
6950 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 10, OCTOBER 2022

Dynamic Task Software Caching-Assisted
Computation Offloading for Multi-Access

Edge Computing
Zhixiong Chen , Graduate Student Member, IEEE, Wenqiang Yi , Member, IEEE,

Atm S. Alam, Member, IEEE, and Arumugam Nallanathan , Fellow, IEEE

Abstract— In multi-access edge computing (MEC), most exist-1

ing task software caching works focus on statically caching data2

at the network edge, which may hardly preserve high reusability3

due to the time-varying user requests in practice. To this end, this4

work considers dynamic task software caching at the MEC server5

to assist users’ task execution. Specifically, we formulate a joint6

task software caching update (TSCU) and computation offloading7

(COMO) problem to minimize users’ energy consumption while8

guaranteeing delay constraints, where the limited cache size9

and computation capability of the MEC server, as well as the10

time-varying task demand of users are investigated. This problem11

is proved to be non-deterministic polynomial-time hard, so we12

transform it into two sub-problems according to their temporal13

correlations, i.e., the real-time COMO problem and the Markov14

decision process-based TSCU problem. We first model the COMO15

problem as a multi-user game and propose a decentralized algo-16

rithm to address its Nash equilibrium solution. We then propose a17

double deep Q-network (DDQN)-based method to solve the TSCU18

policy. To reduce the computation complexity and convergence19

time, we provide a new design for the deep neural network (DNN)20

in DDQN, named state coding and action aggregation (SCAA).21

In SCAA-DNN, we introduce a dropout mechanism in the input22

layer to code users’ activity states. Additionally, at the output23

layer, we devise a two-layer architecture to dynamically aggregate24

caching actions, which is able to solve the huge state-action space25

problem. Simulation results show that the proposed solution26

outperforms existing schemes, saving over 12% energy, and27

converges with fewer training episodes.28

Index Terms— Computation offloading, deep reinforcement29

learning, game theory, multi-access edge computing, software30

caching.31

I. INTRODUCTION32

W ITH the development of wireless communications and33

the proliferation of smart end devices, a large number34

of computation-intensive applications have emerged to bring35

powerful functions and ultimate experience to users, such36

Manuscript received 19 December 2021; revised 1 May 2022 and
3 August 2022; accepted 11 August 2022. Date of publication 18 August 2022;
date of current version 18 October 2022. This work was supported in part
by the Engineering and Physical Sciences Research Council (EPSRC), U.K.,
under Grant EP/R006466/1, and in part by the China Scholarship Council.
The associate editor coordinating the review of this article and approving it
for publication was H. Zhang. (Corresponding author: Wenqiang Yi.)

The authors are with the School of Electronic Engineering and Computer
Science, Queen Mary University of London, London E1 4NS, U.K.
(e-mail: zhixiong.chen@qmul.ac.uk; w.yi@qmul.ac.uk; a.alam@qmul.ac.uk;
a.nallanathan@qmul.ac.uk).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCOMM.2022.3200109.

Digital Object Identifier 10.1109/TCOMM.2022.3200109

as augmented reality, object recognition, interactive gam- 37

ing, speech recognition, and natural language processing [1]. 38

These applications require massive computational resources 39

and energy. However, the limited computing capability and 40

battery capacity of the mobile devices are generally difficult 41

to meet the computation requirements while executing these 42

applications [2]. To cope with it, multi-access edge computing 43

(MEC) has attracted significant attention in industry and acad- 44

emia. MEC deploys cloud-computing capabilities and storage 45

resources within the network edge near to users, such as base 46

stations (BS) and access points (AP) [3]. It allows mobile 47

users to offload their computation tasks to the network edge 48

with higher computation capability. 49

A. Related Works 50

From the users’ perspective, a critical application regarding 51

the MEC is computation offloading (COMO) which is able to 52

save energy and/or speed up the process of computation [4]. 53

Emerging research towards this direction mainly focus on 54

the joint optimization of the resource allocation and COMO 55

policies. The authors in [5] developed an online binary task 56

offloading algorithm to reduce task execution delay in a 57

cellular MEC system. In [6], the authors proposed a task 58

offloading and computing resource allocation approach by 59

considering the heterogeneity in the latency requirements of 60

different tasks. The authors in [7] optimized a partial offload- 61

ing policy in a unmanned aerial vehicle-enabled MEC system 62

to minimizing the task computing delay of clients. [8] studied 63

a joint partial task offloading, computation resource, and radio 64

resource allocation problem to maximize the task computing 65

energy efficiency. In [9], the authors investigated an energy 66

consumption minimization problem subject to the latency 67

requirement by optimizing task offloading ratio, transmission 68

power, and subcarrier & computing resource allocation. 69

Computing a task requires both the user task data as the 70

input parameters and the corresponding code/task software 71

that processes it. Take face recognition as an example; if a 72

mobile phone needs to identify whether a person is a legitimate 73

user, it takes a photo (input parameters) and uses it as the 74

input data of the face recognition software. After computing, 75

the software output whether the person is a legitimate user, 76

namely computing results. Existing literature on computation 77

offloading can be classified into two main scenarios: 1) The 78

MEC server has unlimited storage space that can store all 79

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4183-8857
https://orcid.org/0000-0003-4732-5040
https://orcid.org/0000-0001-8337-5884

CHEN et al.: DYNAMIC TASK SOFTWARE CACHING-ASSISTED COMO FOR MULTI-ACCESS EDGE COMPUTING 6951

task software for users [10], [11]. In this case, users only80

need to transmit input parameters to the MEC server for task81

execution; and 2) The cache size of the MEC server is limited82

and hence the server fails to cache all task software. Users need83

to upload both task software and input parameters under this84

scenario [12], [13], [14], [15]. Since the second scenario can85

be used to characterize most applications in MEC, we consider86

the second scenario in this work. The data uploading process87

and task execution process will generate substantial energy88

consumption and delay. To improve the computing perfor-89

mance of MEC, caching task computing results at the MEC90

server has been identified to reduce the frequency of repeated91

data transmission and task computations [16]. It proactively92

caches some task computing results that may be reused in93

future task execution [17], [18]. Although the task computing94

results caching technique can reduce task execution delay and95

energy consumption to a certain degree, it is impractical since96

the task computing results are hardly reusable. In general,97

computation tasks consist of input parameters and the cor-98

responding task software. The task software is fixed and it99

can output different computation results under different input100

parameters. To improve the reusability of cached data, the task101

software caching technique was proposed to cache the task102

software at the MEC server to assist the COMO.103

Specifically, in our previous work [14], [19], [20], we inte-104

grated the task program caching mechanism into the COMO105

technique and designed a model-based task program caching106

algorithm to minimize the average energy consumption or107

latency for all time slots. The authors in [15] investigated108

a single MEC server that assists a mobile user in executing109

a sequence of computation tasks and used the task program110

caching technique to reduce the computation delay and energy111

consumption of the mobile user. The authors developed an112

MEC service pricing scheme to coordinate with the service113

caching decisions and control wireless devices’ task offloading114

behaviours in a cellular network to minimize task execution115

delay and cost [13]. The authors in [12] provided a joint116

caching, computation, and communications mechanism to117

minimize the weighted sum energy consumption subject to118

the caching and deadline constraints. In [21], the authors119

investigated a joint COMO, content caching, and resource120

allocation problem in a general MEC network to minimize121

the total execution latency of computation tasks.122

B. Motivation and Contributions123

Existing works on task computing results caching [17], [18]124

or task software caching-based MEC [12], [13], [14], [15],125

[15], [19], [20], [21] statically cache data at the network126

edge, they prefer to cache data that remains unchanged over127

a relatively long time. In fact, users’ demand for computation128

tasks dynamically changes over time. The static caching policy129

cannot preserve the high reusability of the cached data. Thus,130

it is important to design learning-based methods to predict the131

users’ task demand and adjust the cache memory dynamically132

for improving the reusable rate of the cached data. Moreover,133

it is noted that most existing works in model-free learning-134

based content caching design, like [22], [23], assumed that135

the task data size is homogeneous, while in practice this136

assumption does not always hold. Thus, it is valuable to design137

a new task software caching update (TSCU) and COMO 138

algorithm which is capable of automatically adapting to the 139

heterogeneous size of task software and dynamically adjust 140

the cache space in real-time according to user requests. 141

Motivated by this, we consider the dynamic task software 142

caching technique at an MEC network. Specifically, the task 143

software in the cache memory is updated periodically based 144

on the prediction of users’ task computation demand to assist 145

users’ COMO. With the assistance of task software caching, 146

users can accomplish their tasks through either local comput- 147

ing, caching-based COMO, or non-caching-based COMO. The 148

main contributions of this paper are listed in the following: 149

• We formulate a joint TSCU and COMO problem in 150

a multi-channel wireless environment to minimize the 151

average energy consumption of mobiles users over each 152

time slot while satisfying the task execution delay tol- 153

erance. It is intractable to solve its optimal solution 154

due to the lack of user task request information and 155

the complexity of addressing efficient wireless access 156

coordination among multiple users for COMO. With the 157

aid of the maximum cardinality bin packing problem, 158

we theoretically prove that the considered problem is non- 159

deterministic polynomial-time hard (NP-Hard). 160

• To tackle this NP-Hard problem, we first decompose 161

it into two distributed sub-problems, i.e., the COMO 162

problem at the user side and the TSCU problem at the 163

MEC server side, and solve them one by one. Since the 164

COMO problem involving a combinatorial optimization 165

over the multi-dimensional discrete space is challenging, 166

we reformulate it as a multi-user COMO game, and 167

theoretically prove the existence of the Nash equilibrium 168

(NE) solution of the COMO game. Based on detailed 169

analysis, We then propose a decentralized algorithm to 170

address its NE solution with a convergence guarantee. 171

• For the second sub-problem, we propose a double deep 172

Q-network (DDQN)-based method to learning the opti- 173

mal TSCU policy under unknown user task requests 174

information. The massive tasks with heterogeneous data 175

size in the task library result in a high-dimension and 176

complex caching action space which intractable to solve. 177

Moreover, directly using the user request state as the deep 178

neural network (DNN) input may improve the learning 179

complexity. These factors hinder the convergence of the 180

DDQN. To cope with these challenges, we proposed a 181

state coding and action aggregation (SCAA) design for 182

the DNN used in the DDQN. Specifically, we devise a 183

dropout mechanism in the first two layers of the DNN 184

to code users’ requests instead of directly using them 185

as input states. A two-layer architecture as the output 186

layer of the DNN dynamically aggregates task software 187

caching action to output the corresponding state-action 188

value. This design effectively reduces the complexity of 189

the DDQN, leading to faster convergence than traditional 190

DDQN algorithms. 191

• We conduct simulations to evaluate the performance of 192

our proposed dynamic TSCU assisted COMO approach. 193

The results show that the proposed approach significantly 194

reduces the users’ computation energy consumption. 195

It outperforms the conventional caching update-based 196

6952 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 10, OCTOBER 2022

TABLE I

NOTATION SUMMARY

COMO approaches. Moreover, the proposed scheme197

is capable to converge faster than other reinforcement198

learning-based caching update approaches.199

C. Organization200

The rest of this paper is organized as follows. In Section II,201

we first illustrate the system model, then formulate the joint202

TSCU and COMO problem. In Section III, we propose an effi-203

cient scheme to solve the original problem. Section IV verifies204

the effectiveness of the proposed scheme by simulations. The205

conclusion is drawn in Section V. The code and dataset are206

available at https://github.com/chfocus/DRL-MEC.207

II. SYSTEM MODEL208

A. Network Model209

In this paper, we focus on a multi-user MEC network210

consisting of a BS and K users as shown in Fig. 1(a), where211

the BS is equipped with an MEC server that can access the212

task library in the cloud centre through an ideal backhaul link.213

The main notations used throughout this paper are summarized214

in Table I. Let K = {1, 2, · · · , K} represents the user index215

set. It is assumed that there are total F tasks in the task216

library, whose index set is denoted by F = {1, 2, · · · , F}.217

We consider that the system operates in a sequence of T time218

slots with an equal length τ . The index set of the time sequence219

is denoted by T = {1, 2, · · · , T }. The operation mechanism220

of the system is shown in Fig. 1(b). At the beginning of each221

time slot, each user requests to execute one task in the task222

library or does not request to execute any task. Similar to [24],223

[25], we assume that each task must be accomplished before224

the end of the current slot, either by its local computing or by225

the MEC server execution. Note that this assumption can be226

removed by setting delay constraints for each user individually227

and letting the time slot length be long enough to exceed the228

maximum delay constraint of users. Moreover, users’ tasks229

requiring multiple slots to execute are usually inactive in230

practical system design because this can usually be satisfied by231

modifying the time slot length. At the end of this time slot,232

the MEC server first updates its caching space, and then it 233

caches the selected new task software to assist users’ COMO 234

in the next time slot. After obtaining the task software, the 235

edge server installs the software (e.g., executable.EXE files), 236

and run it based on different input parameters. 237

Each task f ∈ F can be described by a tuple of three 238

parameters, i.e., �If , Df , Sf �, where If indicates the size of 239

input parameters of task f , Df is the data volume of the 240

software of task f , and Sf denotes the computation load of 241

task f , i.e., the necessary central processing unit (CPU) cycles 242

for executing task f . Let b
(t)
f ∈ {0, 1} denote the caching 243

state of task f in time slot t, where b
(t)
f = 1 represents that 244

the software of task f is cached at the MEC server, b
(t)
f = 245

0 otherwise. The caching state in time slot t is characterized by 246

bt = {b(t)
1 , b

(t)
2 , · · · , b

(t)
F }. The cache size of the MEC server 247

is denoted by C. Knowing that the cache size is limited, the 248

caching state in any time slot should satisfy 249�
f∈F b

(t)
f Df ≤ C, ∀t ∈ T . (1) 250

The TSCU decision profile in time slot t is βt = 251

{β(t)
1 , β

(t)
2 , · · · , β

(t)
F }. Let β

(t)
f ∈ {−1, 0, 1} indicates the 252

caching update decision for task f in the slot t, where β
(t)
f = 253

−1 indicates that the software of task f will be removed at 254

the end of time slot t, β
(t)
f = 0 denotes that the caching state 255

of f will remain unchanged, and β
(t)
f = 1 represents that the 256

software of task f will be added to the cache space in the 257

slot (t + 1). Thus, the caching state of task f at the (t + 1)-th 258

time slot is b
(t+1)
f = b

(t)
f + β

(t)
f . It is noted that β

(t)
f should 259

satisfy β
(t)
f ≥ −b

(t)
f because the MEC server cannot remove 260

uncached task software. 261

We denote the users’ request in time slot t as μt = 262

{μ(t)
1 , μ

(t)
2 , · · · , μ

(t)
K }. At time slot t, let μ

(t)
k ∈ F (F = 263

{0} ∪ F) denote the task request state of user k, where 264

μ
(t)
k = 0 represents that user k requests nothing, and μ

(t)
k = f 265

(f ∈ F) indicates that user k requests to execute the task 266

f . We assume that μ
(t)
k (∀k ∈ K) evolves according to a 267

first-order (F + 1)-state Markov chain [26] whose transition 268

probability is unknown. That is to say, the users’ request in 269

time slot (t + 1) is only affected by the users’ request in slot 270

t and there are (F + 1) possible options. 271

B. Communication Model 272

It is assumed that the total available bandwidth in the 273

network is B Hz, which is equally divided into M orthogonal 274

wireless channels. The set of channels is denoted as M = 275

{1, 2, · · · , M}. In each time slot, each user can only use one 276

channel to communicate with the BS. Such a communication 277

method is able to ensure that two users using orthogonal 278

channels do not interfere with each other. We use αk,t to 279

denote the COMO decision of user k at the t-th time slot, 280

where αk,t = 0 indicates that user k accomplishes its task by 281

its own computing. The αk,t = m (m ∈ M) denotes that user 282

k selects channel m to offload its task to the MEC server for 283

computing. We denote the COMO decision of all users in time 284

slot t as αt = {α1,t, α2,t, · · · , αK,t}. Let hk and pk denote 285

the channel gain and transmit power of user k, respectively. 286

CHEN et al.: DYNAMIC TASK SOFTWARE CACHING-ASSISTED COMO FOR MULTI-ACCESS EDGE COMPUTING 6953

Fig. 1. Illustrating the studied system model: (a) shows the network structure, where one base station is equipped with an MEC server is able to proactively
cache selected task software and mobile device has three methods to execute their tasks; and (b) offers the flow chart of the operation mechanism in one time
slot.

In this work, we investigate the task offloading problem under287

a wireless interference model, in which code division multiple288

access is deployed to enable multiple users to occupy the289

same spectrum resource simultaneously for transmitting the290

information. Thus, the achievable uplink transmission rate of291

user k in slot t is [27], [28]292

rk,t =
B

M
log

�
1 +

pkhk�
n∈K\{k},αn,t=αk,t

pnhn + σ2

�
, (2)293

where σ2 is the variance of complex white Gaussian channel294

noise. In fact, (2) characterizes the minimal transmit rate of295

user k. The effective interference of user k induced by other296

users is less than
�

n∈K\{k},αn,t=αk,t
pnhn and determined297

by the power control and code design [29], [30]. Due to298

the space limits, we investigate the computation offloading299

problem based the minimal achievable transmit rate in (2), and300

do not consider the power control and code design. Note that,301

our algorithms designed in the following is able to directly302

used in the effective channel interference situations. Moreover,303

the joint channel code design, power control and computation304

offloading problem to further improve the offloading perfor-305

mance and manage interference will be a future direction for306

our work.307

From (2), users may incur severe interference and low308

transmission rate when a large number of users offloading309

theirs tasks through the same channel. As we discuss latter, this310

would increase the energy consumption for users and forcing311

part of them to execute tasks by local computing, and thus the312

number of users in the same channel would be limited.313

C. Task Computing314

In our model, we introduce the task software caching315

mechanism to assist COMO. The MEC server proactively316

caches the selected task software from the task library and 317

provides computing service for users in the next slot. At the 318

beginning of each time slot, users send their task requests to 319

the MEC server, and then the MEC server returns whether their 320

request tasks are cached. Based on this, when user k needs 321

to execute task f , it is able to accomplish f through local 322

computing or caching-based task offloading if f is cached, 323

otherwise through local computing or non-caching-based task 324

offloading. Similar to [24], [25], we ignore the information 325

exchange overhead of users acquire whether their task software 326

is cached at the MEC server because it is far small than 327

the input parameters or task software uploading cost. In the 328

following, we elaborate these three methods: 329

1) Local Computing: When user k execute its requested 330

task via the local CPU, we denote the computing capa- 331

bility (i.e., CPU cycles per second) of user k (k ∈ K) 332

as fL
k . Employing the dynamic voltage and frequency 333

scaling technique [2], user k can control the energy 334

consumption for local computing by adjusting the CPU 335

frequency. Considering that user k must finish the local 336

task computing within the current time slot, the CPU 337

frequency of user k satisfies fL
k ≥ Sf/τ . Based on 338

the realistic measurement result in [31], the energy con- 339

sumption is proportional to the square of the frequency 340

of mobile device. Thus, the energy consumption of user 341

k executes task f by its own device is 342

EL
k,f = ζ(fL

k)2Sf ≥ ζ
S3

f

τ2
, (3) 343

where ζ is the energy coefficient of mobile devices, 344

determined by the chip architecture. Without loss of 345

the generality, we set the CPU frequency as fL
k = 346

Sf/τ , as this is the most energy-efficient CPU frequency 347

under the deadline constraint. Consequently, The energy 348

6954 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 10, OCTOBER 2022

consumption of user k executes task f by its own device349

is EL
k,f = ζ

S3
f

τ2 .350

2) Non-caching-based Task Offloading: In each time slot351

t, if user k offloads task f to the MEC server for352

computing, and the MEC server did not cache the corre-353

sponding software of task f , it needs to upload the input354

parameters and the corresponding software of task f to355

the MEC server. In fact, this non-caching-based method356

is the pure task offloading as illustrated in many existing357

works, e.g., [5], [6], [7], [8], [9]. Note that, as stated358

in [32], the MEC server is also able to download the task359

software from the library each time the request is made360

by the user k, while it only uploads the input parameters.361

However, the task software acquiring process is time-362

consuming, especially during peak time. Thus, similar363

to many existing works, e.g., [12], [13], [14], we do364

not allow the edge server to fetch remotely from the365

library every time the task software is required. Let fC366

(fC 	 fL
k , ∀k ∈ K) denote the computing capability367

of the MEC server. The task execution delay can be368

expressed as369

T O
k,f,t =

Sf

fC
+

If + Df

rk,t
, (4)370

where rk,t follows (2). The first part in the right hand371

side (RHS) of Eq. (4) is the task execution delay at372

the MEC server, the second part in the RHS of Eq. (4)373

represents the data transmission delay. Considering that374

the task must be accomplished in the current time slot,375

the delay should satisfy T O
k,f,t ≤ τ . The corresponding376

energy consumption of user k for executing task f is377

EO
k,f,t = pk

If + Df

rk,t
, (5)378

where rk,t is given in (2). Note that the energy consump-379

tion in (5) includes the transmit energy consumption of380

both input parameters and the corresponding software.381

3) Caching-based Task Offloading: When user k offloads382

the task f to the MEC server for executing in slot t,383

and the MEC server already cached the software of task384

f , it only needs to upload the input parameters and385

request the MEC server to compute the task f directly386

and does not need to upload the corresponding software387

data. Thus, the execution delay can be expressed as388

T C
k,f,t =

Sf

fC
+

If

rk,t
. (6)389

Similar to the non-caching-based task offloading390

method, the execution delay of caching-based task391

offloading also should satisfy T C
k,f,t ≤ τ . In addition,392

the corresponding energy consumption is393

EC
k,f,t = pk

If

rk,t
, (7)394

where EC
k,f,t only includes the transmit energy consump-395

tion of the input parameters. Thus, this caching-based396

task offloading method has lower computational costs397

(both execution delay and energy consumption) than398

the non-caching-based task offloading method. Con- 399

sequently, when user k offloads task f to the MEC 400

server for computing and the software of task f is 401

already cached at the MEC server, there is no doubt that 402

the users will select the caching-based task offloading 403

method for the task execution. 404

D. Problem Formulation 405

In this paper, we aim to minimize the average task execution 406

energy consumption of all users over each time slot under the 407

constraint of task execution delay through jointly optimizing 408

the COMO decision and TSCU policy. Based on the above 409

models and analysis, we formulate the energy consumption of 410

user k at the t-th time slot as 411

Ek,t =
�
f∈F

�(μ(t)
k = f)

�
�(αk,t = 0)EL

k,f 412

+�(αk,t ∈ M)
�
(1 − b

(t)
f)EO

k,f,t + b
(t)
f EC

k,f,t

� 	
, 413

(8) 414

where �(·) is an indicator function, which is one if and only 415

if the condition in the parentheses is proper, otherwise it is 416

zero. Eq. (8) corresponds to three cases: (i) when user k 417

executes the task f through its own device (i.e., αk,t = 0), its 418

energy consumption is local computing energy consumption, 419

i.e., Ek,t = EL
k,f ; (ii) when user k executes the task f through 420

COMO and the software has not cached at the MEC server 421

(i.e., αk,t ∈ M and b
(t)
f = 0), its energy consumption is 422

Ek,t = EO
k,f,t which consists of the transmission energy 423

consumption of input parameters and software; (iii) when 424

user k executes the task f through COMO and the software 425

has already cached at the MEC server (i.e., αk,t ∈ M 426

and b
(t)
f = 1), its energy consumption is Ek,t = EC

k,f,t 427

which only includes transmission energy consumption of input 428

parameters. Note that we assume that users will select the 429

caching-based task offloading instead of the non-caching- 430

based task offloading when the corresponding task software 431

has already been cached at the MEC server because the 432

caching-based task offloading method consumes lower energy. 433

Thus, we can formulate the problem as 434

P : min
αt,βt

lim
T→∞

1
T

�T

t=1

�
k∈K Ek,t (9) 435

s. t.
�

f∈F(b(t)
f + β

(t)
f)Df ≤ C, ∀t ∈ T , (9a) 436

�(αk,t ∈ M)
�
b
(t)
f T C

k,f,t + (1 − b
(t)
f)T O

k,f,t

�
≤ τ, 437

∀k ∈ K, ∀f ∈ F , ∀t ∈ T , (9b) 438

b
(t+1)
f = b

(t)
f + β

(t)
f , ∀f ∈ F , ∀t ∈ T , (9c) 439

β
(t)
f ≥ −b

(t)
f , ∀f ∈ F , ∀t ∈ T , (9d) 440

αk,t ∈ {0, 1, . . . , M} , ∀k ∈ K, ∀t ∈ T , (9e) 441

β
(t)
f ∈ {−1, 0, 1} , ∀f ∈ F , ∀t ∈ T . (9f) 442

443

In problem P , (9a) implies the cache size constraint of 444

the MEC server. (9b) corresponds to the users’ task exe- 445

cution delay restriction. (9c) reveals the TSCU regulations. 446

CHEN et al.: DYNAMIC TASK SOFTWARE CACHING-ASSISTED COMO FOR MULTI-ACCESS EDGE COMPUTING 6955

(9d) indicates that the MEC server cannot remove the447

uncached task software. (9e) represents the available task448

computing methods, where αk,t = 0 indicate that user k449

executes its task through local computing, and αk,t = m450

(m ∈ M) represents that user k offloads its task (caching-451

based offloading if b
(t)
f = 1 and non-caching-based offloading452

if b
(t)
f = 0) through channel m. (9f) imposes restrictions on453

the TSCU decision. Problem P is intractable to directly solve454

since it involves interactive COMO and task software caching455

across different time slots and lacks user request transition456

probabilities. We prove it is NP-hard in Lemma 1.457

Lemma 1: Problem P that involves interactive COMO and458

TSCU across different time slots is NP-hard.459

Proof: See Appendix A. �460

III. PROPOSED COMPUTATION OFFLOADING AND TASK461

SOFTWARE CACHING UPDATE ALGORITHM462

Due to the intractability of the problem P , one cannot463

find an effective algorithm to achieve the optimal solution464

in polynomial time. In fact, the difficulty of solving problem465

P is mainly from the interactive COMO and task software466

caching across different time slots, as well as the lack of user467

request transition probabilities. To cope with these challenges,468

we decompose the original problem into two subproblems, i.e.,469

the COMO problem and the TSCU problem. First, for any470

given task software caching state, we reformulate the COMO471

problem as a multi-user COMO game and then we propose472

a decentralized algorithm to address its NE solution. After473

that, we reformulate the TSCU problem as an Markov decision474

process (MDP) and use a DDQN to learn the optimal TSCU475

policy.476

A. Multi-User Computation Offloading Algorithm477

Based on the formulation of problem P , the task offloading478

decision in any time slot t (i.e., αt) only affects the energy479

consumption in t, i.e., Ek,t, and does not related with other480

slots. In addition, αt does not affect the task software caching481

decisions in any time slot. Inspired by this, we focus on the482

COMO problem in a specific time slot t under any given task483

software caching state bt, and design an efficient algorithm484

to achieve the COMO decision. It is valuable to note that this485

algorithm can be generalized to solve COMO decisions in any486

other time slot. We decompose the task offloading problem in487

slot t from problem P as:488

P1 : min
αt

ft (αt) =
�

k∈K Ek,t489

s. t. (9b), (9e). (10)490

Note that αt = {α1,t, α2,t, · · · , αK,t}, where αk,t (k ∈ K) has491

(M+1) value selections. Therefore, the problem P1 is difficult492

to solve because it involves a combinatorial optimization over493

the multi-dimensional discrete space {0, 1, · · · , M}K . In the494

following, we transfer it to a potential game and solve its NE495

solution.496

Let α−k,t = {α1,t, · · · , αk−1,t, αk+1,t, · · · , αk,t} denote497

the task offloading decisions of all other users except from498

user k. The user k is able to choose the optimal computation 499

decision α∗
k,t under any given α−k,t in polynomial time with 500

complexity O(M +1), where α∗
k,t = argmin

αk,t

ft (αk,t, α−k,t). 501

Therefore, we transfer the problem P1 to a multi-user coop- 502

erative strategic game G = �K, {Λk,t}k∈K, ft(αt)�, in which 503

the user set K is the game player set, Λk,t is the strategy 504

space of user k in time slot t which can be obtained by 505

solving constraint (9b) and (9e), and ft (αt) is the com- 506

puting cost of user k (all users have the same computing 507

cost). The objective of game G is to achieve a NE solution 508

α∗
t =

α∗

1,t, · · · , α∗
K,t

�
. That is to say, for computation 509

decision α∗
t in slot t, no user has the ability to further 510

decrease its computing cost through changing its decisions, 511

i.e., ft(α∗
k,t, α

∗
−k,t) ≤ ft(αk,t, α

∗
−k,t), ∀k ∈ K, αk,t ∈ Λk,t. 512

For any user k (k ∈ K) in this game G, it would accomplish 513

its task through task offloading when its local computing 514

cost is larger than task offloading cost, i.e., EL
k,f ≥ (1 − 515

b
(t)
f)EO

k,f,t + b
(t)
f EC

k,f,t. By substituting (3), (5), and (7) into 516

this inequation, we have ς
S3

f

τ2 ≥ pk
If +(1−b

(t)
f)Df

rk,t
. Let Υk,t 517

denote the interference of user k, which satisfies the following 518

inequality: 519

Υk,t =
�

n∈K\{k},αn,t=αk,t

pnhn 520

≤ pkhk

2
pkτ2M(If +Df−b

(t)
f

Df)

BζS3
f − 1

− σ2. (11) 521

In other words, for a given task offloading strategy αt, the user 522

k is able to decrease the system energy consumption when 523

its received interference satisfies inequation (11). Therefore, 524

if user k received low interference, it decreases its computing 525

cost through task offloading. Otherwise, it accomplishes its 526

task through local computing. Based on [28], the game G is a 527

ordinal potential game by constructing the potential function 528

as follows. 529

φ(αt) =
1
2

K�
k=1

�
n�=k

pkhkpnhn�(αn,t = αk,t)�(αk,t > 0) 530

+
K�

k=1

pkhkVk�(αk,t = 0), (12) 531

where 532

Vk =
pkhk

2
pkτ2M(If +Df−b

(t)
f

Df)

BζS3
f − 1

− σ2 (13) 533

is the interference threshold of user k defined according to 534

(11). User k would accomplish its task by task offloading when 535

Υk,t ≤ Vk, otherwise by local computing. Note that the change 536

in the potential function (12) has the same sign (positive 537

or negative) with the change in the ft (αt). In Remark 1, 538

we prove that the game G with the potential function φ(αt) 539

is a ordinal potential game and it has a NE solution. 540

Remark 1: The COMO game G with the potential function 541

φ(αt) is a ordinal potential game and is able to achieve a NE 542

solution in finite number of iterations. 543

6956 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 10, OCTOBER 2022

Algorithm 1 Multi-User Computation Offloading
1: Each user k ∈ K initialize its COMO decision αk,t = 0

2: repeat
3: for Each user k ∈ K: do

4: Measure the interference Υk,t and calculate the transmission

rate rk,t,

5: Compute the strategy space Λk,t by solving constraint (9b)

and (9e),

6: Select the best offloading decision α∗
k,t =

arg min
αk,t∈Λk,t

ft (αk,t, α−k,t)

7: if α∗
k,t �= αk,t then

8: Send a request message to BS for updating its offloading

decision

9: if Received the update message then

10: Update its COMO decision, i.e., αk,t = α∗
k,t

11: end if

12: end if
13: end for

14: until Receive an end message

15: return αt.

Proof: See Appendix B �544

Based on Remark 1, we develop a potential game-based545

multi-user COMO algorithm to address a mutually satisfactory546

offloading decisions (i.e., the NE solution) for all users.547

The detailed steps of COMO algorithm are summarized in548

Algorithm 1.549

Through Algorithm 1, we achieve a NE solution for the550

COMO problem. Firstly, we initialize the COMO decisions551

of all users to 0. Next, each user computes its available task552

offloading decision set Λk,t based on constraints (9b) and (9e),553

and finds its optimal COMO decision α∗
k,t. Then, user k sends554

a update request message to the MEC server if α∗
k,t
= αk,t.555

When the MEC server receives the update request messages556

from users, it randomly selects one user and then sends the557

update permission message to this user. The user who receives558

the update permission message updates its offloading decision,559

and the users who do not receive the update permission560

message remain their offloading decisions. Finally, if the MEC561

server does not receive any update request message from562

users, it sends the end messages to all users. When users563

receive the end message, they offload their tasks based on their564

offloading decisions. We analyze the convergence behaviour of565

Algorithm 1 in Lemma 2.566

Lemma 2: Game G can achieve a NE solution within567
1
2 K2Δ2

max+K(ΔmaxVmax−ΔminVmin)

εΔmin
iterations, where ε is a pos-568

itive number.569

Proof: See Appendix C �570

B. Deep Reinforcement Learning-Based Task Software571

Caching Update Algorithm572

Up to now, we can find a mutually satisfactory COMO573

decision for all users (represented by α∗
t) under any given574

MEC server’s caching state bt and user request state μt in any575

time slot. In other words, we can compute the corresponding 576

energy consumption of any caching state bt under any given 577

user request state μt since the COMO decision α∗
t can be 578

solved by using Algorithm 1. Substitute α∗
t into the original 579

problem P , the original problem P can be transformed to the 580

TSCU problem as 581

P2 : min
βt

lim
T→∞

1
T

�T

t=1

�
k∈K

�Ek,t 582

s. t. (9a), (9c), (9d), (9f). (14) 583

where 584

�Ek,t =
�
f∈F

�(u(t)
k = f)

�
�(α∗

k,t = 0)EL
k,f 585

+�(α∗
k,t ∈ M)

�
(1 − b

(t)
f)EO

k,f,t + b
(t)
f EC

k,f,t

�	
. 586

(15) 587

Knowing that the TSCU decision βt depends on the caching 588

state bt, it is complex to directly solve βt. For ease of solving 589

problem P2, we first solve the optimal caching state bt+1 in 590

time slot t + 1, then obtain the caching update decision βt in 591

slot t based on b
(t)
f +β

(t)
f = b

(t+1)
f . The optimal caching state 592

problem is formulated as 593

P2 : min
bt+1

lim
T→∞

1
T

�T

t=1

�
k∈K

�Ek,t (16) 594

s. t.
�

f∈F b
(t+1)
f Df ≤ C, (16a) 595

b
(t+1)
f ∈ {0, 1} , ∀f ∈ F . (16b) 596

597

For any time slot (t + 1), we can solve the optimal caching 598

state bt+1 when the user request μt+1 is given, e.g., we can 599

solve the energy consumption of all caching state bt+1 and 600

find the minimum one. However, the caching state bt+1 is 601

given by the MEC server updates caching space at the end 602

of time slot t, and μt+1 is unknown at that time due to 603

the unknown user request transition probabilities. To tackle 604

this challenge, we apply a DDQN to capture the features 605

of the users’ request model and predict the optimal task 606

caching state of time slot (t + 1) based on the system state 607

of slot t. For the purpose of designing the DDQN algorithm, 608

we reformulate problem
P2 as an MDP and elaborate the 609

state, action and reward in the below. 610

• State: the state in time slot t is the user request state, i.e., 611

St = μt ∈ (F + 1)K . 612

• Action: the action in time slot t is the caching state in 613

slot (t + 1), i.e., At = bt+1 ∈ {0, 1}F . 614

• Reward: we define the reward in time slot t as the saving 615

value of energy consumption in time slot (t + 1), i.e., 616

Rt+1. The saving value of energy consumption is defined 617

as the difference between non-caching-based computing 618

cost and caching-based computing cost, i.e., Rt+1 = 619

ENC
t+1 − EC

t+1, where 620

ENC
t+1 =

�
k∈K

�
f∈F

�(u(t+1)
k = f)

�
�(αNC

k,t+1 = 0)EL
k,f 621

+�(αNC
k,t+1 ∈ M)EO

k,f,t+1

	
(17) 622

CHEN et al.: DYNAMIC TASK SOFTWARE CACHING-ASSISTED COMO FOR MULTI-ACCESS EDGE COMPUTING 6957

Fig. 2. The DDQN training and inference process.

is the energy consumption when the MEC server’s623

caching state is empty, i.e., bt+1 = [0]F ,624

EC
t+1 =

�
k∈K

�
f∈F

�(u(t+1)
k =f)

�
�(αC

k,t+1 =0)EL
k,f625

+�(αC
k,t+1∈M)

�
(1−b

(t+1)
f)EO

k,f,t+1626

+b
(t+1)
f EC

k,f,t+1

�	
(18)627

is the energy consumption when the caching state is bt+1,628

where αNC
k,t+1 is the COMO decision when the caching629

space is empty, and αC
k,t+1 corresponds to the COMO630

decision when the caching state is bt+1. Both αNC
k,t+1 and631

αC
k,t+1 can be solved by Algorithm 1.632

The architecture of the applied DDQN is shown in Fig. 2,633

which includes two DNNs with same structure: one is the634

main network, one is the target network. The DDQN aims635

to learn the user request model and predict the optimal task636

software caching state in the next slot based on the user637

request in the current slot. Instead of using a large Q table638

to list all possible states and actions, the applied DDQN in639

this paper uses a DNN to avoid listing all possible states and640

actions. To overcome the high-dimension and complex caching641

action space resulting from massive tasks with heterogeneous642

data size and improve learning efficiency, we provide a new643

design of the DNN, named state coding and action aggregation644

(SCAA). SCAA adopts a dropout mechanism in the input layer645

to code users’ states and a two-layer architecture at the output646

layer to aggregate caching actions dynamically. Fig. 3 shows647

the architecture of the proposed SCAA-DNN of the DDQN.648

In the following part, we introduce the SCAA-DNN in detail.649

In the input of the SCAA-DNN, the users’ task request is650

represented by the task order. For example, μ
(t)
k = f indicates651

that user k request to execute the f -th task in time slot t.652

The conventional design [23] directly uses the state St = μt653

as the input variables of the DNN, the tasks’ order number654

will influence the output of the DNN (i.e., the state-action655

value Q(St, At)). In fact, the order number does not relate656

to the state-action value Q(St, At). In order to eliminate the657

influence of tasks’ order, we use Xt = {�(μ(t)
k ∈ F) : k ∈ K}658

as the input of the DNN instead of the state St. The first layer659

of the DNN contains K neural cells, and the input of the k-th660

Fig. 3. The architecture of proposed SCAA in the DNN of DDQN.

cell is �(μ(t)
k ∈ F). Hence, for clarifying the task demands 661

of users, we define the second layer in the DNN contains F 662

neural cells, in which the f -th cell corresponds to the f -th task. 663

We use w1 = {w1
k,f : k ∈ K, f ∈ F} to denote the weights of 664

connections between the first layer and the second layer of the 665

DNN, where w1
k,f denotes the weight of connection between 666

the k-th neural cell in the first layer and the f -th neural cell 667

in the second layer. The value of w1
k,f is defined as 668

w1
k,f =

�
0, if μ

(t)
k ∈ F and μ

(t)
k
= f,

w1
k,f , otherwise.

(19) 669

If μ
(t)
k ∈ F , the connections between the k-th neural cell in 670

the first layer and neural cells in the second layers except 671

from the μ
(t)
k -th neural cell will be dropout. In other words, 672

the output of the k-th neural cell in the first layer only as 673

the input of the μ
(t)
k -th neural cell in the second layer. If 674

μ
(t)
k = 0, all the connections between the k-th neural cell 675

in the first layer and neural cells in the second layers will 676

be remained, and μ
(t)
k does not affect the inputs of neural 677

cells in the second layer. Such a design implements the user 678

requests state coding in actuality. 679

In the conventional DDQN [33], the number of neural cells 680

in the output layer of the DNN is equal to the number of 681

all possible actions, in which each neural cell corresponds to 682

one action and output the corresponding state-action value, 683

i.e., Q(St, At). However, for the caching problem
P2, it is 684

impractical due to the heterogeneous data size of task software 685

and the large number of tasks. The large number of tasks will 686

produce a large number of possible caching actions. Besides, 687

it is difficult to list all the possible actions due to the heteroge- 688

neous size of task software. For example, we assume that the 689

MEC server can cache 10 task software with the same data 690

size, and the task library has 50 tasks. The MEC server will 691

have C10
50 = 1.0272 × 1010 possible actions. If the data sizes 692

of these tasks’ software are different, it is more complex to 693

combine all available caching actions. To tackle this challenge, 694

we use a two-layer architecture (TLA) as the output layer 695

of the SCAA-DNN, shown in Fig. 3. The first layer in the 696

TLA contains F neural cells, in which the f -th neural cell 697

corresponds to task f . Let O = (O1, O2, · · · , OF) denote the 698

output of the first layer of the TLA. Intuitively, Of represents 699

the part of state-action value of caching the task f -th software. 700

The last layer of the TLA just has one neural cell which does 701

6958 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 10, OCTOBER 2022

not have the activation unit and outputs the weighted sum of702

all input variables. We use wL = (w1,L, · · · , wf,L, · · · , wF,L)703

to denote the weights of connections between the first layer704

and the last layer in the TLA, where wf,L is the weight705

of the connection between the f -th cell in the first layer706

and the last layer in the TLA. To identify the state-action707

value of a specific action At = bt+1, we assign the value708

of At to wL, i.e., wf,L = b
(t+1)
f , ∀f ∈ F . Then, the DNN709

will output the predicted state-action value, i.e., Q(St, At) =710 �
f∈F b

(t+1)
f Of .711

Remark 2: In practical caching scenarios, the large number712

of tasks in the library may produce a high-dimension action713

space and complex network structure in the DDQN because714

the caching action is a combination of caching some task715

software. It may result in many neural cells in the output layer716

of the DNN used in the DDQN, hindering the convergence of717

the DDQN. Using the proposed TLA, the complexity of the718

used neural network in the DDQN is significantly reduced,719

thus improving the convergence speed of the DDQN. Note720

that such a design also can be used in other scenarios with721

high-dimension combined-action space.722

About the training phase, the MEC server caches task723

software based on the ε-greedy policy [34] at the end of724

time slot t, where the MEC server randomly cached task725

software with probability ε or caches task software based726

on A∗
t = argmaxa Q(St, a) with probability (1 −
). At the727

beginning of slot (t+1), the users will generate task computing728

requests μt+1 and find the COMO decisions α∗
t+1 through729

Algorithm 1 based on the caching state bt+1 and user request730

μt+1. Then, the users accomplish their tasks based on α∗
t+1731

and result in energy consumption, i.e., EC
t+1. To estimate the732

reward of the caching action At = bt+1, we set the caching733

state as empty (i.e., bt+1 = 0) and obtain the corresponding734

energy consumption, i.e., ENC
t+1. The user request state St in735

time slot t, the action At, the reward Rt+1 = ENC
t+1 − EC

t+1,736

and the state St+1 in the next time slot will be stored in737

the experience memory and used as the training data for the738

DDQN. Then, the DDQN samples a batch of data from the739

experience memory as the training data, each data is in the740

form of �St, At, Rt+1, St+1�.741

Firstly, the DDQN assigns At to wL of the evaluation742

DNN, i.e., wf,L = b
(t+1)
f , ∀f ∈ F . Then, the DDQN743

assigns values to the weights between the first layer and744

second layer of the evaluation DNN based on Eq. (19) and745

input Xt = {�(μ(t)
k ∈ F) : k ∈ K}. Next, the evaluation746

DNN accomplishes forward process and obtains the pre-747

dicted state-action value, i.e., Q(St, At). The training process748

should make Q(St, At) approximate the expected state-action749

value as750

Q̄(St, At) = Rt+1 + γ max
a

Q(St+1, a) (20)751

where γ ∈ (0, 1) is discount factor. For computing the752

expected state-action value, we use the target DNN in the753

DDQN to inference the value of maxa Q(St+1, a). To make754

the learning process more stable, we use the Huber func-755

tion [35] to quantify the loss instead of the square error756

Algorithm 2 The Training Algorithm for DDQN
1: Initialize replay memory with capacity E, the weight copy fre-

quency g

2: Initialize the evaluation DNN with random weights θ and copy θ

to the target DNN

3: for time slot t = 1 : T do

4: With probability � select a random caching state At otherwise

select At = arg maxa Q(St, a) as the caching state in slot t+1

5: Use At as the caching state of the MEC server in time slot

(t + 1) and compute the reward Rt+1

6: Store transition St, At, Rt+1, St+1 in experience memory

7: Sample random mini-batch of transitions St, At, Rt+1, St+1

from experience memory

8: Assign values to the weights between the first layer and second

layer based on Eq. (19).

9: Assign bt+1 to the weights of the TLA in the evaluation DNN.

10: Input X t = {�(μ
(t)
k ∈ F) : k ∈ K} to the evaluation DNN

and obtain Q(St, At)

11: Perform a gradient descend step on loss function with respect

to the DNN parameters

12: Update the target DNN every g slots

13: end for

function. The loss function is defined as follows. 757

Loss=

⎧⎪⎨⎪⎩
1
2 (Q(St, At) − Q̄(St, At))

2
, if | Q(St, At)

−Q̄(St, At) | < 1,��Q(St, At) − Q̄(St, At)
�� − 1

2 , otherwise.

(21) 758

Once the loss function value is calculated, we can train 759

the evaluation DNN by using backward algorithm [36]. The 760

detailed steps of the DDQN training algorithm are listed in 761

Algorithm 2. 762

In the DDQN inference phase, we first assign values to 763

the weights between the first layer and second layer based on 764

Eq. (19). Then, we input Xt = {�(μ(t)
k ∈ F) : k ∈ K} to 765

DNN and forwards to the first layer of TLA and output O = 766

(O1, O2, · · · , OF). Finally, we need find the optimal caching 767

state in time slot (t + 1) (i.e., arg maxbt+1
Q(μt, bt+1)). 768

We formulate the optimal caching state problem as follows. 769�P2 : max
bt+1

�
f∈F b

(t+1)
f Of (22) 770

s. t.
�

f∈F b
(t+1)
f Df ≤ C, (22a) 771

b
(t+1)
f ∈ {0, 1} . (22b) 772

773

Problem �P2 is a typical Knapsack problem [37]. Below we 774

introduce a recursive function to derive the optimal solution. 775

For ease of presentation, we first define a F × C matrix Ξ, 776

in which Ξ(f, c) represents the optimal solution under the first 777

f tasks using a cache size of c. The value of Ξ(f, c) is given 778

by the following recursive function. 779

Ξ(f, c) = max
b
(t+1)
f

(Ξ(f − 1, c − b
(t+1)
f Df) + b

(t+1)
f Of). 780

(23) 781

CHEN et al.: DYNAMIC TASK SOFTWARE CACHING-ASSISTED COMO FOR MULTI-ACCESS EDGE COMPUTING 6959

Fig. 4. An illustration for connections between the proposed algorithms and the system model.

Algorithm 3 Algorithm for Solving the Optimal Action
Input: Ot, {Df : f ∈ F}
Output: The optimal caching state bt+1

1: bt+1 = [0]F , Ξ = [0]F×C , Ξr = [0]F×C ;
2: for each f ∈ [1, F] do
3: if f < F then
4: for each c ∈ [1, C] do
5: if f == 1 then
6: Ξr(f, c) = �(Df < c)
7: Ξ(f, c) = Ξr(f, c)Of

8: else
9: Ξr(f, c) = arg max

a∈{0,1}
(Ξ(f − 1, c−aDf) + aOf)

10: Ξ(f, c) = Ξr(f, c)Of + Ξ(f − 1, c − Ξr(f, c)Df)
11: end if
12: end for
13: else
14: Ξr(F, C) = arg maxa∈{0,1}(Ξ(F − 1, C−aDF) + aOF)
15: Ξ(F, C) = Ξr(F, C)OF + Ξ(F − 1, C − Ξr(F, C)DF)
16: end if
17: end for
18: bt+1(F) = Ξr(F, C)
19: for each f = F − 1 : −1 : 1 do
20: bt+1(f) = Ξr(f, C −�f+1≤j≤F bt+1(j) ∗ Dj)
21: end for
22: return bt+1

Through the above recursive function, the optimal solution782

of problem �P2 can be derived by the argument of Ξ(F, C).783

For clarity, we conclude the detailed steps of solving optimal784

caching state in Algorithm 3 whose time complexity is785

O(2FC + F).786

Once the optimal caching state bt+1 in time slot t + 1 is787

derived, the MEC server can calculate the optimal TSCU788

policy in time slot t, i.e., β
(t)
f = b

(t+1)
f − b

(t)
f . Then, the MEC789

server can update its cache space and assist the COMO in time790

slot (t + 1). For clarity, we conclude the detailed steps of the791

DDQN inference phase in Algorithm 4. In addition, for ease792

of understanding, Fig. 4 illustrates the connections between793

all algorithms and the physical system model.794

IV. SIMULATION RESULTS795

This section evaluates the proposed dynamic TSCU-based796

COMO scheme by comparing its performances with the fol-797

lowing baseline schemes. Note that these baselines for caching798

updates do not include the COMO policy. For fairness, we add799

the COMO policy proposed in this work to these baselines for800

forming TSCU assisted COMO schemes. Moreover, we use801

the COMO policy proposed in this work as a baseline for802

illustrating the advantages of TSCU.803

• The least recently used caching-based MEC (LRU-MEC)804

updates task software caching based on LRU policy [38],805

Algorithm 4 The Inference Algorithm of DDQN
1: Assign values to the weights between the first layer and second

layer based on Eq. (19).

2: Input Xt = {�(μ
(t)
k ∈ F) : k ∈ K} to the first layer of the DNN,

then the DNN forwards to the first layer of TLA and output O =

(O1, O2, · · · , OF)

3: Solve the optimal caching state in the next time slot using

Algorithm 3

4: Calculate the optimal caching update policy based on β
(t)
f =

b
(t+1)
f − b

(t)
f ,∀f ∈ F

in which the MEC server keeps the most recently 806

requested task software in the MEC server cache memory. 807

When the cache storage is full, the cached task software, 808

which is requested least recently, will be replaced by the 809

new task software. 810

• The least frequently used caching-based MEC (LFU- 811

MEC) updates task software caching based on LFU 812

policy [38], in which the MEC server caches the task 813

software with highest request count which is calculated 814

by the request information of past time slots. When the 815

cache storage is full, the cached task software, which is 816

requested the least many times, will be replaced by the 817

new task software. 818

• The first in first out-based MEC (FIFO-MEC) update task 819

software caching according to FIFO policy [22]. 820

• The local most popular caching-based MEC (LMP-MEC) 821

updates the cache based on LMP algorithm [23], which 822

predicts the next request based on both long-term file 823

popularity and short-term temporal correlations in request 824

sequences. 825

• MEC offloading: The MEC offloading scheme utilizes 826

the proposed potential game-based COMO algorithm to 827

decide the executive method of users’ tasks under the 828

empty task software caching state of the MEC server. 829

It only has two ways of task computing, i.e., local 830

computing and non-caching based COMO. 831

In the simulations, the proposed scheme and benchmark 832

schemes are implemented using Python and Pytorch. It is 833

assumed that K users are randomly distributed over a 834

200m×200m single cell, and the BS is sited in the cell’s 835

center. Similar with [27], [28], the channel gain is modeled 836

as hk,t = ρk(t)d−n
k where dk is the distance between user k 837

and the BS, ρk(t) ∼ Exp(1) is exponentially distributed with 838

unit mean, which represents the small-scale fading channel 839

power gain from user k to the MEC server in slot t, and n is 840

6960 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 10, OCTOBER 2022

TABLE II

SIMULATION SETTINGS

the path loss factor. According to the realistic measurements841

in [31], we set the energy coefficient ζ as 5 × 10−27. The842

input parameters data size of each task, i.e., If , is uniform843

randomly selected in [1, Imax] Megabytes. The software data844

size of each task, i.e., Df , is uniform randomly selected in845

[1, Dmax] Gigabytes. The required CPU cycles for computing846

task k, i.e., Sf , is randomly selected in [1, Smax] Gigacycles.847

The parameters chosen in the simulation are based on the848

parameter setting of a typical MEC network [23], [26], [28].849

Unless otherwise stated, the primary simulation environment850

settings are summarized in Table II.851

In terms of the user task request μ
(t)
k , we use Pr[μ(t+1)

k =852

j|μ(t)
k = i] to denote the transition probability from task i to853

j (i, j ∈ F) of user k. Similar to [23] and [26], we assume854

that all users’ request transition probabilities follow the same855

request transition model as follows.856

Pr[μ(t+1)
k857

= j
���μ(t)

k = i]858

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

R, i ∈ F̄ , j = 0,

(1 − R) 1/jδ

�F
m=1 1/mδ , i = 0, j ∈ F ,

(1 − R) 1
N ,

i ∈ F , j = (i + q)mod(F + 1),
q ∈ {1, 2, · · · , N},

0, otherwise.

859

Pr[μ(t+1)
k =j|μ(t)

k = i] is parameterized by �R, δ, N�. Specif-860

ically, R is the transition probability of requesting nothing861

given any task request at the current time slot. The transition862

probability of any task f ∈ F under no current file request is863

modeled as a Zipf distribution which parameterized by δ. For864

any task i ∈ F , we assign a set of N neighboring tasks, i.e.,865

N = {f ∈ F , f = (i + n) mod (F + 1), n = 1, 2, · · ·N}.866

Then, the transition probability of requesting any task f ∈ N867

under the current task request i ∈ F is modeled as the uniform868

distribution. The transition probability of requesting any task869

Fig. 5. The energy consumption of users with respect to iteration steps under
the empty caching state of the MEC server.

f /∈ N under the current task request i ∈ F is zero. It is 870

worth mentioning we provide the transition probability in the 871

simulation parts to establish the environment. It does not mean 872

the proposed solution relies on the known transition model. 873

In fact, the proposed solution is a model-free approach. In the 874

following results, we alter the transition probability parameters 875

to verify that the proposed solution has the ability to handle 876

problems with different transition probabilities. 877

In Fig. 5, the black solid curve represents the reduced energy 878

consumption per training slot of the proposed TSCU-based 879

COMO scheme. The black dash line represents the counterpart 880

with conventional way that uses the user request μt as the 881

input of the DNN, and all weights between the first and 882

the second layer are connected. These two curves are plotted 883

using the moving average with a window equal 20. The blue 884

dash curve shows the dynamics of the system-wide energy 885

consumption in one slot with the empty storage status of the 886

MEC server. We can see that the potential game-based COMO 887

algorithm rapidly converge to a stable point, i.e., the NE of the 888

multi-user COMO game. Moreover, the reduced energy con- 889

sumption (black curve) increases as the training slots increase 890

and reaches the maximum reduction value when the learning 891

process becomes stable. It is valuable to note that the proposed 892

scheme can rapidly converge to the maximum reduction value 893

point (less than 1000 slots). Most existing DRL-based caching 894

works usually consume more than 104 training slots, like [22], 895

[23]. Compared with directly inputting users’ request state to 896

the DNN, the proposed SCAA approach is able to reduce 897

the learning complexity and accelerate the convergence of the 898

DDQN. 899

In Fig. 6, we show that the impact of the MEC server’s 900

cache size on the average energy consumption over each time 901

slot of the proposed scheme and the five baselines. We can 902

see that all schemes’ average energy consumption over each 903

time slot, except the MEC offloading scheme, is reduced 904

with the increase of cache size. This reduction is because the 905

larger cache size allows the storage of more task software. 906

Thus, the requested tasks will have a higher hit rate at the 907

MEC server, which means that more users can execute their 908

CHEN et al.: DYNAMIC TASK SOFTWARE CACHING-ASSISTED COMO FOR MULTI-ACCESS EDGE COMPUTING 6961

Fig. 6. Comparison of the average energy consumption over each time slot
against different cache size of the MEC server.

tasks through a lower-cost method, i.e., caching-based COMO.909

When the cache size is 0, the MEC server cannot cache any910

task software, and all schemes only can execute tasks through911

non-caching based COMO or local computing. There is no912

distinction between these schemes in this case. When the cache913

size is big enough to cache all the task software (over 18GB),914

all schemes have the same performance. In this case, the MEC915

serve can cache all task software in the task library. Thus,916

the users can execute their tasks through local computing or917

caching-based COMO, and there is also no difference between918

these schemes. However, in practical systems, the cache size919

of the MEC server is limited and usually cannot cache all the920

task software. Specifically, when the cache size is 8GB, the921

proposed scheme save around 39% energy than LMP-MEC922

scheme.923

Fig. 7 plots the average energy consumption over each time924

slot of the six schemes versus the number of tasks in the task925

library. We can observe that the average energy consumption926

over each time slot of the caching-based schemes (i.e., LRU-927

MEC, LFU-MEC, FIFO-MEC, LMP-MEC, and the proposed928

scheme) increased with the increase of task number. The range929

of users’ task requests will be more expansive with the rise930

of task number, which may decrease the prediction accuracy931

of the task software caching schemes and further decrease the932

reusable of the cached task software. In addition, it also can933

be observed that the proposed scheme outperforms the other934

schemes. When the task number is 10, the proposed scheme935

can save up to 62% of energy than the best baseline (LMP-936

MEC). This benefit comes from the more accurate prediction937

of users’ task demand and the learned knowledge of computing938

energy consumption about different users.939

Fig. 8 shows that how the average energy consumption940

over each time slot varies with the number of users under941

different environmental parameters δ. Compared with the best942

baseline scheme (LMP-MEC), the proposed scheme achieves943

the lower average energy consumption over each time slot944

across all user number configurations. Moreover, it is observed945

that the average energy consumption over each time slot of946

the two schemes keeps decreasing with the increase of δ.947

In fact, as δ increases, most of the user requests concentrate948

Fig. 7. Comparison of the average energy consumption over each time slot
against different task number.

Fig. 8. Comparison of the average energy consumption over each time slot
against different user number.

on a few tasks, and the remaining tasks in the library have 949

a very low probability of being requested. Thus, a large δ 950

is able to improve the prediction accuracy of the two task 951

software caching schemes, and the cached task software has a 952

higher probability of being used. Besides, the proposed scheme 953

saves over 25% of energy when the user number exceeds 954

50 compared to the LMP-MEC scheme. 955

Fig. 9 plots the average energy consumption over each time 956

slot of the proposed and LMP-MEC scheme. We can see that 957

the average energy consumption over each time slot of both 958

the proposed and LMP-MEC scheme keeps increasing along 959

with the increase of Smax. Using the LMP-MEC scheme as the 960

baseline, the proposed scheme reduces energy consumption 961

by 11.5% to 22% across the parameter setting of Smax. The 962

reason is that the growth of Smax will increase the average 963

computation load of tasks, leading to the increases of the local 964

computing energy consumption and the execution delay of the 965

offloaded tasks. The rise of execution delay at the MEC server 966

is likely to reduce the number of offloaded tasks, inducing the 967

average energy consumption growth over each time slot for 968

both schemes. Besides, we can observe that the average energy 969

consumption over each time slot of both schemes decreased 970

with the increase of R. The number of users who request to 971

6962 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 10, OCTOBER 2022

Fig. 9. Comparison of the average energy consumption over each time slot
against users’ request transition probability parameter R.

Fig. 10. Comparison of the average energy consumption over each time slot
against users’ request transition probability parameter N .

execute tasks will decrease with the rise of R. That is to say,972

the total number of tasks executed in a slot is likely to decline973

with the increase of R, resulting in the growth of average974

energy consumption.975

We reveal the impact of the parameter Dmax and N on the976

average energy consumption over each time slot in Fig. 10.977

We can see that the average energy consumption over each978

time slot of the proposed schemes keeps increasing along979

with the increase of Dmax. This phenomenon results from980

that the growth of D max will increase the average size of981

the tasks’ software, reducing the number of task software that982

are cached at the MEC server and increasing the transmission983

delay and energy consumption of COMO. As the varying of984

D max , the proposed scheme is able to save about 12%-16%985

energy compared with the best baseline, LMP-MEC. Besides,986

the average energy consumption over each time slot of the987

proposed scheme increases along with N . The reason is that988

the users’ task request range will be more expansive with the989

increase of N , which will reduce the prediction accuracy of990

the task software caching schemes and further increase the991

average energy consumption over each time slot. Moreover,992

the gap between N = 3 and N = 5 is larger than the gap993

between N = 5 and N = 10. When N increases to a large994

number (around 5), every user has the same probability of 995

requesting five tasks. The tasks that all users may request is 996

likely to cover the task library, and the request probability of 997

each task are approximate. In this case, the prediction accuracy 998

may converge to a stable point. Thus, the increment of energy 999

consumption is small with the increase of N . In fact, when N 1000

increase to a large value, the average energy consumption of 1001

all task software caching schemes will keep stable. 1002

V. CONCLUSION 1003

This paper investigated a joint TSCU and COMO prob- 1004

lem in a dynamic multi-user MEC network to minimize the 1005

users’ task execution energy consumption while satisfying the 1006

task execution delay constraint. Through detailed analysis, 1007

we have proposed to solve the problem through two stages. 1008

Firstly, we reformulated the COMO problem as a multi-user 1009

COMO game and proposed a decentralized COMO algorithm 1010

to obtain its NE solution under any task software caching 1011

state. Then, we developed a DDQN-based TSCU algorithm 1012

to solve the optimal caching update strategy for the MEC 1013

server. The proposed scheme can capture task popularity, 1014

inter-task request correlation, users’ communication conditions 1015

and computing capabilities. Simulations results show that the 1016

proposed method can rapidly converge to stable and precisely 1017

predict users’ future task demands and outperform the other 1018

benchmark approaches in energy consumption. In future work, 1019

we will optimize the bandwidth usage, time delay, and energy 1020

consumption under a practical MEC case with cloud-aided 1021

backhaul and asynchronous traffic. 1022

APPENDIX 1023

A. Proof of Lemma 1 1024

We prove that problem P is NP-hard via the restric- 1025

tion method [37]. Specifically, we show that the problem 1026

P can be restricted to a maximum cardinality bin packing 1027

problem. For clarity, we introduce the maximum cardinality 1028

bin packing problem [39]: Given K items with sizes sk, 1029

k ∈ {1, 2, · · · , K}, and M bins of identical capacity Q, the 1030

objective is to assign a maximum number of items to the fixed 1031

number of bins without violating the capacity constraint. 1032

The NP-hardness of the maximum cardinality bin packing 1033

problem has been proved in [39]. To prove that Problem P is 1034

NP-hard, let us show that P contains a maximum cardinality 1035

bin packing problem as a special case. To this end, let us focus 1036

on one specific time slot t by setting T = 1, and assume that 1037

both the caching state of the MEC server bt and the users’ 1038

task request μt are known. Thus, problem P is restricted as 1039

the following problem. 1040�P : max
αt

−
�

k∈K Ek,t 1041

s. t. (9b), (9e). (24) 1042

For problem �P , αk,t = 0 if and only if EL
k,f ≤ (1 − 1043

b
(t)
f)EO

k,f,t+b
(t)
f EC

k,f , otherwise user k will select a channel to 1044

offload its task. Inspired by this, we further restrict problem �P 1045

by setting αk,t ∈ M to just consider users execute their tasks 1046

through COMO. Additionally, we regard all users’ COMO 1047

CHEN et al.: DYNAMIC TASK SOFTWARE CACHING-ASSISTED COMO FOR MULTI-ACCESS EDGE COMPUTING 6963

cost as -1 (i.e., (1 − b
(t)
f)EO

k,f,t + b
(t)
f EC

k,f,t = −1) and each1048

user request to execute a task μ
(t)
k ∈ F . For ease of proof,1049

we introduce a binary variable α
(t)
k,m, where α

(t)
k,m = 1 if and1050

only if αk,t = m, otherwise is 0. Thus, we reformulate the1051

restricted problem �P as follows.1052 �P : max
αt

�
k∈K

�
m∈M α

(t)
k,m (25)1053

s. t.
�

m∈M α
(t)
k,m ≤ 1, (25a)1054 �

k∈K α
(t)
k,mpkhk ≤ Q, (25b)1055

α
(t)
k,m ∈ {0, 1} , (25c)1056

1057

where the capacity Q is1058

Q =
pkhk

2
pkτ2(If +Df−b

(t)
f

Df)

BζS3
f − 1

− σ2 + pkhk. (26)1059

Note that (26) follows from (11). For the restricted problem �P,1060

we regard the items and the bins in the maximum cardinality1061

bin packing problem as the users and channels in problem P ,1062

respectively. The size of item k is sk = pkhk. The objective1063

of problem �P is to assign a maximum number of items to1064

the fixed number of bins and satisfy the capacity constraint.1065

Thus, if problem �P can be effectively solved, the maximum1066

cardinality bin packing problem can also be solved by a1067

polynomial time algorithm. This manifests that the original1068

problem P can be reduced to a maximum cardinality bin1069

packing problem. Therefore, we can conclude that problem1070

P is NP-hard.1071

B. Proof of Remark 11072

For user k, when the COMO decisions of other users except1073

user k (i.e., α−k,t) are given, we use αk,t and α�
k,t to denote1074

two different task offloading decisions of user k. Based on the1075

definition of ordinal potential game in [40], game G should1076

satisfy1077

sgn[φ(αk,t, α−k,t) − φ(α�
k,t, α−k,t)]1078

= sgn[ft(αk,t, α−k,t) − ft(α�
k,t, α−k,t)], (27)1079

where sgn[·] is a signum function. For ease of proof, we first1080

derive the expression of φ(αk,t, α−k,t) as follows.1081

φ(αk,t, α−k,t)1082

=
1
2

K�
k=1

�
n�=k

pkhkpnhn�(αn,t = αk,t)�(αk,t > 0)1083

+
K�

k=1

pkhkVk�(αk,t = 0)1084

=
1
2

�
n�=k

pkhkpnhn�(αn,t = αk,t)�(αk,t > 0)1085

+
1
2

�K

l �=k
plhlpkhk�(αk,t = αl,t)�(αl,t > 0)1086

+
1
2

K�
l �=k

�
n�=l,n �=k

plhlpnhn�(αn,t = αl,t)�(αl,t > 0)1087

+pkhkVk�(αk,t = 0) +
K�

l �=k

plhlVl�(αl,t = 0) 1088

= pkhk

�
n�=k

pnhn�(αn,t = αk,t)�(αk,t > 0) 1089

+
1
2

K�
l �=k

�
n�=l,n �=k

plhlpnhn�(αn,t = αl,t)�(αl,t > 0) 1090

+pkhkVk�(αk,t = 0) +
�K

l �=k
plhlVl�(αl,t = 0). 1091

(28) 1092

Below we discuss the relationship between φ(αk,t, α−k,t) − 1093

φ(α�
k,t, α−k,t) and ft(αk,t, α−k,t) − ft(α�

k,t, α−k,t) in three 1094

cases. 1095

1) αk,t > 0, α�
k,t > 0. According to (28), we have 1096

φ(αk,t, α−k,t) − φ(α�
k,t, α−k,t) 1097

= pkhk

�
n�=k

pnhn�(αn,t = αk,t) 1098

−pkhk

�
n�=k

pnhn�(αn,t = αk,t
�) 1099

= pkhk

�
Υk,t − Υ�

k,t

�
. (29) 1100

Based on (8), we have 1101

f(αk,t, α−k,t) − f(α�
k,t, α−k,t) 1102

=
�
f∈F

�(μ(t)
k =f)pk(If + Df − b

(t)
f Df)(

1
rk,t

− 1
r�k,t

). 1103

(30) 1104

According to the definition of uplink rate and chan- 1105

nel interference in (2) and (11), sgn(1
rk,t

− 1
r�

k,t
) = 1106

sgn(Υk,t − Υ�
k,t) is established. Hence, Eq. (27) is 1107

established in this case. 1108

2) αk,t > 0, α�
k,t = 0. Similarly, according to (28), we have 1109

φ(αk,t, α−k,t)−φ(α�
k,t, α−k,t) 1110

= pkhk

��
n�=k

pnhn�(αn,t =αk,t)−Vk

�
1111

= pkhk(Υk,t−Vk). (31) 1112

Furthermore, according to (8), we have 1113

f(αk,t, α−k,t) − f(α�
k,t, α−k,t) 1114

=
�
f∈F

�(μ(t)
k = f)

�
pk

If + Df − b
(t)
f Df

rk,t
− ζ

S3
f

τ2

�
. 1115

(32) 1116

According to the analysis of (11), we have 1117

sgn (Υk,t − Vk) = sgn(pk
If +Df−b

(t)
f

Df

rk,t
− ζ

S3
f

τ2). 1118

Thus, Eq. (27) is established in this case. 1119

3) αk,t = 0, α�
k,t > 0. This case is similar with case 2. Eq. 1120

(27) is also established in this case. 1121

Summarize the above results, Eq. (27) is established in any 1122

case. Consequently, game G is a ordinal potential game and 1123

can achieve a NE solution after finite number of iterations [40]. 1124

6964 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 10, OCTOBER 2022

C. Proof of Lemma 21125

For ease of presentation, we define Δmax =1126

maxk∈K {pkhk}, Δmin = mink∈K {pkhk}, Vmax =1127

maxk∈K{Vk}, Vmin = mink∈K{Vk}. For the potential1128

function, we have1129

φ(αt)
(a)
=

1
2

K�
k=1

�
n�=k

pkhkpnhn�(αn,t = αk,t)�(αk,t > 0)1130

+
�K

k=1
pkhkVk�(αk,t = 0)1131

≤ 1
2

�K

k=1

�
n�=k

Δ2
max�(αn,t = αk,t)�(αk,t > 0)1132

+
�K

k=1
ΔmaxVmax�(αk,t = 0)1133

≤ 1
2
K2Δ2

max + KΔmaxVmax, (33)1134

where (a) follows from (12).1135

The COMO algorithm first initializes the COMO decisions1136

of all users as 0, the initial value of φ(αt) is φ(0) =1137 �K
k=1 pkhkVk ≥ KΔminVmin. Thus, the value range of φ(αt)1138

is less than 1
2K2Δ2

max +K(ΔmaxVmax −ΔminVmin). In each1139

iteration, there is one user to update its decision to decrease1140

the computing cost. Based on the definition of potential game,1141

the decision update also decreases the value of potential1142

function. It is assumed that user k updates its offloading1143

decision αk,t to a better decision α�
k,t in one iteration, i.e.,1144

φ(αk,t, α−k,t) − φ(α�
k,t, α−k,t) > 0. Below we analyze the1145

decrement of φ(αt) in each iteration in three cases.1146

1) αk,t > 0 and α�
k,t > 0.1147

φ(αk,t, α−k,t)−φ(α�
k,t, α−k,t)1148

(a)
= pkhk

�
n�=k

pnhn

�
�(αk,t =αn,t)−�(α�

k,t =αn,t)
�

1149

> 0.1150

(34)1151

where (a) follows from (29). Since the value of indicator1152

function �(·) is integer, we have1153 �
n�=k

pnhn

�
�(αk,t = αn,t) − �(α�

k,t = αn,t)
�
≥ Δmin.1154

(35)1155

Consequently, φ(αk,t, α−k,t) − φ(α�
k,t, α−k,t) ≥ Δ2

min.1156

2) αk,t > 0, α�
k,t = 0.1157

φ(αk,t, α−k,t) − φ(α�
k,t, α−k,t)1158

(a)
= pkhk

��
n�=k

pnhn�(αn,t = αk,t) − Vk

�
> 0.1159

(36)1160

where (a) follows from (31). Thus, there is a positive1161

number ε =
�

n�=k pnhn�(αn,t = αk,t) − Vk , subject1162

to φ(αk,t, α−k,t) − φ(αk,t
�, α−k,t) = εpkhk ≥ εΔmin1163

3) αk,t = 0, α�
k,t > 0. Similar to case 2, there is a positive1164

integer ε such that φ(αk,t, α−k,t) − φ(α�
k,t, α−k,t) ≥1165

εΔmin.1166

Summarizing the above three cases, we have1167

φ(αk,t, α−k,t)−φ(α�
k,t, α−k,t) ≥ εΔmin, where ε is a positive1168

number. That is to say, in each iteration, the potential function 1169

will decrease at least εΔmin. Accordingly, the algorithm will 1170

terminate within
1
2 K2Δ2

max+K(ΔmaxVmax−ΔminVmin)

εΔmin
iterations 1171

and obtain a NE solution for COMO problem. 1172

REFERENCES 1173

[1] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila, “A sur- 1174

vey on mobile augmented reality with 5G mobile edge computing: 1175

Architectures, applications, and technical aspects,” IEEE Commun. Sur- 1176

veys Tuts., vol. 23, no. 2, pp. 1160–1192, Feb. 2021. 1177

[2] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey 1178

on mobile edge computing: The communication perspective,” IEEE 1179

Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017. 1180

[3] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust, 1181

“Mobile-edge computing architecture: The role of MEC in the Internet 1182

of Things,” IEEE Consum. Electron. Mag., vol. 5, no. 4, pp. 84–91, 1183

Oct. 2016. 1184

[4] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec- 1185

ture and computation offloading,” IEEE Commun. Surveys Tuts., vol. 19, 1186

no. 3, pp. 1628–1656, 3rd Quart., 2017. 1187

[5] Z. Sun and M. R. Nakhai, “An online learning algorithm for distributed 1188

task offloading in multi-access edge computing,” IEEE Trans. Signal 1189

Process., vol. 68, pp. 3090–3102, 2020. 1190

[6] H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi, and C. Assi, 1191

“Dynamic task offloading and scheduling for low-latency IoT services 1192

in multi-access edge computing,” IEEE J. Sel. Areas Commun., vol. 37, 1193

no. 3, pp. 668–682, Mar. 2019. 1194

[7] Z. Yu, Y. Gong, S. Gong, and Y. Guo, “Joint task offloading and 1195

resource allocation in UAV-enabled mobile edge computing,” IEEE 1196

Internet Things J., vol. 7, no. 4, pp. 3147–3159, Apr. 2020. 1197

[8] Q. Zhang, L. Gui, F. Hou, J. Chen, S. Zhu, and F. Tian, “Dynamic task 1198

offloading and resource allocation for mobile-edge computing in dense 1199

cloud RAN,” IEEE Internet Things J., vol. 7, no. 4, pp. 3282–3299, 1200

Apr. 2020. 1201

[9] M. Zhao et al., “Energy-aware task offloading and resource allocation 1202

for time-sensitive services in mobile edge computing systems,” IEEE 1203

Trans. Veh. Technol., vol. 70, no. 10, pp. 10925–10940, Aug. 2021. 1204

[10] T. X. Tran and D. Pompili, “Adaptive bitrate video caching and process- 1205

ing in mobile-edge computing networks,” IEEE Trans. Mobile Comput., 1206

vol. 18, no. 9, pp. 1965–1978, Sep. 2019. 1207

[11] M. Chen and Y. Hao, “Task offloading for mobile edge computing in 1208

software defined ultra-dense network,” IEEE J. Sel. Areas Commun., 1209

vol. 36, no. 3, pp. 587–597, Mar. 2018. 1210

[12] W. Wen, Y. Cui, T. Q. S. Quek, F.-C. Zheng, and S. Jin, “Joint optimal 1211

software caching, computation offloading and communications resource 1212

allocation for mobile edge computing,” IEEE Trans. Veh. Technol., 1213

vol. 69, no. 7, pp. 7879–7894, Jul. 2020. 1214

[13] J. Yan, S. Bi, L. Duan, and Y.-J.-A. Zhang, “Pricing-driven service 1215

caching and task offloading in mobile edge computing,” IEEE Trans. 1216

Wireless Commun., vol. 20, no. 7, pp. 4495–4512, Jul. 2021. 1217

[14] Z. Chen, Z. Zhou, and C. Chen, “Code caching-assisted computation 1218

offloading and resource allocation for multi-user mobile edge comput- 1219

ing,” IEEE Trans. Netw. Service Manage., vol. 18, no. 4, pp. 4517–4530, 1220

Dec. 2021. 1221

[15] S. Bi, L. Huang, and Y.-J.-A. Zhang, “Joint optimization of ser- 1222

vice caching placement and computation offloading in mobile edge 1223

computing systems,” IEEE Trans. Wireless Commun., vol. 19, no. 7, 1224

pp. 4947–4963, Jul. 2020. 1225

[16] W. Yi, Y. Liu, and A. Nallanathan, “Cache-enabled HetNets with 1226

millimeter wave small cells,” IEEE Trans. Wireless Commun., vol. 66, 1227

no. 11, pp. 5497–5511, Nov. 2018. 1228

[17] H. Xing, J. Cui, Y. Deng, and A. Nallanathan, “Energy-efficient proactive 1229

caching for fog computing with correlated task arrivals,” in Proc. IEEE 1230

SPAWC, Jul. 2019, pp. 1–5. 1231

[18] X. Yang, Z. Fei, J. Zheng, N. Zhang, and A. Anpalagan, “Joint 1232

multi-user computation offloading and data caching for hybrid mobile 1233

cloud/edge computing,” IEEE Trans. Veh. Technol., vol. 68, no. 11, 1234

pp. 11018–11030, Nov. 2019. 1235

[19] Z. Chen and Z. Zhou, “Dynamic task caching and computation offload- 1236

ing for mobile edge computing,” in Proc. IEEE Global Commun. Conf. 1237

(GLOBECOM), Dec. 2020, pp. 1–6. 1238

[20] Z. Chen, Z. Chen, and Y. Jia, “Integrated task caching, computation 1239

offloading and resource allocation for mobile edge computing,” in Proc. 1240

IEEE Global Commun. Conf. (GLOBECOM), Dec. 2019, pp. 1–6. 1241

CHEN et al.: DYNAMIC TASK SOFTWARE CACHING-ASSISTED COMO FOR MULTI-ACCESS EDGE COMPUTING 6965

[21] J. Zhang et al., “Joint resource allocation for latency-sensitive services1242

over mobile edge computing networks with caching,” IEEE Internet1243

Things J., vol. 6, no. 3, pp. 4283–4294, Oct. 2018.1244

[22] P. Wu, J. Li, L. Shi, M. Ding, K. Cai, and F. Yang, “Dynamic content1245

update for wireless edge caching via deep reinforcement learning,” IEEE1246

Commun. Lett., vol. 23, no. 10, pp. 1773–1777, Oct. 2019.1247

[23] Y. Qian, R. Wang, J. Wu, B. Tan, and H. Ren, “Reinforcement learning-1248

based optimal computing and caching in mobile edge network,” IEEE1249

J. Sel. Areas Commun., vol. 38, no. 10, pp. 2343–2355, Oct. 2020.1250

[24] J. Zhang et al., “Joint resource allocation for latency-sensitive services1251

over mobile edge computing networks with caching,” IEEE Internet1252

Things J., vol. 6, no. 3, pp. 4283–4294, Jun. 2019.1253

[25] R. Zheng, H. Wang, M. De Mari, M. Cui, X. Chu, and T. Q. S. Quek,1254

“Dynamic computation offloading in ultra-dense networks based on1255

mean field games,” IEEE Trans. Wireless Commun., vol. 20, no. 10,1256

pp. 6551–6565, Oct. 2021.1257

[26] Y. Sun, Y. Cui, and H. Liu, “Joint pushing and caching for bandwidth1258

utilization maximization in wireless networks,” IEEE Trans. Commun.,1259

vol. 67, no. 1, pp. 391–404, Jan. 2019.1260

[27] T. S. Rappaport et al., Wireless Communications: Principles and Prac-1261

tice, vol. 2. Upper Saddle River, NJ, USA: Prentice-Hall, 1996.1262

[28] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation1263

offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,1264

vol. 24, no. 5, pp. 2795–2808, Oct. 2016.1265

[29] M. Xiao, N. B. Shroff, and E. K. P. Chong, “A utility-based power-1266

control scheme in wireless cellular systems,” IEEE/ACM Trans. Netw.,1267

vol. 11, no. 2, pp. 210–221, Apr. 2003.1268

[30] M. Chiang, P. Hande, T. Lan, and C. W. Tan, “Power control in wireless1269

cellular networks,” Found. Trends Netw., vol. 2, no. 4, pp. 381–533,1270

Apr. 2008.1271

[31] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients1272

in cloud computing,” in Proc. HotCloud, vol. 10, 2010, pp. 1–7.1273

[32] A. Bozorgchenani, D. Tarchi, and W. Cerroni, “On-demand service1274

deployment strategies for fog-as-a-service scenarios,” IEEE Commun.1275

Lett., vol. 25, no. 5, pp. 1500–1504, May 2021.1276

[33] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning1277

with double Q-learning,” in Proc. AAAI, 2016, vol. 30, no. 1, pp. 1–7.1278

[34] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.1279

Cambridge, MA, USA: MIT Press, 2018.1280

[35] R. Agarwal, D. Schuurmans, and M. Norouzi, “An optimistic perspec-1281

tive on offline reinforcement learning,” in Proc. ICML, Nov. 2020,1282

pp. 104–114.1283

[36] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. Cambridge,1284

MA, USA: MIT Press, 2016.1285

[37] M. R. Garey and D. S. Johnson, Computers and Intractability, vol. 174.1286

San Francisco, CA, USA: Freeman, 1979.1287

[38] G. Hasslinger, J. Heikkinen, K. Ntougias, F. Hasslinger, and1288

O. Hohlfeld, “Optimum caching versus LRU and LFU: Comparison and1289

combined limited look-ahead strategies,” in Proc. Int. Symp. Modeling1290

Optim. Mobile, Ad Hoc, Wireless Netw. (WiOpt), 2018, pp. 1–6, doi:1291

10.23919/WIOPT.2018.8362880.1292

[39] K.-H. Loh, B. Golden, and E. Wasil, “Solving the maximum cardinality1293

bin packing problem with a weight annealing-based algorithm,” in Oper-1294

ations Research and Cyber-Infrastructure. Springer, 2009, pp. 147–164.1295

[40] K. Yamamoto, “A comprehensive survey of potential game approaches1296

to wireless networks,” IEICE Trans. Commun., vol. 98, no. 9,1297

pp. 1804–1823, Sep. 2015.1298

Zhixiong Chen (Graduate Student Member, IEEE)1299

received the B.S. and M.S. degrees from Chongqing1300

University, Chongqing, China, in 2018 and 2021,1301

respectively. He is currently pursuing the Ph.D.1302

degree with the Communication Systems Research1303

Group, School of Electronic Engineering and Com-1304

puter Science, Queen Mary University of London.1305

His current research interests include reinforce-1306

ment learning, wireless federated learning, and dis-1307

tributed learning.1308

Wenqiang Yi (Member, IEEE) received the 1309

Ph.D. degree in electrical engineering from the 1310

Queen Mary University of London, U.K., in 2020. 1311

Since 2020, he has been a Post-Doctoral 1312

Researcher with the Communication Systems 1313

Research Group, School of Electronic Engineer- 1314

ing and Computer Science, Queen Mary University 1315

of London. His research interests include NGMA, 1316

millimeter-wave communications, stochastic geom- 1317

etry, and reinforcement learning. He has served 1318

as a TPC Member for many IEEE conferences, 1319

such as GLOBECOM and VTC. He received the Exemplary Reviewer of 1320

the IEEE COMMUNICATION LETTERS and the IEEE TRANSACTIONS ON 1321

COMMUNICATIONS in 2019 and 2020. He is the Guest Editor of the Special 1322

Issue “Integrated Sensing and Communication” in Sensors. He serves as 1323

the Secretary for the Special Interest Group on Next Generation Multiple 1324

Access (NGMA) by the SPCC Technical Committee. He also serves as the 1325

Secretary for Emerging Technologies Initiatives on NGMA by the Emerging 1326

Technologies Committee. 1327

Atm S. Alam (Member, IEEE) is currently a Lec- 1328

turer (Assistant Professor) at the School of Elec- 1329

tronic Engineering and Computer Science (EECS), 1330

Queen Mary University of London, U.K. With years 1331

of academic and research experience, he is adept at 1332

bridging research, innovations, and commercializa- 1333

tions via digital transformations for a better world. 1334

His research interests include cognitive communi- 1335

cations and networking, ML/AI in wireless com- 1336

munications, and emerging applications of cognitive 1337

communications and networking in verticals. He is 1338

a fellow of the Higher Education Academy (FHEA), U.K. 1339

Arumugam Nallanathan (Fellow, IEEE) was an 1340

Assistant Professor with the Department of Electri- 1341

cal and Computer Engineering, National University 1342

of Singapore, from August 2000 to December 2007. 1343

He was with the Department of Informatics, King’s 1344

College London, from December 2007 to August 1345

2017, where he was a Professor of wireless com- 1346

munications from April 2013 to August 2017 and 1347

a Visiting Professor since September 2017. He has 1348

been a Professor of wireless communications and 1349

the Head of the Communication Systems Research 1350

(CSR) Group, School of Electronic Engineering and Computer Science, 1351

Queen Mary University of London, since September 2017. He published 1352

more than 500 technical papers in scientific journals and international con- 1353

ferences. His research interests include artificial intelligence for wireless 1354

systems, beyond 5G wireless networks, the Internet of Things (IoT), and 1355

molecular communications. He received the IEEE Communications Society 1356

SPCE Outstanding Service Award in 2012 and IEEE Communications Society 1357

RCC Outstanding Service Award in 2014. He was a co-recipient of the Best 1358

Paper Awards presented at the IEEE International Conference on Commu- 1359

nications 2016 (ICC 2016), IEEE Global Communications Conference 2017 1360

(GLOBECOM 2017), IEEE Vehicular Technology Conference 2018 (VTC 1361

2018), and IEEE Communications Society Leonard G. Abraham Prize in 1362

2022. He served as the Chair for the Signal Processing and Communication 1363

Electronics Technical Committee of IEEE Communications Society and 1364

Technical Program Chair and a member of technical program committees 1365

in numerous IEEE conferences. He is an Editor-at-Large of IEEE TRANS- 1366

ACTIONS ON COMMUNICATIONS and a Senior Editor of IEEE WIRELESS 1367

COMMUNICATIONS LETTERS. He was an Editor of IEEE TRANSACTIONS 1368

ON WIRELESS COMMUNICATIONS (2006–2011), IEEE TRANSACTIONS ON 1369

VEHICULAR TECHNOLOGY (2006–2017), and IEEE SIGNAL PROCESSING 1370

LETTERS. He is an IEEE Distinguished Lecturer. He has been selected as a 1371

Web of Science Highly Cited Researcher in 2016 and AI 2000 Internet of 1372

Things Most Influential Scholar in 2020. 1373

http://dx.doi.org/10.23919/WIOPT.2018.8362880

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

