diagnostic procedure we propose. While our
null hypothesis of a constant mean is well specified, our alter-
native of a time-varying mean is necessarily more nebulous and,
hence, we view this as a portmanteau test for non-constancy in
the mean.

Our proposed test can be validly used for both short and long
memory series, the latter provided the long memory parameter,
denoted by 6, lies within the stationary and invertible region,
6 € (—1/2,1/2). Two versions of our test are proposed, one for
the case where the practitioner specifies a value of § (e.g., 6 =0
such that the series is weakly autocorrelated), or where § is
estimated from the data. In the latter case, it is well known
that a time-varying mean will tend to cause an upward bias
in standard estimators of § which assume a constant mean.

To circumvent this, we explore the use of trimmed estimates
of 6 in the construction of our statistic. We show that, regard-
less of whether 6 is known or estimated, our test statistic has
a well-known pivotal limiting null distribution, which reduces
to a multiple of a ;(22 random variable when the data are short
memory. The theoretical power properties of the test are explored
with theoretical conditions for the consistency of the test pro-
vided. The finite sample power properties of our proposed tests
against a range of plausible time-varying mean models is explored
by Monte Carlo simulation. An empirical application of the tests
to US CPI inflation over the period 1970 to 2022 is also reported.

The remainder of the paper is organised as follows. In Section 2,
we present the model we consider for our testing problem and
discuss a range of prototypical time-varying mean models that
have been considered in the literature. In Section 3 we introduce
our proposed portmanteau test for non-constancy of the mean. In
Section 4 we derive its large sample properties under suitable reg-
ularity conditions and discuss its large sample power properties.
Section 5 reports results from our Monte Carlo exercise exploring
the finite sample size and power properties of our proposed test.
An application to US CPI data is reported in Section 6. Section 7
offers some conclusions. An online Supplementary Appendix
contains proofs of our main results and additional Monte Carlo
results.

We will use the following notational conventions throughout the
paper: A := B and B := A denote that A is defined by B; for
a possibly random sequence, X, and a deterministic sequence,
fr, the notation X, = O,(f;) means that X, /f, convergences
(either in distribution or in probability) to a non-degenerate,
non-zero random variable. The operator |.| denotes the integer
part of its argument.

2 | The Time-Varying Mean Model

We consider the univariate time series process, x,, satisfying the
following decomposition,

x,=u,+¢, t=1,....T (1)

where 4, is a potentially time-varying mean componentand &, isa
zero-mean, fractionally integrated process. The fractionally inte-
grated component, &, in (1), is defined by integrating a weakly
dependent, or 1(0), process by the long memory parameter 6,
6 € (—1/2,1/2). More formally, let 5, be a zero-mean, stationary
process with spectral density f,,(4) that is continuous, bounded,
and bounded away from zero at all frequencies. Then,

& =A"n, 5 €(-1/2,1/2) )
is a fractionally integrated process of order 6, denoted &, € I1(6).

Denoting A :=T(t +§)/(T(§)[( + 1)), where I(-) is the
Gamma function, such that I'(0) := o0 and I'(0)/I'(0) :=1,
then ¢ = Zi?mAﬁ‘s_)sns, 6 €(—1/2,1/2). The absence of any
truncation in the infinite MA representation entails that &, is
a Type 1 fractionally integrated process, see Marinucci and
Robinson (1999), and that it is stationary with spectral density

fe:(A) such that f.(4) — GA% as 1 — 0%, for some G € (0, o).
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In the case of a series, z, say, whose long memory parameter
lay above 0.5, for example in the range 0.5 < § < 1.5, this series
could be differenced prior to analysis, such that Az, 1=z, — z,_;
was assumed to satisfy the model in (1) and (2).

For our purposes, it is convenient to characterise the level term,
H,,in (1) in terms of the properties of its periodogram. To thatend,
for a generic sequence, {z,, ..., zy}, define the familiar Fourier

transform,
1 T
Zzte—llt

V2xT =1

where i is the complex operator and A € (—x, 7] is a user-chosen
frequency, for which value we can define the periodogram as

w,(A) 1=

1.3 1= |lw, (D)

Our focus is on testing the null hypothesis that y, is constant;
that is,
Hy:p=p t=1,...T (3)

where g is a fixed constant. To that end, consider the periodogram
of {py, ..., ur}, 1,,(2),at the Fourier frequencies, A= 2% for
j=1,...,T —1.Under H, of (3), we clearly have that I, (4;) =
0, for all 4;. While our null hypothesis is well specified, our alter-
native is necessarily more nebulous, given our aim is to develop a
portmanteau type test against non-constancy in y,. However, and
in order to motivate a class of alternatives that we would ideally
like our test to display power against, consider as motivation the
class of time-varying yu, such that, on at least some j = o(T'), the
periodogram diverges as T' goes to infinity,

1,,(4;) — oo forsome j* such that j* = o(T) 4)
and, in general, satisfies the condition that
1,,(4) = 0,((4)7**j™"), d € (0,1/2] 5

Taken together, these two conditions entail that the periodogram
concentrates nearly all of its power in a band of frequencies which
collapse towards the origin as the sample size diverges. This sit-
uation is characteristic of a number of prototypical time-varying
mean models that have been considered in the literature. We now
detail some leading examples of these.

Example 1 (Deterministic Level Shifts).
K
po=p+ Y B DU (6)
k=1

where [|g|| > 0for g := (B, ...,ﬂK)’,andwhereDU,(r) =100 >
|zT']), with I(.) denoting the indicator function, whose value is
one when its argument is true and zero otherwise; the values 0 <
7} <--- <1y < 1denote the location in the sample (as fractions
of the sample size, T') where abrupt changes (of which there are
at least one) in the mean occur.

Example 2 (Smoothly Varying Trend).

My =p+ Bh(t/T) @)

where h(s) is a Lipschitz continuous function on [0, 1], A(s) #
h(r) for some s # r, and f # 0.

Example 3 (Power Trend).

H= o+ pto71? (®)
for ¢ € (0,1/2), p # 0.
Example 4 (Martingale Process).

Hy = My + B, C)

with g, i.i.d. Bernoulli (p), p = O(T ™), ¢, i.i.d. N (0, 62), §, and ¢,
mutually independent and a? > 0.

The deterministic level shifts model in Example 1 is very popular
in econometrics, possibly because it is relatively straightforward
to establish asymptotic results for break location estimators and
test statistics for the presence of breaks in this case. However, as
discussed in the Introduction, abrupt exogenous changes in the
mean are often not plausible in practice. The smoothly varying
trend model in Example 2 is a plausible model for many time
series in economics, climatology and other fields. It also includes
conventional trend models, such as linear and quadratic trend
models, as special cases. The definition we use in Example 2 is
taken from Qu (2011, 424-425). The same model is also consid-
ered in Giraitis et al. (2006). Nonparametric, kernel-based, esti-
mation of the smoothly varying trend model in the presence of
long memory disturbances is discussed in Robinson (1997), with
forecasting from this model considered in Dalla et al. (2020).
The power trend model in Example 3, and the capacity of van-
ishing power trends of this kind to generate spurious evidence
of long memory, has been widely discussed in the literature;
see, among others, Bhattacharya et al. (1983), Teverovsky and
Taqqu (1997), and Giraitis et al. (2006). The martingale process
in Example 4, which allows changes in the mean to occur at
random points in the sample, has been considered in Diebold
and Inoue (2001), Perron and Qu (2010), McCloskey and Per-
ron (2013) and Nyblom (1989), among others. Nyblom (1989),
in particular, develops locally best invariant tests for the null
hypothesis that y, in (1) is constant against the alternative that
u, evolves according to Example 4, for the case where &, in (1) is
an IID Gaussian process.

Despite their apparently different functional forms, the models
in Examples 1-4 are all characterised by periodograms for which
the bound in (5) holds: with ¢p = 1/2 for the level break, smoothly
varying trend and martingale process examples, and ¢ = ¢ for
the power trend. Detailed treatments of these bounds are given
in, among others: Iacone (2010), Theorem 1, for the level shift
and power trend models; Perron and Qu (2010), Proposition 3,
for the martingale process; and Qu (2011), Lemma 1, for the
smoothly varying trend model. We also refer to McCloskey and
Perron (2013) and Leschinski and Sibbertsen (2018) for a detailed
discussion of these bounds. Some further properties for the peri-
odograms of these trend models are given in Lemma S.1 in the
Supplementary Appendix.

The diverging property in (4) is straightforwardly established
whenever exact orders can be established. This is shown to
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hold for the deterministic level shift model in Leschinski and
Sibbertsen (2018) and also in Lemma S.1 in the Supplemen-
tary Appendix. For the martingale process, this is shown in
Proposition 3 of Perron and Qu (2010). In both of these cases,
the bound in (5) also holds as an exact, O,, bound at, at least,
some frequencies in 4,, ..., 4,,, m/T — 0, and in particular it
holds as O, for 4,. For the power trend model, the exact expres-
sion for the real and complex part of the Fourier transform can be
readily computed as a closed form formula for A + TA~! — 0from
the limit in Lemma 3.2 of Robinson and Marinucci (2001), which
again implies that the bound in (5) holds exactly. Notice that the
condition on 4 does not allow for 4;; we will discuss this case in
Lemma S.1 in the Supplementary Appendix. In all of these cases,
the periodogram therefore diverges at least for some frequencies.
The case of the slowly varying trend is somewhat more delicate.
Qu (2011, 425) argues that for this model, the periodogram is
diverging at least at some ordinates; further discussion on this
is also provided in Lemma S.1 in the Supplementary Appendix.

3 | APeriodogram Ratio Test of a Constant
Mean

As anticipated in Section 2, the periodogram of a time-varying
mean component, 4,, that satisfies the bounds in (4) and (5) has
the property that it concentrates nearly all of its spectral power
at the lowest frequencies. Indeed, it was exactly this property
that led Kiinsch (1986) to propose ignoring the lowest frequen-
cies when estimating features of £,. The main advantage of this
procedure, often referred to in the literature as trimming, is that
it does not require the user to specify the nature of the contami-
nation process, y,. In contrast, where the unconditional mean is
constant, the periodogram of 4, has zero power at all frequencies.

Applications of trimming to estimate §, the memory parameter
of &, include Iacone (2010) for the case of the local Whittle [LW]
estimate, and McCloskey and Perron (2013) for the case of the
log-periodogram regression estimate. McCloskey and Hill (2017)
and Dalla et al. (2020) discuss trimmed LW estimation of a
fully parametric model, and Christensen and Varneskov (2017)
present an application of trimming in cointegration. Interest-
ingly, given that the contamination due to y,, when the bound in
(5) holds, only affects the lowest frequencies about zero, a judi-
cious choice of the trimming parameter can result in little or no
deterioration in the asymptotic properties of the estimate of 6. On
the other hand, Monte Carlo simulation results in Iacone (2010)
and McCloskey and Perron (2013) suggest that where the mean
is constant, so that y, = p for all ¢, such that trimming is not nec-
essary, the estimate of 6 from the trimmed loss function can have
markedly larger variance than its untrimmed counterpart.

In the light of the relative performance of the trimmed and
untrimmed estimates of § discussed above, a diagnostic for the
presence of a time-varying mean component in the series would
seem highly desirable for practitioners, and it is our aim in this
paper to provide a portmanteau test to do just that. If our proposed
test rejects the null hypothesis of a constant mean, then the prac-
titioner should use a trimmed estimation procedure, while an
untrimmed estimate might reasonably be used otherwise. Con-
veniently, the rates in (4) and in (5) provide a natural approach
to design such a test based on the comparison of the value of

the periodogram where the signal arising from the time-varying
mean is strongest, j* in (4), against a set of values of the peri-
odogram at higher band frequencies (though still within a band
that is degenerating to zero as T diverges), where the signal
from the stochastic component &, should dominate. As we will
see later in Section 4 when we establish the consistency prop-
erties of our preferred test, for a wide range of the prototypical
time-varying mean examples given in the Introduction, the peri-
odogram diverges at A;.

Based on these considerations, our proposed test is based on the
ratio of the first periodogram ordinate of {x, } to the sum of arange
of higher ordinates, the latter used to standardise the numerator
with respect to the long-run variance of 7,, the 1(0) component of
x,. Specifically, for a generic memory parameter d € (-1/2,1/2),
our proposed portmanteau test of a constant mean against the
alternative of a non-constant mean rejects for large values of the
ratio statistic,

(A 1 (Ay)

R(@) := m
(m -1+ 1)*121:1(),/.)2‘[[)“(/1])

(10)

If it were known that £ was integrated of order 6, then our test
could be based on the statistic, R(5). For example, in many cases,
practitioners may have a plausible belief that the series under
analysis is weakly dependent, such that § = 0. Where no such
knowledge is either held or assumed about &, our test can be
based on evaluating R(d) at an estimate of 6 obtained from the
data, 5 say; in this case the test statistic of interest becomes R(g).
Aswe will later show in Section 4, provided this estimate satisfies
a minimal consistency rate, the large sample behaviour of R(5)
and R(;S\) will coincide.

Remark 1.

i. The user-chosen tuning parameters, / and m in (10), sat-
isfy the relation 1 </ < m < T /2. We will refer to the set of
periodogram ordinates used in the denominator of (10) as
the range, {/, m}. Formal rate conditions needed to hold on
[ and m for establishing the large sample properties of the
R(d) statistic in (10) and will subsequently be detailed in
Section 4. Notice that the denominator of R(d),

Ar oy . 1 S 2d
Gd) 1= —— ;up I.(4) 11)

is an estimate of the long-run variance of #,, and it there-
fore standardises the numerator of the statistic with respect
to this variance. In the context of long-run variance esti-
mation, the tuning parameters / and m are often referred
to as the trimming and bandwidth parameters, respectively.
Such long-run variance standardisation is a common fea-
ture of other tests in this literature; see, for example, Lobato
and Robinson (1998), Qu (2011), Iacone et al. (2017), and
Giraitis et al. (2006). Our choice of long-run variance esti-
mate, motivated by our intention to create a portmanteau
test for non-constancy of the mean, is, however, innova-
tive compared to the approach taken in these other papers,
because they focus on the behaviour of the long-run vari-
ance estimators they propose only under the null and spe-
cific local alternative models for y,. These estimates may
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well be inconsistent, or at least subject to a sizeable finite
sample bias, for 4, satisfying the bounds in (4) and (5). How-
ever, with judicious selection of the range {/,m} in @(6),
we can estimate the long-run variance of 5, consistently
even in presence of a time-varying mean; see, for example,
Tacone (2010). This is because the effect of the time-varying
mean on G(5) is reduced by the presence of the damping fac-
tor j~1in (5).

ii. The role of the lowest frequency / used in constructing G(d)
is seen to be of great importance: a judicious choice of /
exploits the contrasting characteristics of the periodogram of
the time-varying component y, and of the stationary coun-
terpart &, at different frequencies. A relatively small value
for / is likely to be sufficient in practice, because the con-
tribution of the periodogram /,,,(4;) vanishes very quickly

as j increases for y, satisfying the bounds in (4) and (5).

The highest frequency, m, is more familiar in the litera-

ture, because it is widely discussed in the context of estima-

tion of a long-run variance: consistent estimation requires
that m — oo at some rate as T — oo, but in practice if m is
chosen to be too large, the curvature of the spectral den-
sity of #, may affect the precision of the estimate of its
long-run variance, so an inappropriate choice of m may
result in a test with poor finite sample size performance;
see, among others, Abadir et al. (2009). In our case, how-
ever, an additional consideration is necessary: in the pres-
ence of a time-varying mean the contribution of the peri-
odogram of I, uu(4;) may be small, but yet non-zero, at some
of the frequencies in the range {4,, ..., 4,,}, and so a rela-
tively large value for the bandwidth, m, is also important to
render the average contribution of 1,,(4;) to @(d) asymp-
totically irrelevant. Intuitively, therefore, a tension between

the finite sample size and power of the test based on R(d)

is to be anticipated in respect of the choice of m. This will

be explored further in our Monte Carlo simulation study

in Section 5.

Remark 2.

i. The numerator in the R(d) statistic uses only the first peri-
odogram ordinate, A;. This is motivated by arguments of
parsimony related to our previous observations that many
members of the class of non-constant y, processes that we
are looking to detect display their largest periodogram ordi-
nate at 4,. However, this is not always the case, and so a test
which rejects for large values of the generalised version of
the R(d) in (10) which includes the first ¢ < / periodogram
ordinates in the numerator, that is,

g T ML ()

(m =1+ D)7 (A 1,,(4)

R(d) := (12)

may potentially be more powerful than the test based on
R(d) in cases where 4, is not the largest ordinate of the
periodogram of y,. Here, the truncation parameter, g, is
assumed to be independent of the data, although it could
potentially be data-determined. The flip side, of course, is
that a test based on R(d) would be expected to less power-
ful than a test based on R(d) in cases where 4, is the largest
ordinate of the periodogram of y,.

ii. Inthe contextof R(d)in(12), qis envisaged to be a relatively
small fixed integer. One could also consider a version of
'R(d) with g chosen to be sufficiently large such that asymp-
totics in ¢ could be justified; here we could consider a test
which rejects for large values of the statistic

5—1/2 Z=lvj(lj)2d1xx(j’j)

R@) := m
@ I DY G L)

(13)

where v; :=In(j) - é 1 In(k), g = ijlv]?. When ! =1,
q = m, the E(d) is the well-known LM statistic used to test
the null hypothesis that x, € I(d); see Lobato and Robin-
son (1998) and Iacone et al. (2022). These choices of / and
g would, however, be inappropriate (in that power would
be expected to be very low) for the problem of testing
for non-constancy in y,. Here, choices of / > 1 and ¢ < m
would be more appropriate.

Remark 3. A related statistic, used to test the null that a series
is a stationary long memory process against the alternative that
it subject to spurious long memory induced by the presence of
either a smoothly varying trend or stochastic level shifts, of the
form given in Examples 2 and 4, respectively, in Section 2, is the
W statistic proposed in Equation (8) of Qu (2011, 426). The W
statistic is based on a first-order expansion of the LW loss func-
tion, and exploits the fact that the periodogram is diverging at
a fast rate when p, is subject to such changes. The W statis-
tic differs from those we propose in that while it is also formed
from the periodogram ordinates of {x,} it is, in effect, a maxi-
mum CUSUM-type procedure based on sequential partial sums
formed from the first  periodogram ordinates, where m/T'/? —
0 as T — oo, with the first CUSUM in the sequence based on
the sum of the first |[em| ordinates, where ¢ is a small number
(Qu 2011, recommends using £ = 0.05 if T < 500), and the last
based on all m. In common with the statistic ﬁ(d) in (12), the
number of periodogram ordinates used in the numerator of W
is an increasing function of 7. Qu’s W statistic needs to be eval-
uated based on the (untrimmed) LW estimate of the long mem-
ory index, 6, even in situations in which § might reasonably be
assumed known. Given that the LW estimate is known to suf-
fer from potentially substantial upward biases for some (unmod-
elled) time-varying p, processes (see, among others, McCloskey
and Perron 2013, and Iacone 2010), not exploiting information
about the order §, or not trimming the LW estimate, may incur
a substantial loss in power in such cases. Moreover, the long-run
variance estimator used in Qu’s W statistic uses all of the first m
periodogram ordinates, rather than the trimmed version we use;
cf. Remark 1.

4 | Asymptotics for the Periodogram Ratio
Statistic

In this section, we will establish the large sample properties of
the R(d) statistic of (10) for both the case where d is a known
index and where d is set equal to a consistent estimator of 5. We
will first establish the limiting null distribution of the statistic,
before establishing consistency against a class of time-varying p,
processes.
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To do so, we need to set out some regularity conditions on the
DGP given in (1) and (2). First, for the 7(0) component, #,, we use
the following set of conditions from Wu and Shao (2006):

Assumption Al. Letn, := F(...,¢,_,.¢,), 1 € Z, where ¢,
are IID random variables and F is a measurable function
such that #, is well-defined. For a random variable X write
X errif IX]l, = [EIX)?]"” < 0. Let F=(....¢,1.¢,), and
define the projections P, by P, X = E(X|F,) — E(X|F,_1), X €
L. Let 5, be such that 7, € £7° with p* > max(2,2/(1 + 26)),
120 Pittll» < oo and £, (0) > 0.

Remark 4. Assumption A.1 includes a very wide class of pro-
cesses; see the discussion in Wu and Shao (2006, 20-23), and the
references therein. In particular, it includes linear processes of
the form #, = Zj‘;la ;€. as aspecial case. It also includes a large
class of nonlinear time series models, including bilinear mod-
els, threshold models and GARCH-type models. The condition
that ||ZZ°:OP,(11,|| » <o is discussed in some detail on page 23
of Wu and Shao (2006) and serves to restrict the amount of
dependence allowed in {#,}; for example, in the linear process

case it imposes the usual absolute summability condition that
Z;';Ola | < eo.

We complete the set of necessary regularity conditions with some
additional conditions related to the spectral density of &, f;.(1):

Assumption A.2. (i) There exists a G € (0, o) such that

(D) ~Gas 21— 0"

(ii) In a neighbourhood (0, ¢) of the origin, fuy(A) is differen-
tiable and J
7w = O(A™")as A — 0"

Remark 5. Inview of (2), Assumption A.2 implies that f ce(A) ~
GA % as A — 0% and f| ¢2(4) s differentiable in a neighbourhood
(0,€) of the origin, with - f,.(4) = O(A™'=%) as A — 0. This is
sufficient to allow us to establish bounds for the bias and covari-
ances of the expected periodogram on a band of frequencies
degenerating to zero.

We are now in the position to state our main result, which pro-
vides the limiting null distribution of the R(d) statistic of (10),
both for the case where d is set equal to the true long memory
parameter, 6, and where it is set equal to a consistent estimate
thereof.

Theorem 1. Let {x,} be defined asin (1) and (2) under H, of

(3), and let Assumptions A.1 and A.2 hold. Then provided the rate
condition, ﬁ + % - 0asT — o, holds:

@)

R(5) - { le(a) + L;“(&)}Zf

- { le(é) - L;*(a)}zg =1 R (6)  (14)

where Z,, Z, are independent, standard normal random
variables, and where

0= sl
(ii) Forany 5 = &+ O,(T ) for some ¢ > 0,
R(3) - R(6) = 0,(1) (15)

The results in (14) and (15) also hold under the alternative
rate condition, % + i + % —=0asT — oo.

Remark 6.

i. The limiting distribution R (6) in (14) appears in Hurvich
and Beltrao (1993), who established it for the case of lin-
ear Gaussian processes, and this was extended to the case of
non-Gaussian linear processes in Terrin and Hurvich (1994).
The result in part (i) of Theorem 1 further extends this result
to the case of nonlinear processes satisfying Assumption A.1.

ii. The result in part (ii) of Theorem 1 imposes a necessary rate
of convergence on (/S\, although, in contrast to the W statistic
in Qu (2011), it does not constrain the practitioner to use the
LW estimator.

iii. The limiting distribution R (6) in (14) depends on the true
long memory parameter, §; critical values from this distribu-
tion can be computed, for example, by using the formula in
Moschopoulos (1985), Equation (2.10). In the special case of
& = 0, the distribution in (14) is one-half times a ;(22 variate.

iv. Under the conditions of Theorem 1, the limiting null dis-
tributions of E(&) and ﬁ(g) coincide and can be straight-
forwardly obtained from the results given in Theorem 1 of
Terrin and Hurvich (1994). This limiting distribution has
a rather involved form, other than in the case where 6 =0
where it simplifies to a (2¢)™! ;(zzq random variable.

v. Itcanalsobe shown thatunder H,, of (3) and with some addi-
tional regularity conditions, that the R(6) statistic defined

~ _d
in (13) is such that R(6§) — N(0,1). The additional regu-
larity conditions required on ¢, are given in, for example,
Shao and Wu (2007a, 2007b). The result also requires the

3
rate condition, (log% + # —0as T — oo, to hold on q.

For 1?(3) the same limiting result holds as for ﬁ(é), pro-
vided some further regularity conditions hold, primarily that
(6—6)=0,(T~*°) and T-%¢'/2 > 0.

In Theorem 2 we next explore the class of models of
time-variation in y, against which the test based on R(6)
will deliver consistent inference; a discussion on how these
results extend to the case of the test based on the R(zSA) statistic is
subsequently given in Remark 9. As we will show, consistency
only holds for a subset of the set of y, processes that satisfy the
bounds given in (4) and (5). However, it is important to stress
that even where formal consistency is not established, this does
not mean that our proposed tests will have no power to detect
departures from the null hypothesis. This will be further explored
in our finite sample simulation study, the results from which are
reported in Section 5.
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Theorem 2. Let {x,} be defined as in (1) and (2) and let
Assumptions A.1 and A.2 hold. If the periodogram of u, satis-
fies the conditions that 1,,(4,) = O,(T*"), 1,,(4;) = Op(/l;z"’j‘l)
forj < m,and 27;1/1551””(,1/.) = O,((T /1)*$~9), then provided the
rate condition % + i + ¥ — 0asT — oo, holds:

W if¢>0,
if T2@-9) m—l 12(6—4)) — o, R(@)= Oe(m12(¢—5)) (16)
if 7@ m™' PO - 0, R(8) = 0,T**™)  (17)

i) if ¢ < 5, R(6)—— R ,(5).
Remark 7.

i. Therequirement that Z;":l /1/2.‘S 1,,(4;) = O,(T/1)**=%)con-
trols the allowable rate of divergence of the denominator of
R(5), @(5) of (11). This assumption automatically holds if
1,(2;)= Oe(/l;zd’j‘l) for j < m, as is the case for the mar-
tingale process in (9). The more involved formulation of the
rate conditions needed is to accommodate the level shift
model in (6). This is seen most clearly through the example
of a single level shift at z* = 0.5: here it is straightforward to
verify that I,,,(4;) = 0,(4;*” j™") holds, but with I,,,(4,) = 0
for j even. For the power trend (8), this requirement holds
(with ¢ = @) in view of the limit in Lemma 3.2 of Robinson
and Marinucci (2001).

ii. All of the stated rate conditions on I uu(A)) hold for both the
level shift model in (6) and for the martingale process in (9),
in both cases with ¢ = 1/2, and also for the power trend
model in (8) (with ¢ = @), see Lemma S.1.

iii. In the case of the smooth trend model, the required order
condition that I,,(4,) = O,(T) is not exhaustive of all mod-
els of the form in (7). For example, the deterministic cosine
trend model u, = cos(2z2¢/T) has a spectral peak at 4,, but
has zero spectral power at 4,. In order to have power against
such processes, one could use tests based on either the R(5)
or ﬁ(é) statistics of (12) and (13), respectively.

iv. Inview of the low-frequency approximation f;.(4) ~ GA™%
as A — 07, it is clear that the power of the test based on the
R(6) statistic depends on the interplay between the bound
O((4))7*j7"') and /1;2’3. Larger values of §, relative to ¢,
may serve to mask the presence of time variation in the
mean, making its detection more difficult. This feature is
common for this class of testing problems; see, for example,
Theorem 1 of Tacone et al. (2017), and Theorem 1 of Iacone
et al. (2014) for the case of the single level break model.
Indeed, if 6 > ¢, then as part (ii) of Theorem 2 establishes,
the asymptotic power of the test is equal to its asymptotic
size. For example, the power trend model of (8), is not
detectable whenever 6 > ¢. However, low power in such sit-
uations is arguably less of a concern, because the distorting
effect of 4, when estimating features of &, is likely to be rel-
atively weak.

Remark 8. The bounds in (16) and (17) are suggestive that
power is increasing in both / and m, the trimming and bandwidth
parameters, respectively, used in the estimation of the long-run

variance which forms the denominator of R(6). Because the term
1,,(4;) is decreasing in j, eliminating the lowest frequencies by
setting / > 1 reduces or removes contamination from g, in this
estimate. In view of (16) and (17), it might seem advisable to
choose / and m as large as possible. In practice, however, there are
other factors to take into consideration. First, the results are based
on approximating the spectral density f,,(4) as a constant, G, at
low frequencies but in reality f,,(4) is unlikely to be constant for
A # 0, and so the approximation may be less reliable as A moves
away from the origin. Curvature in f,, (1) may generate a bias in
the estimation of G, and this becomes more relevant when larger
values of m are considered. A detailed discussion of this issue is
given in Abadir et al. (2009), who recommend using m = |T%8 |
for linear processes and, following Dalla et al. (2006), a smaller
rate, such as m = | T%7|, for nonlinear processes. The trimming
parameter, /, by removing the very frequencies for which f,, (1)
is usually closest to G, may also amplify this bias. The impact of
the choice of / and m on the finite sample behaviour of the test
will be explored further in Section 5.

Remark 9. 1In the case where 6 is estimated, provided §=6+
O,(T~¢) forsome e > 0, R(;S\) — R(8) = 0,(1), such that the results
stated in Theorem 2 will still hold. Giraitis et al. (2006) observe
that the LW estimate satisfies this condition in the case of the
smooth trend model in (7) when 6 is estimated based on the resid-
uals from a nonparametric regression. In cases where the char-
acterisation in (5) allows for abrupt discontinuities, such as the
level break model in (6), the sufficient rate of convergence for 5
can be established using either trimmed log-periodogram regres-
sion estimation (see McCloskey and Perron 2013, 1201, 1205) or
trimmed LW estimation (see, Iacone 2010). We will explore the
properties of the tests based on untrimmed and trimmed LW esti-
mates in our simulation study in Section 5.

In the case where {x,} is weakly dependent, such that 6 = 0, if it
holds that 1,,,(4,) = O,(T), an example of which is the level shift
model of Example 1, then Theorem 2 yields the corollary:

Corollary 1. Let {x,} be defined as in (1) and (2) with § = 0,
and let Assumptions A.1 and A.2 hold. If u, is such that 1,,,(A;) =
0,T)and 1,,(4) = Oe(/ljflj‘l), then provided the rate condition
%+ i +% = 0asT — co, holds:

if I — o0, R(0)=0,(Im) (18)
Im

it L~ 0, RO)=o0,T) (19)
Im

It is also interesting to consider the power of R(6) against level
shifts of small magnitude. For example, for weakly dependent
processes (6 = 0) the Sup Wald test of Andrews (1993) can detect
deterministic level shifts of dimension g, = 0T-/2*¢ for e > 0,
and this result can be generalised to f; = 8T ~1/2*%+¢ for generic
fractionally integrated processes; see for example Shao (2011)
and Iacone et al. (2017). In this case, 1,,,(4,) = O, (T?6-1/2+e) )71y,
1,,(A)) = O,(T?¢71/2+-1 j=1) for some € > 0.

Corollary 2. Let {x,} be defined as in (1) and (2) with
U, = u+ ppDU,(%) such that pr = 0T V/>*3+ and € so that
m~! T2 [26-1/2) 5 0. Provided either % + i + $ —-0asT — oo,
or i +% > 0asT — oo, then R(6) = O,(T).
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Remark 10. The rate at which the test statistic R(5) diverges
(the same rate applies to R(g), under the condition that § = § +
O,(T~¢) for some ¢ > 0) in the presence of local breaks coin-
cides with that of the tests designed specifically for detecting level
breaks in Shao (2011) and Iacone et al. (2017).

5 | Monte Carlo Study

In this section, we report the results from a Monte Carlo study
investigating the finite sample size and power properties of the
R(6) and R(g) statistics. In both our size and power studies, we
consider samples of size T'= 128 and T = 512. All reported sit-
uations were based on 10,000 repetitions for 7" = 128, and 1000
replications for T = 512, and were performed in Gauss 23 using
the RNDN random number generator.

We consider both the case where the practitioner makes a choice
for the value 8, say 67, and where 6 is estimated from the data. In
the former case, where the practitioner uses the true value of §,
such that 6" = 6 (eg if they rightly assume the data are weakly
dependent, where 6 = 0), this allows us to explore the proper-
ties of our proposed tests uncontaminated by the finite sample
error in the estimation of 6. We also explore the impact of the
practitioner choosing a wrong value for § such that §7 # 6. In
the case where § is estimated, we used the trimmed LW estimate
(restricted to the interval [—0.49, 0.49]),

2. : 1 - 2d
6 i=arg e TN o In { T Z/lj Ixx(/lj)}

=

m*

1
—2d—m*_l*+1j=zl‘i,1j (20)
where /* and m* denote the trimming and bandwidth parameters
used in the LW estimation. We set m* = |T%% |, in view of the
recommendations of Dalla et al. (2006) and Abadir et al. (2007).
We considered three possible values of /*: [* = 1 (no trimming),
I* = 2,and I* = 3. We found that trimming can increase the vari-
ance of the estimate of § under the null, causing some finite sam-
ple size deterioration in the test. To control for this effect, we use a
parametric bootstrap to generate critical values for our test, based
on B = 999 bootstrap replications.!

Section 5.1 investigates the finite sample size properties of the
R(6) and R(g) tests for a variety of different & processes. Then,
in Section 5.2, we will investigate the finite sample power proper-
ties of these tests in the case of a single deterministic level break.
Following up on the discussion in Section 4, in these first two
sections we will explore, for a variety of simulation DGPs, the
size-power trade from the choices made for the trimming and
bandwidth parameters, / and m respectively, which feature in our
proposed test statistic, providing some empirical guidelines for
choosing / and m in practice. Finally, Section 5.3 summarises the
results from a comparison of the finite sample size and power
properties of our proposed tests, based on our recommended tun-
ing parameters, with some relevant tests in the literature.

5.1 | Size Study

We generate simulation data according to (1) and (2) with u, = 4,
t=1,...,T,setting u = 0, without loss of generality. In addition,

for the stochastic component, &,, we consider the following range
of simulation DGPs:

« DGPI1: (NIID) & ~ IID N(0,1)
« DGP2: (AR(1)) & = 0.5¢,_, +¢,, €, ~ IID N(0,1),

« DGP3: (ARCH(1)) & =0,z,, z,~ 11D N(0,1), with ¢? =
1+0.582 .

« DGP4: (FGN(0.3)) &, = (1 — L)3¢,, with &, ~ IID N(0,1)

« DGPS: (FGN(-0.3)) & = (1 — L)*3¢,, with €, ~ IID N(0,1)

DGP1 may be considered as a benchmark case where &, is uncor-
related. DGP2, where ¢, follows an AR(1) process, allows us to
investigate the effect of curvature in the spectrum, relative to
the benchmark case. DGP3, where ¢, follows an ARCH(1) pro-
cess, allows us to study the impact of conditional heteroskedas-
ticity. DGP1-DGP3 are all cases where 6 = 0. DGP4 and DGP5 are
cases where ¢, is a fractional Gaussian white noise process with
6 = 0.3 (persistent long memory) and 6 = —0.3 (anti-persistent
long memory), respectively.

We report results for situations in which: (i) Table 1—the
user correctly sets ' =& the true order of integration; (ii)
Table 2—the order of integration is estimated by (trimmed) LW;
(iii) Table 1— the practitioner incorrectly sets 6" = 0 in the cases
of DGP4 and DGP5 where § = 0.3 and 6 = —0.3, respectively.
Results are reported for following values of / and m: I = 2,1 =4
and / = 6 for the T = 128 case, and / = 2,/ = 4 and [/ = 8 for the
T = 512 case (except for DGP3-DGP5 where, in the interests of
brevity, we only report results for / = 4); m = |T%%|, m = |T%%|
and m = |T°%].

The main findings of these results can be summarised as follows:

i. When the spectral density of 5, (recall 5, = A%&,) has no cur-
vature, the test is well sized in all cases. This includes the
ARCH case (as well as the fractional Gaussian noise cases).
Knowledge of § (or estimation of it) does not affect this
result. The only evident size distortions are seen in the case
where the sample size is small (7 = 128), when 6 = —0.3
and 6 is estimated with trimming, in which case some mild
oversize is seen. These distortions are, however, not present
for the larger sample size, T = 512.

ii. When the spectral density of #, has a curvature, DGP1,
empirical size is seen to depend on whether é is known
and on the value m chosen. In the case of known 6, size
distortions are larger when the value of m used in the test
statistic is large; conversely, in the case of estimated 6, the
size distortion is smaller if m in the test statistic is large.
Positive autocorrelation is associated with size inflation if
6 is known, and size deflation if 6 is estimated. Other things
equal, the size distortions are reduced for T' = 512 vis-a-vis
T =128.

iii. Incorrectly setting 67 = 0 when & = 0.3 results in very large
positive size distortions, which get worse as T’ or m increase.
Conversely, incorrectly setting 5 = 0 when 6 = —0.3 results
in significant distortions below the nominal significance
level.

8of 15

Journal of Time Series Analysis, 2025

85U8017 SUOWILLIOD BAIFe81D) 3|qedldde au Aq peusenob ae ssjoie YO ‘8sn Jo s8I 10} Afeid 1 8UIIUO 8|1\ UO (SUOHIPUOD-pUE-SIBYWI0D" A |IMARe.d)]BU JUO//SONY) SUORIPUOD PUe Swie | 8Ly 88S *[5202/20/82] Uo Areiqiaulluo A8|IM ‘1881 AQ 0000, BSH/TTTT OT/I0p/wod A8 M Aiq1jeul|uo//sdiy Wwoly papeojumod ‘0 ‘Z686.97T



TABLE1 | Empirical size of R(6").

T =128 T =512
m = |T%] m = [T%%5] m = |T°%] m= |T%] m= | T m= |T°%]
DGP1, 57 =0
[1=2 0.054 0.057 0.056 1=2 0.050 0.047 0.052
=4 0.055 0.059 0.056 =4 0.048 0.050 0.049
=6 0.054 0.058 0.055 | = 0.048 0.049 0.053
DGP2,5" =0
=2 0.083 0.159 0.314 = 0.058 0.095 0.210
=4 0.094 0.176 0.336 =4 0.059 0.098 0.212
=6 0.098 0.195 0.360 =8 0.061 0.100 0.222
DGP3,567 =0
=4 0.051 0.054 0.056 /=4 0.052 0.054 0.061
DGP4,5" = 0.3
=4 0.053 0.055 0.055 =4 0.048 0.051 0.051
DGP5, 57 = —0.3
=4 0.055 0.056 0.053 =4 0.046 0.040 0.040
DGP4,57 =0
=4 0.362 0.486 0.592 =4 0.450 0.609 0.726
DGP5,6" =0
=4 0.002 0.000 0.000 =4 0.000 0.000 0.000
Note: DGP1-DGP5.
TABLE 2 | Empirical size of R(;ﬁ\).
5 3, 3,
(no trimming) (trimming, I* = 2) (trimming, I* = 3)
Panel A: T =128
DGP I\ m |T°5] | 7065 | | 708 | | 705 | 7065 |T°8] | 705 | 7065 | | 708 ]
2 0.053 0.053 0.050 0.059 0.063 0.062 0.066 0.071 0.074
1 4 0.050 0.053 0.049 0.058 0.063 0.062 0.070 0.074 0.077
6 0.049 0.053 0.050 0.058 0.063 0.062 0.070 0.074 0.077
2 0.011 0.008 0.043 0.013 0.014 0.021 0.012 0.013 0.019
2 4 0.010 0.008 0.045 0.012 0.014 0.021 0.012 0.014 0.019
6 0.011 0.009 0.047 0.013 0.014 0.022 0.012 0.013 0.019
3 4 0.050 0.049 0.047 0.056 0.058 0.058 0.066 0.073 0.076
4 4 0.046 0.043 0.047 0.053 0.055 0.051 0.057 0.057 0.054
5 4 0.051 0.054 0.057 0.072 0.081 0.095 0.081 0.094 0.110
Panel B: T' =512
DGP I\'m |T°3] | 7065 | | 708 | | 705 | | 7065 [T°8] | 705 | 7065 | |T08]
2 0.041 0.047 0.044 0.044 0.043 0.042 0.050 0.050 0.052
1 4 0.044 0.046 0.043 0.041 0.043 0.041 0.049 0.052 0.053
6 0.036 0.048 0.044 0.039 0.042 0.039 0.047 0.051 0.053
2 0.016 0.014 0.062 0.016 0.016 0.031 0.015 0.014 0.032
2 4 0.014 0.015 0.062 0.015 0.015 0.031 0.014 0.014 0.030
6 0.013 0.014 0.065 0.017 0.015 0.032 0.016 0.014 0.029
3 4 0.050 0.047 0.047 0.048 0.044 0.041 0.052 0.053 0.050
4 4 0.044 0.046 0.041 0.046 0.047 0.046 0.049 0.053 0.054
5 4 0.042 0.048 0.050 0.046 0.051 0.055 0.049 0.060 0.067
Note: DGP1-DGP5.
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TABLE3 | Empirical power of R(6").

T =128 T =512

m = |T%]| m=|T%5| m= [T%3] m=|T%5] m = |T%%] m= |T%8]
DGP1,6" =0
=2 0.515 0.568 0.593 =2 0.992 0.997 0.998
=4 0.509 0.573 0.595 =4 0.993 0.998 0.998
=6 0.486 0.571 0.597 =8 0.994 0.997 0.998
DGP2,6" =0
=4 0.236 0.380 0.574 =4 0.594 0.716 0.879
DGP3,6" =0
=4 0.309 0.343 0.357 =4 0.875 0.891 0.904
DGP4,57 = 0.3
=4 0.128 0.135 0.128 =4 0.182 0.196 0.194
DGP5, 6" = —0.3
=4 1.000 1.000 1.000 =4 1.000 1.000 1.000
DGP4, 6" = 0.0
=4 0.494 0.616 0.711 =4 0.697 0.811 0.877
DGP5, 6" = 0.0
=4 0.850 0.785 0.534 =4 1.000 1.000 1.000

Note: DGP1-DGPS5. Single Level Break.

iv. Estimating 6 using the LW estimate, or its trimmed version,
results in broadly similar size properties, other things equal.
In other words, trimming does not appear to adversely
impact the finite sample size performance of the test relative
to the untrimmed case.

5.2 | Power Study: Single Level Shift Model

In this part of our exercise, we generate simulation data according
to (1) and (2) with &, again generated according to DGP1-DGPS5.
For the level component, y,, we now introduce a single level
break: y, = 0.5 X DU,(0.5), so that the unconditional mean of x,
abruptly changes from 0 to 0.5 half way through the sample.

We report results for situations in which: (i) Table 3—the
user correctly sets 67 =& the true order of integration; (ii)
Table 4—the order of integration is estimated by (trimmed) LW;
(iii) Table 3— the practitioner incorrectly sets 67 = 0 in the cases
of DGP4 and DGP5 where § =03 and § = —0.3, respectively.
The same values of /,m and [*, m* are used as in the results in
Section 5.1, except that, to avoid repeating redundant informa-
tion, we now only report results for / = 4 for DGP2.

The main findings of these results can be summarised as follows:

i. For given choices of m and /, the power of the tests is, other
things equal, increased for the larger sample size, T = 512,
relative to the smaller sample size, T = 128, but are decreas-
ing with 6. The former reflects the consistency property of
the tests established in Section 4. The latter is also reflective
of the consistency rate given in part (i) of Theorem 2 which

predicts that power is an increasing function of (¢ — 6)
when ¢ > 6: heuristically, one can think of this as a signal
plus noise model, where the periodogram of y, is the signal,
and the spectral density of &, is the noise, and so the larger is
&, the larger is the confounding effect of £ on the spectrum
of x,.

ii. For given T, the choice of m has a significant impact on
power. When § is known, power is increasing in m. How-
ever, where 6 is estimated, power appears to be highest
between m = |T%| and m = |T*%°| and then declines for
larger values of m. The latter is perhaps not surprising, as in
these cases § is likely to be upward biased in finite samples
and, as the periodogram ordinates in the denominator are
scaled by jzg , a larger value for 5 pushes the R(g) towards
zero, other things equal, thereby making it more difficult
to reject the null hypothesis. This effect can also be seen in
the case of DGP5, where § = —0.3, by comparing the power
when the user sets 67 = 0 with the case where they (cor-
rectly) set 5" = —0.3.

iii. The choice of / does not appear to have a significant impact
on power.

iv. Using trimming in connection with the LW estimate of §
is strongly improving for power in cases where larger val-
ues of m are used in the R(g) statistic, but less so otherwise.
Using a trimming parameter of /* = 2 delivers slightly supe-
rior power to using I* = 3.

Based on the finite sample size and power simulation results pre-
sented so far, we can make some tentative recommendations on
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TABLE4 | Empirical Power of R(5).

~

é

(no trimming)

5,

(trimming, I* = 2)

s

(trimming, I* = 3)

Panel A: T =128

DGP I\ m |75 | 7065 | 708 | 705
2 0.276 0.287 0.157 0.297
1 4 0.258 0.286 0.154 0.297
6 0.234 0.284 0.148 0.292
2 4 0.026 0.026 0.083 0.033
3 4 0.179 0.196 0.116 0.205
4 4 0.078 0.068 0.064 0.092
5 4 0.745 0.830 0.266 0.835
Panel B: T = 512
DGP I\ m (75 (7065 | 708 | 705
2 0.878 0.895 0.540 0.891
1 4 0.867 0.895 0.534 0.887
6 0.845 0.886 0.526 0.884
2 4 0.170 0.189 0.393 0.200
3 4 0.663 0.688 0.442 0.682
4 4 0.127 0.131 0.113 0.138
5 4 1.000 1.000 0.621 1.000

| 7065 | (708 ] | 705 | 77065 | [708]
0.296 0.256 0.273 0.264 0.230
0.298 0.257 0.254 0.255 0.222
0.300 0.254 0.247 0.254 0.222
0.037 0.050 0.030 0.033 0.041
0.206 0.180 0.189 0.192 0.176
0.094 0.083 0.088 0.086 0.079
0.846 0.721 0.720 0.706 0.586
| 7065 (798 ] | 705 | 77065 | (708 ]
0.895 0.770 0.850 0.833 0.688
0.895 0.771 0.836 0.829 0.688
0.885 0.767 0.824 0.829 0.681
0.217 0.309 0.170 0.173 0.252
0.695 0.577 0.641 0.634 0.517
0.141 0.170 0.158 0.163 0.160
1.000 0.998 1.000 1.000 0.987

Note: DGP1-DGP5. Single Level Break.

the values of the tuning parameters /, m, I*, and m* which feature
in our proposed R(6) and R(3) statistics. First, in general, we rec-
ommend the use of the test based on R(g) rather than R(6"), given
the uncontrolled size distortions that can occur when 6 # 8. Sec-
ond, for & we recommend using a trimmed LW estimate with
trimming parameter /* > 2, and bandwidth m* = |T%3 |, the lat-
ter as recommended by Dalla et al. (2006) and Abadir et al. (2007).
For the numerator of the R(g) statistic, balancing size and power
considerations, overall we recommend a bandwidth m of some-
where in the range [|T% |, | T%% |]. The choice of the trimming
parameter, /, seems less crucial, and we suggest considering a
range of values of /: the simulation results presented suggest using
I=2forT =128 and !/ =4 for T = 512.

5.3 | Additional Monte Carlo Results

In the last part of our Monte Carlo exercise, we ran a compara-
tive study of the finite sample size and power properties of the
R(6) and R(g) tests against a set of benchmark tests from the lit-
erature. For R(6) and R(g), we follow the recommended settings
for the tuning parameters given at the end of Section 5.2, setting
m = |T%%|. The comparator tests we considered are the W test
of Qu (2011), and the T,,(S) test [denoted V.S in what follows] of
Giraitis et al. (2006), both of which are designed to detect gen-
eral forms of non-constancy in y,, allowing for long memory in
x,. We also consider the SW test of Iacone et al. (2014) which is
designed to detect a single deterministic level break in the pres-
ence of long memory. All of the tests were run using the recom-
mended settings given by the authors of the tests; further details

on these tests can be found in Section S.2 of the Supplementary
Appendix, where details of the Monte Carlo designs considered
and the results of the experiments can also be found.

Size properties against DGP1-DGP5 from Section 5.1 were
investigated together with power results against a variety of
non-constant designs for y,. Here we provide a summary of those
findings as follows:

i. The SW test has good size properties, both for the known
and estimated 6 cases. The only exceptions occur, as would
be expected, in cases where the user specifies a value for
8" which is different from the true value of §. Even in such
cases, however, the size distortion is the smallest of the three
tests, suggesting that the distorting effect due to an impre-
cise estimate of 6 is lowest for this test. This is confirmed
by the performances of the V.S and W tests: the V.S test
is subject to some potentially large size distortion even in
the larger sample size, when 6 is assumed known, at least
when the spectral density of #, is subject to some curvature,
as in the AR(1) case or when § = 0.3. The size performance
of the V'S test is improved if the LW estimate is used, but is
still significantly oversized for DGP4 where § = 0.3. Finally,
the results verify the invalidity of the W test when based on
an assumed (rather than estimated) value of 6, even where
the correct value of 6 is assumed.

ii. For any given combination of y, process, value of §, and
test, replacing 6 with its estimate always results in a loss of
power. Increasing the sample size increases the empirical
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FIGURE1 | US Monthly CPI Inflation (seasonally adjusted), 1970-2022.

power; however, the relative performance of the tests is not
affected by 7, in the sense that the power ranking of the
tests, for a given scenario, is essentially the same for 7 = 128
and T = 512.

iii. For abrupt level break models, the power of the tests is
increasing in . We also find that a break located in the mid-
dle of the sample (z* = 0.5) is more easily detected than a
late break (z* = 0.75). In the case where 7* = 0.5, for both
the case where 6 is known and where it is estimated, our
proposed R tests, are very competitive on power with the
SW test, often displaying higher power than SW, but lag
behind the power of SW when z* = 0.75.

iv. For smoothly varying trend models, our proposed R tests
are overall the best performing on power, both for the case
where 6 is known and where it is estimated.

v. In most cases, the W test displays lower power, often sig-
nificantly lower, than the other tests. The only exception is
for a martingale process where it is competitive with the
other tests on power, other than for the case where § =0
and T = 128.

vi. Trimming of the LW estimate in general appears to increase
the power of the R(6) test, albeit marginally.

6 | Application to US CPI Inflation

We apply our proposed R(3) test to US inflation over the period
1970-2022. Historically, this period is characterised by different
monetary policy regimes and changing underlying conditions in
both the financial markets and macroeconomic circumstances.
The inflationary burst brought on by the oil shocks of the 1970s
was eventually curbed by the more aggressive attitude to infla-
tion control ushered in during the Volker-Greenspan era and the
resulting so-called Great Moderation. More recently, US inflation

2000 2010 2020

has reverted to periods of instability, most notably the 2008 finan-
cial crisis and recent international turmoil.

The inflation series is computed as the first differences of the (nat-
ural) logarithm of monthly CPI, the Consumer Price Index for
all Urban Consumers (all items in US city average), seasonally
adjusted: series CPIAUCSL from the FRED database. The sam-
ple size is T = 635. The plot of the series (in log-first differences)
is given in Figure 1. This is scaled by 1200 to be visually compat-
ible with the measure of inflation that is commonly used. Also
depicted in red is a nonparametric estimate of the mean of the
series computed over a rolling window of width 12 months: this
is at least suggestive of the presence of some time variations in
the unconditional mean of the series across the sample.

In Table 5 we report the outcomes of the R(g) statistic, for a range
of values of the trimming and bandwidth parameters, / and m.
The statistics were computed using either the untrimmed LW
estimate, denoted 3\, or the trimmed LW estimate with [* = 2,
denoted 32, and /* = 3, denoted (/3\3. In each case, we used a band-
width of m* = |T*%]. Bold entries denote cases where the out-
come of the statistic exceeds the 5% bootstrap critical value (with
the bootstrap critical values calculated as outlined in footnote 1
with B = 999 bootstrap replications). Missing entries are where
we consider the range {/,m} to be too small to deliver a reliable
estimate of the long-run variance.

As might be anticipated, given the apparent non-constancy of the
unconditional mean in Figure 1, trimming is seen to have a sig-
nificant effect on the LW estimate of § for the inflation series. In
particular, the LW estimate decreases as the amount of trimming
increases, passing from 8 = 0.45 when no trimming is used, to
33 = 0.37when /* = 3. Relatedly, we see that the evidence against
the null hypothesis that the unconditional mean of the infla-
tion series is constant across the sample is much higher when
trimming with /* = 3 is used, compared to the cases where no
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TABLE 5 | Application of R(5) tests to monthly seasonally adjusted US CPI.

m 13 18 25 30 34 40 48 66
1 |T%4] | T045] |T°5] | 7055 |T%6] | 7065
Panel A: Untrimmed LW estimate (I* = 1), 5 =045
2 2.07 2.58 291 3.10 3.15 2.77 2.75 2.46
4 2.01 2.60 2.97 3.16 3.21 2.79 2.76 2.46
6 1.86 2.54 2.96 3.17 3.22 2.78 2.75 2.44
9 — 239 2.92 3.17 3.22 2.74 2.72 241
12 — — 5.44 5.15 4.79 3.44 3.24 2.64
Panel B: Trimmed LW estimate (/* = 2), 32 =0.41
2 2.48 3.12 3.58 3.85 3.96 3.57 3.61 3.34
4 2.45 3.19 3.70 3.99 4.10 3.64 3.67 3.37
6 2.28 3.15 3.72 4.04 4.14 3.65 3.68 3.37
9 — 2.99 3.70 4.06 4.18 3.63 3.66 3.35
12 — — 7.13 6.82 6.40 4.70 4.47 3.74
Panel C: Trimmed LW estimate (/* = 3), 3\3 =0.37
2 2.87 3.63 4.23 4.59 4.76 4.38 4.48 4.28
4 2.88 3.78 4.43 4.82 4.98 4.52 4.61 4.35
6 2.70 3.76 4.49 4.91 5.08 4.56 4.65 4.37
9 — 3.58 4.49 4.98 5.16 4.57 4.66 4.36
12 — — 8.89 8.58 8.11 6.05 5.80 4.96

trimming or trimming with /* = 2 is used. The outcomes of the
statistics are also seen to be uniformly larger when /* = 3 than for
the other cases, for given values of / and m. For the case where we
use the trimmed LW estimate with /* = 3 we see that we can reject
the null hypothesis for most of the values of / and m considered;
indeed, for / = 12, we can reject for all the values of m considered.
However, it is also worth observing that for our recommended
tuning parameter settings of m = |T%% | and I = 4, we are able
to reject the null hypothesis of a constant mean, regardless of
whether a trimmed or untrimmed LW estimate is used.

7 | Conclusions

We have developed portmanteau tests, based on ratios of the
periodogram ordinates of the series, for detecting general forms
of non-constancy in the level component of a (possibly) frac-
tionally integrated time series process. The numerator contains
low-frequency ordinates designed to become large when there
is non-constancy in the level, our leading case being where
the statistic includes only the lowest frequency ordinate in the
numerator. The denominators use higher frequency ordinates to
scale the numerator by an estimate of the long-run variance of the
series. For this leading case, we have shown that the periodogram
ratio tests admit pivotal limiting distributions of a well-known
form under the null hypothesis that the level of the series is con-
stant across the sample and have also established consistency
against a wide class of time-varying mean components, including
deterministic level shift models, smoothly varying trend compo-
nents, power trends, and martingales. A Monte Carlo simulation
study, again focusing on our leading case, showed that the test

displays good finite sample size control and is very competitive on
power with extant tests in the literature. An empirical application
to US inflation suggests the presence of statistically significant
time variation in the mean over the period 1970-1922.

We end with a suggestion for further research. Our recommended
tests require the practitioner to specify values for the bandwidth
and trimming parameters used in constructing the test statistic.
While we have made recommendations for the values of these
to use in practical applications, it would also be worth explor-
ing if data-based choices for these tuning parameters, such as
those discussed for the bandwidth in the context of estimating
the long memory parameter in Henry (2001), have the potential
to improve the finite sample performance of the tests.
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Endnotes

! This was done as follows: (i) setting $ to be equal to either 6 in the
case where the practitioner specifies a value for §, or 5 the (trimmed or
untrimmed, as relevant) LW estimate from the original data, generate
B T-dimensional 1(5) series, {x;i}, i=1,...,B,t=1,...,T, accord-
ingto (1) and (2) with &, ~ IID N(0,1) and, y, = u,t =1, ..., T, setting
u = 0 (without loss of generality); (ii) for each bootstrap series, (x5},
i=1,...,B, calculate either the statistic R(5"), if 5 = &, or R(gi*),. if
5= 3, where gf is the LW estimate obtained from {xjfi}, in each case
using the same values of /, m and, where relevant, /*, m* as for the origi-
nal statistic, R(E); (iii) arrange the B bootstrap statistics from step (ii) in
ascending order, and denote by ¢0"(0.05) the upper 5% quantile of this
ordered sequence; (iv) reject H,, if R@) > ¢0°(0.05).
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Information section. Supplementary appendix: Supporting Informa-
tion.
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