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We consider a resource allocation problem with agents that have additive ternary valuations for a set of indivisible 
items, and bound the price of envy-free up to one item (EF1) allocations. For a large number 𝑛 of agents, we show 
a lower bound of Ω(

√
𝑛), implying that the price of EF1 is no better than when the agents have general subadditive 

valuations. We then focus on instances with few agents and show that the price of EF1 is 12∕11 for 𝑛 = 2, and 
between 1.2 and 1.256 for 𝑛 = 3.

1. Introduction

The problem of fairly allocating scarce resources to agents with het-

erogeneous preferences has been a topic of interest since ancient times 
(e.g. in the form of land division) and has received significant atten-

tion within multiple disciples in the last century; see [3,22,24,25] for 
some recent surveys. The main objective in this area is to compute or 
show the existence of fair allocations under assumptions about how fair-

ness is defined exactly, the preferences of the agents, and the nature of 
the resources which might be divisible or indivisible, as well as desir-

able (goods) or undesirable (chores). In addition to fairness, another 
important desideratum is efficiency, i.e., to (approximately) optimize a 
function of the values or costs of the agents for the resources. Following 
a significant body of recent work, we consider a fair resource allocation 
setting with indivisible items, and aim to quantify the loss of efficiency 
in terms of social welfare (the total value of the agents for their assigned 
items) due to the requirement for fairness.

1.1. The general model

We consider a fair resource allocation setting with a set 𝑁 of 𝑛 ≥ 2
agents and a set 𝑀 of 𝑚 ≥ 2 indivisible items. Each agent 𝑖 has an additive 
valuation function 𝑣𝑖 ∶𝑀 →ℝ≥0 such that 𝑣𝑖(𝑔) ≥ 0 is the value of agent 
𝑖 for an item 𝑔 ∈𝑀 (so, each item is considered a good), and 𝑣𝑖(𝑆) =∑
𝑔∈𝑆 𝑣𝑖(𝑔) is the value of 𝑖 for a subset of items 𝑆 ⊆𝑀 ; also, each item 

is valued positively by at least one agent. So, an instance of the setting 
is fully described by the set of agents 𝑁 , the set of items 𝑀 , and the 
values of the agents for each individual items 𝐯 = (𝑣𝑖)𝑖∈𝑁 .

An allocation 𝐀 = (𝐴𝑖)𝑖∈𝑁 is a collection of disjoint subsets (or, bun-

dles) of 𝑀 so that agent 𝑖 is given the items in bundle 𝐴𝑖. Our objective 

* Corresponding author.

E-mail address: alexandros.voudouris@essex.ac.uk (A.A. Voudouris).

is to compute an allocation that the agents consider to be fair. Many 
different notions of fairness have been proposed and studied in the fair 
division literature, with one of the most prominent ones being envy-

freeness. This notion requires that no agent 𝑖 envies any other agent 𝑗 in 
the sense that the value of 𝑖 for 𝐴𝑖 is at least as much as the value of 𝑖 for 
𝐴𝑗 . However, it is not hard to observe that, when the items are indivis-

ible, envy-free allocations may not exist; for example, if there are two 
agents and one item, then the agent that does not get the item will envy 
the other. In this work, we focus on probably the most well-studied re-

laxation of envy-freeness, known as envy-freeness up to one item, which 
was first introduced by Budish [12] but was also informally studied be-

fore by Lipton et al. [21]. This notion allows an agent 𝑖 to envy another 
agent 𝑗 as long as this envy can be eliminated by (hypothetically) re-

moving some item from 𝐴𝑗 .

Definition 1.1. An allocation 𝐀 = (𝐴𝑖)𝑖∈𝑁 is envy-free up to one item 
(EF1) if, for any two agents 𝑖 and 𝑗 with 𝐴𝑗 ≠ ∅, there exists an item 
𝑔 ∈𝐴𝑗 such that 𝑣𝑖(𝐴𝑖) ≥ 𝑣𝑖(𝐴𝑗 ⧵ 𝑔).

EF1 allocations are known to always exist and can be computed via a 
variety of different methods. For example, the Round-Robin algorithm 
allows the agents to choose their most valuable item one after the other 
in rounds determined by an (arbitrary) ordering of them. It is not hard 
to see that this algorithm terminates with an EF1 allocation: When an 
agent 𝑖 picks an item, she does so because she has more value for it than 
for any other item that agents picking after 𝑖 can choose. Hence, 𝑖 can 
only envy another agent 𝑗 because of a single item that 𝑗 picked before 
𝑖 was able to pick any item in the very first round, and thus 𝑖’s envy can 
be eliminated by removing this item [14]. For other methods for com-
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puting EF1 allocations (possibly in combination with other constraints), 
we refer the reader to the survey of Amanatidis et al. [3].

The social welfare SW(𝐴) of an allocation 𝐀 is the total value that the 
agents have for the sets of items they are allocated. Formally,

SW(𝐀) =
∑
𝑖∈𝑁

𝑣𝑖(𝐴𝑖).

To be able to meaningfully compare different allocations in terms of 
their social welfare, we assume that the valuation functions are nor-

malized such that all agents have the same total value for all items: 
𝑣𝑖(𝑀) = 𝑣𝑗 (𝑀) for any agents 𝑖 and 𝑗. With few exceptions, this is a 
standard normalization assumption in the relevant literature and is mo-

tivated, for example, by applications where all agents are given the same 
number of points (say 100) and are asked to distribute them among the 
items to indicate their preferences; see [4] for further examples and 
justifications of this and many other normalization assumptions. It is 
also worth noting that, due to the nature of the EF1 criterion (which 
compares the value of each independent agent for different bundles of 
items), the set of possible EF1 allocations is not affected by our normal-

ization assumption.

Unfortunately, EF1 allocations do not necessarily maximize the so-

cial welfare. To give an example, suppose there are two agents with 
values 𝑣1 = (0.5,0.5,0) and 𝑣2 = (0.49,0.26,0.25) for three items. The 
allocation that maximizes the social welfare assigns each item to the 
agent that has maximum value for it; that is, agent 1 gets the first two 
items and agent 2 gets the last item, resulting in a social welfare of 1.25. 
However, observe that this allocation is not EF1: Agent 2 has value 0.75
for the first two items (which are given to agent 1), and her value for 
each of the two items is strictly larger than the value she has for the 
last item that she is given. In any EF1 allocation, agent 2 has to be al-

located one of the first two items that agent 1 values positively, and so 
the maximum social welfare in an EF1 allocation cannot be more than 
1.24. In fact, in general, it is NP-hard to compute the EF1 allocation with 
maximum social welfare [11]. We are interested in quantifying how low 
the social welfare of any EF1 allocation can be compared to the optimal 
social welfare. This loss of efficiency is measured by the price of EF1, de-

fined as the worst-case ratio (over all possible instances) between the 
maximum possible social welfare achieved by any allocation and the 
maximum possible social welfare achieved by an EF1 allocation.

Definition 1.2. Let EF1(𝐼) be the set of all possible EF1 allocations for 
instance 𝐼 = (𝑁,𝑀, (𝑣𝑖)𝑖∈𝑁 ). The price of EF1 is

sup
𝐼

max𝐀 SW(𝐀) 
max𝐀∈EF1(𝐼) SW(𝐀)

.

The price of EF1 was first considered in the (conference version of 
the) work of Bei et al. [8]. For any number of agents 𝑛 with additive val-

uations, they showed that the price of EF1 is between Ω(
√
𝑛) and 𝑂(𝑛), 

with the upper bound achieved by Round-Robin. This gap was resolved 
by Barman et al. [7] who designed an algorithm that computes an EF1 
allocation with price 𝑂(

√
𝑛), which holds even for subadditive valua-

tion functions. Bei et al. also considered the special case of 𝑛 = 2 agents, 
for which they showed that the price of EF1 is between 8∕7 ≈ 1.143 and 
2∕

√
3 ≈ 1.155; a tight upper bound of 8∕7 for 𝑛 = 2 was recently shown 

by Li et al. [20].

1.2. Our contribution

In this work, we revisit the price of EF1 allocations by focusing on in-

stances in which the values of the agents for the items are ternary and can 
be of three different levels. In particular, the values of the agents may be 
𝑎, 𝑏, or 0 with 𝑎 > 𝑏 > 0. To give an example, consider an instance with 
two agents that have values 𝑣1 = (2,1,1,0) and 𝑣2 = (1,1,1,1) for four 
items; here we have that 𝑎 = 2 and 𝑏 = 1, and also observe that the total 

value of both agents for all items is 4. Such ternary values capture ap-

plications where agents can only partition the items into three different 
value categories to indicate their preferences. For instance, if the items 
correspond to houses, the categories could be houses the agents are ea-

ger to buy, houses they are willing to buy, and houses they do not want 
to buy at all. More generally, such instances can be thought of a special 
case of 𝑘-valued instances, where 𝑘 ≥ 2 values are available.

We first show that, even such restricted ternary valuations, the price 
of EF1 is Ω(

√
𝑛) when there is a large number of agents. This slightly 

improves the lower bound of Ω(
√
𝑛) shown by Bei et al. [8] in the 

sense that their result follows by an instance with four different val-

ues, whereas ours needs only three. Given that the algorithm of Barman 
et al. [7] computes an EF1 allocation for any class of subadditive val-

uation functions, our lower bound implies that no improvement on the 
price of EF1 is possible when there are many agents, even for ternary 
valuations. Hence, we next focus on instances with few agents, in par-

ticular, 𝑛 = 2 and 𝑛 = 3.

For 𝑛 = 2 agents, we show that the price of EF1 is exactly 12∕11. 
The upper bound follows by a variation of the Round-Robin algorithm 
that was discussed in Section 1.1. The main difference is that, when it 
is the turn of an agent to pick, she chooses an item among her most 
valuable ones by giving priority to those that do not harm the other 
agent. In a sense, our algorithm aims to minimize the social welfare 
loss as agents pick items greedily. For 𝑛 = 3 agents, we show that the 
price of EF1 is between 6∕5 = 1.2 and 1.256. The upper bound in this 
case follows by an algorithm that constructs an allocation by repeatedly 
computing maximum matchings between the agents and the remaining 
items, again aiming to minimize the social welfare loss when there are 
multiple matchings that yield the same total value gain.

1.3. Other related work

The price of EF1 is just an instantiation of a more general notion 
known as the price of fairness, which quantitatively compares the so-

cial welfare of allocations that satisfy particular fairness criteria to the 
maximum possible unrestricted social welfare. It was first introduced 
independently by Bertsimas et al. [9] and Caragiannis et al. [13], who 
showed bounds on the price of envy-freeness and the price of propor-

tionality for settings with divisible as well as indivisible items; for the 
latter, these results are only for classes of instances that admit such fair 
allocations (since envy-free and proportional allocations might not ex-

ist). Besides the price of EF1, Bei et al. [8], Barman et al. [7] and Li 
et al. [20] also showed bounds on the price of many other fairness no-

tions for instances with indivisible items, such as balancedness, Nash 
welfare, EFX for two agents, 1∕2-MMS, and EFM. Bounds on the price 
of fairness have also been shown for other criteria in settings with divis-

ible items [23], chores [5,19,26], and even for committee voting [15].

Besides our paper, ternary values have also been explicitly consid-

ered in many other works within the fair division literature. For ex-

ample, Amanatidis et al. [1] showed that exact MMS allocations exist 
and can be computed efficiently for the special case where 𝑎 = 2 and 
𝑏 = 1. On the negative side, Fitzsimmons et al. [16] showed that approx-

imately maximizing the Nash welfare or the egalitarian welfare remains 
NP-hard even for ternary values. Bhaskar et al. [10] recently considered 
instances with trilean values, where agents may have three different 
values for bundles of items (not necessarily singletons), and showed the 
existence of EF1 allocations. Instances with ternary values can also be 
thought of generalizations of bivalued instances which have been stud-

ied significantly for notions like EFX and Maximum Nash welfare, see, 
for example [2,6,17,18].

2. A lower bound for 𝒏 agents

We start by proving a lower bound of Ω(
√
𝑛) for when there is a 

large number 𝑛 of agents. As already mentioned, in combination with 
the upper bound of 𝑂(

√
𝑛) of Barman et al. [7], this lower bound shows 
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that one cannot hope for asymptotically better price of EF1, even when 
the valuations are very simple and of just three levels.

Theorem 2.1. For 𝑛 ≥ 4 agents with additive ternary valuations, the price 
of EF1 is Ω(

√
𝑛).

Proof. Consider an instance with 𝑛 agents and 𝑛 items. To define the 
values of the agents, we partition the items into a collection 𝑆 of 

√
𝑛

sets 𝑆1,… , 𝑆√
𝑛

of size 
√
𝑛. Each set 𝑆𝑖 is associated with a different 

agent who has value 𝑎 for the items in 𝑆𝑖 and 0 for any other item. 
Let 𝑋 be the set of agents associated with the sets of collection 𝑆 . The 
remaining 𝑛−

√
𝑛 agents have value 𝑏 for all items. Let 𝑌 =𝑁 ⧵𝑋. Due 

to normalization, it must be the case that 𝑎 ⋅
√
𝑛 = 𝑏 ⋅ 𝑛⇔ 𝑎 = 𝑏 ⋅

√
𝑛.

In any allocation where an agent 𝑖 ∈ 𝑌 is not assigned any items, 
there must exist another agent 𝑗 that is assigned at least two items, and 
hence 𝑖 is not EF1 towards 𝑗. This implies that each agent of 𝑌 must 
be assigned at least one item for the allocation to be EF1. Hence, the 
maximum possible social welfare of an EF1 allocation is

𝑏 ⋅ (𝑛−
√
𝑛) + 𝑎 ⋅

√
𝑛 = 𝑏 ⋅ (2𝑛−

√
𝑛)

On the other hand, the optimal social welfare is 𝑎 ⋅ 𝑛 = 𝑏 ⋅ 𝑛
√
𝑛 and is 

achieved by assigning all the items to the agents that have value 𝑎 for 
them. Hence, the price of EF1 is

𝑛
√
𝑛

2𝑛−
√
𝑛
.

It is not hard to observe that this expression is Ω(
√
𝑛), which completes 

the proof. □

3. Two agents

We start with the case of two agents for which we show a tight bound 
of 12∕11 on the price of EF1. We first show the lower bound.

Theorem 3.1. For two agents with additive ternary valuations, the price of 
EF1 is at least 12∕11.

Proof. Consider an instance with two agents and four items. The val-

ues of the agents for the items are 𝑣1 = (3∕2,3∕2,3∕2,0) and 𝑣2 =
(1,1,1,3∕2). If we allocate the three first items to agent 1, then agent 2
will only get the last item and will not be EF1 towards agent 1. So, at 
least one of the first three items must be given to agent 2 in any EF1 
allocation, leading to social welfare of at most 3 ⋅ 3∕2 + 1 = 11∕2. The 
optimal social welfare is 4 ⋅3∕2 = 12∕2 (achieved by assigning each item 
to the agent that values it the most), leading to a price of EF1 of at least 
12∕11. □

For the upper bound, we consider a variation of the Round-Robin 
algorithm to which we refer as Modified-2Agents-Round-Robin 
(M2RR); see Algorithm 1. The agents take turns choosing their most-

valuable (positively-valued) item from the pool of remaining ones, 
breaking ties in favor of the item(s) that will minimally impair the social 
welfare. More formally, the agents choose among the items for which 
they have maximum (positive) value, the one for which the other agent 
has minimal value. For ternary valuations in particular, an agent prefers 
items she values as 𝑎 over items she values as 𝑏, and when she has to 
choose between multiple same-valued items, she prioritizes items that 
the other agent values as 0, over the ones the other agent values as 𝑏, 
over the ones the other agent values as 𝑎. If an agent has value 0 for all 
remaining items, all these items are given to the other agent.

Theorem 3.2. For two agents with additive ternary valuations, M2RR com-

putes an allocation that is EF1 and has price of EF1 at most 12∕11.

Algorithm 1: Modified-2Agents-Round-Robin (M2RR).

Order the agents such that agent 1 is the one with the most 𝑎s; 
for each 𝑖∈ [2] do

𝐴𝑖 ←∅; 
𝑃 ←𝑀 ; 
while 𝑃 ≠∅ do

for each 𝑖∈ [2] do

if 𝑣𝑖(𝑥) = 0 for each 𝑥∈ 𝑃 then

𝐴3−𝑖 ←𝐴3−𝑖 ∪ 𝑃 ; 
𝑃 ←∅; 

else

𝐶 ← argmax𝑥∈𝑃 {𝑣𝑖(𝑥)}; 
𝑥𝑖 ← arbitrary item in argmin𝑥∈𝐶{𝑣3−𝑗 (𝑥)}; 
𝐴𝑖 ←𝐴𝑖 ∪ {𝑥𝑖}; 
𝑃 ← 𝑃 ⧵ {𝑥𝑖}; 

return 𝐀 = (𝐴1,𝐴2); 

Proof. The allocation computed by M2RR is EF1 since Round-Robin 
always outputs an EF1 allocation, and if an agent stops receiving items, 
it means that her value is 0 for each of the remaining ones, and thus 
does not have any envy for them. We next focus on bounding the price 
of EF1.

Fix the values 𝑎 and 𝑏 that the agents might have for the items. To 
describe the universe of all possible instances with 𝑎 and 𝑏 fixed, let 𝑆𝑥,𝑦
be the set of items for which agent 1 has value 𝑥 ∈ {𝑎, 𝑏,0} and agent 
2 has value 𝑦 ∈ {𝑎, 𝑏,0}. In addition, let ALG(𝑥, 𝑦) and OPT(𝑥, 𝑦) be the 
contribution to the social welfare of items in 𝑆𝑥,𝑦 in the computed EF1 
allocation and in the optimal allocation, respectively. Observe that for 
valid pairs (𝑥, 𝑦) with 𝑥 = 𝑦 or 𝑥 = 0 or 𝑦 = 0, it holds that ALG(𝑥, 𝑦) =
OPT(𝑥, 𝑦). Using this, since the price of EF1 is the ratio of the optimal 
social welfare over the social welfare of the computed EF1 allocation, 
we can assume that, in a worst-case instance (where the price of EF1 
is maximized), there is a minimal number of such items. In particular, 
since some agent must have value 0 for some item (as otherwise the 
price of EF1 would be 1), we have that 𝑆𝑎,𝑎 ∪𝑆𝑏,𝑏 =∅ and 𝑆𝑎,0 ∪𝑆0,𝑎 ∪
𝑆𝑏,0 ∪ 𝑆0,𝑏 = {𝑔}.

Any inefficiency in social welfare comes from incorrectly allocating 
items in 𝑆𝑎,𝑏 ∪ 𝑆𝑏,𝑎. For such items, observe that, as long as there are 
available items in both sets, since the agents aim to minimize the value 
loss of the other agent when choosing items, agent 1 picks from 𝑆𝑎,𝑏 and 
agent 2 picks from 𝑆𝑏,𝑎 leading, again, to the same contribution in the 
social welfare as in the optimal solution (since both agents pick 𝑎-valued 
items). So, the loss of efficiency is due to one of these sets being empty. 
By the definition of the algorithm, since agent 1 is the one with more 𝑎s 
in her valuation, it must be the case that 𝑆𝑏,𝑎 =∅, and hence, the agents 
pick from the items in 𝑆𝑎,𝑏; let 𝑘 ∶= |𝑆𝑎,𝑏|. Since 𝑎 > 𝑏, it must be the 
case that 𝑔 ∈ 𝑆0,𝑎 ∪𝑆0,𝑏 (as otherwise, agent 1 would have a total value 
either (𝑘+ 1) ⋅ 𝑎 if 𝑆𝑎,0 ≠∅ or 𝑘 ⋅ 𝑎+ 𝑏 if 𝑆𝑏,0 ≠∅, while agent 2 would 
only have value 𝑘 ⋅ 𝑏, breaking the normalization assumption).

Now that we have the structure of a worst-case instance, we are ready 
to bound the price of EF1. By the definition of the algorithm, since agent 
1 values 𝑔 as 0, agent 1 gets an item from 𝑆𝑎,𝑏, agent 2 gets 𝑔, and 
then they pick the remaining 𝑘− 1 items of 𝑆𝑎,𝑏 one by one with agent 
1 picking first (to lead to an EF1 allocation with best possible social 
welfare). Let 𝑥 and 𝑦 be the number of the 𝑘−1 items in 𝑆𝑎,𝑏 that the two 
agents pick after the first round, respectively. Then, the social welfare 
of the allocation computed by the algorithm is 𝑎 + 𝑣2(𝑔) + 𝑥 ⋅ 𝑎 + 𝑦 ⋅ 𝑏, 
while the optimal social welfare is 𝑘 ⋅ 𝑎+ 𝑣2(𝑔). We distinguish between 
the possible values of 𝑣2(𝑔).

Case 1: 𝑣2(𝑔) = 𝑏. By the normalization, both agents must have the same 
total value for all items, and thus 𝑘 ⋅ 𝑎 = (𝑘 + 1) ⋅ 𝑏⇔ 𝑎 = 𝑘+1

𝑘 ⋅ 𝑏. Since 
𝑥+𝑦= 𝑘−1, 𝑥≥ 𝑘−1

2 ≥ 𝑦, and 𝑘 ≥ 3 (since otherwise the 𝑘 items in 𝑆𝑎,𝑏
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and 𝑔 would all be allocated optimally by the algorithm), the price of 
EF1 is

𝑘 ⋅ 𝑎+ 𝑏 
(𝑥+ 1) ⋅ 𝑎+ (𝑦+ 1) ⋅ 𝑏

=
𝑘 ⋅ 𝑘+1

𝑘 + 1 

(𝑥+ 1) ⋅ 𝑘+1
𝑘 + (𝑦+ 1)

= 𝑘(𝑘+ 2) 
𝑘 ⋅ (𝑥+ 𝑦) + 𝑥+ 2𝑘+ 1

≤
2𝑘2 + 4𝑘 

2𝑘2 + 3𝑘+ 1

≤
15
14
.

Case 2: 𝑣2(𝑔) = 𝑎. By the normalization, we now have that 𝑘 ⋅ 𝑎 = 𝑘 ⋅ 𝑏+
𝑦⇔ 𝑎 = 𝑘 

𝑘−1 ⋅ 𝑏. Since 𝑥+ 𝑦 = 𝑘− 1, 𝑥≥ 𝑘−1
2 ≥ 𝑦, and 𝑘 ≥ 3, the price of 

EF1 is

(𝑘+ 1) ⋅ 𝑎 
(𝑥+ 2) ⋅ 𝑎+ 𝑦 ⋅ 𝑏

=
(𝑘+ 1) ⋅ 𝑘 

𝑘−1

(𝑥+ 2) ⋅ 𝑘 
𝑘−1 + 𝑦

= 𝑘(𝑘+ 1) 
𝑘(𝑥+ 𝑦) + 2𝑘− 𝑦

≤
2𝑘2 + 2𝑘 

2𝑘2 + 𝑘+ 1

≤
12
11
.

This concludes the proof. □

4. Three agents

For three agents, we show that the price of EF1 is between 1.2 and 
1.256. We again start with the lower bound.

Theorem 4.1. For three agents with additive ternary valuations, the price 
of EF1 is at least 6∕5.

Proof. Consider an instance with three agents and six items. The values 
of the agents for the items are 𝑣1 = (2,2,2,0,0,0), 𝑣2 = (0,0,0,2,2,2), 
and 𝑣3 = (1,1,1,1,1,1). Clearly, in any EF1 allocation, all agents must 
take at least one item. Also, observe that if we allocate just one item to 
agent 3 and all three items with value 2 to agent 1 or 2, then 3 will not 
be EF1 towards that agent. Hence, in an EF1 allocation, agent 3 must 
take at least two items, and the social welfare is at most 4 ⋅ 2 + 2 = 10. 
The optimal social welfare is 6 ⋅ 2 = 12 (achieved by assigning the items 
to the first two agents), leading to a price of EF1 of at least 6∕5. □

For the upper bound, we consider an algorithm to which we refer 
as Repeated-Max-Matching (RMM); see Algorithm 2. The algorithm 
constructs an allocation in rounds by repeatedly computing max match-

ings on a bipartite graph with the nodes on one side representing the 
agents and the nodes on the other side representing the items. An edge 
between an agent and an item exists in this graph if and only if the cor-

responding value of the agent is positive (either 𝑎 or 𝑏), and has weight 
equal to this value. Each time a maximum matching is computed, the 
graph is updated so that the items in the matching and all of their adja-

cent edges are removed. In addition, if an agent has no adjacent edges 
left in the graph, she is also removed as she has value 0 for all of the 
remaining items.

In case there are multiple max matchings, the algorithm chooses a 
non-wasteful one in the sense that each agent is matched to an item that 
minimizes the maximum value that the other two agents have for it. To 
illustrate this, suppose that agent 𝑖 is matched to an item 𝑔 which 𝑖 and 
another agent 𝑗 both value as 𝑎. Then, there must be no unmatched item 
𝑞 such that 𝑖 values as 𝑎 and both other agents value as 𝑏 or 0; otherwise, 
agent 𝑖 would have been matched to 𝑞 instead, possibly allowing 𝑔 to 
be matched to 𝑗.

Algorithm 2: Repeated-Max-Matching (RMM).

for each 𝑖∈𝑁 do

𝐴𝑖 ←∅; 
Construct bipartite graph 𝐺 = (𝑁,𝑀,𝐸,𝐯) with (𝑖, 𝑔) ∈𝐸 iff 𝑣𝑖(𝑔) > 0; 
while 𝑀 ≠∅ do

Compute a non-wasteful matching 𝝁= (𝜇𝑖)𝑖∈𝑁 on 𝐺; 
for each 𝑖∈𝑁 do

𝐴𝑖 ←𝐴𝑖 ∪ {𝜇𝑖}; 
𝑀 ←𝑀 ⧵ {𝜇𝑖}; 
𝐸←𝐸 ⧵ {𝑒 ∈𝐸 ∶ 𝜇𝑖 ∈ 𝑒}; 
if ∄𝑒 ∈𝐸 ∶ 𝑖 ∈ 𝑒 then

𝑁 ←𝑁 ⧵ {𝑖}; 

return 𝐀 = (𝐴𝑖)𝑖∈𝑁 ; 

Theorem 4.2. For three agents with additive ternary valuations, RMM com-

putes an allocation that is EF1 and has price of EF1 at most 24∕19 ≈ 1.26.

Proof. We first argue that the allocation computed by the algorithm is 
EF1. Consider an arbitrary agent 𝑖 ∈ [3] and the items she is allocated as 
the algorithm computes max matchings in rounds. Suppose that agent 
𝑖 is assigned items that she values as 𝑎 for the first 𝑘− 1 rounds before 
being given an item 𝑔 that she values as 𝑏 in round 𝑘 ≥ 1; note that 
if 𝑖 receives only 𝑎-valued items and then she has 0 for the remaining 
ones, then 𝑖 is envy-free (not just EF1) towards the other two agents. It 
might happen that, in round 𝑘, one or both of the other two agents are 
allocated items that 𝑖 values as 𝑎 (which 𝑖 strictly prefers to the item 
she got in round 𝑘.) Afterwards, suppose that agent 𝑖 is assigned items 
that she values as 𝑏 for the next 𝜆 ≥ 1 rounds and then stops receiving 
items from round 𝑘+𝜆+1 and on. Now, it might happen that, in round 
𝑘 + 𝜆 + 1, one or both of the other two agents are allocated items that 
𝑖 values as 𝑏, but from round 𝑘 + 𝜆 + 2 (if such rounds exist), agent 𝑖
definitely has value 0 for the remaining items. Hence, 𝑖 has accumulated 
a total value of (𝑘−1) ⋅𝑎+𝑏+𝜆 ⋅𝑏= (𝑘−1) ⋅𝑎+(𝜆+1) ⋅𝑏 and might have 
a total value of at most (𝑘−1) ⋅ 𝑎+ 𝑎+𝜆 ⋅ 𝑏+ 𝑏 = 𝑘 ⋅ 𝑎+ (𝜆+1) ⋅ 𝑏 for the 
bundles of items of the other agents. By removing one of the 𝑎-valued 
items, we have that 𝑖 is EF1 towards the other agents, showing that the 
allocation is EF1.

We next focus on proving the upper bound on the price of EF1. It will 
be helpful to partition the max matchings computed by the algorithm 
into a set of phases depending on the values of the agents for their as-

signed items. We remark that these phases do not consist of necessarily 
consecutive matchings computed as the algorithms runs.

• Phase 1: All agents receive items they value as 𝑎.
• Phase 2: Each item allocated in the matchings of this phase is valued 
𝑎 by at least one agent. Note that no three of these items can be 
allocated to three different agents that value them as 𝑎, as then 
such a set of items would be part of Phase 1.

• Phase 3: All agents receive items they value as 𝑏, with the possible 
exception of the first matching in which there might be an item 
that some agent values as 𝑎, but at least one of the items is valued 
at most 𝑏 by all agents.

For 𝑝 ∈ [3], let 𝑀𝑝 be the set of items in phase 𝑝. Denote by ALG(𝑀𝑝)
and OPT(𝑀𝑝) the contribution of the items in 𝑀𝑝 in the social welfare of 
the computed EF1 allocation and of the optimal allocation, respectively.

First observe that the social welfare contribution of the items in 𝑀1
and 𝑀3 is at least as much as their contribution in the optimal social 
welfare. Indeed, the value gain from each item in Phase 1 as well as at 
most two items in the first matching of Phase 3 is 𝑎, which is the max-

imum possible. The remaining items in Phase 3 are allocated to agents 
that value them as 𝑏, but we also know that all agents have value at 
most 𝑏 for these items; hence, the contribution is again the maximum 
possible. So, we have that ALG(𝑀1)+ALG(𝑀3) ≥ OPT(𝑀1)+OPT(𝑀3); 
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given this, we can thus assume that Phases 1 and 3 are empty in a worst-

case instance.

We now focus on the allocation of Phase 2. Without loss of generality, 
suppose that agents 1 and 2 are the two agents with the largest and 
second largest numbers of 𝑎s, respectively, in their valuations for the 
items in 𝑀2. In particular, let 𝑥 be the number of items that agent 1
values as 𝑎, and let 𝑦 be the number of items that agent 2 values as 
𝑎 but agent 1 values as at most 𝑏; by definition, 𝑥 ≥ 𝑦. We also have 
that |𝑀2| = 𝑥 + 𝑦, as, otherwise, if there was an additional item which 
agent 3 values as 𝑎 but the other two agents value as at most 𝑏, then 
there would be an additional matching that could be included in Phase 
1. Hence, since for each item in 𝑀2 there is an agent that values it as 𝑎, 
we have that OPT(𝑀2) = (𝑥+ 𝑦) ⋅ 𝑎.

For the social welfare of the algorithm, observe that each of the first 
𝑦∕2 matchings yields a gain of 2𝑎 + 𝑏 since both agents 1 and 2 obtain 
items they value as 𝑎. Afterwards, agent 2 has no other item that she 
values as 𝑎, and hence the remaining 𝑥 − 𝑦∕2 items (all of which are 
valued as 𝑎 by agent 1) might be allocated as follows: There is a number 
𝑧 of matchings each of which allocates an 𝑎-valued item to agent 1 and 
𝑏-valued items to agents 2 and 3 for a gain of 𝑎 + 2𝑏; since there can 
be at most (𝑥 − 𝑦∕2)∕3 such matchings, we have that 0 ≤ 𝑧 ≤ (2𝑥 −
𝑦)∕6. Following these matchings, agent 2 is left with only items that she 
values as 0 and is thus removed. Hence, the remaining 𝑥−𝑦∕2−3𝑧 items 
are then allocated to agents 1 and 3 during the final (𝑥 − 𝑦∕2 − 3𝑧)∕2
matchings, each of which yields a gain of at least 𝑎+ 𝑏. Consequently,

ALG(𝑀2) ≥
𝑦 
2
⋅ (2𝑎+ 𝑏) + 𝑧 ⋅ (𝑎+ 2𝑏) +

(
𝑥− 𝑦∕2 − 3𝑧

2 

)
(𝑎+ 𝑏)

= 𝑦 
2
⋅ (2𝑎+ 𝑏) +

𝑥− 𝑦∕2
2 

⋅ (𝑎+ 𝑏) − 𝑧 ⋅ 𝑎− 𝑏
2 

≥
𝑦 
2
⋅ (2𝑎+ 𝑏) + 2𝑥− 𝑦

6 
⋅ (𝑎+ 2𝑏),

since 𝑧 ≤ (2𝑥 − 𝑦)∕6. Putting everything together, the price of EF1 can 
be upper-bounded as follows:

OPT(𝑀1) +OPT(𝑀2) + OPT(𝑀3
ALG(𝑀1) + ALG(𝑀2) + ALG(𝑀3)

≤
OPT(𝑀2)
ALG(𝑀2) 

≤
(𝑥+ 𝑦)𝑎 

𝑦 
2 (2𝑎+ 𝑏) +

2𝑥−𝑦
6 (𝑎+ 2𝑏)

=
(1 + 𝑦 

𝑥
)𝑎 

1
2
𝑦 
𝑥
(2𝑎+ 𝑏) +

(
1
3 −

1
6
𝑦 
𝑥

)
(𝑎+ 2𝑏)

(1)

Let 𝑤 = 𝑦∕𝑥 ∈ [0,1]. By the normalization of the valuations and the fact 
that agent 3 has value at most (𝑥 + 𝑦)𝑏 for the items in phase 𝑀2, we 
obtain the following two constraints:

• Since agent 1 has value 𝑎 for 𝑥 items, we have 𝑥 ⋅ 𝑎 ≤ (𝑥+ 𝑦) ⋅ 𝑏⇔
𝑎 ≤ (1 +𝑤)𝑏.

• Since agent 2 has value 𝑎 for at least 𝑦 items and value 𝑏 for at 
least 𝑧 items, we have 𝑦 ⋅ 𝑎 + 𝑧 ⋅ 𝑏 ≤ (𝑥 + 𝑦)𝑏⇔ 𝑎 ≤

4+7𝑤
6𝑤 𝑏, where 

the last inequality follows by the assumption that 𝑧 takes its max-

imum value of (2𝑥 − 𝑦)∕6 (which minimizes the social welfare of 
the algorithm).

Given that 𝑎 and 𝑏 must satisfy both inequalities, we can combine them 
into a single one:

𝑎 ≤min
{
1 +𝑤, 4 + 7𝑤

6𝑤 

}
⋅ 𝑏.

Note that the minimum evaluates to 1 + 𝑤 when 𝑤 ≤
1 
12 (1 +

√
97) ≈

0.904, and 4+7𝑤6𝑤 otherwise; it is worth noting that 𝑤 should actually be 
a rational number as the ratio of two integers 𝑥 and 𝑦, but, as we aim 
for an upper bound on the price of EF1, the irrational upper bound of 
𝑤 is sufficient (although it does not lead to a tight analysis). Since (1)

is increasing in 𝑎, we can upper-bound the price of EF1 by substituting 
𝑎 with the right-hand side of the above inequality. In particular:

• If 𝑤 ≤
1 
12 (1 +

√
97), we obtain

(1 +𝑤)2

1
2𝑤(3 + 2𝑤) +

(
1
3 −

1
6𝑤

)
(3 +𝑤)

= 6(1 +𝑤)2

5𝑤2 + 8𝑤+ 6
.

This expression is an increasing function of 𝑤 in the interval 
[0, 1 

12 (1 +
√
97)] and has a maximum value of 3 

586 (137 + 11
√
97) ≈

1.256.

• If 𝑤 ≥
1 
12 (1 +

√
97), we obtain

(1 +𝑤) ⋅ 4+7𝑤
6𝑤 

1
2𝑤

(
2 4+7𝑤

6𝑤 + 1
)
+ ( 13 −

1
6𝑤)

(
4+7𝑤
6𝑤 + 2

) = 6(1 +𝑤)(7𝑤+ 4)
41𝑤2 + 58𝑤+ 8 

.

This expression is a decreasing function of 𝑤 in the interval [ 1 
12 (1+√

97),1] and has a maximum value of 3 
586 (137 + 11

√
97) ≈ 1.256, 

again.

The proof is now complete. □
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