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Abstract—In this paper, we utilize a downlink hybrid Non-
Orthogonal Multiple Access (NOMA) framework to support mul-
tiple semantic and bit users within the communication network.
The hybrid NOMA setup exploits both NOMA and Orthogonal
Multiple Access (OMA) which has the benefit of enhancing
Spectral Efficiency (SE) by allowing users to dynamically ac-
cess the resources in multiple heterogeneous slots. This enables
integrating semantic and bit users based on their channel gains,
while adopting bit-to-semantic decoding order in slots including
heterogeneous users. This allows bit user to first decode its signal
by treating the semantic signal as interference and subsequently
semantic signal is decoded without interference. Semantic users
are modeled using a deep learning-based system equipped with
pre-trained neural networks. An optimization problem for the
power allocation is formulated with the aim of maximizing
the equivalent ergodic semantic SE with a constraint on the
total available power of the Access Point (AP). The proposed
algorithm uses NOMA in shared slots and OMA in bit-user-only
slots. Simulation results validate the benefits of heterogeneous
users hybrid NOMA setup in comparison to OMA-only for
heterogeneous users.

Keywords—Downlink hybrid non-orthogonal multiple access,
fading channel, power allocation, semantic communication, suc-
cessive interference cancellation.

I. INTRODUCTION

The exponential surge in wireless data traffic presents a
significant challenge for next-generation communication net-
works in terms of ensuring massive connectivity while meeting
transmission capacity requirements [1]. On the other hand,
building upon the foundational work by Shannon and Weaver,
semantic communication emerges as a novel paradigm that
revolutionizes communication, focusing on transmitting the
semantic content of information, and is particularly suited in
low Signal-to-Noise Ratio (SNR) environments [2]. However,
at higher SNR regimes, traditional bit-based communication
can achieve near-lossless data recovery, making semantic com-
munication less beneficial. This suggests that semantic com-
munication should complement and coexist with the traditional
Shannon communication to enhance the overall performance
[3]. This coexistence of semantic and bit-based communica-
tions within the same network defines heterogeneity within
the users set in the network. In fact, with the evolution of
semantic communication, new challenges emerge in systems
design, particularly in implementing Successive Interference
Cancellation (SIC) for supporting heterogeneous users within
the network [4].
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To support massive connectivity, next-generation commu-
nication systems necessitate advanced multiple access tech-
niques that push the boundaries of classical schemes such
as Orthogonal Multiple Access [5]. In this respect, Non-
Orthogonal Multiple Access (NOMA) is considered a promis-
ing technology for enhancing the Spectral Efficiency (SE)
of wireless systems by allowing multiple users to share the
same time-frequency resources through power or code-domain
multiplexing. However, NOMA also presents challenges which
need to be carefully addressed, such as increased interference
management complexity and fairness concerns [6], [7]. The
increase in achievable SE using NOMA depends on the specific
system configuration and use case, as NOMA does not always
outperform orthogonal schemes, particularly in heterogeneous
users communications [8]. In traditional NOMA, SIC is per-
formed based on channel conditions, where the stronger user
decodes the signal of the weaker user to mitigate interference.
However, this approach cannot be directly applied in joint bit
and semantic users communication systems. This is primarily
due to the requirement of pre-trained neural networks at the
semantic encoder and decoder for successful transmission and
reception [9]. Consequently, the bit user is unable to decode the
semantic signal from the superimposed signal, as traditional
bit-based communication does not require any prior training
at the transmitter or receiver. In contrast, the semantic user
can decode the bit-based signal, resulting in a bit-to-semantic
decoding order for joint bit and semantic users communication
[10].

Although conventional NOMA enables multiple access
through SIC, its decoding strategy must be adapted to support
joint bit and semantic users [11]. Given the differences in their
signal processing requirements, a more flexible approach is
needed to optimize users pairing and interference management.
In this context, hybrid NOMA can exploit the advantages
of both OMA and pure NOMA through seamless transitions
from one scheme to the other [12]. The crux of hybrid
NOMA is to enable multiple users occupy and share the same
resource via multiple time slots, for enhancing the overall
system capacity. In addition to addressing SIC challenges,
optimal power allocation plays a crucial role in the hybrid
NOMA framework. By efficiently distributing power among
bit and semantic users, the total expected semantic rate can be
maximized while ensuring the bit-based users minimum rate
requirements, as in [10].

To fully leverage the benefits of semantic communication
within hybrid NOMA, it is important to understand how the
semantic communication is characterized. The rate at which
semantic information is transmitted with a prescribed accuracy
is referred to as the semantic rate, which depends on the
semantic similarity function with value ranging between zero



and one [3]. This function quantifies the resemblance between
original signal at the transmitter and reconstructed one at the
receiver. When semantic similarity function tends to one, the
signal will increasingly resemble the original bit-based signal
rather than its reconstructed semantic counterpart [9].

Since the semantic similarity function plays a crucial role
in determining the effectiveness of semantic communication, a
learning-based framework is needed to extract and reconstruct
semantic features. To this end, a deep learning based system
known as DeepSC is developed [9] which consists of semantic
encoder/decoder and channel encoder/decoder. The DeepSC is
equipped with neural networks for semantic features extrac-
tion. Semantic similarity function depends on neural network
structure in DeepSC and the channel condition, and is based
on the match level between the transmitted and received
sentences using the Biderctional Encoder Representations from
Transformers (BERT) model [9]. The pre-trained BERT model
[13] captures the context from preceding and succeeding words
in a sentence.

The works in [10] and [14] have advanced the integration of
semantic and bit-based communications and the deployment of
hybrid NOMA. In [10], a semi-NOMA framework is proposed
that investigates the trade-offs between semantic and bit-based
communications in a shared transmission scheme. However,
this approach does not exploit hybrid NOMA with user pair-
ing based on channel conditions, limiting its adaptability in
dynamic wireless environments. In [14], a multi-user hybrid
NOMA scheme is introduced that optimizes power allocation
and minimizes energy consumption under latency constraints.
However, this work focuses solely on bit-based communication
and does not incorporate semantic communication.

Inspired by the above works, we harness the benefits of
heterogeneous users by adopting hybrid NOMA and a tailored
decoding strategy that improves interference management. The
key contributions of this work are: i) we propose a hybrid
NOMA framework for heterogeneous users that dynamically
assigns bit and semantic users to time slots based on their
channel conditions. To efficiently implement this, we develop
a user pairing and decoding strategy, outlined in Algorithm 1
which enhances SE while ensuring adaptive resource alloca-
tion; ii) unlike previous works that assume a fixed decoding
order, we deploy an adaptive decoding strategy that optimally
manages interference in hybrid NOMA. In particular, our
approach ensures a bit-to-semantic decoding order in time slots
where both bit and semantic users coexist, while applying
stronger-to-weaker SIC decoding in time slots containing only
semantic users; iii) we formulate and solve a power allocation
optimization problem that maximizes the equivalent ergodic
semantic SE with a constraint on the total available power; iv)
we demonstrate through simulations that the optimization pri-
oritizes bit user in a heterogeneous users network by allocating
more power, particularly at higher available power values.

II. SYSTEM MODEL

We consider a downlink hybrid NOMA communication
system consisting of a bit user (B) and two semantic users
(S1 and Ss), sharing the entire time-frequency resources.
While this setup is chosen for analytical clarity, the proposed
framework applies to any number of semantic users. In our
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Fig. 1: Users allocation in hybrid NOMA.

proposed approach, we allow at most two users to share any
slot, as shown in Fig. 1. Communication between the AP
and the users occurs over Rayleigh fading channels, where
the channel gains remain constant within each time slot but
may vary across time slots. At the receiver, additive white
Gaussian noise (AWGN) with mean zero and variance o2 is
assumed to impair the superimposed signal. We deploy the
DeepSC model in our hybrid NOMA assisted system that
can be generally applied to any semantic architecture. The
considered DeepSC neglects potential errors arising from finite
neural network capacity, limited training data, and variations
in real-time inference accuracy.

Let P,.x be the total available power budget at the AP.
The channel gain coefficients from the AP to users B, S;, and
S, are denoted by hg, hs;, and hgp, respectively, while the
transmit powers allocated to them are P, Ps;, and Psy. The
semantic rate for any semantic user is given as [3]
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where €(K, ) is the semantic similarity function, W is the
channel bandwidth, I is the amount of semantic information
in any transmitted message in units of semantic (suts), K
represents the average number of semantic symbols transmitted
for each word through DeepSC [9], ~ represents the received
SNR, and L denotes the number of words per sentence. With
varying values of K and +, €(K, ) was found to be mono-
tonically non-decreasing with v [3]. Moreover, its gradient
change increases first with v and then decreases, suggesting a
sigmoid shape pattern for (K, 7). Authors in [8] deployed the
data-regression method to tractably approximate the values of
€(K,~) with a generalized logistic function (common form of
sigmoid function), as
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where the lower (left) asymptote, upper (right) asymptote,
growth rate, and the mid-point parameters of the logistic func-
tion are respectively denoted by Ak 1, Ak 2, Ck,1, and Ck 2
for different values of K. These parameters are determined by
following the minimum mean square criterion for fitting the
logistic function to €(K,~). The logistic function provides a
differentiable and close approximation for tractable analysis
and optimization. To ensure that semantic communication
achieves desired accuracy at the receiver, (K, ~y) must meet
a minimum threshold ¢;;,, below which the transmission will
be treated as invalid. This is represented as

€(K7 ’Y)? if €(K7 ’Y) > €th,

ex () = 3)
0, otherwise.



The approximated generalized logistic function depends ex-
plicitly on ~, while the effect of K is captured through the
parameters Ag 1, Ax 2, Ck. 1, and Ck 2.

We denote the rates of users S;, So and B by Rg;, Rso,
and Rpg, respectively, where Rs; and Rg, are in suts/s/Hz,
while Rg is in bits/s/Hz. The rate of User B is determined
on the basis of Shannon’s capacity formula. Perfect channel
state information is assumed to be available at the AP for
simplicity and tractability. However, achieving perfect CSI is
difficult due to channel estimation error, feedback delay, or
limited signaling overhead. To ensure efficient decoding of
signals, the AP informs the receiver about the type of active
users in each time slot via embedded control information in
the headers of transmitted data packets.

Our goal is to maximize the expected equivalent semantic
SE of the three users while ensuring that the system obeys the
AP power constraint. We transform the rate of bit user Rp into
its semantic counterpart Rgg in suts/s/Hz, as in [3], yielding

Ry = Ry——cc. @
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where p represents the average number of bits per word,
the semantic similarity function for User B is denoted by
ec and taken as one to reflect error-free transmission. This
transformation allows a meaningful comparison between both
types of users by expressing their efficiencies in the same unit.

For the hybrid NOMA structure, in each time slot, up to
two users are scheduled to be active and share the resources.
Users’ activity is governed by the indicator variables Ig, Isi,
and Ig, for users B, S;, and So, respectively. The selection
of users for pairing is done dynamically based on real-time
channel conditions, ensuring that the strongest user pairs with
the weakest one across different time slots without a fixed
ordering. When a semantic user has stronger channel gain
than the bit user, the slot is allocated exclusively to the bit
user, effectively operating as OMA. In contrast, when the
channel conditions allow simultaneous transmission, NOMA
is employed, where both users share the same time-frequency
resources while following a bit-to-semantic decoding order.
This adaptive hybrid NOMA strategy dynamically transitions
between OMA and NOMA while maintaining the bit-to-
semantic decoding strategy.

As semantic and bit users can simultaneously be active in
each slot, a new decoding mechanism will be required. Let us
denote the corresponding transmit signals for users B, S;, and
So by xp, xsi, and zg;, respectively. In slots where any two
users share the channel via NOMA, the received signal will
be represented as a superposition of their transmitted signals,
scaled by their respective channel gains and corrupted by
AWGN. In such slots, decoded signal of one user will always
be affected by interference from the other. For the OMA slots,
there will be no decoding interference experienced. More-
over, traditional channel-condition based SIC will no longer
be beneficial in joint bit and semantic users communication
networks as the bit user cannot decode a semantic signal due
to the absence of prior training at transmitter and receiver.
Consequently, we adopt the bit-to-semantic decoding order in
slots involving both types of users, where semantic signals
are decoded interference-free after SIC. However, the bit user

being decoded first will treat the semantic user’s signal as
interference.

The pairing approach and decoding strategy for users are
outlined in Algorithm 1.

Algorithm 1 User Pairing and Decoding Strategy for the
Hybrid NOMA Framework

1: Initialization: Set P,,,, value, and Iz = 0, Is; = 0, Is; =
0.

2: Users Pairing in Each Slot: Determine hg, hs;, hsy
and pair the strongest user with the weakest one. Set the
indicators for the paired users to 1.

3: if slot contains B and either S; or S, then

: if involved semantic user has a stronger channel power
gain than User B then

5: Reset its indicator to 0 which allocates the slot to
User B only (OMA).

6: else

7: follow Bit-to-semantic Decoding:

8: B-receiver decodes its own signal treating seman-
tic user’s signal as noise.

o: S-receiver firstly decodes B user’s signal and ap-
plies SIC to subtract it, resulting in its own signal without
interference.

10: end if

11: else if slot contains S; and So then

12: Stronger Semantic User decodes its own signal treat-
ing the weaker user’s signal as noise.

13: Weaker Semantic User firstly decodes the stronger

user’s signal and applies SIC to subtract it, resulting in its
own signal without interference.
14: end if

III. OPTIMAL POWER ALLOCATION AND USERS
DETECTION

After pairing users and establishing the decoding order
in each time slot, we now formulate the power allocation
optimization problem.

A. Power Allocation Optimization

Objective of our optimization problem is to maximize the
expected value of the equivalent semantic SE, which can be
formulated as

max

E IsiRs1 + Is; Rsy + Ig Rsg] ,
{Ps,Psi,Ps:} [Is1 Rsi S241s2 B Rss) (5)

st.  Pg+ Psi + Psy < Phax,

Py, Psi, Ps; >0 ©)

where E[.] represents the expectation operator. Each of the
considered rates in (5) can be generalized with a closed-form
approximation of (2), exhibiting a logistic distribution model
due to semantic similarity function [8], where Ax ;1 = 0.37,
Ag2=0.98, Ck,1 =0.25, and Cx o = —0.7895. The result-
ing rate curve is resilient to moderate parameter variations due
to the robustness of the neural network-based DeepSC.

Unlike conventional rate functions, the approximated se-
mantic similarity function does not exhibit concavity with



respect to v which renders the optimization problem as non-
convex. However, the problem satisfies the “time-sharing”
condition following the proof in [15] and [16]. If any problem
satisfies the “time-sharing” condition [16], then strong duality
holds between the primal and Lagrangian dual problems,
regardless of convexity of the original problem. Moreover,
when strong duality exists, the Karush-Kuhn-Tucker (KKT)
conditions are both sufficient and necessary for optimality [17].

B. Solution Method

We solve the power allocation problem in (5) by developing
its Lagrangian and then using the KKT conditions in each
time slot. The complementary slackness and primal feasibility
conditions ensure that the solution respects the power con-
straint and precludes any negative power allocation. The KKT
conditions are developed based on the Lagrangian formulation
given by

L(Pg, Psy, Ps>, \)
=E[Is; Rsi + IsoRsy + Ig Rl + @)
A (Pmax — Ps — Ps1 — Psy) ,

where ) is the corresponding Lagrange multiplier for the power
constraint.

C. Decoding Strategy in Slots with Semantic and Bit Users

Bit-to-semantic decoding order is followed where the rate
of User B will always be adversely impacted by interference
from the semantic user. The roots of (8) provide the solution
for optimal power of the bit user.

O (E [IzRsp + Is; R$?])
0Py

Specifically, the corresponding rate for bit user in such time
slots is defined by

=0, ie{1,2} 8)
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where Ps; denotes the power of semantic user paired with
User B. Although we consider the equivalent semantic rate
of bit user in our objective function, Rgp is merely a scalar
multiple of conventional rate Rg;. User B first decodes its
own signal, while the semantic user extracts its desired signal
without interference through SIC. The corresponding rate for
semantic user involved in such slots is given by (10).

I Ps; |hsil®\ .
N si |1vsi
Rs,L' = EEK (0’2 , 2 S {1,2} (10)

Say, we solve for P when S; is active by putting Iy = 1,
Is; = 1, and I, = 0. In the considered time slot with B and
S; active, the closed-form solution for optimum Py can be
found from

I |hg|?
pLn(2)(0? + |hg|* Prax — |hs|* Ps)

_ (Pmax—Pp)|hsi |
I |hsi|? (Ax2—Ax1)Cr1 el~Cra 2
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=0
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Similarly, taking the partial derivative with respect to P
in such slots and solving for P leads to a function with
transcendental value [18] that is solved numerically for the
optimal power P of bit user.

||
f(Pg) = -
10(2)(02 + |hg|* Prax — |he|* Ps)

(Pmax — Pg)|hg |*
|hsi|* (Arx2 — Ak 1)Ck o(~Cr 1 S
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In such time slots, if the involved semantic user does not satisfy
the set minimum threshold e, the entire available power is
allocated to the bit user. The optimal power allocation for the
bit is thus given as

- ()

if ex(v) > €,
otherwise.

13)

D. Decoding Strategy in Slots with Semantic Users Only

In these slots, the Lagrangian is accordingly adjusted as

L'(Ps1, Psy, \)

14
=E [ISIRSI + ISZRSZ] + A (Pmax - ( )

P, — Psy),

focusing solely on the rates of semantic users under the
power constraint. Performing SIC becomes challenging in
such slots due to the joint training of semantic encoders
and decoders. To address this issue, we exploit an innovative
channel reconstruction-based SIC method proposed in [4]. This
method allows the semantic user with better channel condition
to be decoded first while treating the signal from the weaker
user as noise. The stronger user’s signal is reconstructed by
reversing the channel effects and mitigating interference until
a target semantic similarity €}, is attained. Once the stronger
signal is successfully reconstructed, the weaker semantic user
can subtract the decoded stronger user’s signal from the
superimposed signal at the receiver. This approach remains
effective even when semantic users exhibit similar channel
conditions and rate requirements, allowing either user to be
decoded first.

Putting Is; = 1, Isy = 1, and assuming So experiences
higher channel gain than S;, then the roots of (15) provide the
optimal solution for Pso.

0 (E [Rs2 + Rs1])

=0 (15)

More generally, the achievable semantic rate of the first
decoded user in such time slots is given by

I Psy |hsal?
Rep = ——ep | ——212821 (16)
KL <P51 |hsa|* + o2

Expressing Ps; = Ppax — Ps2, the closed-form solution for the



optimal power of stronger semantic user can be found from
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where v = , and vy =

(Prmax—Ps2)|hs2|*+02

denote the received SNR at S; and Ss, respectively. Solving
for Psy after taking the partial derivative with respect to Pk
results in a transcendental value function for the optimal power
of stronger semantic user.

IV. SIMULATION RESULTS

In this section, we present the simulation figures and
analyze the results for the proposed heterogeneous users hybrid
NOMA communication setup. Unless specified otherwise, we
use the parametric values of ¢, = 0.9, K = 5, u = 40,
and I/L = 1. Users are randomly distributed for each Monte
Carlo simulation within a 100 meters cell radius. Users channel
coefficients for the independently distributed Rayleigh fading
are determined based on the distance-dependent path-loss
model p = po(1/d)®. We assume a reference path-loss of
po = —30 dB at 1 meter, and the path-loss exponent 8 = 4.
All the simulation results are averaged over 105 Monte Carlo
channel realizations.

In the first simulation figure, we compare the performance
of the heterogeneous users hybrid NOMA communication with
a heterogeneous users OMA setup, where the OMA time
fractions are proportionally allocated to each user according to
their participation ratio under hybrid NOMA. Fig. 2 shows the
equivalent ergodic semantic SE versus P, ,x for both setups.
The results demonstrate that the proposed setup consistently
outperforms its OMA counterpart. This indicates the effec-
tiveness of hybrid NOMA for integrating both semantic and
traditional bit-based communications, leveraging NOMA and
OMA resource allocation strategies.

In Fig. 3, the equivalent ergodic semantic SE is plotted
versus €y, for P, values of 5 dB, 10 dB, and 20 dB. It
is evident that the proposed setup achieves higher ergodic
semantic SE across all values of ¢, for different Pyax.
For both the setups as the value of ¢, approaches one, a
drop in SE is recorded due to the inherent limitations in
accurate semantic reconstruction at higher semantic similarity
thresholds. However, the hybrid NOMA still maintains a higher
SE due to the higher resource utilization by the bit user aiding
in accurate signal reconstruction.

Fig. 4 shows the bit user ergodic SE versus P, for
hybrid NOMA and OMA setups. As Phax increases, the
hybrid NOMA curve consistently lies above the OMA curve,
demonstrating the benefits of its flexible resource allocation
strategy. If the semantic user has stronger channel gain than
the bit user in shared time slots, the entire power is redirected
to the bit user, otherwise the total power splits between both
the users.
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Fig. 5 shows the allocated ergodic power for each user in
the hybrid NOMA setup versus Py,,x. The figure shows that
with increasing Pp,.x values, the power allocated to the bit
user is significantly higher than that for the semantic users.
The allocated power for each user increases with Py, but the
growth rate for Ps; and Pk, is substantially lower than that for
Pg. This indicates that the hybrid NOMA system prioritizes
bit user which renders optimality to be unfair. This is due to
the difference in capacity equations for bit and semantic users,
respectively depending on log-rate and a saturating similarity
function.

In Fig. 6, the equivalent ergodic semantic SE of bit user
in the heterogeneous users hybrid NOMA setup is shown
versus P, for €, values of 0.85, 0.9, 0.95. The three
curves corresponding to different values of €, show a steadily
growing trend with P, .. The figure shows that the equivalent
semantic SE of bit user consistently increases with Py, ,x. This
behavior can be attributed to the efficient resource management
of the hybrid NOMA system which prioritizes bit user in a het-
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erogeneous users network for accurate signal reconstruction.

V. CONCLUSIONS

A novel hybrid NOMA framework is presented to enable
the coexistence of semantic and bit users. Higher performance
of the proposed heterogeneous users hybrid NOMA setup is
demonstrated through analytical evaluation, with simulation re-
sults conforming to the related literature on hybrid NOMA and
semantic communications. The proposed algorithm dynami-
cally pairs users based on real-time channel conditions and
implements a decoding strategy to ensure efficient interference
management. The joint power allocation problem was solved
under the power constraint to maximize the equivalent ergodic
semantic SE. Bit-to-semantic decoding strategy is adopted in
slots with both types of users, thereby enabling interference-
free decoding of the semantic signal. The simulation results
demonstrated the efficacy of the proposed communication
setup in enhancing ergodic semantic SE. The proposed system
integrates both NOMA and OMA strategies by dynamically
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assigning users to time slots, ensuring efficient resource uti-
lization and making it a viable approach for heterogeneous
users communication in future wireless networks.
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