6950

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 10, OCTOBER 2022

Dynamic Task Software Caching-Assisted
Computation Offloading for Multi-Access
Edge Computing

Zhixiong Chen™, Graduate Student Member, IEEE, Wenqgiang Yi~, Member, IEEE,
Atm S. Alam, Member, IEEE, and Arumugam Nallanathan™, Fellow, IEEE

Abstract— In multi-access edge computing (MEC), most exist-
ing task software caching works focus on statically caching data
at the network edge, which may hardly preserve high reusability
due to the time-varying user requests in practice. To this end, this
work considers dynamic task software caching at the MEC server
to assist users’ task execution. Specifically, we formulate a joint
task software caching update (TSCU) and computation offloading
(COMO) problem to minimize users’ energy consumption while
guaranteeing delay constraints, where the limited cache size
and computation capability of the MEC server, as well as the
time-varying task demand of users are investigated. This problem
is proved to be non-deterministic polynomial-time hard, so we
transform it into two sub-problems according to their temporal
correlations, i.e., the real-time COMO problem and the Markov
decision process-based TSCU problem. We first model the COMO
problem as a multi-user game and propose a decentralized algo-
rithm to address its Nash equilibrium solution. We then propose a
double deep Q-network (DDQN)-based method to solve the TSCU
policy. To reduce the computation complexity and convergence
time, we provide a new design for the deep neural network (DNN)
in DDQN, named state coding and action aggregation (SCAA).
In SCAA-DNN, we introduce a dropout mechanism in the input
layer to code users’ activity states. Additionally, at the output
layer, we devise a two-layer architecture to dynamically aggregate
caching actions, which is able to solve the huge state-action space
problem. Simulation results show that the proposed solution
outperforms existing schemes, saving over 12% energy, and
converges with fewer training episodes.

Index Terms— Computation offloading, deep reinforcement
learning, game theory, multi-access edge computing, software
caching.

I. INTRODUCTION

ITH the development of wireless communications and
the proliferation of smart end devices, a large number
of computation-intensive applications have emerged to bring
powerful functions and ultimate experience to users, such

Manuscript received 19 December 2021; revised 1 May 2022 and
3 August 2022; accepted 11 August 2022. Date of publication 18 August 2022;
date of current version 18 October 2022. This work was supported in part
by the Engineering and Physical Sciences Research Council (EPSRC), U.K.,
under Grant EP/R006466/1, and in part by the China Scholarship Council.
The associate editor coordinating the review of this article and approving it
for publication was H. Zhang. (Corresponding author: Wengiang Yi.)

The authors are with the School of Electronic Engineering and Computer
Science, Queen Mary University of London, London E1 4NS, U.K.
(e-mail: zhixiong.chen@qgmul.ac.uk; w.yi@qmul.ac.uk; a.alam@qmul.ac.uk;
a.nallanathan @gmul.ac.uk).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCOMM.2022.3200109.

Digital Object Identifier 10.1109/TCOMM.2022.3200109

as augmented reality, object recognition, interactive gam-
ing, speech recognition, and natural language processing [1].
These applications require massive computational resources
and energy. However, the limited computing capability and
battery capacity of the mobile devices are generally difficult
to meet the computation requirements while executing these
applications [2]. To cope with it, multi-access edge computing
(MEQC) has attracted significant attention in industry and acad-
emia. MEC deploys cloud-computing capabilities and storage
resources within the network edge near to users, such as base
stations (BS) and access points (AP) [3]. It allows mobile
users to offload their computation tasks to the network edge
with higher computation capability.

A. Related Works

From the users’ perspective, a critical application regarding
the MEC is computation offloading (COMO) which is able to
save energy and/or speed up the process of computation [4].
Emerging research towards this direction mainly focus on
the joint optimization of the resource allocation and COMO
policies. The authors in [5] developed an online binary task
offloading algorithm to reduce task execution delay in a
cellular MEC system. In [6], the authors proposed a task
offloading and computing resource allocation approach by
considering the heterogeneity in the latency requirements of
different tasks. The authors in [7] optimized a partial offload-
ing policy in a unmanned aerial vehicle-enabled MEC system
to minimizing the task computing delay of clients. [8] studied
a joint partial task offloading, computation resource, and radio
resource allocation problem to maximize the task computing
energy efficiency. In [9], the authors investigated an energy
consumption minimization problem subject to the latency
requirement by optimizing task offloading ratio, transmission
power, and subcarrier & computing resource allocation.

Computing a task requires both the user task data as the
input parameters and the corresponding code/task software
that processes it. Take face recognition as an example; if a
mobile phone needs to identify whether a person is a legitimate
user, it takes a photo (input parameters) and uses it as the
input data of the face recognition software. After computing,
the software output whether the person is a legitimate user,
namely computing results. Existing literature on computation
offloading can be classified into two main scenarios: 1) The
MEC server has unlimited storage space that can store all

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4183-8857
https://orcid.org/0000-0003-4732-5040
https://orcid.org/0000-0001-8337-5884

CHEN et al.: DYNAMIC TASK SOFTWARE CACHING-ASSISTED COMO FOR MULTI-ACCESS EDGE COMPUTING

task software for users [10], [11]. In this case, users only
need to transmit input parameters to the MEC server for task
execution; and 2) The cache size of the MEC server is limited
and hence the server fails to cache all task software. Users need
to upload both task software and input parameters under this
scenario [12], [13], [14], [15]. Since the second scenario can
be used to characterize most applications in MEC, we consider
the second scenario in this work. The data uploading process
and task execution process will generate substantial energy
consumption and delay. To improve the computing perfor-
mance of MEC, caching task computing results at the MEC
server has been identified to reduce the frequency of repeated
data transmission and task computations [16]. It proactively
caches some task computing results that may be reused in
future task execution [17], [18]. Although the task computing
results caching technique can reduce task execution delay and
energy consumption to a certain degree, it is impractical since
the task computing results are hardly reusable. In general,
computation tasks consist of input parameters and the cor-
responding task software. The task software is fixed and it
can output different computation results under different input
parameters. To improve the reusability of cached data, the task
software caching technique was proposed to cache the task
software at the MEC server to assist the COMO.

Specifically, in our previous work [14], [19], [20], we inte-
grated the task program caching mechanism into the COMO
technique and designed a model-based task program caching
algorithm to minimize the average energy consumption or
latency for all time slots. The authors in [15] investigated
a single MEC server that assists a mobile user in executing
a sequence of computation tasks and used the task program
caching technique to reduce the computation delay and energy
consumption of the mobile user. The authors developed an
MEC service pricing scheme to coordinate with the service
caching decisions and control wireless devices’ task offloading
behaviours in a cellular network to minimize task execution
delay and cost [13]. The authors in [12] provided a joint
caching, computation, and communications mechanism to
minimize the weighted sum energy consumption subject to
the caching and deadline constraints. In [21], the authors
investigated a joint COMO, content caching, and resource
allocation problem in a general MEC network to minimize
the total execution latency of computation tasks.

B. Motivation and Contributions

Existing works on task computing results caching [17], [18]
or task software caching-based MEC [12], [13], [14], [15],
[15], [19], [20], [21] statically cache data at the network
edge, they prefer to cache data that remains unchanged over
a relatively long time. In fact, users’ demand for computation
tasks dynamically changes over time. The static caching policy
cannot preserve the high reusability of the cached data. Thus,
it is important to design learning-based methods to predict the
users’ task demand and adjust the cache memory dynamically
for improving the reusable rate of the cached data. Moreover,
it is noted that most existing works in model-free learning-
based content caching design, like [22], [23], assumed that
the task data size is homogeneous, while in practice this
assumption does not always hold. Thus, it is valuable to design

6951

a new task software caching update (TSCU) and COMO
algorithm which is capable of automatically adapting to the
heterogeneous size of task software and dynamically adjust
the cache space in real-time according to user requests.

Motivated by this, we consider the dynamic task software

caching technique at an MEC network. Specifically, the task
software in the cache memory is updated periodically based
on the prediction of users’ task computation demand to assist
users’ COMO. With the assistance of task software caching,
users can accomplish their tasks through either local comput-
ing, caching-based COMO, or non-caching-based COMO. The
main contributions of this paper are listed in the following:

e We formulate a joint TSCU and COMO problem in
a multi-channel wireless environment to minimize the
average energy consumption of mobiles users over each
time slot while satisfying the task execution delay tol-
erance. It is intractable to solve its optimal solution
due to the lack of user task request information and
the complexity of addressing efficient wireless access
coordination among multiple users for COMO. With the
aid of the maximum cardinality bin packing problem,
we theoretically prove that the considered problem is non-
deterministic polynomial-time hard (NP-Hard).

o To tackle this NP-Hard problem, we first decompose
it into two distributed sub-problems, i.e., the COMO
problem at the user side and the TSCU problem at the
MEC server side, and solve them one by one. Since the
COMO problem involving a combinatorial optimization
over the multi-dimensional discrete space is challenging,
we reformulate it as a multi-user COMO game, and
theoretically prove the existence of the Nash equilibrium
(NE) solution of the COMO game. Based on detailed
analysis, We then propose a decentralized algorithm to
address its NE solution with a convergence guarantee.

o For the second sub-problem, we propose a double deep
Q-network (DDQN)-based method to learning the opti-
mal TSCU policy under unknown user task requests
information. The massive tasks with heterogeneous data
size in the task library result in a high-dimension and
complex caching action space which intractable to solve.
Moreover, directly using the user request state as the deep
neural network (DNN) input may improve the learning
complexity. These factors hinder the convergence of the
DDQN. To cope with these challenges, we proposed a
state coding and action aggregation (SCAA) design for
the DNN used in the DDQN. Specifically, we devise a
dropout mechanism in the first two layers of the DNN
to code users’ requests instead of directly using them
as input states. A two-layer architecture as the output
layer of the DNN dynamically aggregates task software
caching action to output the corresponding state-action
value. This design effectively reduces the complexity of
the DDQN, leading to faster convergence than traditional
DDQN algorithms.

e We conduct simulations to evaluate the performance of
our proposed dynamic TSCU assisted COMO approach.
The results show that the proposed approach significantly
reduces the users’ computation energy consumption.
It outperforms the conventional caching update-based

6952

TABLE 1
NOTATION SUMMARY

Notation Definition

K; F; M Number of users; number of tasks; number of
subchannels

K, F; M User set; task set; subchannel set

IE: pr User k’s CPU capability; user k’s transmit
power

C; fe MEC server’s cache size; MEC server’s CPU
capability

B Wireless transmission bandwidth

Is; Dy; Sy | Input parameters’ size of task f; data size of
the task f’s software; computation load of task
f

u,(:) User k’s task request in slot ¢

Q¢ User k’s COMO decision in slot ¢

b(t) The caching state of the task f in slot ¢

B(t) Caching update decision of task f

Th,t The uplink transmission rate of user k in slot
t

Y Received interference of user £ in slot ¢

COMO approaches. Moreover, the proposed scheme
is capable to converge faster than other reinforcement
learning-based caching update approaches.

C. Organization

The rest of this paper is organized as follows. In Section II,
we first illustrate the system model, then formulate the joint
TSCU and COMO problem. In Section III, we propose an effi-
cient scheme to solve the original problem. Section IV verifies
the effectiveness of the proposed scheme by simulations. The
conclusion is drawn in Section V. The code and dataset are
available at https://github.com/chfocus/DRL-MEC.

II. SYSTEM MODEL
A. Network Model

In this paper, we focus on a multi-user MEC network
consisting of a BS and K users as shown in Fig. 1(a), where
the BS is equipped with an MEC server that can access the
task library in the cloud centre through an ideal backhaul link.
The main notations used throughout this paper are summarized
in Table I. Let L = {1,2,---, K} represents the user index
set. It is assumed that there are total F' tasks in the task
library, whose index set is denoted by F = {1,2,---,F'}.
We consider that the system operates in a sequence of 7' time
slots with an equal length 7. The index set of the time sequence
is denoted by 7 = {1,2,---,T}. The operation mechanism
of the system is shown in Fig. 1(b). At the beginning of each
time slot, each user requests to execute one task in the task
library or does not request to execute any task. Similar to [24],
[25], we assume that each task must be accomplished before
the end of the current slot, either by its local computing or by
the MEC server execution. Note that this assumption can be
removed by setting delay constraints for each user individually
and letting the time slot length be long enough to exceed the
maximum delay constraint of users. Moreover, users’ tasks
requiring multiple slots to execute are usually inactive in
practical system design because this can usually be satisfied by
modifying the time slot length. At the end of this time slot,

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 10, OCTOBER 2022

the MEC server first updates its caching space, and then it
caches the selected new task software to assist users’ COMO
in the next time slot. After obtaining the task software, the
edge server installs the software (e.g., executable.EXE files),
and run it based on different input parameters.

Each task f € F can be described by a tuple of three
parameters, i.e., (Iy, Dy, Sy), where I indicates the size of
input parameters of task f, Dy is the data volume of the
software of task f, and Sy denotes the computation load of
task f, i.e., the necessary central processing unit (CPU) cycles

for executing task f. Let bf € {0,1} denote the caching

state of task f in time slot ¢, where b()

the software of task f is cached at the MEC server, b;

0 otherwise. The caching state in time slot ¢ is characterized by
b, = {bgt)7 bgt), - ,bg)}. The cache size of the MEC server
is denoted by C. Knowing that the cache size is limited, the
caching state in any time slot should satisfy

>, Dy <CvteT.

= 1 represents that

(1

The TSCU decision profile in time slot ¢ is (3,
{ﬁlt), ,- ,B;)} Let ﬁ(t € {-1,0,1} indicates the
caching update decision for task f in the slot ¢, where ﬁ;) =
—1 indicates that the software of task f will be removed at
the end of time slot ¢, ﬁ;t) = 0 denotes that the caching state

of f will remain unchanged, and 5;t) = 1 represents that the
software of task f will be added to the cache space in the
slot (¢t + 1). Thus, the caching state of task f at the (¢t + 1)-th
time slot is b{TY = bgf) + ﬁ](f). It is noted that 5;t) should

satisfy ﬁ;t) > —bgf) because the MEC server cannot remove
uncached task software.

We denote the users’ request in time slot ¢ as p, =
{ul ,pg Lo ,,u(l?}. At time slot ¢, let u,(:) e F(F =
{0} U F) denote the task request state of user k, where
ui) = 0 represents that user k requests nothing, and u() = =f
(f € F) indicates that user k requests to execute the task
f. We assume that uk (Vk € K) evolves according to a
first-order (F' + 1)-state Markov chain [26] whose transition
probability is unknown. That is to say, the users’ request in
time slot (¢ + 1) is only affected by the users’ request in slot
t and there are (F' + 1) possible options.

B. Communication Model

It is assumed that the total available bandwidth in the
network is B Hz, which is equally divided into M orthogonal
wireless channels. The set of channels is denoted as M =
{1,2,---, M}. In each time slot, each user can only use one
channel to communicate with the BS. Such a communication
method is able to ensure that two users using orthogonal
channels do not interfere with each other. We use oy to
denote the COMO decision of user k at the ¢-th time slot,
where oy, ; = 0 indicates that user k& accomplishes its task by
its own computing. The oy, = m (m € M) denotes that user
k selects channel m to offload its task to the MEC server for
computing. We denote the COMO decision of all users in time
slot ¢ as oy = {14,004, -+ ,ax). Let by and py denote
the channel gain and transmit power of user k, respectively.

CHEN et al.: DYNAMIC TASK SOFTWARE CACHING-ASSISTED COMO FOR MULTI-ACCESS EDGE COMPUTING

F=1r=2...

|/ =F]

Local computing

ceters (L))
Jinput pard
. ts
uting TeSY
Return c0mP Non-caching-based
Uplo d Task offloading
ad j
Nput Parame,
Retury g5 5(7,)
put;
Cache g resy g
Base station Caching-based Task
offloading
(a)

Fig. 1.

6953

‘ Users generate task computing request ‘

Computing the task offloading policies for
users based on the current caching state

Is local execution?

Yes v
- Is the MEC server cached the
Local computing :
corresponding software?

No
Users upload input
parameters and task software
]

v

The MEC server executes the offloaded
tasks and return computing results to users

Users upload
input parameters
I

‘ The MEC server updates its cache

End
(b)

Illustrating the studied system model: (a) shows the network structure, where one base station is equipped with an MEC server is able to proactively

cache selected task software and mobile device has three methods to execute their tasks; and (b) offers the flow chart of the operation mechanism in one time

slot.

In this work, we investigate the task offloading problem under
a wireless interference model, in which code division multiple
access is deployed to enable multiple users to occupy the
same spectrum resource simultaneously for transmitting the
information. Thus, the achievable uplink transmission rate of
user k in slot ¢ is [27], [28]

DPrhi

) @

where o2 is the variance of complex white Gaussian channel
noise. In fact, (2) characterizes the minimal transmit rate of
user k. The effective interference of user k induced by other
users is less than Zne/c\{k},an,t:ak,,,pnhn and determined
by the power control and code design [29], [30]. Due to
the space limits, we investigate the computation offloading
problem based the minimal achievable transmit rate in (2), and
do not consider the power control and code design. Note that,
our algorithms designed in the following is able to directly
used in the effective channel interference situations. Moreover,
the joint channel code design, power control and computation
offloading problem to further improve the offloading perfor-
mance and manage interference will be a future direction for
our work.

From (2), users may incur severe interference and low
transmission rate when a large number of users offloading
theirs tasks through the same channel. As we discuss latter, this
would increase the energy consumption for users and forcing
part of them to execute tasks by local computing, and thus the
number of users in the same channel would be limited.

= B (14
rk,t*MOg Z

nel\{k},an t=ak

C. Task Computing

In our model, we introduce the task software caching
mechanism to assist COMO. The MEC server proactively

caches the selected task software from the task library and
provides computing service for users in the next slot. At the
beginning of each time slot, users send their task requests to
the MEC server, and then the MEC server returns whether their
request tasks are cached. Based on this, when user k£ needs
to execute task f, it is able to accomplish f through local
computing or caching-based task offloading if f is cached,
otherwise through local computing or non-caching-based task
offloading. Similar to [24], [25], we ignore the information
exchange overhead of users acquire whether their task software
is cached at the MEC server because it is far small than
the input parameters or task software uploading cost. In the
following, we elaborate these three methods:

1) Local Computing: When user k execute its requested
task via the local CPU, we denote the computing capa-
bility (i.e., CPU cycles per second) of user k (k € K)
as f,];. Employing the dynamic voltage and frequency
scaling technique [2], user k£ can control the energy
consumption for local computing by adjusting the CPU
frequency. Considering that user k£ must finish the local
task computing within the current time slot, the CPU
frequency of user k satisfies f > Sy/7. Based on
the realistic measurement result in [31], the energy con-
sumption is proportional to the square of the frequency
of mobile device. Thus, the energy consumption of user
k executes task f by its own device is

SS
iy = C(f)*Ss 2 ¢,

- 3)
where (is the energy coefficient of mobile devices,
determined by the chip architecture. Without loss of
the generality, we set the CPU frequency as fr
Sy /T, as this is the most energy-efficient CPU frequency

under the deadline constraint. Consequently, The energy

6954

2)

3)

consumption of user k executes task f by its own device
. sS4
is By ;= (.
Non-caching-based Task Offloading: In each time slot
t, if user k offloads task f to the MEC server for
computing, and the MEC server did not cache the corre-
sponding software of task f, it needs to upload the input
parameters and the corresponding software of task f to
the MEC server. In fact, this non-caching-based method
is the pure task offloading as illustrated in many existing
works, e.g., [5], [6], [7], [8], [9]. Note that, as stated
in [32], the MEC server is also able to download the task
software from the library each time the request is made
by the user k, while it only uploads the input parameters.
However, the task software acquiring process is time-
consuming, especially during peak time. Thus, similar
to many existing works, e.g., [12], [13], [14], we do
not allow the edge server to fetch remotely from the
library every time the task software is required. Let fc
(fc > fE,Vk € K) denote the computing capability
of the MEC server. The task execution delay can be
expressed as

o _5f L L+ Dy

T
kft fc Th,t '

“)

where 1y, 4 follows (2). The first part in the right hand
side (RHS) of Eq. (4) is the task execution delay at
the MEC server, the second part in the RHS of Eq. (4)
represents the data transmission delay. Considering that
the task must be accomplished in the current time slot,
the delay should satisfy T,g 7+ < 7. The corresponding
energy consumption of user k for executing task f is

)

where 7, ; is given in (2). Note that the energy consump-
tion in (5) includes the transmit energy consumption of
both input parameters and the corresponding software.
Caching-based Task Offloading: When user k offloads
the task f to the MEC server for executing in slot ¢,
and the MEC server already cached the software of task
f, it only needs to upload the input parameters and
request the MEC server to compute the task f directly
and does not need to upload the corresponding software
data. Thus, the execution delay can be expressed as

c Sy I

T == 4+ —

kafb fo e
Similar to the non-caching-based task offloading
method, the execution delay of caching-based task
offloading also should satisfy T,S £t < 7. In addition,
the corresponding energy consumption is

1

C f
Ek7f7t = pkm;

)

(6)

)

where E,g 7.+ only includes the transmit energy consump-
tion of the input parameters. Thus, this caching-based
task offloading method has lower computational costs
(both execution delay and energy consumption) than

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 10, OCTOBER 2022

the non-caching-based task offloading method. Con-
sequently, when user k offloads task f to the MEC
server for computing and the software of task f is
already cached at the MEC server, there is no doubt that
the users will select the caching-based task offloading
method for the task execution.

D. Problem Formulation

In this paper, we aim to minimize the average task execution
energy consumption of all users over each time slot under the
constraint of task execution delay through jointly optimizing
the COMO decision and TSCU policy. Based on the above
models and analysis, we formulate the energy consumption of
user k at the ¢-th time slot as

B = Y10 = { 1o =0)BE,

fer
+1(ap: € M) ((1 0 ER,, + bgﬁE,S,f,t) }
(3)

where 1(-) is an indicator function, which is one if and only
if the condition in the parentheses is proper, otherwise it is
zero. Eq. (8) corresponds to three cases: (i) when user k
executes the task f through its own device (i.e., a; = 0), its
energy consumption is local computing energy consumption,
ie., B, = E,% P (ii) when user k executes the task f through
COMO and the software has not cached at the MEC server

(ie., ay € M and bgf) = 0), its energy consumption is
By = E,g 7+ Which consists of the transmission energy

consumption of input parameters and software; (iii) when
user k executes the task f through COMO and the software
has already cached at the MEC server (i.e., ap; € M
and bgf) = 1), its energy consumption is Ej,; = E,S’f’t
which only includes transmission energy consumption of input
parameters. Note that we assume that users will select the
caching-based task offloading instead of the non-caching-
based task offloading when the corresponding task software
has already been cached at the MEC server because the
caching-based task offloading method consumes lower energy.
Thus, we can formulate the problem as

1
lim —

T
P orflél, A thl Zkelc Ly 9
(1), B
s. L. ng(bf +8;)Dp < CVteT, (9a)

e € M)(BITE, + (1 =0T,) <7,

Vke C,Vfe FvteT, (9b)
b =) 1+ B Ve FovteT, (9¢)
BV > b Vfe FvteT, (9d)
art €{0,1,...,M} Vke KVt € T, (9e)
B € {~1,0,1} Vf e F Mt e T, (9f)

In problem P, (9a) implies the cache size constraint of
the MEC server. (9b) corresponds to the users’ task exe-
cution delay restriction. (9¢) reveals the TSCU regulations.

CHEN et al.: DYNAMIC TASK SOFTWARE CACHING-ASSISTED COMO FOR MULTI-ACCESS EDGE COMPUTING

(9d) indicates that the MEC server cannot remove the
uncached task software. (9e) represents the available task
computing methods, where «j; = 0 indicate that user k
executes its task through local computing, and ai,; = m
(m € M) represents that user k offloads its task (caching-
based offloading if bgf) = 1 and non-caching-based offloading

if bgf) = 0) through channel m. (9f) imposes restrictions on
the TSCU decision. Problem P is intractable to directly solve
since it involves interactive COMO and task software caching
across different time slots and lacks user request transition
probabilities. We prove it is NP-hard in Lemma 1.
Lemma 1: Problem P that involves interactive COMO and
TSCU across different time slots is NP-hard.
Proof: See Appendix A. U

III. PROPOSED COMPUTATION OFFLOADING AND TASK
SOFTWARE CACHING UPDATE ALGORITHM

Due to the intractability of the problem P, one cannot
find an effective algorithm to achieve the optimal solution
in polynomial time. In fact, the difficulty of solving problem
‘P is mainly from the interactive COMO and task software
caching across different time slots, as well as the lack of user
request transition probabilities. To cope with these challenges,
we decompose the original problem into two subproblems, i.e.,
the COMO problem and the TSCU problem. First, for any
given task software caching state, we reformulate the COMO
problem as a multi-user COMO game and then we propose
a decentralized algorithm to address its NE solution. After
that, we reformulate the TSCU problem as an Markov decision
process (MDP) and use a DDQN to learn the optimal TSCU
policy.

A. Multi-User Computation Offloading Algorithm

Based on the formulation of problem P, the task offloading
decision in any time slot ¢ (i.e., o) only affects the energy
consumption in ¢, i.e., F}, and does not related with other
slots. In addition, c; does not affect the task software caching
decisions in any time slot. Inspired by this, we focus on the
COMO problem in a specific time slot ¢ under any given task
software caching state b, and design an efficient algorithm
to achieve the COMO decision. It is valuable to note that this
algorithm can be generalized to solve COMO decisions in any
other time slot. We decompose the task offloading problem in
slot ¢ from problem P as:

Puiomin filen) =30, B
s. . (9b), (9). o
Note that o, = {14, a4, , ¢ }, Where oy, (k € K) has

(M +1) value selections. Therefore, the problem P is difficult
to solve because it involves a combinatorial optimization over
the multi-dimensional discrete space {0,1,---, M }¥. In the
following, we transfer it to a potential game and solve its NE
solution.

Let a_p; = {o1e, -, Qk—1,4, k1,0, , g} denote
the task offloading decisions of all other users except from

6955

user k. The user k is able to choose the optimal computation
decision oy , under any given «_j ¢ in polynomial time with

complexity O(M + 1), where o, = argmin f; (t, — e t)-
At
Therefore, we transfer the problem P; to a multi-user coop-

erative strategic game G = (K, {Ay ¢ }rek, fi(ar)), in which
the user set K is the game player set, Ay, is the strategy
space of user k in time slot ¢ which can be obtained by
solving constraint (9b) and (9e), and f; (c;) is the com-
puting cost of user k (all users have the same computing
cost). The objective of game G is to achieve a NE solution
o) = {ait,~~ ,akt}. That is to say, for computation
decision aj in slot ¢, no user has the ability to further
decrease its computing cost through changing its decisions,
ie., ft(a]:7ta atk,t) < ft(Oé]%t, Oétk’t),VkJ S IC, .t € Ak,t'
For any user k& (k € K) in this game G, it would accomplish
its task through task offloading when its local computing
cost is larger than task offloading cost, i.e., E,% 7 > (1 -
bVEQ,, + b ES | ,. By substituting (3), (5), and (7) into

. . 53 Ii+(1-b"D
this inequation, we have ¢=f > pk%. Let Ty,

denote the interference of user k, which satiéﬁes the following
inequality:

ne\{k},an t=ak

h
Prlk _ g2

Tk,t = pnhn

IN

Y

pk721\l(If+Df7b(ft>Df)
3
9 B¢sY

-1

In other words, for a given task offloading strategy o, the user
k is able to decrease the system energy consumption when
its received interference satisfies inequation (11). Therefore,
if user k received low interference, it decreases its computing
cost through task offloading. Otherwise, it accomplishes its
task through local computing. Based on [28], the game G is a
ordinal potential game by constructing the potential function
as follows.

K
1
(b(at) = 5 Z Zpk’hkpnhn]l(an,t = ak’,t)]l(ak,t > 0)

k=1 n#k
K
+3 " prhiVil(on = 0), (12)
k=1
where
Prhi 2
Vi = -0 (13)

kaQAI(If+Df—b§ct)Df)

9 B(SJ% 1

is the interference threshold of user %k defined according to
(11). User k£ would accomplish its task by task offloading when
T+ < Vi, otherwise by local computing. Note that the change
in the potential function (12) has the same sign (positive
or negative) with the change in the f;(cay). In Remark 1,
we prove that the game G with the potential function ¢(a)
is a ordinal potential game and it has a NE solution.

Remark 1: The COMO game G with the potential function
¢(a;) is a ordinal potential game and is able to achieve a NE
solution in finite number of iterations.

6956

Algorithm 1 Multi-User Computation Offloading
1: Each user k € K initialize its COMO decision a: = 0

2: repeat

3: for Each user k € K: do

4: Measure the interference Y, and calculate the transmission
rate ¢,

5: Compute the strategy space Ay, by solving constraint (9b)

and (9e),

6: Select the best offloading decision aj ; =
argmin fr (g, k1)
ap tEAg ¢

7: if aj, ; # au,¢ then

8: Send a request message to BS for updating its offloading

decision

9: if Received the update message then

10: Update its COMO decision, i.e., ax,: = aj

11: end if

12: end if

13: end for

14: until Receive an end message

15: return o;.

Proof: See Appendix B [
Based on Remark 1, we develop a potential game-based
multi-user COMO algorithm to address a mutually satisfactory
offloading decisions (i.e., the NE solution) for all users.
The detailed steps of COMO algorithm are summarized in
Algorithm 1.

Through Algorithm 1, we achieve a NE solution for the
COMO problem. Firstly, we initialize the COMO decisions
of all users to 0. Next, each user computes its available task
offloading decision set Ay, ; based on constraints (9b) and (9e),
and finds its optimal COMO decision «; ;. Then, user k sends
a update request message to the MEC server if o , # ot
When the MEC server receives the update request messages
from users, it randomly selects one user and then sends the
update permission message to this user. The user who receives
the update permission message updates its offloading decision,
and the users who do not receive the update permission
message remain their offloading decisions. Finally, if the MEC
server does not receive any update request message from
users, it sends the end messages to all users. When users
receive the end message, they offload their tasks based on their
offloading decisions. We analyze the convergence behaviour of
Algorithm 1 in Lemma 2.

s Lemma 2: Game G can_achieve a NE solution within

LKZAL K (

— iterations, where € is a pos-

AmaxVimax—Amin Vimin

. €Amin
itive number.

Proof: See Appendix C (]

B. Deep Reinforcement Learning-Based Task Software
Caching Update Algorithm
Up to now, we can find a mutually satisfactory COMO

decision for all users (represented by a;) under any given
MEC server’s caching state b; and user request state p, in any

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 10, OCTOBER 2022

time slot. In other words, we can compute the corresponding
energy consumption of any caching state b; under any given
user request state p, since the COMO decision o can be
solved by using Algorithm 1. Substitute o into the original
problem P, the original problem P can be transformed to the
TSCU problem as

P2 ltn Tlggo T Zt 1 Zkeic k.t
s. t. (9a), (9¢), (9d), (9f). (14)
where
Bro= Y 10 = f){ua;;,t —0)BL,
feF
+1(aj, € M) ((1 —bVEQ,, + bgf)E,S’f’t) }
(15)

Knowing that the TSCU decision 3, depends on the caching
state by, it is complex to directly solve 3,. For ease of solving
problem Py, we first solve the optimal caching state b;y; in
time slot ¢ 4 1, then obtain the caching update decision 3, in
slot ¢ based on bgft) + ﬁ;t) = bgfﬂ). The optimal caching state
problem is formulated as

— _ 1 T ~
Poi i fim 73 0D ecBee (19
() o
s. t. Zfefbf Dy <C, (16a)
bt € {0,1},vf € F. (16b)

For any time slot (¢ + 1), we can solve the optimal caching
state b, 1 when the user request ;| is given, e.g., we can
solve the energy consumption of all caching state b;;; and
find the minimum one. However, the caching state b;;1 is
given by the MEC server updates caching space at the end
of time slot ¢, and g, is unknown at that time due to
the unknown user request transition probabilities. To tackle
this challenge, we apply a DDQN to capture the features
of the users’ request model and predict the optimal task
caching state of time slot (¢ + 1) based on the system state
of slot ¢. For the purpose of designing the DDQN algorithm,
we reformulate problem P, as an MDP and elaborate the
state, action and reward in the below.

o State: the state in time slot ¢ is the user request state, i.e.,
Si=m € (F+1DF

o Action: the action in time slot ¢ is the caching state in
slot (t+1), ie., A = byyq € {0,1}7.

o Reward: we define the reward in time slot ¢ as the saving
value of energy consumption in time slot (¢ + 1), i.e
Ry11. The saving value of energy consumption is defined
as the difference between non-caching-based computing
cost and caching-based computing cost, i.e., Riy1 =
ENC, — Ef,,, where

B = 3 S

keEK feF

+]1(allj,ct+1 € M)El(c),f,t+1}

tJrl
(uf >{ﬂ<az‘,‘iﬂ — o),

a7

CHEN et al.: DYNAMIC TASK SOFTWARE CACHING-ASSISTED COMO FOR MULTI-ACCESS EDGE COMPUTING

MEC server (Agent)

Training
4 \4%> y Q (Sl 2 A‘
Main Network
l Weight copy
Request state WO
S S, g } »arg S
Users Target Network th :nax Q(v a)

Fig. 2. The DDQN training and inference process.

is the energy consumption when the MEC server’s
caching state is empty, i.e., bs11 = [0]F,

1
EfC+1 = Z Z (t+ = {l(ag,t+1_0)E}c‘,f

ke feF
t4+1
+1(af 0 €M) (1B TNED 1

1)
'|'b(t+ El(c:,f,tJrl) }

is the energy consumption when the caching state is by 1,
where ak i1 1s the COMO decision when the caching
space is empty, and ak 11 corresponds to the COMO
decision when the cachmg state is by41. Both ak 141 and
aw 41 can be solved by Algorithm 1.

(18)

The architecture of the applied DDQN is shown in Fig. 2,
which includes two DNNs with same structure: one is the
main network, one is the target network. The DDQN aims
to learn the user request model and predict the optimal task
software caching state in the next slot based on the user
request in the current slot. Instead of using a large Q table
to list all possible states and actions, the applied DDQN in
this paper uses a DNN to avoid listing all possible states and
actions. To overcome the high-dimension and complex caching
action space resulting from massive tasks with heterogeneous
data size and improve learning efficiency, we provide a new
design of the DNN, named state coding and action aggregation
(SCAA). SCAA adopts a dropout mechanism in the input layer
to code users’ states and a two-layer architecture at the output
layer to aggregate caching actions dynamically. Fig. 3 shows
the architecture of the proposed SCAA-DNN of the DDQN.
In the following part, we introduce the SCAA-DNN in detail.

In the input of the SCAA-DNN, the users’ task request is
represented by the task order. For example, u,(:) = f indicates
that user k request to execute the f-th task in time slot .
The conventional design [23] directly uses the state S; = p,
as the input variables of the DNN, the tasks’ order number
will influence the output of the DNN (i.e., the state-action
value (S, Ay)). In fact, the order number does not relate
to the state-action value Q(S;, A;). In order to eliminate the
influence of tasks’ order, we use X, = {]1() e F):keK}
as the input of the DNN instead of the state St The first layer
of the DNN contains K neural cells, and the input of the k-th

6957

layer 1 layer 2

layer L

1 € F)

> Q(St, Ar)

Two-layer Architecture

dropout

connect

Fig. 3. The architecture of proposed SCAA in the DNN of DDQN.

cell is]l(ugf) € F). Hence, for clarifying the task demands
of users, we define the second layer in the DNN contains F'
neural cells, in which the f-th cell corresponds to the f-th task.
We use w1 = {wy, ; : k € K, f € F} to denote the weights of
connections between the first layer and the second layer of the
DNN, where w; s denotes the weight of connection between
the k-th neural cell in the first layer and the f-th neural cell
in the second layer. The value of w} 7 is defined as

wizo, 1f,u Efandu # f,
f w,i’f, otherwise.

If u(f) € F, the connections between the k-th neural cell in
the first layer and neural cells in the second layers except
from the u,(:)—th neural cell will be dropout. In other words,
the output of the k-th neural cell in the first layer only as
the input of the u,(:)—th neural cell in the second layer. If
u,(:) = 0, all the connections between the k-th neural cell
in the first layer and neural cells in the second layers will
be remained, and u,(:) does not affect the inputs of neural
cells in the second layer. Such a design implements the user
requests state coding in actuality.

In the conventional DDQN [33], the number of neural cells
in the output layer of the DNN is equal to the number of
all possible actions, in which each neural cell corresponds to
one action and output the corresponding state-action value,
i.e., Q(Si, Ar). However, for the caching problem Po, it is
impractical due to the heterogeneous data size of task software
and the large number of tasks. The large number of tasks will
produce a large number of possible caching actions. Besides,
it is difficult to list all the possible actions due to the heteroge-
neous size of task software. For example, we assume that the
MEC server can cache 10 task software with the same data
size, and the task library has 50 tasks. The MEC server will
have C39 = 1.0272 x 10 possible actions. If the data sizes
of these tasks’ software are different, it is more complex to
combine all available caching actions. To tackle this challenge,
we use a two-layer architecture (TLA) as the output layer
of the SCAA-DNN, shown in Fig. 3. The first layer in the
TLA contains F' neural cells, in which the f-th neural cell
corresponds to task f. Let O = (01,02, --- ,Op) denote the
output of the first layer of the TLA. Intuitively, O represents
the part of state-action value of caching the task f-th software.
The last layer of the TLA just has one neural cell which does

19)

6958

not have the activation unit and outputs the weighted sum of
all input variables. We use wy, = (w11, - ,Ws 1, - ,Wp,L)
to denote the weights of connections between the first layer
and the last layer in the TLA, where wy is the weight
of the connection between the f-th cell in the first layer
and the last layer in the TLA. To identify the state-action
value of a specific action A; = b.11, we assign the value
of A; to wy, ie., wy = bgfﬂ),Vf € F. Then, the DNN
will output the predicted state-action value, i.e., Q(St, A¢) =
(t+1)

> rerby Oy

Remark 2: In practical caching scenarios, the large number
of tasks in the library may produce a high-dimension action
space and complex network structure in the DDQN because
the caching action is a combination of caching some task
software. It may result in many neural cells in the output layer
of the DNN used in the DDQN, hindering the convergence of
the DDQN. Using the proposed TLA, the complexity of the
used neural network in the DDQN is significantly reduced,
thus improving the convergence speed of the DDQN. Note
that such a design also can be used in other scenarios with
high-dimension combined-action space.

About the training phase, the MEC server caches task
software based on the e-greedy policy [34] at the end of
time slot ¢, where the MEC server randomly cached task
software with probability € or caches task software based
on A} = argmax, Q(S¢, a) with probability (1 — €). At the
beginning of slot (¢+1), the users will generate task computing
requests p,,; and find the COMO decisions «,; through
Algorithm 1 based on the caching state b, and user request
#y1 1. Then, the users accomplish their tasks based on o,
and result in energy consumption, i.e., EtC_H. To estimate the
reward of the caching action A; = by;1, we set the caching
state as empty (i.e., by;+;1 = 0) and obtain the corresponding
energy consumption, i.e., Effl The user request state Sy in
time slot ¢, the action Ay, the reward Ry = EN — Ef, 4,
and the state S;y; in the next time slot will be stored in
the experience memory and used as the training data for the
DDQN. Then, the DDQN samples a batch of data from the
experience memory as the training data, each data is in the
form of <St, At, Rt+1, St+1>.

Firstly, the DDQN assigns A; to wy of the evaluation
DNN, ie., wyy = bY*.¥f € F. Then, the DDQN
assigns values to the weights between the first layer and
second layer of the evaluation DNN based on Eq. (19) and
input X; = {]l(u,(:) € F): k€ K}. Next, the evaluation
DNN accomplishes forward process and obtains the pre-
dicted state-action value, i.e., Q(St, A¢). The training process
should make Q(S;, A;) approximate the expected state-action
value as

Q(St, At) = Rey1 + 7y max Q(Sty1,a) (20)

where v € (0,1) is discount factor. For computing the
expected state-action value, we use the target DNN in the
DDQN to inference the value of max, Q(S¢+1,a). To make
the learning process more stable, we use the Huber func-
tion [35] to quantify the loss instead of the square error

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 10, OCTOBER 2022

Algorithm 2 The Training Algorithm for DDQN

1: Initialize replay memory with capacity F, the weight copy fre-
quency g

2: Initialize the evaluation DNN with random weights 6 and copy 6
to the target DNN

3: for time slot t =1: 7T do

4: With probability € select a random caching state A; otherwise

select A; = arg max, Q(St, a) as the caching state in slot ¢+ 1

5. Use A; as the caching state of the MEC server in time slot
(t + 1) and compute the reward R;41
Store transition S¢, A¢, Re41, Se41 in experience memory
Sample random mini-batch of transitions S, A¢, Ri41, St4+1
from experience memory

8: Assign values to the weights between the first layer and second
layer based on Eq. (19).

9: Assign biy1 to the weights of the TLA in the evaluation DNN.

10: Input X, = {]l(ugf) € F): ke K} to the evaluation DNN
and obtain Q(S¢, A¢)

11: Perform a gradient descend step on loss function with respect
to the DNN parameters

12: Update the target DNN every g slots

13: end for

function. The loss function is defined as follows.

LQ(S1, A) — Q(S1, A))?, if| Q(Si, Ay)
—Q(Si, Ay) | < 1,
|Q(S, Ay) — Q(Sy, Ay)| —

Once the loss function value is calculated, we can train
the evaluation DNN by using backward algorithm [36]. The
detailed steps of the DDQN training algorithm are listed in
Algorithm 2.

In the DDQN inference phase, we first assign values to
the weights between the first layer and second layer based on
Eq. (19). Then, we input X, = {]l(ug) €eF):kekK}to
DNN and forwards to the first layer of TLA and output O =
(01,04, -+ ,0p). Finally, we need find the optimal caching
state in time slot (¢t + 1) (ie., argmax,, Qs be11)).
We formulate the optimal caching state problem as follows.

Loss= 201

1, otherwise.

e (t+1)

PQ : Igiii(feF bf Of (22)
(t+1)

5. t. Zfefbf D; <C, (22a)

b+ € (0,1} (22b)

Problem ﬁ; is a typical Knapsack problem [37]. Below we
introduce a recursive function to derive the optimal solution.
For ease of presentation, we first define a F' x C' matrix Z,
in which Z(f, ¢) represents the optimal solution under the first
f tasks using a cache size of c¢. The value of Z(f, ¢) is given
by the following recursive function.

2(f,¢) = max(2(f — Le = b VD) + b 0y).

(
by

(23)

CHEN et al.: DYNAMIC TASK SOFTWARE CACHING-ASSISTED COMO FOR MULTI-ACCESS EDGE COMPUTING

At the beginning of time slot ¢ In time slot #

the MEC server orchestras the Users to
perform the COMO game (running
Algorithm 1) to solve the COMO policy

Users execute their tasks
based the COMO policy

—>

6959

At the end of time slot ¢

The MEC server performs the training
algorithm (Algorithm 2) to update the cache

Yes and train the DDQN.
ﬁ No The MEC server performs the inference

algorithm (Algorithm 4) to update the
cache.

Fig. 4. An illustration for connections between the proposed algorithms and the system model.

Algorithm 3 Algorithm for Solving the Optimal Action

Algorithm 4 The Inference Algorithm of DDQN

Input: O, {D; : f € F}
Output: The optimal caching state bsy1

I by = [O]F75 = [O]FXC7E7" = [O]FXC;

2: for each f € [1, F] do

3: if f < I then

4: for each c € [1,C] do

5: if f == 1 then

& E(f.0=1(Dy <o)

7: E(f7 C) = ET(f7 C)Of

8: else

9: Er(f,c) = argmax(E(f — 1,c—aDy) + aOy)
ae{0,1}

10: E(f7c):ET(.ﬁC)Of_'—E(f_17C_Er(f7C)Df)

11: end if

12: end for

13: else

14: Er(F,C) = argmax, ¢ (o 11 (E(F — 1,C~aDr) + aOr)

15: E(F,C)=E.(F,C)Op +E(F —1,C — 2.(F,C)Dr)
16: end if

17: end for

18: bt+1(F) = E,~(l’77 C)

19: for cach f =F —1:—1:1do

20: bes1(f) =En(f,C = 25 1 <jcp bewr(d) * Dj)

21: end for

22: return b:y1

Through the above recursive function, the optimal solution
of problem P, can be derived by the argument of Z(F, ().
For clarity, we conclude the detailed steps of solving optimal
caching state in Algorithm 3 whose time complexity is
OQ2FC + F).

Once the optimal caching state b;y; in time slot ¢ + 1 is
derived, the MEC server can calculate the optimal TSCU
policy in time slot ¢, i.e., ﬁ;t) = bgfﬂ) — bgf). Then, the MEC
server can update its cache space and assist the COMO in time
slot (¢ + 1). For clarity, we conclude the detailed steps of the
DDOQN inference phase in Algorithm 4. In addition, for ease
of understanding, Fig. 4 illustrates the connections between
all algorithms and the physical system model.

IV. SIMULATION RESULTS

This section evaluates the proposed dynamic TSCU-based
COMO scheme by comparing its performances with the fol-
lowing baseline schemes. Note that these baselines for caching
updates do not include the COMO policy. For fairness, we add
the COMO policy proposed in this work to these baselines for
forming TSCU assisted COMO schemes. Moreover, we use
the COMO policy proposed in this work as a baseline for
illustrating the advantages of TSCU.

o The least recently used caching-based MEC (LRU-MEC)

updates task software caching based on LRU policy [38],

1: Assign values to the weights between the first layer and second
layer based on Eq. (19).

2: Input X; = {]l(,ugf) € F) : k € K} to the first layer of the DNN,
then the DNN forwards to the first layer of TLA and output O =
(01,02, ,0F)

3: Solve the optimal caching state in the next time slot using
Algorithm 3

4: Calculate the optimal caching update policy based on ﬁ}t) =
bt —b® v e F

in which the MEC server keeps the most recently
requested task software in the MEC server cache memory.
When the cache storage is full, the cached task software,
which is requested least recently, will be replaced by the
new task software.

o The least frequently used caching-based MEC (LFU-
MEC) updates task software caching based on LFU
policy [38], in which the MEC server caches the task
software with highest request count which is calculated
by the request information of past time slots. When the
cache storage is full, the cached task software, which is
requested the least many times, will be replaced by the
new task software.

o The first in first out-based MEC (FIFO-MEC) update task
software caching according to FIFO policy [22].

o The local most popular caching-based MEC (LMP-MEC)
updates the cache based on LMP algorithm [23], which
predicts the next request based on both long-term file
popularity and short-term temporal correlations in request
sequences.

o« MEC offloading: The MEC offloading scheme utilizes
the proposed potential game-based COMO algorithm to
decide the executive method of users’ tasks under the
empty task software caching state of the MEC server.
It only has two ways of task computing, i.e., local
computing and non-caching based COMO.

In the simulations, the proposed scheme and benchmark
schemes are implemented using Python and Pytorch. It is
assumed that K wusers are randomly distributed over a
200mx200m single cell, and the BS is sited in the cell’s
center. Similar with [27], [28], the channel gain is modeled
as hy: = pi(t)d," where dj, is the distance between user k
and the BS, pi(t) ~ Exp(1) is exponentially distributed with
unit mean, which represents the small-scale fading channel
power gain from user k to the MEC server in slot ¢, and n is

6960

TABLE II

SIMULATION SETTINGS
Parameter Value
User number: K 20
Task number: F 50
Number of time slots: 1T’ 2000
Wireless transmission bandwidth: B 30 MHz
Transmission power of devices: pi 05 W
White Gaussian noise variance: o> 2x107 1
CPU capability of user k: fi 1 GHz
CPU capability of the MEC server: fc 20 GHz
Cache size of the MEC server: C 2 GB
The number of channels: M 10
Path loss factor: n 4
Imax 5
Dmax 5
Smax 5
Learning rate of DNN 0.0001
Experience replay memory size: E 1000
Batch size 8
Discount factor: ~ 0.9
T Sms

the path loss factor. According to the realistic measurements
in [31], we set the energy coefficient ¢ as 5 x 10727, The
input parameters data size of each task, i.e., Iy, is uniform
randomly selected in [1, I;,.x] Megabytes. The software data
size of each task, i.e., Dy, is uniform randomly selected in
[1, Diax] Gigabytes. The required CPU cycles for computing
task k, i.e., Sy, is randomly selected in [1, Siax] Gigacycles.
The parameters chosen in the simulation are based on the
parameter setting of a typical MEC network [23], [26], [28].
Unless otherwise stated, the primary simulation environment
settings are summarized in Table II. "

In terms of the user task request (i, 5:/4-1) _

, we use Prlu;
7l ug) = 4] to denote the transition probability from task i to
j (i,j € F) of user k. Similar to [23] and [26], we assume
that all users’ request transition probabilities follow the same
request transition model as follows.

PI'[[L](:+1)
= j |y =1]

R, ieF,j=0,

.5

(1- R)iFi/jlW, i=0,j€F,

= (l—R)i i€ F,j=(i+qmod(F +1),
N q€{1527"'7N}5
0, otherwise.

Pr[u,(fﬂ) :j|p§:) = 1] is parameterized by (R, d, N). Specif-
ically, R is the transition probability of requesting nothing
given any task request at the current time slot. The transition
probability of any task f € F under no current file request is
modeled as a Zipf distribution which parameterized by §. For
any task ¢ € F, we assign a set of IV neighboring tasks, i.e.,
N = {feF, f=(G+n) mod (F+1),n=1,2,---N}
Then, the transition probability of requesting any task f € N
under the current task request < € F is modeled as the uniform
distribution. The transition probability of requesting any task

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 10, OCTOBER 2022

[teration steps

0 10 20 30 40 50 60

50 [~ — — T — T 270
2 !
@ 45+ II
g ! 260
£ 40 i 1
5 i — Proposed TSCU-based COMO
o ‘L Proposed TSCU-based COMO 2]
g 35 5 " 7 (Conventional Tnput ;) 1250 -=
= | T =-=-Proposed COMO Game %
g 30 ———h ——+ B
i i T 1240 g
g 25 1 5
& san B
; 20 230 e
)
= 15 1
o
s Y 1220
E 10 4 1
~

5 " g 210
0 200 400 600 800 1000
Episode

Fig. 5. The energy consumption of users with respect to iteration steps under
the empty caching state of the MEC server.

f ¢ N under the current task request ¢ € F is zero. It is
worth mentioning we provide the transition probability in the
simulation parts to establish the environment. It does not mean
the proposed solution relies on the known transition model.
In fact, the proposed solution is a model-free approach. In the
following results, we alter the transition probability parameters
to verify that the proposed solution has the ability to handle
problems with different transition probabilities.

In Fig. 5, the black solid curve represents the reduced energy
consumption per training slot of the proposed TSCU-based
COMO scheme. The black dash line represents the counterpart
with conventional way that uses the user request p, as the
input of the DNN, and all weights between the first and
the second layer are connected. These two curves are plotted
using the moving average with a window equal 20. The blue
dash curve shows the dynamics of the system-wide energy
consumption in one slot with the empty storage status of the
MEC server. We can see that the potential game-based COMO
algorithm rapidly converge to a stable point, i.e., the NE of the
multi-user COMO game. Moreover, the reduced energy con-
sumption (black curve) increases as the training slots increase
and reaches the maximum reduction value when the learning
process becomes stable. It is valuable to note that the proposed
scheme can rapidly converge to the maximum reduction value
point (less than 1000 slots). Most existing DRL-based caching
works usually consume more than 10* training slots, like [22],
[23]. Compared with directly inputting users’ request state to
the DNN, the proposed SCAA approach is able to reduce
the learning complexity and accelerate the convergence of the
DDQN.

In Fig. 6, we show that the impact of the MEC server’s
cache size on the average energy consumption over each time
slot of the proposed scheme and the five baselines. We can
see that all schemes’ average energy consumption over each
time slot, except the MEC offloading scheme, is reduced
with the increase of cache size. This reduction is because the
larger cache size allows the storage of more task software.
Thus, the requested tasks will have a higher hit rate at the
MEC server, which means that more users can execute their

CHEN et al.: DYNAMIC TASK SOFTWARE CACHING-ASSISTED COMO FOR MULTI-ACCESS EDGE COMPUTING

120

R P e m—

—~<+ MEC Offloading
—%-FIFO-MEC

~-LRU-MEC |
% LFU-MEC
——LMP-MEC
—O—Proposed

R L T

100 |

80

60

20

Time slot average energy consumption

Cache size (GB)

Fig. 6. Comparison of the average energy consumption over each time slot
against different cache size of the MEC server.

tasks through a lower-cost method, i.e., caching-based COMO.
When the cache size is 0, the MEC server cannot cache any
task software, and all schemes only can execute tasks through
non-caching based COMO or local computing. There is no
distinction between these schemes in this case. When the cache
size is big enough to cache all the task software (over 18GB),
all schemes have the same performance. In this case, the MEC
serve can cache all task software in the task library. Thus,
the users can execute their tasks through local computing or
caching-based COMO, and there is also no difference between
these schemes. However, in practical systems, the cache size
of the MEC server is limited and usually cannot cache all the
task software. Specifically, when the cache size is 8GB, the
proposed scheme save around 39% energy than LMP-MEC
scheme.

Fig. 7 plots the average energy consumption over each time
slot of the six schemes versus the number of tasks in the task
library. We can observe that the average energy consumption
over each time slot of the caching-based schemes (i.e., LRU-
MEC, LFU-MEC, FIFO-MEC, LMP-MEC, and the proposed
scheme) increased with the increase of task number. The range
of users’ task requests will be more expansive with the rise
of task number, which may decrease the prediction accuracy
of the task software caching schemes and further decrease the
reusable of the cached task software. In addition, it also can
be observed that the proposed scheme outperforms the other
schemes. When the task number is 10, the proposed scheme
can save up to 62% of energy than the best baseline (LMP-
MEC). This benefit comes from the more accurate prediction
of users’ task demand and the learned knowledge of computing
energy consumption about different users.

Fig. 8 shows that how the average energy consumption
over each time slot varies with the number of users under
different environmental parameters d. Compared with the best
baseline scheme (LMP-MEC), the proposed scheme achieves
the lower average energy consumption over each time slot
across all user number configurations. Moreover, it is observed
that the average energy consumption over each time slot of
the two schemes keeps decreasing with the increase of §.
In fact, as § increases, most of the user requests concentrate

6961

o ke
S oL sk
£ 100 -
g
g <+ MEC Offfoading
S 80 —-FIFO-MEC
2 -0~ LRU-MEC
g ~+LFU-MEC
g 60F/ ——LMP-MEC i
& 7 -O-Proposed
g3
g
= 40 1
-
(=]
=
[}
E 20]
H
0 | | | | | | | |

10 20 30 40 50 60 70 80 90 100
Task Number

Fig. 7. Comparison of the average energy consumption over each time slot
against different task number.

350

& LMP-MEC (6 = 0.1)]
~<+LMP-MEC (6 = 0.7)
% LMP-MEC (5 = 1.3)
—O- Proposed (6 =0.1) |
-O—Proposed (§ = 0.7)
—-Proposed (§ = 1.3)
10 15 20 25 30 35 40 45 50
User Number

Time slot average energy consumption

Fig. 8. Comparison of the average energy consumption over each time slot
against different user number.

on a few tasks, and the remaining tasks in the library have
a very low probability of being requested. Thus, a large
is able to improve the prediction accuracy of the two task
software caching schemes, and the cached task software has a
higher probability of being used. Besides, the proposed scheme
saves over 25% of energy when the user number exceeds
50 compared to the LMP-MEC scheme.

Fig. 9 plots the average energy consumption over each time
slot of the proposed and LMP-MEC scheme. We can see that
the average energy consumption over each time slot of both
the proposed and LMP-MEC scheme keeps increasing along
with the increase of Sp.x. Using the LMP-MEC scheme as the
baseline, the proposed scheme reduces energy consumption
by 11.5% to 22% across the parameter setting of Spax. The
reason is that the growth of Sy, will increase the average
computation load of tasks, leading to the increases of the local
computing energy consumption and the execution delay of the
offloaded tasks. The rise of execution delay at the MEC server
is likely to reduce the number of offloaded tasks, inducing the
average energy consumption growth over each time slot for
both schemes. Besides, we can observe that the average energy
consumption over each time slot of both schemes decreased
with the increase of R. The number of users who request to

6962

¢~
<+ LMP-MEC (R =0.1)
" |-0-Proposed (R = 0.1)
~% LMP-MEC (R = 0.2)
—+ LMP-MEC (R = 0.3)
—O- Proposed (R = 0.2)
—¥- Proposed (R = 0.3)

Time slot average energy consumption

8 9 10

Smax

Fig. 9. Comparison of the average energy consumption over each time slot
against users’ request transition probability parameter R.
130

~+LMP-MEC (N = 3)
—% - Proposed (N = 10)
—O- Proposed (N =5)
-O-Proposed (N = 3)

S}
(=]
T

—_
—_
(=]

—_
(=3
(=)

O
S

e}
(=}

Time slot average energy consumption

3 4 5 6 7 8 9 10
Dmax

Fig. 10. Comparison of the average energy consumption over each time slot
against users’ request transition probability parameter V.

execute tasks will decrease with the rise of R. That is to say,
the total number of tasks executed in a slot is likely to decline
with the increase of R, resulting in the growth of average
energy consumption.

We reveal the impact of the parameter Dy,.x and N on the
average energy consumption over each time slot in Fig. 10.
We can see that the average energy consumption over each
time slot of the proposed schemes keeps increasing along
with the increase of Dyx. This phenomenon results from
that the growth of D ,x will increase the average size of
the tasks’ software, reducing the number of task software that
are cached at the MEC server and increasing the transmission
delay and energy consumption of COMO. As the varying of
D max , the proposed scheme is able to save about 12%-16%
energy compared with the best baseline, LMP-MEC. Besides,
the average energy consumption over each time slot of the
proposed scheme increases along with N. The reason is that
the users’ task request range will be more expansive with the
increase of N, which will reduce the prediction accuracy of
the task software caching schemes and further increase the
average energy consumption over each time slot. Moreover,
the gap between N = 3 and N = 5 is larger than the gap
between N = 5 and N = 10. When N increases to a large

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 10, OCTOBER 2022

number (around 5), every user has the same probability of
requesting five tasks. The tasks that all users may request is
likely to cover the task library, and the request probability of
each task are approximate. In this case, the prediction accuracy
may converge to a stable point. Thus, the increment of energy
consumption is small with the increase of N. In fact, when [NV
increase to a large value, the average energy consumption of
all task software caching schemes will keep stable.

V. CONCLUSION

This paper investigated a joint TSCU and COMO prob-
lem in a dynamic multi-user MEC network to minimize the
users’ task execution energy consumption while satisfying the
task execution delay constraint. Through detailed analysis,
we have proposed to solve the problem through two stages.
Firstly, we reformulated the COMO problem as a multi-user
COMO game and proposed a decentralized COMO algorithm
to obtain its NE solution under any task software caching
state. Then, we developed a DDQN-based TSCU algorithm
to solve the optimal caching update strategy for the MEC
server. The proposed scheme can capture task popularity,
inter-task request correlation, users’ communication conditions
and computing capabilities. Simulations results show that the
proposed method can rapidly converge to stable and precisely
predict users’ future task demands and outperform the other
benchmark approaches in energy consumption. In future work,
we will optimize the bandwidth usage, time delay, and energy
consumption under a practical MEC case with cloud-aided
backhaul and asynchronous traffic.

APPENDIX
A. Proof of Lemma 1

We prove that problem P is NP-hard via the restric-
tion method [37]. Specifically, we show that the problem
P can be restricted to a maximum cardinality bin packing
problem. For clarity, we introduce the maximum cardinality
bin packing problem [39]: Given K items with sizes s,
ke {1,2,--- K}, and M bins of identical capacity @), the
objective is to assign a maximum number of items to the fixed
number of bins without violating the capacity constraint.

The NP-hardness of the maximum cardinality bin packing
problem has been proved in [39]. To prove that Problem P is
NP-hard, let us show that P contains a maximum cardinality
bin packing problem as a special case. To this end, let us focus
on one specific time slot ¢ by setting 7' = 1, and assume that
both the caching state of the MEC server b; and the users’
task request g, are known. Thus, problem P is restricted as
the following problem.

P: max — E B,
o2 ke ’

s. t. (9b), (%). (24)

For problem P, art = 0 if and only if E} F < (1 -

(t) (t) ’
by VER 1ty B g o
offload its task. Inspired by this, we further restrict problem P
by setting av, ¢ € M to just consider users execute their tasks

through COMO. Additionally, we regard all users’ COMO

otherwise user k& will select a channel to

CHEN et al.: DYNAMIC TASK SOFTWARE CACHING-ASSISTED COMO FOR MULTI-ACCESS EDGE COMPUTING

cost as -1 (ie., (1 — bgf))E,gﬁt + b;t)E,gf,t = —1) and each

user request to execute a task ;Lf:)
we introduce a binary variable a,(;)m, where a(t) =1 if and
only if ay; = m, 0therw1se is 0. Thus, we reformulate the

restricted problem P as follows.

€ F. For ease of proof,

P n})c&}x ZkEIC ZmEM km (25)
(t)
5. L. ZmeM ap), <1, (25a)
D ek MomPihi < Q. (25b)
o) € {01}, (25¢)
where the capacity @ is
h

Q= — D — o +pihy. (26)

PR (If+Df—bf Dy)

2 BCS? 1

Note that (26) follows from (11). For the restricted problem 75,
we regard the items and the bins in the maximum cardinality
bin packing problem as the users and channels in problem P,
respectively. The size of item k is s; = prhy. The objective
of problem P is to assign a maximum number of items to
the fixed number of bins and satisfy the capacity constraint.
Thus, if problem P can be effectively solved, the maximum
cardinality bin packing problem can also be solved by a
polynomial time algorithm. This manifests that the original
problem P can be reduced to a maximum cardinality bin
packing problem. Therefore, we can conclude that problem
‘P is NP-hard.

B. Proof of Remark 1

For user k, when the COMO decisions of other users except
user k (i.e., a—_j) are given, we use oy, and a%_t to denote
two different task offloading decisions of user k. Based on the
definition of ordinal potential game in [40], game G should
satisfy

sgn[(i, ki) — P gy k1))
= Sgn[ft(ak,ta a—k’,t) - ft(a;§7ta a—k’,t)]7 (27)

where sgn[-] is a signum function. For ease of proof, we first
derive the expression of ¢(a ¢, ¥_+) as follows.

¢(Oék,t; Oéfk,t)

K
1
=3 SN prhipnhinl(on: = o) L(ak > 0)
k=1 n=£k
K

+ Zpkhkvk]l(ak,t =0)
k=1

1
= 2 Zn;ﬁk’ pkhkpnhn]l(an,t = ak,t)]l(akﬂe > O)

1 K
+§ Zl;‘ék plhlpkhk]l(akﬂ‘/ - al,t)]l(OéLt > O)

K
1
+§ E E prhupphnL(an,: = a;¢)L(ag s > 0)
l#k n#l,n#k

6963
K
+pehi Vi l(ag,: = 0) + Zplthl]l(Oéz,t =0)
1k
= prhi Y pabnl(an = ax) 1k, > 0)
n;ék
+= Z Z lhlpnh]1 anf = alf)]l(al,t > O)
l;ék n#lntk

K
+prehiVil(ag,: = 0) + Z#k pthiVil(ag: = 0).
(28)

Below we discuss the relationship between ¢(a ¢, a_j ¢) —

e g a—pt) and fi(ogr, g) — fe(ag, ;, a—p) in three
cases.

1) ap: >0, a%’t > 0. According to (28), we have

Ptk by 0 ht) — DX gy k)

= pkhk anhn]]-(an,t = ak,t)

n#k
—prhi Y palin (0 = k')
n#k
= prhi (T — Thot) - (29)
Based on (8), we have
Jlo, g f) - f(a;c 6O kt)
1 1
= > 1w =prlly + Dy = b D) (——
feF Tkt Ty
(30)
According to the definition of uplink rate and chan-
nel interference in (2) and (11), sgn(— - %) =
k.t
sgn(Yg,e — Yp,) is established. Hence, Eq. (27) is

established in this case.
2) o >0, a%’t = 0. Similarly, according to (28), we have

¢(a;c7t7 a*k,t)
= prhy (Zn# Prhnl(am e =ag,y) —Vk)
= prhi(The—Vi).

Furthermore, according to (8), we have

¢(Oék,t; Oéfk,t)_
(31)

f(a;c,ta a—k’ﬂ‘/)

Iy +D;—bD; 53
- Y a) = p(p PP Sy

f(ak,t, Oé—k,t) -

2
feFx
(32)
According to the analysis of (11), we have
I;+D; =)D 53
sen (T = Vi) = san(p 220 %)

Thus, Eq. (27) is established in this case.
3) ap, =0, am > (. This case is similar with case 2. Eq.
(27) is also established in this case.

Summarize the above results, Eq. (27) is established in any
case. Consequently, game G is a ordinal potential game and
can achieve a NE solution after finite number of iterations [40].

6964

C. Proof of Lemma 2

For ease of presentation,
maxiex {Prhr}, Amin
maxrec{Ve}, Viin
function, we have

we define Apax

minkelc {thk}, Vmax
mingexc{Vs}. For the potential

(@)

K

1

3 DD prhipnhin(on = ag)L(ag, > 0)
k=1 n#£k

K

+ Zk:l prhVil(an,e = 0)

1 K 9

LTS At = stk >0
K

+ Zk:l Amaxvvmax]]-(Oék,t - 0)

1K2A2
2 m

P(a)

S + KAmHX‘/YIIlaX7 (33)

ax

where (a) follows from (12).

The COMO algorithm first initializes the COMO decisions
of all users as 0, the initial value of ¢(a) is ¢(0) =
Zszl PrehiVie > K AinVinin- Thus, the value range of ¢ (o)
is less than %KQAIQnaX + K (AmaxVinax — Amin Vimin)- In each
iteration, there is one user to update its decision to decrease
the computing cost. Based on the definition of potential game,
the decision update also decreases the value of potential
function. It is assumed that user k£ updates its offloading
decision o, ; to a better decision O‘;c,t in one iteration, i.e.,
P(ag,t,—pt) — ¢y ;s a—k,¢) > 0. Below we analyze the
decrement of ¢(c;) in each iteration in three cases.

1) g >0and o), > 0.
D(h,ty k) = P(A) gy 1)

(a)

2 pitic 3 padin (=m0~ Lo =an))
n#k

> 0.

(34)

where (a) follows from (29). Since the value of indicator
function 1(-) is integer, we have

anhn (]]-(ak,t = an,t) -]1(042715 = an,t)) > Amin.
n#k
(35)

Consequently, (g, ¢, —k,t) — Gy, vpp) > A

min*®
2) age > 0,00, =0.

Pkt pt) — D 4, O —t)

@ pkhk(z Prnhnl(ane = agy) — Vk) > 0.
n#k
(36)

where (a) follows from (31). Thus, there is a positive
number £ = Zn?ﬁk Prhnl(ons = o) — Vi, subject
t0 G, _pt) — Gt _pt) = eprhi > €Amin
g, = 0,aj, > 0. Similar to case 2, there is a positive
integer € such that ¢(ay, @—k,) — @) 4, k) >
5Amin-

3)

Summarizing the above three cases, we have
Ot Oé—k,t)_¢(04;¢,t; k1) > eAnin, where € is a positive

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 10, OCTOBER 2022

number. That is to say, in each iteration, the potential function

will decrease at least eA;,. Accordingly, the algorithm will
1 ithi %K2Ax21nx+K(Amameax_AminVmin)
terminate within = N

and obtain a NE solution for C(E)MO problem.

iterations

REFERENCES
[1] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila, “A sur-
vey on mobile augmented reality with 5G mobile edge computing:
Architectures, applications, and technical aspects,” IEEE Commun. Sur-
veys Tuts., vol. 23, no. 2, pp. 1160-1192, Feb. 2021.
Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” [EEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322-2358, 4th Quart., 2017.
D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust,
“Mobile-edge computing architecture: The role of MEC in the Internet
of Things,” IEEE Consum. Electron. Mag., vol. 5, no. 4, pp. 84-91,
Oct. 2016.
P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec-
ture and computation offloading,” IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1628-1656, 3rd Quart., 2017.
Z. Sun and M. R. Nakhai, “An online learning algorithm for distributed
task offloading in multi-access edge computing,” IEEE Trans. Signal
Process., vol. 68, pp. 3090-3102, 2020.
H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi, and C. Assi,
“Dynamic task offloading and scheduling for low-latency IoT services
in multi-access edge computing,” IEEE J. Sel. Areas Commun., vol. 37,
no. 3, pp. 668-682, Mar. 2019.
Z. Yu, Y. Gong, S. Gong, and Y. Guo, “Joint task offloading and
resource allocation in UAV-enabled mobile edge computing,” [EEE
Internet Things J., vol. 7, no. 4, pp. 3147-3159, Apr. 2020.
Q. Zhang, L. Gui, F. Hou, J. Chen, S. Zhu, and F. Tian, “Dynamic task
offloading and resource allocation for mobile-edge computing in dense
cloud RAN,” [EEE Internet Things J., vol. 7, no. 4, pp. 3282-3299,
Apr. 2020.
M. Zhao et al., “Energy-aware task offloading and resource allocation
for time-sensitive services in mobile edge computing systems,” [EEE
Trans. Veh. Technol., vol. 70, no. 10, pp. 10925-10940, Aug. 2021.
T. X. Tran and D. Pompili, “Adaptive bitrate video caching and process-
ing in mobile-edge computing networks,” IEEE Trans. Mobile Comput.,
vol. 18, no. 9, pp. 1965-1978, Sep. 2019.
M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 587-597, Mar. 2018.
W. Wen, Y. Cui, T. Q. S. Quek, F.-C. Zheng, and S. Jin, “Joint optimal
software caching, computation offloading and communications resource
allocation for mobile edge computing,” IEEE Trans. Veh. Technol.,
vol. 69, no. 7, pp. 7879-7894, Jul. 2020.
J. Yan, S. Bi, L. Duan, and Y.-J.-A. Zhang, “Pricing-driven service
caching and task offloading in mobile edge computing,” IEEE Trans.
Wireless Commun., vol. 20, no. 7, pp. 4495-4512, Jul. 2021.
Z. Chen, Z. Zhou, and C. Chen, “Code caching-assisted computation
offloading and resource allocation for multi-user mobile edge comput-
ing,” IEEE Trans. Netw. Service Manage., vol. 18, no. 4, pp. 4517-4530,
Dec. 2021.
S. Bi, L. Huang, and Y.-J.-A. Zhang, “Joint optimization of ser-
vice caching placement and computation offloading in mobile edge
computing systems,” I[EEE Trans. Wireless Commun., vol. 19, no. 7,
pp. 4947-4963, Jul. 2020.
W. Yi, Y. Liu, and A. Nallanathan, “Cache-enabled HetNets with
millimeter wave small cells,” IEEE Trans. Wireless Commun., vol. 66,
no. 11, pp. 5497-5511, Nov. 2018.
H. Xing, J. Cui, Y. Deng, and A. Nallanathan, “Energy-efficient proactive
caching for fog computing with correlated task arrivals,” in Proc. [EEE
SPAWC, Jul. 2019, pp. 1-5.
X. Yang, Z. Fei, J. Zheng, N. Zhang, and A. Anpalagan, “Joint
multi-user computation offloading and data caching for hybrid mobile
cloud/edge computing,” IEEE Trans. Veh. Technol., vol. 68, no. 11,
pp. 11018-11030, Nov. 2019.
Z. Chen and Z. Zhou, “Dynamic task caching and computation offload-
ing for mobile edge computing,” in Proc. IEEE Global Commun. Conf.
(GLOBECOM), Dec. 2020, pp. 1-6.
Z. Chen, Z. Chen, and Y. Jia, “Integrated task caching, computation
offloading and resource allocation for mobile edge computing,” in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Dec. 2019, pp. 1-6.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

CHEN et al.: DYNAMIC TASK SOFTWARE CACHING-ASSISTED COMO FOR MULTI-ACCESS EDGE COMPUTING

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]
[34]

[35]

[36]
[37]

[38]

[39]

[40]

J. Zhang et al., “Joint resource allocation for latency-sensitive services
over mobile edge computing networks with caching,” IEEE Internet
Things J., vol. 6, no. 3, pp. 4283-4294, Oct. 2018.

P. Wu, J. Li, L. Shi, M. Ding, K. Cai, and F. Yang, “Dynamic content
update for wireless edge caching via deep reinforcement learning,” IEEE
Commun. Lett., vol. 23, no. 10, pp. 1773-1777, Oct. 2019.

Y. Qian, R. Wang, J. Wu, B. Tan, and H. Ren, “Reinforcement learning-
based optimal computing and caching in mobile edge network,” IEEE
J. Sel. Areas Commun., vol. 38, no. 10, pp. 2343-2355, Oct. 2020.

J. Zhang et al., “Joint resource allocation for latency-sensitive services
over mobile edge computing networks with caching,” IEEE Internet
Things J., vol. 6, no. 3, pp. 4283-4294, Jun. 2019.

R. Zheng, H. Wang, M. De Mari, M. Cui, X. Chu, and T. Q. S. Quek,
“Dynamic computation offloading in ultra-dense networks based on
mean field games,” IEEE Trans. Wireless Commun., vol. 20, no. 10,
pp. 6551-6565, Oct. 2021.

Y. Sun, Y. Cui, and H. Liu, “Joint pushing and caching for bandwidth
utilization maximization in wireless networks,” IEEE Trans. Commun.,
vol. 67, no. 1, pp. 391-404, Jan. 2019.

T. S. Rappaport et al., Wireless Communications: Principles and Prac-
tice, vol. 2. Upper Saddle River, NJ, USA: Prentice-Hall, 1996.

X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795-2808, Oct. 2016.

M. Xiao, N. B. Shroff, and E. K. P. Chong, “A utility-based power-
control scheme in wireless cellular systems,” IEEE/ACM Trans. Netw.,
vol. 11, no. 2, pp. 210-221, Apr. 2003.

M. Chiang, P. Hande, T. Lan, and C. W. Tan, “Power control in wireless
cellular networks,” Found. Trends Netw., vol. 2, no. 4, pp. 381-533,
Apr. 2008.

A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” in Proc. HotCloud, vol. 10, 2010, pp. 1-7.

A. Bozorgchenani, D. Tarchi, and W. Cerroni, “On-demand service
deployment strategies for fog-as-a-service scenarios,” IEEE Commun.
Lett., vol. 25, no. 5, pp. 1500-1504, May 2021.

H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. AAAI, 2016, vol. 30, no. 1, pp. 1-7.
R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

R. Agarwal, D. Schuurmans, and M. Norouzi, “An optimistic perspec-
tive on offline reinforcement learning,” in Proc. ICML, Nov. 2020,
pp. 104-114.

I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. Cambridge,
MA, USA: MIT Press, 2016.

M. R. Garey and D. S. Johnson, Computers and Intractability, vol. 174.
San Francisco, CA, USA: Freeman, 1979.

G. Hasslinger, J. Heikkinen, K. Ntougias, F. Hasslinger, and
O. Hohlfeld, “Optimum caching versus LRU and LFU: Comparison and
combined limited look-ahead strategies,” in Proc. Int. Symp. Modeling
Optim. Mobile, Ad Hoc, Wireless Netw. (WiOpt), 2018, pp. 1-6, doi:
10.23919/WIOPT.2018.8362880.

K.-H. Loh, B. Golden, and E. Wasil, “Solving the maximum cardinality
bin packing problem with a weight annealing-based algorithm,” in Oper-
ations Research and Cyber-Infrastructure. Springer, 2009, pp. 147-164.
K. Yamamoto, “A comprehensive survey of potential game approaches
to wireless networks,” IEICE Trans. Commun., vol. 98, no. 9,
pp. 1804-1823, Sep. 2015.

Zhixiong Chen (Graduate Student Member, IEEE)
received the B.S. and M.S. degrees from Chongqing
University, Chongqing, China, in 2018 and 2021,
respectively. He is currently pursuing the Ph.D.
degree with the Communication Systems Research
Group, School of Electronic Engineering and Com-
puter Science, Queen Mary University of London.

His current research interests include reinforce-
ment learning, wireless federated learning, and dis-
tributed learning.

6965

Wengiang Yi (Member, IEEE) received the
Ph.D. degree in electrical engineering from the
Queen Mary University of London, U.K., in 2020.

Since 2020, he has been a Post-Doctoral
Researcher with the Communication Systems
Research Group, School of Electronic Engineer-
ing and Computer Science, Queen Mary University
of London. His research interests include NGMA,
millimeter-wave communications, stochastic geom-
etry, and reinforcement learning. He has served
as a TPC Member for many IEEE conferences,
such as GLOBECOM and VTC. He received the Exemplary Reviewer of
the IEEE COMMUNICATION LETTERS and the IEEE TRANSACTIONS ON
COMMUNICATIONS in 2019 and 2020. He is the Guest Editor of the Special
Issue “Integrated Sensing and Communication” in Sensors. He serves as
the Secretary for the Special Interest Group on Next Generation Multiple
Access (NGMA) by the SPCC Technical Committee. He also serves as the
Secretary for Emerging Technologies Initiatives on NGMA by the Emerging
Technologies Committee.

-

s

Atm S. Alam (Member, IEEE) is currently a Lec-
turer (Assistant Professor) at the School of Elec-
tronic Engineering and Computer Science (EECS),
Queen Mary University of London, U.K. With years
of academic and research experience, he is adept at
bridging research, innovations, and commercializa-
tions via digital transformations for a better world.
His research interests include cognitive communi-
cations and networking, ML/AI in wireless com-
munications, and emerging applications of cognitive

) - communications and networking in verticals. He is

a fellow of the Higher Education Academy (FHEA), U.K.

Arumugam Nallanathan (Fellow, IEEE) was an
Assistant Professor with the Department of Electri-
cal and Computer Engineering, National University
of Singapore, from August 2000 to December 2007.
He was with the Department of Informatics, King’s
College London, from December 2007 to August
2017, where he was a Professor of wireless com-
munications from April 2013 to August 2017 and
a Visiting Professor since September 2017. He has
been a Professor of wireless communications and
the Head of the Communication Systems Research
(CSR) Group, School of Electronic Engineering and Computer Science,
Queen Mary University of London, since September 2017. He published
more than 500 technical papers in scientific journals and international con-
ferences. His research interests include artificial intelligence for wireless
systems, beyond 5G wireless networks, the Internet of Things (IoT), and
molecular communications. He received the IEEE Communications Society
SPCE Outstanding Service Award in 2012 and IEEE Communications Society
RCC Outstanding Service Award in 2014. He was a co-recipient of the Best
Paper Awards presented at the IEEE International Conference on Commu-
nications 2016 (ICC 2016), IEEE Global Communications Conference 2017
(GLOBECOM 2017), IEEE Vehicular Technology Conference 2018 (VTC
2018), and IEEE Communications Society Leonard G. Abraham Prize in
2022. He served as the Chair for the Signal Processing and Communication
Electronics Technical Committee of IEEE Communications Society and
Technical Program Chair and a member of technical program committees
in numerous IEEE conferences. He is an Editor-at-Large of IEEE TRANS-
ACTIONS ON COMMUNICATIONS and a Senior Editor of IEEE WIRELESS
COMMUNICATIONS LETTERS. He was an Editor of IEEE TRANSACTIONS
ON WIRELESS COMMUNICATIONS (2006-2011), IEEE TRANSACTIONS ON
VEHICULAR TECHNOLOGY (2006-2017), and IEEE SIGNAL PROCESSING
LETTERS. He is an IEEE Distinguished Lecturer. He has been selected as a
Web of Science Highly Cited Researcher in 2016 and AI 2000 Internet of
Things Most Influential Scholar in 2020.

http://dx.doi.org/10.23919/WIOPT.2018.8362880

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

