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A B S T R A C T

The environmental impact of cryptocurrencies has attracted increasing scrutiny, largely due to the high energy 
consumption of blockchain networks. However, empirical research on the causal relationship between crypto-
currency trading activity and carbon emissions remains scarce. This study addresses this gap by analysing the 
dynamic interplay between cryptocurrency trading and CO₂ emissions for Bitcoin, Ethereum, and Binance Coin, 
using monthly data from January 2015 to September 2024. Employing the Toda-Yamamoto augmented Granger 
causality approach, we apply logarithmic transformations to ensure data stationarity and address integration and 
endogeneity concerns. Our results reveal a bidirectional Granger causality between Bitcoin trading and CO₂ 
emissions, suggesting a feedback loop between market activity and environmental impact. For Ethereum, we find 
a similar albeit weaker bidirectional causality from trading to emissions, while no significant causal link is 
detected for Binance Coin, likely reflecting its more energy-efficient consensus mechanism. These findings 
highlight the disproportionate environmental burden of proof-of-work cryptocurrencies and underscore the need 
for targeted regulatory responses. We recommend the adoption of carbon-sensitive crypto policies, such as 
mandatory energy usage disclosures and incentives for transitioning to sustainable consensus mechanisms. This 
study advances the environmental finance literature by providing robust empirical evidence on the links between 
digital asset markets and carbon emissions.

1. Introduction

Blockchain technology, introduced by Satoshi Nakamoto in 2008 
with the advent of Bitcoin, has been widely recognized as a trans-
formative innovation in the digital era. By enabling decentralized, peer- 
to-peer transactions without the need for traditional financial in-
termediaries, blockchain has laid the foundation for a rapidly expanding 
ecosystem of cryptocurrencies [1]. Since Bitcoin’s inception, the cryp-
tocurrency landscape has evolved dramatically, with thousands of 
alternative digital assets emerging, each offering unique functionalities 
and use cases. Notably, the adoption of Bitcoin as legal tender by El 
Salvador [2] and the proliferation of platforms such as Ethereum, 
Binance Coin, Solana, Cardano, and Ripple have underscored the 
growing significance of cryptocurrencies in global finance. As of October 
17, 2024, the total market capitalization of cryptocurrencies is esti-
mated at $2.25 trillion, with over 2850 distinct cryptocurrencies in 
circulation, most of which utilise blockchain technology [3].

The rapid expansion and mainstreaming of cryptocurrencies have 
sparked intense debate and scrutiny, particularly regarding their envi-
ronmental impact [4,5]. A central concern is the substantial energy 
consumption associated with blockchain operations, especially those 
employing proof-of-work (PoW) consensus mechanisms. The process of 
mining whereby miners solve complex cryptographic puzzles to validate 
transactions and secure the network demands significant computational 
power and, consequently, vast amounts of electricity [1,6]. This energy 
is often sourced from fossil fuels, leading to considerable carbon emis-
sions and raising alarms about the sector’s contribution to global 
warming [7,8]. The environmental implications are further exacerbated 
by the geographic concentration of mining activities in regions with 
abundant but carbon-intensive energy sources, such as China, 
Kazakhstan, and certain parts of the United States [9]. Recent studies 
estimate that Bitcoin mining alone consumes as much energy as entire 
countries, including Mexico, Italy, Ireland, Argentina, and Austria, 
highlighting the scale of the issue [10,11].

* Corresponding author.
E-mail address: a.ishola@essex.ac.uk (A.O. Ishola). 

Contents lists available at ScienceDirect

Sustainable Futures

journal homepage: www.sciencedirect.com/journal/sustainable-futures

https://doi.org/10.1016/j.sftr.2025.100995
Received 6 January 2025; Received in revised form 8 July 2025; Accepted 8 July 2025  

Sustainable Futures 10 (2025) 100995 

Available online 9 July 2025 
2666-1888/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://orcid.org/0000-0002-3103-5367
https://orcid.org/0000-0002-3103-5367
https://orcid.org/0000-0002-7651-6850
https://orcid.org/0000-0002-7651-6850
mailto:a.ishola@essex.ac.uk
www.sciencedirect.com/science/journal/26661888
https://www.sciencedirect.com/journal/sustainable-futures
https://doi.org/10.1016/j.sftr.2025.100995
https://doi.org/10.1016/j.sftr.2025.100995
http://creativecommons.org/licenses/by/4.0/


While the environmental impact of mining has been widely dis-
cussed, the role of cryptocurrency trading in contributing to carbon 
emissions is less frequently examined but equally important. Trading 
activities, which involve the operation of data centers, servers, and 
network infrastructure, also require substantial energy inputs [12,13]. 
As trading volumes surge, particularly during periods of heightened 
market activity, there is a corresponding increase in the demand for 
mining, as more transactions require validation and inclusion in the 
blockchain. This creates a feedback loop whereby increased trading 
stimulates more mining, which in turn amplifies energy consumption 
and carbon emissions. Moreover, the migration of mining operations to 
jurisdictions with lax environmental regulations or cheaper, dirtier en-
ergy sources further compounds the sector’s carbon footprint [10,14].

Despite the growing body of research on the environmental conse-
quences of cryptocurrencies, several critical gaps remain. Much of the 
existing literature has focused on the aggregate energy consumption and 
carbon footprint of entire cryptocurrency networks, with a predominant 
emphasis on Bitcoin [2,7,10,15]. Studies that specifically investigate the 
causal relationship between cryptocurrency trading activities and car-
bon emissions are rare, and even fewer consider the potential for bidi-
rectional causality or feedback effects. Furthermore, research has often 
relied on aggregated or outdated data, limiting the ability to capture 
recent technological and market developments such as Ethereum’s 
transition from proof-of-work to the more energy-efficient proof--
of-stake (PoS) consensus mechanism, which is expected to drastically 
reduce its energy consumption.

Methodologically, attributing carbon emissions to specific crypto-
currency activities presents significant challenges. Many studies conflate 
the energy demands of mining, trading, and general network mainte-
nance, making it difficult to isolate the environmental impact of trading 
alone [13,16]. The use of aggregated data and broad assumptions about 
the energy mix and network activity introduces further uncertainty. For 
example, estimates often rely on average energy consumption figures or 
assume a uniform distribution of mining activity, despite significant 
geographic and operational variation. Additionally, both top-down and 
bottom-up approaches to estimating emissions have inherent limita-
tions, such as the reliance on proxies for energy use or the lack of 
granularity in tracking the energy consumption of individual trading 
platforms.

The cryptocurrency sector is also characterized by rapid technolog-
ical change, which can quickly render previous findings obsolete. 
Ethereum’s recent shift to PoS, for instance, represents a fundamental 
change in the energy profile of one of the world’s largest crypto-
currencies. As such, there is a pressing need for studies that incorporate 
the most recent data and account for ongoing market and technological 
developments. By doing so, research can provide more accurate and 
policy-relevant insights into the environmental impacts of digital assets.

This study seeks to address these gaps by employing a robust cau-
sality framework to examine the dynamic relationship between cryp-
tocurrency trading activities and carbon emissions. Focusing on three 
major cryptocurrencies—Bitcoin (BTC), Ethereum (ETH), and Binance 
Coin (BNB)—and utilizing monthly data from January 2015 to 
September 2024, this research utilises the Toda-Yamamoto augmented 
Granger causality approach to explore both the direction and strength of 
causal links. Importantly, the study considers not only the impact of 
trading on emissions but also the potential for feedback effects, drawing 
on systems theory to conceptualize the cyclical nature of these in-
teractions. By including Ethereum’s recent transition to PoS and 
considering Binance Coin’s more energy-efficient consensus mechanism, 
the analysis provides a nuanced understanding of how different tech-
nological architectures influence the environmental footprint of cryp-
tocurrency trading.

The core research questions guiding this study are as follows: 

1. Does trading activity in major cryptocurrencies—specifically Bit-
coin, Ethereum, and Binance Coin—Granger-cause carbon 
emissions?
2. Does carbon emission, as an environmental indicator, exert a 
causal influence on cryptocurrency trading behaviour?
3. To what extent are the findings robust across alternative Granger- 
type causality frameworks?

By addressing these questions, this study aims to contribute to both 
the academic literature and policy debates on the environmental sus-
tainability of digital assets. The findings are expected to inform the 
development of targeted regulatory measures and industry best prac-
tices, with the ultimate goal of mitigating the environmental impact of 
cryptocurrency trading and supporting a more sustainable future for the 
digital asset ecosystem.

The remainder of this paper is structured as follows: Section 2 re-
views the relevant literature; Section 3 details the research methodology 
and data; Section 4 presents and discusses the empirical results; and 
Section 5 concludes the study and discusses relevant policy implications.

2. Literature review

The intersection of cryptocurrency and environmental sustainability 
has become a focal point of academic inquiry, reflecting mounting 
concerns over the ecological consequences of digital currencies [2,12,
17]. The surge in cryptocurrency adoption has been paralleled by a 
significant increase in greenhouse gas emissions and energy consump-
tion, largely attributable to the energy-intensive nature of blockchain 
operations [4,18,19]. However, while the literature has grown rapidly, 
it remains fragmented, with notable methodological and conceptual 
limitations.

A substantial body of research has examined the environmental 
impact of cryptocurrency mining, particularly Bitcoin, which relies on 
the proof-of-work (PoW) consensus mechanism. Zhang et al. [13] 
demonstrated that Bitcoin’s energy usage is influenced by factors such as 
hash rate, blockchain size, and market returns, but these relationships 
are not uniform across time or market conditions. This variability un-
derscores the complexity of modelling the environmental footprint of 
cryptocurrencies and highlights the limitations of studies that rely on 
static or overly simplified models. Kohli et al. [20] further highlight the 
tension between the innovative potential of digital currencies and the 
urgent need to mitigate carbon emissions, emphasizing the disparities in 
energy usage among different cryptocurrencies. Bitcoin, in particular, 
stands out as especially energy-intensive due to its PoW protocol, yet 
many studies generalize findings from Bitcoin to the entire crypto sector, 
potentially overstating the environmental impact of less 
energy-intensive coins.

Life-cycle assessment frameworks have provided granular insights 
into the carbon emissions associated with cryptocurrency transactions. 
Onat et al. [21] quantified Bitcoin’s carbon emissions at both the 
transaction and supply chain levels, revealing that a single transaction 
can emit greenhouse gases equivalent to driving a mid-sized sedan 
1600–2600 km. Notably, about half of mining emissions are localized in 
the USA, with significant upstream emissions traced to China, high-
lighting the importance of considering supply-chain embedded emis-
sions when assessing the environmental impact of trading activity. 
However, such studies often face data limitations, particularly regarding 
the transparency and granularity of energy sourcing, and may not fully 
capture the dynamic relocation of mining operations in response to 
regulatory or market changes.

The sustainability of Bitcoin mining has also been questioned in light 
of network events such as halvings, which reduce mining rewards and 
can increase the energy intensity of mining operations [22]. Yet, the 
long-term effects of such events remain underexplored, with most ana-
lyses focusing on short-term impacts. The geographic distribution of 
miners and their reliance on fossil fuels, particularly coal, further 
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exacerbate the sector’s carbon footprint [23,24]. Siddik et al. [25] 
compared the environmental impact of crypto mining to conventional 
financial systems, finding that in 2021, crypto mining consumed more 
than double the water footprint and generated 139 million tons of CO₂ 
equivalent, underscoring the broader systemic implications and the role 
of regulatory interventions such as China’s 2021 mining ban. However, 
these comparisons often overlook the evolving energy mix and techno-
logical innovations within the crypto sector, such as the increasing 
adoption of renewable energy sources and the shift to less 
energy-intensive consensus mechanisms.

Beyond energy consumption, the literature has explored the 
responsiveness of mining activity to market incentives. Dogan et al. [26] 
and Papp et al. [27] found that Bitcoin mining is highly elastic to price 
changes, with even modest price increases leading to significant rises in 
carbon emissions. De Vries et al. [28] estimated that Bitcoin mining is 
responsible for millions of tons of carbon emissions annually, primarily 
due to the use of coal-fired power in major mining regions. These 
findings raise critical questions about the long-term sustainability of 
cryptocurrencies in the context of global climate change. However, the 
focus on mining incentives often neglects the broader market dynamics, 
including the role of trading activity in driving network demand and, by 
extension, energy use.

While the environmental impact of mining is well-documented, the 
role of cryptocurrency trading in driving energy demand and emissions 
has received comparatively less attention. Islam et al. [29] suggest a 
complex interplay between trading activities and environmental out-
comes, but empirical studies isolating the impact of trading are scarce. 
Sarkodie et al. [16] employed dynamic ARDL simulations and VAR 
models to show that a 1 % increase in Bitcoin trade volume can raise 
long-run energy and carbon footprints by 24 %, with impulse shocks 
amplifying these effects. This provides a methodological precedent for 
estimating causal effects in Granger-type frameworks. However, the 
reliance on aggregate data and the lack of granularity in distinguishing 
between mining and trading activities limit the conclusiveness of such 
findings. Some scholars, such as Ibañez & Freier [30], have proposed 
that PoW mining could serve as a flexible demand-response resource, 
potentially facilitating grid decarbonization if coupled with renewable 
energy, suggesting that the environmental impact of trading may vary 
depending on mining practices and energy sources. Yet, these potential 
benefits remain largely theoretical and are not yet substantiated by 
empirical evidence.

Chamanara et al. [31] provided the first global estimates of Bitcoin 
mining’s carbon, water, and land footprints, highlighting the immense 
scale of these impacts and the persistent data gaps. Such baseline metrics 
are essential for causality analyses linking trading intensity to environ-
mental outcomes. However, most studies continue to focus on Bitcoin, 
often neglecting altcoins, which collectively account for a majority of 
the cryptocurrency market [6]. Stamoulis [32] and others have 
emphasized that different cryptocurrencies employ distinct consensus 
mechanisms, resulting in varying environmental footprints. Incorpo-
rating altcoins into analyses is therefore crucial for a comprehensive 
understanding of the sector’s environmental impact. The lack of 
comparative studies on altcoins represents a significant gap, as it limits 
the ability to generalize findings and inform policy across the broader 
digital asset landscape.

Another emerging area of interest is the potential influence of 
environmental factors, such as carbon emissions, on cryptocurrency 
market behavior. Clark et al. [33] found that carbon emissions can 
significantly affect the returns of volatile cryptocurrencies like Bitcoin 
and Ethereum, suggesting that environmental degradation and climate 
change concerns may increasingly shape market dynamics. However, 
studies explicitly examining the causal impact of carbon emissions on 
cryptocurrency trading remain rare, and the directionality of this rela-
tionship is still poorly understood. This gap is particularly salient given 
the increasing integration of environmental, social, and governance 
(ESG) considerations into investment decisions.

To address these empirical and conceptual gaps, systems theory of-
fers a compelling framework for understanding the complex, reciprocal 
relationship between cryptocurrency activity and environmental out-
comes [34]. At its core, systems theory posits that economic, techno-
logical, and ecological subsystems are deeply interdependent, with 
actions in one domain provoking feedback responses in others. In the 
context of cryptocurrencies, rising asset valuations and trading intensity 
can incentivize increased mining, particularly for PoW currencies, 
leading to higher energy use and emissions [20,26]. These environ-
mental impacts may, in turn, influence regulatory responses, investor 
behaviour, and market trends, creating feedback loops that reinforce the 
bidirectional linkage between trading and environmental degradation 
[28,33].

Despite its relevance, systems theory has been underutilized in 
empirical studies of cryptocurrency and the environment. Most existing 
research adopts a linear, unidirectional perspective, typically from 
mining or trading to emissions, without adequately considering the 
possibility of reverse causality or dynamic feedback. This theoretical 
limitation constrains our understanding of how environmental out-
comes may themselves shape market behaviour, regulatory in-
terventions, or technological innovation within the crypto sector. By 
explicitly incorporating systems theory, future research can move 
beyond static models to capture the cyclical, evolving nature of the 
crypto-environment nexus, providing a more holistic and policy- 
relevant analysis.

In summary, the literature underscores the significant environmental 
impact of cryptocurrency mining, particularly in terms of energy con-
sumption and carbon emissions. However, there is a notable gap 
regarding the impact of trading activities on emissions, as well as the 
potential for carbon emissions to influence trading behaviour. Most 
studies focus on Bitcoin, often overlooking the broader cryptocurrency 
ecosystem and the diversity of consensus mechanisms. Methodological 
limitations, such as reliance on aggregate data and static models, further 
constrain the field. This study seeks to address these gaps by investi-
gating the bidirectional relationship between trading activity and car-
bon emissions across major cryptocurrencies, employing a systems 
theory perspective and robust causality testing. In doing so, it aims to 
contribute to a more comprehensive and dynamic understanding of the 
environmental implications of digital asset markets.

3. Methodology

3.1. Data

This study investigates the causal relationship between global 
cryptocurrency trading and carbon emissions using the Toda and 
Yamamoto [35] methodology. Monthly global carbon emissions 
(measured in parts per million) data was collected from February 2015 
(M2) to September 2024 (M9) along with cryptocurrency market data 
focused on the three largest cryptocurrencies by market capitalization: 
Bitcoin (BTC), Ethereum (ETH), and Binance Coin (BNB). The sample 
periods for each asset reflect their respective market histories: BTC from 
February 2015 to September 2024, ETH from April 2016 to September 
2024, and BNB from December 2017 to April 2024. These three cryp-
tocurrencies were selected because they collectively account for over 70 
% of the global cryptocurrency market [36] which is valued at 
approximately $2.26 trillion [3]. This market dominance supports their 

Table 1 
Top 3 Cryptocurrencies by market capitalizations.

Cryptocurrency Market cap. Price Year-over-year return

Bitcoin (BTC) $1.2 trillion $62,572.01 128 %
Ethereum (ETH) $293.5 billion $2437.72 53 %
BNB (BNB) $81.8 billion $575.94 178 %

Source: USAtoday [3].
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use as representations for broader cryptocurrency market dynamics 
Table 1.

Carbon emissions data was sourced from the NOAA (National 
Oceanic and Atmospheric Administration) Earth System Research Lab-
oratories (ESRL), which provides monthly global averages based on CO2 
measurements. Cryptocurrency price data were obtained from USAto-
day [3]. All variables were logarithmically transformed to enhance 
understanding, interpretation, and the statistical properties of the 
dataset. This transformation is standard in time series analysis, partic-
ularly when dealing with variables that exhibit exponential growth or 
volatility. Fig. 1 presents logarithmic line graphs that illustrate upward 
trends, indicating a consistent increase in carbon emissions as well as the 
prices of BTC, ETH, and BNB throughout this timeframe.

3.2. Estimation technique

The study utilizes the Toda and Yamamoto [35] causality test to 
examine the predictive relationships between cryptocurrency prices and 
carbon emissions. The use of this approach addresses challenges asso-
ciated with the Granger causality test by effectively managing integrated 
series of different orders, allowing for the examination of causal re-
lationships among these series. Likewise, the traditional VAR-based 
Granger causality tests require that all series be stationary, or that one 
first establish cointegration and then estimate a Vector Error-Correction 
Model (VECM) to avoid spurious inference [37,38]. However, environ-
mental and financial time series, such as cryptocurrency trading vol-
umes and carbon emissions, are often integrated of order one (I(1)) and 
may exhibit uncertain integration orders or structural breaks, making 
pre-testing both cumbersome and prone to size distortions [39].

The Toda–Yamamoto [35] approach circumvents these issues by 
estimating an “over-parameterized” VAR in levels, augmented with 
extra lags equal to the maximum integration order (dₘₐₓ) of the vari-
ables. A standard Wald test on the coefficients of the first p lags then 
delivers valid χ² inference, irrespective of whether the underlying series 
are I(0), I(1), or cointegrated [35]. This ensures that the Granger cau-
sality tests maintain correct size and power without requiring 
pre-testing for unit roots or cointegration, which can yield misleading 
decisions [40]. Based on all these key advantages, the Toda-Yamamoto 
test is often performed without needing to assess the integration and 
cointegration properties of the data. In this study’s context, this property 
is especially valuable as it allows for modelling the dynamic in-
terdependencies between trading activity and emissions in a unified 
level-VAR framework, thereby avoiding potential bias associated with 
pre-filtering non-stationary data or misspecifying cointegration re-
lationships. Furthermore, the Toda–Yamamoto procedure’s robustness 
to uncertain integration orders and structural breaks aligns with the 
empirical realities of rapid shifts in mining technology, policy in-
terventions, and market sentiment, all of which can induce 
non-stationarity in both trade volume and emissions series [41]. In 
contrast to cointegration-dependent frameworks like ARDL or NARDL, 
which focus on estimating long-run and short-run dynamics within a 
single-equation setup, the Toda-Yamamoto procedure permits unre-
stricted system-level causal exploration, which aligns more closely with 
the central objective of this study. Hence, the consideration of Granger 
causality approach rests on a sound theoretical foundation that balances 
rigor with practical tractability.

To assess the significance of parameters within a vector autore-
gressive (VAR(k)) model, the Modified Wald statistic serves as a useful 
tool, involving several sequential steps. First, the maximum order of 
integration (referred to as dmax) for the time series is determined, fol-
lowed by identifying the optimal lag length (k) for the VAR model. Once 
these values are established, a VAR model of order (k + dmax) is esti-
mated, ensuring that the Wald statistic adheres to an asymptotic Chi- 
square distribution. Finally, hypothesis testing is carried out using a 
standard Wald statistic test, which follows a chi-square distribution with 
m degrees of freedom. The formulas for the Toda and Yamamoto [35] 

Fig. 1. Trends of carbon emission and cryptocurrency prices between 2015 
(M2) to 2024 (M9).

A.T. Alabi and A.O. Ishola                                                                                                                                                                                                                   Sustainable Futures 10 (2025) 100995 

4 



causality test are presented as follows: 

LnYt = α0 +
∑k

i− 1
αi LnYt − 1+

∑dmax

j− k+1
αj LnYt − j+

∑k

i− 1
ϕi LnXt− 1

+
∑dmax

j− k+1
ϕj LnXt− 1 + v1t

(1) 

LnXt = β0 +
∑k

i− 1
βi LnXt − 1+

∑dmax

j− k+1
βj LnXt − j+

∑k

i− 1
∞i LnYt− 1

+
∑dmax

j− k+1
∞j LnYt− j + v2t

(2) 

LnY and LnX signify the logarithmically transformed variables repre-
senting Co2, BTC, ETH, and BNB respectively. The parameter k indicates 
the optimal lag order, whereas d means the highest or maximum inte-
gration order within the sequence. Additionally, v1t and v2t represent the 
error terms unified in the equations. To further ensure robustness and 
mitigate concerns around methodological limitations, standard pairwise 
Granger causality tests were also performed as a supplementary check, 
and the consistency of results between the two approaches strengthens 
confidence in the findings.

4. Results

4.1. Descriptive analysis

To begin, as presented in Fig. 1, the study applied X-11 seasonal 
adjustment to the monthly data, utilizing automatic ARIMA selection 
through X-11 auto to produce seasonally adjusted and trend values. As 
anticipated, the trend in carbon emissions exhibited seasonality, while 
all other variables were also converted into logarithmic values.

Table 2 presents the descriptive statistics for each variable. The re-
sults reveal that while the carbon emission values are stable with low 
variation, BTC, ETH, and BNB show higher variability, particularly BTC 
and ETH, indicating more fluctuation in those values. The close align-
ment of the mean and median for CO₂, along with a small standard 
deviation, suggests a symmetric distribution and low variability, with 
data clustered around the mean. In contrast, the larger standard de-
viations and greater differences between mean and median for BTC, 
ETH, and BNB indicate less symmetry and more dispersion, reflecting 
the volatile nature of cryptocurrency prices.

4.2. Main analysis

Assessing causal relationships among variables is crucial in econo-
metric analyses, requiring the use of various methodologies to reduce 
the risk of misleading results. A critical step in conducting a causality 
test is determining the order of integration of the series (dmax) and 
identifying the appropriate lag length (k+dmax).

We began with the ADF Dickey-Fuller unit root test, followed by a 
confirmatory test using the Phillips and Perron method to establish the 
highest order of integration. As presented in Table 3 both unit root tests 
showed non-stationarity in both the intercept and trend-and-intercept 
forms at the level but exhibited stationarity at the first difference. This 
state of stationarity indicates that the variables are integrated to the first 
order, denoted as I(1). As a result, the maximum order of integration for 

the variables in the system is one, or dmax = 1.
The next step is selecting the lag order, which focuses on identifying 

the ideal lag length. A VAR model was created using all endogenous 
variables and a randomly chosen lag interval. Afterward, a test was 
conducted on the residuals to determine the best lag length based on 
several criteria, including LogL (Log-Likelihood), LR (Likelihood Ratio), 
FPE (Final Prediction Error), AIC (Akaike Information Criterion), SC 
(Schwarz Criterion), and HQ (Hannan-Quinn Criterion). Each criterion 
has its own advantages and drawbacks, influencing the chosen lag order. 
An asterisk (*) indicates the statistic or coefficient with the lowest value 
in each category, signifying the optimal lag for that specific criterion.

Table 4 shows the optimal delay lengths, marked with an asterisk (*). 
The Schwarz information criterion (SC) indicates a lag length of 2, while 
the sequentially modified LR test statistic, Hannan-Quinn information 
criterion (HQ), final prediction error (FPE), and Akaike information 
criterion (AIC) all suggest a lag length of 12. Since the information delay 
with the most asterisks (*) indicates the best lag length, the study thus 
adopted a lag length of 12.

Additionally, Fig. 2 illustrates the stability condition for an autore-
gressive (AR) model revealing nil roots outside the unit circle., which is 
crucial in time series analysis for ensuring model stability. The model is 
confirmed stable as all inverse roots of the AR characteristic polynomial 
fall within the unit circle, highlighting the significance of this condition 
for a valid analysis of the model’s results.

Table 5 presents the results of the Toda and Yamamoto causality test, 
showing a chi-squared statistic of 21.4 with a p-value of 0.0448. This 
indicates that bitcoin trading granger-causes carbon emissions at the 5 % 
significance level. For Ethereum, the chi-squared statistic is 24.13 with a 
p-value of 0.0195, suggesting that Ethereum also granger-causes carbon 
emissions. This supports the view that both Bitcoin and Ethereum 
trading contributes to carbon emissions. However, the result for BNB 
(14.73, p = 0.2567) shows no evidence of granger causality, indicating 
that BNB trading does not have a significant impact on carbon emissions.

From the inverse outlook, the result (21.29, p = 0.0463) shows that 
carbon emissions granger-cause bitcoin trading. This suggests that 
environmental concerns or regulatory measures related to carbon 
emissions may influence Bitcoin trading behaviours. The test further 
shows a coefficient of 19.298 for Ethereum with a p-value of 0.0816 is 
significant at the 10 % level which suggests a possible weak relationship. 
While no significant relationship is observed in the case of BNB as 
indicated by the chi-squared statistic of 8.83 and p-value of 0.7172. 
Furthermore, the joint causality test results show that when all variables 

Table 2 
Descriptive analysis of variables.

Co2 BTC ETH BNB

Mean 6.0220 8.8914 6.1681 4.4347
Median 6.0215 9.1616 6.3912 5.3847
Minimum 5.9860 5.4359 2.0794 1.6332
Maximum 6.0566 11.1751 8.4401 6.4351
Std. Dev 0.0178 1.7430 1.7343 1.6082
Obs 117 116 102 82

Table 3 
Result of unit root tests.

Augmented Dickey-Fuller (ADF)

Level

Levels Co2 BTC ETH BNB

t-statistic − 0.25052 − 1.513803 − 2.152933 − 1.006044
Prob. 0.9272 0.5232 0.2249 0.7478
At first difference
Levels Co2 BTC ETH BNB
t-statistic − 3.870607 − 9.246999 − 8.56047 − 7.744716
Prob. 0.0032*** 0.000*** 0.000*** 0.000***

Phillips-Perron (PP)

Level

Levels Co2 BTC ETH BNB

t-statistic − 1.236424 − 1.486562 − 2.115993 − 1.114589
Prob. 0.6569 0.537 0.239 0.7067
At first difference
Levels Co2 BTC ETH BNB
t-statistic − 3.337438 − 9.328177 − 8.656877 − 7.737061
Prob. 0.0154** 0.000*** 0.000*** 0.000***

** Significant at the 5 %.
*** Significant at the 1 %. and (no) Not Significant.
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are included, there is a significant overall causality from all crypto-
currencies to carbon emissions (77.61, p = 0.0001), emphasizing the 
collective impact of cryptocurrency trading on carbon emissions. 
Conversely, the overall causality from carbon emissions to all 

cryptocurrencies shows weak significance at the 10 % level (49.53, p =
0.066), suggesting that while carbon emissions influence bitcoin to some 
extent, this effect does not extend significantly to Ethereum and BNB.

4.3. Robustness test

To reinforce the robustness of the Toda and Yamamoto results the 
study further conducted the standard pairwise Granger causality test in 
line with Ahmed et al. [42]. The results as presented in Table 6 largely 
corroborate the earlier findings. Specifically, the test reveals that Bitcoin 
Granger-causes carbon emissions, confirming the directional influence 
of BTC trading on carbon emissions. The absence of reverse causality 
from CO₂ to Bitcoin reinforces the dominance of Bitcoin’s impact on the 
environment rather than the reverse.

Likewise, Ethereum Granger-causes carbon emissions at the 5 % level 
in line with the earlier results. This consistency further strengthens the 
claim that pre-Merge Ethereum trading activity had a significant 

Table 4 
VAR lag order selection.

Lag LogL LR FPE AIC SC HQ

0 112.1538 NA 5.35E-07 − 3.09011 − 2.96162 − 3.03907
1 378.0606 493.8269 4.24E-10 − 10.2303 − 9.58788 − 9.97512
2 415.241 64.80015 2.33E-10 − 10.8355 − 9.679088* − 10.3761
3 430.1056 24.20803 2.43E-10 − 10.803 − 9.13271 − 10.1396
4 446.6238 25.01325 2.45E-10 − 10.8178 − 8.63357 − 9.95021
5 457.7587 15.58886 2.92E-10 − 10.6788 − 7.98063 − 9.60706
6 477.6084 25.52106 2.77E-10 − 10.7888 − 7.57668 − 9.51291
7 506.0434 33.30958 2.10E-10 − 11.1441 − 7.41802 − 9.66405
8 521.5942 16.43938 2.38E-10 − 11.1313 − 6.89124 − 9.44707
9 553.5551 30.13462 1.76E-10 − 11.5873 − 6.83333 − 9.69896
10 587.0064 27.71675 1.31E-10 − 12.0859 − 6.81799 − 9.99342
11 610.7243 16.94137 1.39E-10 − 12.3064 − 6.52456 − 10.0098
12 670.9173 36.11577* 5.73e-11* − 13.56906* − 7.27328 − 11.06830*

* indicates lag order selection by the criterion.

Fig. 2. Inverse roots of AR characteristic polynomial.

Table 5 
Toda-yamamoto granger causality test results.

Dependent variable: CO2 Dependent variable: BTC

Excluded Chi-sq df Prob. Excluded Chi-sq df Prob.

BTC 21.40093 12 0.0448** CO2 21.28885 12 0.0463*
ETH 24.12867 12 0.0195** ETH 16.75371 12 0.1591
BNB 14.72739 12 0.2567 LNBNB 16.20813 12 0.1819
All 77.61026 36 0.0001*** All 49.53163 36 0.066

Dependent variable: ETH Dependent variable: BNB

Excluded Chi-sq df Prob. Excluded Chi-sq df Prob.

CO2 19.29816 12 0.0816* CO2 8.832358 12 0.7172
BTC 17.85092 12 0.1203 BTC 4.09471 12 0.9817
BNB 15.85967 12 0.1977 ETH 11.80022 12 0.4619
All 45.03457 36 0.1437 All 41.33973 36 0.2488
dmax 1 ​ ​ ​ ​ ​ ​
Lag 12 ​ ​ ​ ​ ​ ​
K+dmax 13 ​ ​ ​ ​ ​ ​

* Statistical significance at the 10 % level.
** Statistical significance at the 5 % level.
*** Statistical significance at the 1 % level.

Table 6 
Pairwise granger causality tests.

Null Hypothesis: F-Statistic Prob. Decision

LNBTC ↛ LNCO2 2.48245 0.0082 LNBTC → LNCO2
LNCO2 ↛ LNBTC 1.02769 0.4325
LNETH ↛ LNCO2 3.96277 0.0222 LNETH → LNCO2
LNCO2 ↛ LNETH 2.19643 0.1168
LNCO2 ↛ LNBNB 1.77447 0.1867 LNBNB ↛ LNCO2
LNBNB ↛ LNCO2 0.96913 0.3279
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environmental footprint. Similarly, reverse causality is not observed, 
contrasting with the marginal 10 % significance level observed previ-
ously. The robustness result thus narrows the bidirectional influence to a 
unidirectional causality from Ethereum to carbon emissions, suggesting 
that environmental factors have a limited immediate effect on Ethereum 
trading behaviour in the sample period. For BNB, the robustness test also 
confirms the earlier of no significant causality in either direction. This 
confirms BNB’s comparatively negligible environmental effect, in line 
with the coin’s low-energy delegated proof-of-stake (DPoS) infrastruc-
ture used in Binance Smart Chain. Overall, these robustness tests affirm 
that the environmental burden of cryptocurrency trading is not uniform. 
The results support the view that Bitcoin and Ethereum have a statisti-
cally significant and direct impact on carbon emissions. The absence of 
causality from carbon emissions to cryptocurrency trading across most 
pairs further emphasizes that crypto markets may remain relatively 
insensitive to environmental signals, at least in the short term.

5. Discussion

The causality analysis reveals a statistically significant unidirectional 
Granger causality running from Bitcoin trading to carbon emissions. 
This implies that increases in bitcoin trading are linked to higher carbon 
emissions, likely due to the energy-intensive nature of bitcoin mining 
and transactions. This relationship persists across both the Toda- 
Yamamoto approach and the robustness checks using pairwise 
Granger tests suggesting that trading volumes of these digital assets may 
proxy underlying mining activity or investor responses to blockchain 
activity, both of which have direct energy implications. This finding 
corroborates the findings from the studies of Khosravi and Säämäki, 
[18]; Kohli at al [20] and Winotoatmojo et al. [4], which highlighted 
Bitcoin’s high energy intensity due to proof-of-work (PoW) mining 
mechanisms that demand vast computational resources, largely pow-
ered by fossil fuels and consequently result in substantial carbon foot-
prints. The result suggests that fluctuations in BTC trading activity, 
likely associated with mining incentives, directly influence carbon 
emissions.

Similarly, Ethereum trading is found to Granger-cause carbon 
emissions, reinforcing the claim that Ethereum, at least prior to its full 
transition to proof-of-stake (PoS) via the Merge, also contributed 
significantly to environmental externalities. This echoes the work of 
Kohli at al [20] and Zhou and Wang [14], who identified Ethereum as 
the second-largest emitter among cryptocurrencies before its protocol 
switch. Despite Ethereum’s recent greening through PoS, the legacy 
impact of its energy consumption continues to be evident in the time 
series data. These findings also align with broader debates on the 
environmental sustainability of blockchain technologies and support 
calls for regulating crypto markets to internalize their carbon footprints.

In contrast, the causality test for Binance Coin (BNB) reveals no 
statistically significant influence on carbon emissions. This divergence is 
consistent with the fact that BNB does not use PoW mining and relies on 
the Binance Smart Chain (BSC), which operates under a delegated proof- 
of-stake (DPoS) consensus algorithm. As highlighted by Wüst and Ger-
vais [43], such consensus mechanisms are considerably less 
energy-intensive, resulting in a weaker or negligible carbon impact. This 
implies that not all cryptocurrencies contribute equally to environ-
mental degradation, and the technological underpinnings of different 
coins play a crucial role in determining their ecological footprints.

The reverse causality analysis reveals that carbon emissions Granger- 
cause Bitcoin trading, implying a possible feedback loop as systems 
theory suggests [34], whereby not only does trading activity exacerbate 
carbon output, but growing emissions, or the regulations they prompt 
may also influence market sentiment and transactional behaviour. This 
implies that current developments in global cryptocurrency policy, 
where climate-based scrutiny and ESG considerations are beginning to 
affect institutional investment flows and mining operations. This may 
also reflect the influence of environmental regulations, climate news, or 

social pressures on investor behaviour and market sentiment. For 
example, announcements regarding carbon taxes, ESG concerns, or bans 
on crypto mining in countries like China and Kazakhstan could affect 
Bitcoin market dynamics, as also suggested by Bouri et al. [44]. These 
results add empirical depth to the claim that digital financial in-
novations are not environmentally neutral and that their sustainability 
implications must be critically appraised.

For Ethereum, a weaker form of reverse causality exists at the 10 % 
level, while BNB again exhibits no significant linkage, reinforcing the 
notion that environmental responsiveness varies across different cryp-
tocurrencies. However, the joint causality results offer an inclusive 
perception. While combined cryptocurrency trading activities signifi-
cantly Granger-cause carbon emissions, the reverse joint causality from 
carbon emissions to cryptocurrencies is weaker and only statistically 
significant at the 10 % level. This asymmetry emphasizes the dominant 
environmental impact of aggregate crypto trading activities and sup-
ports recent policy discussions around the introduction of sustainability 
frameworks for digital assets.

Overall, the findings reveal a pressing need to distinguish between 
crypto assets based on their environmental intensity and to explore 
adaptive strategies for decarbonizing the sector. The evidence of direc-
tionality and asymmetry in the environmental impact across crypto-
currencies provides an empirical foundation for tiered regulatory 
interventions, where high-emission cryptocurrencies face stricter envi-
ronmental reporting and compliance requirements, while cleaner tokens 
are incentivized. Thus, this study offers a valuable lens for under-
standing the real-world environmental implications of crypto-financial 
systems, bridging an important gap between energy economics, envi-
ronmental policy, and digital finance.

6. Conclusion and recommendations

This study examined the relationship between cryptocurrency 
trading and carbon emissions using the Toda-Yamamoto Granger cau-
sality test to analyse monthly data between 2015 (M2) and 2024 (M9). 
The results indicate a strong bidirectional causal relationship between 
BTC and carbon emissions implying that trading and price movements of 
BTC results in increased carbon emissions vice versa. This causal impact 
is consistent with existing literature on the energy-intensive nature of 
these cryptocurrencies and underscores the energy-intensive nature of 
Bitcoin’s proof-of-work (PoW) mechanism, where heightened trading 
activity likely stimulates mining incentives, leading to increased energy 
consumption and carbon output. Conversely, periods of elevated carbon 
emissions, often linked to intensified mining, may also influence BTC 
trading and pricing, highlighting a feedback loop consistent with sys-
tems theory.

A similar, though somewhat weaker, bidirectional granger causality 
for Ethereum trading to was also found. While ETH trading Granger- 
causes carbon emissions, the reverse effect is less pronounced, poten-
tially due to the significantly lower trading volume of ETH relative to 
BTC which implies a smaller scale of operation or the switch of ETH to 
proof-of-stake verification mechanism in 2022 which is believed to be 
much less energy consuming relative to the proof-of-work mechanism. 
Nevertheless, our results highlights, in agreement with existing litera-
ture, the environmental impact and the energy-intensive nature of these 
cryptocurrencies. In contrast, BNB did not exhibit a significant causal 
relationship with carbon emissions, suggesting that BNB operates more 
sustainably and with minimal contributions to carbon emissions. We 
attribute this to BNB being based on the delegated proof-of-stake veri-
fication for trading which has been suggested to be more energy efficient 
and environmentally sustainable.

The policy implications of this study are particularly salient as gov-
ernments and regulatory bodies are seeking to balance fostering finan-
cial innovation and mitigating climate risks. While previous research has 
often concentrated on the technical underpinnings or market dynamics 
of cryptocurrencies, this study contributes a distinct perspective by 
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empirically interrogating their environmental ramifications. By empir-
ically demonstrating the causal links between cryptocurrency trading 
and carbon emissions, this study contributes to ongoing policy debates 
on climate-aligned financial regulation, carbon taxation of digital assets, 
and the inclusion of cryptocurrency mining in national emissions in-
ventories. The differentiated results—where Bitcoin and Ethereum show 
significant environmental impacts, but BNB does not—suggest that 
technology-specific regulatory interventions are warranted.

In particular, the identification of bi-directional causality between 
Bitcoin trading and carbon emissions suggests feedback loops that might 
be amplified by market volatility or changing energy markets. Regula-
tory strategies could therefore target consensus mechanisms, energy 
sourcing, and carbon disclosure requirements for blockchain operations. 
For instance, differentiated transaction taxes or carbon levies could be 
imposed on high-emission cryptocurrencies, dynamically adjusted based 
on mining practices and energy sources. Exchanges listing PoW assets 
might be required to publish regular reports on mining energy sources 
and emissions intensity, similar to ESG reporting standards in traditional 
finance. Such measures would enhance transparency and accountability, 
especially in jurisdictions pursuing net-zero targets, such as the EU 
under its MiCA framework and the U.S. through recent SEC climate 
disclosure rules.

In parallel, financial and environmental authorities should incen-
tivize the adoption and development of energy-efficient consensus 
mechanisms, such as proof-of-stake and delegated proof-of-stake, by 
offering regulatory sandboxes, tax incentives, or green certification la-
bels for low-emission cryptocurrencies and blockchain networks. 
Ethereum’s recent shift to PoS (Ethereum 2.0) and BNB’s already effi-
cient model present viable benchmarks. Policymakers should also 
collaborate with grid operators to pilot smart load balancing projects 
that integrate PoS mining with surplus renewable energy, especially in 
countries facing energy curtailment or grid instability. This policy 
alignment would not only mitigate crypto’s environmental risks but also 
transform blockchain technologies into instruments for decarbonization 
and energy optimization, reframing them as part of the climate solution 
rather than the problem.

Methodologically, this study’s focus on Toda-Yamamoto causality, 
reinforced by robustness checks, provides a time-sensitive understand-
ing of dynamic interactions. This temporal dimension allows for more 
adaptive policy tools that respond to fluctuations in trading intensity 
and energy demand. Future-oriented regulation, especially in the 
context of emerging global frameworks such as the EU’s MiCA (Markets 
in Crypto-Assets) Regulation and international carbon accounting pro-
tocols, would benefit from a firmer grounding in such empirical evi-
dence. Ultimately, these findings call for a calibrated approach that 
balances the environmental externalities of cryptocurrencies with their 
economic and technological promises.

Whilst the study has sought to minimise any limitations, further 
remaining limitations present opportunities for future studies to build 
on. This study focuses on the three largest cryptocurrencies excluding 
other emerging cryptocurrencies and decentralized finance (DeFi) to-
kens. Future research should expand the analysis to include a wider 
range of cryptocurrencies, particularly those using different consensus 
mechanisms. Furthermore, future studies may benefit from examining 
the impact of a switch from proof-of-work mechanism to proof-of-stake 
as has been seen with ETH. This may further demonstrate the positive 
impact of adopting the latter framework. Future research could explore 
the long-run and asymmetric effects of cryptocurrency trading on carbon 
emissions using frameworks such as the ARDL and NARDL models. 
These approaches would enable deeper analysis of both equilibrium 
relationships and potential non-linearities between cryptocurrency ac-
tivity and environmental impact—especially in the context of evolving 
consensus mechanisms and regulatory landscapes. Additionally, future 
studies could incorporate panel data techniques to account for cross- 
country heterogeneity and investigate the differentiated environ-
mental effects of crypto adoption across developed and developing 

economies. Finally, the evolving geopolitical landscape including de-
velopments in the U.S., the Russia-Ukraine conflict, and the growing 
influence of high-profile figures such as Elon Musk in the crypto space 
may further shape the relationship between cryptocurrencies and car-
bon emissions, warranting continued empirical attention.

In summary, this study provides robust evidence of the environ-
mental consequences of cryptocurrency trading, particularly for PoW- 
based assets, and offers actionable insights for policymakers seeking to 
align digital finance with climate action. A calibrated, technology- 
specific regulatory approach balancing innovation with sustainability 
will be essential as the digital asset ecosystem continues to evolve.
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