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Abstract—Half-duplex mobile radio systems are commonly used
for speech communication, often in challenging environments
where background noise may prevent speech intelligibility. These
systems usually operate with modest battery capacity which
strictly limits the available computational power. In this paper,
we present a noise suppression approach that uses lightweight
machine learning. The machine learning leverages a neuro-fuzzy
logic-based neural network to create accurate noise estimation
that is used adaptively to create a filter for noise reduction.
The system buffers a number of noise samples, triggered by
the half-duplex key press, allowing the solution to adapt to
recent changes in the background auditory noise. The selection
of a neuro-fuzzy logic-based neural network is driven by the
necessity for a low-power implementation suitable for mobile,
power-constrained terminals. The proposed system is compared
with both traditional noise suppression methods as well as with
a deep convolutional neural network (DCNN) variant of our
system. The results demonstrate that our system significantly
outperforms traditional methods in terms of both subjective and
objective quality metrics. Further, they show that, although the
DCNN variant achieves comparable performance, it has a high
computational cost which renders it unsuitable for low-power
digital personal radio systems. To validate its practicality, the
proposed method is tested in a real-time system, demonstrating
its compatibility with constrained devices.

Index Terms—Speech Enhancement, Adaptive Noise Cancella-
tion, Vocoder, Half-duplex communication, ANFIS.

I. INTRODUCTION

OBILE speech communication is a widely used in

everyday life. Half-duplex speech communication is
a vital subset of this application space serving important
industries such as telecommunications, public safety, and
transportation. While such communication systems are effec-
tive for long-distance communication, they often rely on a
single-channel microphone and are battery powered, which
imposes limitations in the opportunities for signal processing.
Additionally, mobile voice communication systems rely on
low-bit-rate voice codecs due to limited channel capacity,
which often results in added distortion. As a result, such
systems do not perform well in noisy auditory environments,
leading to degraded voice quality and signal distortion. To
reduce the distortion introduced by background noise, voice
enhancement techniques can be employed to suppress the
noise in the content, thus improving speech intelligibility.
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Existing solutions that can enhance speech by suppressing
noise sources from mixed signals include: classical approaches
that have been used for decades, such as spectral subtraction
schemes [1], Minimum tracking spectral subtraction (MTSS)
[2] (building on seminal work by Martin [3]), and adaptive
filtering techniques [4], [5]. Other schemes such as the Log-
minimum Mean Square Error (LMMSE) algorithm improve
speech enhancement by effectively mitigating noise while
preserving signal quality [6], but face limitations when dealing
with rapid and unpredictable noise changes due to their
reliance on short noise frames. Improved performance can
be achieved using automatic gain control [7] and Kalman
filtering [8]. These hybrid, classical, methods have been the
preferred approach to real-time speech enhancement systems
as they use modest computational power that suits the limited
storage and computational capabilities of the mobile radio
devices. However, these techniques struggle to remove non-
stationary noise because they over-smooth or even distort the
desired signal, especially when the noise characteristics vary
significantly over a period of time. Another weakness of these
methods is that they assume linearity and stationarity, which
is not often the case in real-life noise scenarios. The weak-
nesses in existing systems motivate the introduction of low-
complexity non-linear and adaptive machine learning solutions
as proposed in this paper.

A recent review on supervised learning algorithms presented
in [9] highlights that machine learning (ML) algorithms are
in general more efficient than traditional methods for speech
enhancement. For example, automatic noise class detection us-
ing artificial neural networks has shown promising results [10].
In [11], non-negative matrix factorization (NMF) and Robust
Principal Component Analysis (RPCA) have been shown to
be efficient for speech enhancement. However, general ML
techniques — such as neural networks — are computationally
expensive and require complex weight updating to efficiently
reduce noise [9] thus prohibiting their use in low-power
systems [12], [13] such as the application area of this paper.
The computational complexity of neural networks can be
alleviated by combining them with fuzzy logic that reduces
the scale of the required neural network. This hybrid solution
combines the ability of fuzzy logic to manage uncertainty with
the power of neural networks to capture complex relationships
between variables. For example, the adaptive neuro-fuzzy
inference system (ANFIS) requires significantly fewer compu-
tational resources compared to conventional neural networks
[12], [14]. Indeed, ANFIS has been used as a simple ML-
based filter for speech enhancement [15]. This prior example



has only been applied to white noise sources and requires
subtraction for each frame that can result in the creation
of perceptually annoying artifacts in more complex real-
world scenarios. However, in stationary, ideal, conditions, this
method can achieve a high degree of accuracy and robustness
giving rise to the motivation for its use as part of the proposed
solution.

In this paper, we propose a novel method to adaptively
estimate changing noise in narrow-band half-duplex commu-
nication systems. It is worth noting that our method can
be incorporated into any mobile communication system with
minor adaptation. Our system is substantially evolved from
previous work [16], where we introduced a history database
model for post-decoder speech denoising. In contrast to other
approaches, our denoising system is applied prior to the
encoder. Additionally, we utilize the push-to-talk button for
noise estimation. The employed push-to-talk mechanism is
an exemplar mechanism and can be substituted with voice
activity detection [17] or source separation [18], rendering our
methodology appropriate to various mobile communication
systems. However, to simplify the description, our current
work assumes a half-duplex system. We have also extensively
evaluated our system and compared its performance with tra-
ditional approaches and a deep convolutional neural network
(DCNN). Specifically, we employ ANFIS for denoising as it
has proven effective in non-stationary and low SNR noisy
scenarios, but unlike previous works, we apply it online and,
hence, continuously retrain the system. The retraining is based
upon small frames of historical, buffered, noise samples to
estimate noise characteristics. The training is triggered by
the key-press that is made at the start of each “push-to-talk”
half-duplex speech segment and draws on the buffered noise
samples before the key-press. This can be generalised in future
work through use of voice activity detection to replace the
need of the key-press event. The estimated noise is used
for denoising the speech frames using a combination filter
consisting of a Wiener filter and spectral subtraction. This
adaptive approach allows us to greatly reduce the amount of
noise energy in speech frames while minimizing distortion
caused by over-subtraction. Furthermore, as we show in the
experimental evaluation, it leads to improved communication
quality in noisy environments. To summarize, the main con-
tributions of our paper are as follows:

e we propose a novel noise suppression mechanism that
uses knowledge from a half-duplex key-press event to
sample noise existing before speech starts. However, our
system can be generalised, for example to full-duplex
systems, with the addition of voice activity detection.

o« we employ ANFIS for the first time in half-duplex
communication to develop a low-cost system that respects
the low-power nature of the considered devices;

o we propose a dictionary-based database approach as an
addition mechanism to the key-based noise suppression
to further advance the performance of our system in the
absence of noise samples. This has insignificant compu-
tational cost and only adds a small storage overhead;

o we have extensively evaluated the performance of our

system and compared it with other methods, including
CNN-based noise reduction. The results demonstrate the
superiority of our system in terms of performance com-
pared to traditional systems. Furthermore, they show that
while the performance of our approach is comparable to
a CNN, it uses significantly lower computation resources
than a CNN, indeed a CNN is found to be totally
unsuitable for low-power systems;

« we have deployed and tested a real-time implementation
of our system to understand the performance considering
hardware and power limitations. The results show the fea-
sibility of deploying our approach in real-world battery-
powered systems and that the performance is consistent
with the simulations.

The rest of the paper is organized as follows. We first discuss
related literature in Section II. Then, in Section III, we
briefly present the overview of the proposed system before
describing our proposed method in detail in Section IV. Next,
we present the experimental setup and extensively evaluate
the performance of our system in Section V. Finally, we draw
conclusions in Section VI.

II. RELATED WORK

Traditional signal processing-based noise reduction methods,
such as spectral subtraction [1], [19], were built on the
assumption of a linear-time domain relation between noise
and speech. Spectral subtraction methods subtract the noisy
speech frame from the whole speech frame with the esti-
mated noise generated using early speech frames. A major
assumption is that there is no speech frame during those
periods. Spectral subtraction requires a good estimation of
the noise to perform well; however, it can only suppress
some artifacts to a certain extent. In order to mitigate this
problem, a nonlinear spectral subtraction method was proposed
in [20]. Alternatively, multi-band spectral subtraction is used
in [21], where spectral subtraction is done separately for each
band. Although this approach achieves good performance, it
is computationally expensive and introduces additional latency
due to its reliance on multi-band spectral estimation. A dual-
channel noise reduction algorithm was introduced in [22] for
cellular communication. This approach used a combination of
a coherence-based algorithm and a Kalman filter for noise
reduction. Again, while showing good performance, the addi-
tional hardware components to obtain the dual-channel input
signals, significantly increase the cost and complexity of the
overall system and renders it inappropriate for low-power
systems.

The most common approach for speech enhancement is
Wiener filtering [23], [24]. It is based on the assumption that
speech and noise spectra are Gaussian and uncorrelated. It is
considered optimal for noise suppression in communication
systems, as it effectively preserves signal quality by adapting
to the statistical properties of both the signal and the noise,
making it particularly well-suited for linear, stationary systems
with known statistics. The main drawback of Wiener filtering
is that it requires a significant amount of silent periods to
accurately estimate the prevailing noise in the signal. This



requirement poses a challenge in real-life systems, where silent
periods are often limited, ultimately affecting sound quality.
Typically, Wiener filtering relies on extracting multiple 25
msec of noise chunks, which are then utilized as a reference to
subtract from the speech frames, resulting in noise reduction.
Voice activity detection (VAD) is adopted in [25] to overcome
the problem of detecting suitable periods of noise without
speech. This method assumes that noise is present all the
time and uses VAD to estimate the (speech) silence periods
when the noise can be sampled. Recently, the NMF method
has become popular for speech enhancement, where the NMF
constructs a noise model during a non-speech frame presuming
it follows a Gaussian distribution. In [26], the authors proposed
a NMF with an online update of speech and noise bases
for speech enhancement. However, the common assumption
of Gaussian distribution may not be optimal when working
with a limited frame size, as it may fail to capture intricate
characteristics of noise data as shown in [27]. An approach
to advance Wiener filtering is by employing a codebook!
[28]. The gain functions of these two methods are weighted
to obtain an integrated gain. Codebook-based methods rely
on predefined fixed codebooks, which might not be able to
adequately represent all types of noise variations encountered
in real-life scenarios. The use of codebooks is a costly process
that can be partly alleviated as suggested in [29], where gener-
ative dictionary learning is proposed for speech enhancement.
However, it can fail when noise is non-stationary or SNR is
low.

In [30], the authors proposed a real-time unsupervised method
by combining a pre-learned universal non-negative matrix
factorization dictionary algorithm with the generalized cross-
correlation for speech enhancement, yielding notable improve-
ments in audio source separation and speech intelligibility
compared to traditional methods. In tackling varying back-
ground noise, artificial neural networks, especially deep learn-
ing methods, are a promising solution for improving speech
quality [31]. Deep learning approaches have become popular
for speech enhancement in the past few years [32]-[34]. These
studies show impressive gains but they require significant
storage and computational resources. A recent study [35] on a
monaural speech enhancement model that uses noise modeling
has shown promising results. However, the model’s 1.54
million parameters make it too resource-intensive for edge
devices. Although cloud or federated learning allows some
applications to bypass these resource constraints, this is not
possible for radio communication systems which require low
latency and have commonly limited communication resources.
In the domain of smart speaker [36], prior work has explored
1DCNN-based predictors, demonstrating successful far-field
communication; however, the computational demands, exem-
plified by operation counts of 3.5 M/s, still pose challenges for
resource-constrained embedded implementations. In another
study [37], the Codec-SUPERB challenge is introduced to
evaluate neural audio codecs using a DNN-based model with
73 million parameters. This approach moves away from tra-

'A codebook is a collection of spectral patterns or vectors that represent
different speech and noise characteristics

ditional standards, focusing instead on preserving low-bitrate
speech quality. However, the model’s high parameter count
presents computational challenges for deployment on low-
power devices. There has been some work to develop deep
learning frameworks suitable for mobile devices [38]-[41]
but all these techniques require a mobile GPU or accelerated
hardware which is not generally appropriate for low-power
systems such as the application area of this paper.

III. SYSTEM AND PROBLEM OVERVIEW

In this section, we present the overview of a half-duplex
communication system illustrated in Fig. 1 that is used for
voice communication in many applications, such as military,
industrial and medical, among others.? Such half-duplex com-
munication systems, often colloquially termed as a walkie-
talkie, use a portable two-way, half-duplex radio that allows
people to communicate wirelessly with each other. These
systems use radio spectrum to transmit and receive audio
messages over short distances, typically a few kilometers
or less. In a half-duplex communication system, one station
termed as the local side (L) can send and receive information
only in the forward direction. The remote side (R) uses
the same system, and the two communicate over a wireless
channel. The terminal is used for half-duplex “push-to-talk”
communications, and when the key is pushed, it activates
the system to transmit the voice to the receiver’s end, i.e.,
the remote side. A standard half-duplex system comprises
a user terminal, an A/D converter module, a memory, a
Vocoder (for example, AMBE+ [42]%), and a transceiver. The
system described herein operates as a half-duplex system,
aligning with the primary focus of this paper. Nonetheless, the
underlying process block remains consistent across most voice
communication systems. In alternative communication config-
urations, such as full-duplex or simplex systems, VAD can
effectively replace the key button function of the half-duplex
system [25], [43]. VAD plays a crucial role in discerning
speech, silence, and noise, while optimizing bandwidth usage.
Utilizing VAD, one can extract noise chunks, subsequently
employing the methodology outlined in this paper to train a
full duplex system effectively, although we have not addressed
this in this paper. The novel contribution of our paper lies in
the adaptive noise suppression block, as shown in Fig. 1, which
is integrated as a singular component within the system, and
is placed before the Vocoder block, i.e., prior to the encoder.

A. System overview

Half-duplex communication systems are reliable and effective
in many applications, and can be deployed quickly, which
makes them ideal choice for emergency and ad-hoc situations.
In order to deal with noise, denoising algorithms can be
applied either before encoding (local side) or after decoding
(remote side). When denoising is performed after decoding,
as is common, the noise reduction is applied to decompressed
speech signals, which have already been degraded by the

2The adaptive suppression block is part of our system and is not present
in traditional systems.
3Supplied by DVSI https://www.dvsinc.com/products/docs.shtml
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Fig. 1: Simplified block diagram of Half-duplex communication system.

I I
After Decoder Before Encoder

Fig. 2: Achieved PESQ scores when our denoising algorithm is applied before
the encoder and after the decoder.

Vocoder. Typically, the encoded speech by a narrowband
Vocoder has a perceptual quality measured by means of MOS
in the range of [2.6, 3.4], even in the absence of noise. Alterna-
tively, when effective denoising is performed before encoding,
the background noise has less effect on the encoding process as
the encoders are optimised for speech rather than noise. This
can be verified by the comparison shown in Fig. 2, where
we show the achieved average PESQ score when applying
a simple spectral subtraction method before and after the
decoder for twenty noisy sounds. For this comparison, twenty
“clean’ male speech clips were mixed with the same street
noise. This evaluation motivates us to apply our proposed
denoising algorithm before the encoder.

B. Problem formulation

In this section, we formally present the considered problem
and introduce the related notation. Let us denote the input
speech signal by s(7) and the noise signal by n(i). The input
signal of the Vocoder, w(i), during active speech (key pressed)
is the composite signal at sample index ¢:

w(i) = s(i) + n(i) (1)

We will generalize the input signal later to include the non-
active period when the key is not pressed.

The Vocoder encodes the input signal w(i) and generates
the compressed signal z(7), where f[] represents the encoder.
Hence, it is

2(i) = flw(2)]. 2

At the receiver, the recovered signal after the decoder is
denoted by y(i). If we now represent the decoder by a function
g[], the output signal y (i) can be written as:

y(@) = glflw(@)]] = s(i) +n(i) + (i), 3)

where the distortion in the speech and noise signals after pass-
ing through the encoder and transmission error is represented
by e(i).

The noise component n(%) is assumed to be independent of the
speech signal. This is the general case as the background noise
is not correlated with the original signal, thus the expected
cross-correlation R is:

R(s(i), n(i)) = 0. 4)

IV. PROPOSED APPROACH

A. Overview of proposed approach

1) General solution: We begin this section by discussing the
fundamental components of our generic solution. Our method
performs analysis of the noisy speech in order to characterize
the noise. This is an essential part of our system and needs
to be done before noise suppression, as it permits to model
the noise sources and understand the characteristics of the
data. This information is then used to design efficient noise
suppression systems. The most common noise characterization
method is spectral analysis, which first uses a spectrogram to
create a visual representation of the noise and then suppresses
it from the sound source. In the context of real-time communi-
cation systems, employing this approach may prove inefficient
because it relies on the analysis of individual small audio
chunks. This poses challenges in effectively distinguishing
noise and speech. Hence, it becomes crucial to gain a com-
prehensive understanding of the noise signal’s characteristics
before attempting noise reduction.

In order to suppress background noise or other unwanted
sounds (e.g., background sounds of others, street sounds,
sirens, airport sounds, station sounds, etc.) from a speech
frame (during push-to-talk), it is essential to identify the
noises before the corresponding speech of interest that has
both the noise and the speech mixed together. In one respect,
the identification of noise is an independent step from the
identification of the noise mixed with the speech signals. The
same approach can be applied in full-duplex communication
by replacing the key-press events with a voice/event activity
detection mechanism [17], [25], [43]. This paper has not con-
sidered full-duplex, it would require the voice/event activity
to work well in a noisy environment, there have been some
recent advancements in this area that could be applied to this
work [43], however, it would need further development.
There are two main approaches to characterizing noise used
in this paper: (a) buffering of noise samples based on key-
press events, and (b) use of a dictionary containing historical
noise samples. The proposed noise suppression consists of
two stages: noise estimation and noise suppression. Both of
these stages are carried out online, where noise estimation
aims to characterize the noise in the signal y(i) by using the
techniques below. The denoising front end includes a noise
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Fig. 3: Proposed adaptive noise suppression mechanism.

estimation module that accurately detects the type of noise in
the signal based on buffered noise samples determined from
key-press (push-to-talk) events and a dictionary of historical
noise samples. These multiple noise chunks are then used for
noise estimation using the ML algorithm presented in Section
IV-C. In the second stage, the estimated noise is then sup-
pressed in real-time using a combination of a Wiener filter and
spectral subtraction to mitigate environmental disturbances.
Fig. 3 shows the workflow of our proposed approach, which
uses two sources for the noise characterization: either buffering
based upon key-press events or a historical noise database;
these are each explained below.

Buffering based upon key-press events: In this approach, noise
is characterized by analyzing recent data and buffering the
data based on key-press events, as shown in Fig. 3. The noise
model is derived from input audio sampled before the key
is pressed; however, machine learning can take place either
before or after the key is pressed. Let z(¢) be the input audio
signal, where ¢ represents the time frame, it signifies the analog
time frame prior to being captured by the microphone. This is
the period during which the digital signal samples are stored
in the considered half-duplex system in either the active (key
pressed) or non-active speech condition (key not pressed), and
let k(t) be the key signal that indicates when the person starts
talking. We can model the input audio signal as a sum of the
noise signal n(t) and the speech signal s(t), such that:

_ (), if t <t
0= {w(i) = n(t) +s(t), ift>ty )

where tj, stands for the time the key is pressed and ¢ is the
sample corresponding to time ¢. Later we use ¢ when referring
to the analog signal and either ¢ or k to denote the sampled
value at a certain time.

To derive the noise model from the input audio, we can use the
samples of x(t) before pressing the key. Let T" be the duration
of the audio input segment that is processed before pressing
the key. Then, the noise model m(¢) can be derived as:

[n@), ifo<t<T
m(t)_{o, ift>T ©

The above equation states that the noise model m(t) is equal
to the noise frame n(t) before the key is pressed. Machine
learning techniques can be utilized to identify statistical noise

using multiple noise frames, as is depicted in Fig. 3. Our
system is triggered by the key-press (push-to-talk) event. Noise
samples are continuously sampled until the key-press event,
at which time the most promising samples are retained; see
later in Section IV-B for the method employed to determine
the samples to be retained. The implicit assumption is that,
prior to the key-press event, the user is not talking to the
device. This is often the case, but speech detection might
be needed to make sure that this is being observed, and if
necessary, samples which contain active speech would need
to be discarded. Once the key-press event occurs, the system
uses machine learning to characterize the noise as best fits the
noise-affected speech signal; later in Section IV-C we present
our scheme employing the ANFIS model for this purpose.
Then, once the noise characterization step is completed, the
system applies denoising through an adaptive combination
filter that is explained in more detail later in this section.
Buffering based on key-press events can be useful in situations
where the noise characteristics are not known a priori or
where the noise characteristics vary over time. By buffering
and analyzing recent data, this approach can adapt to changing
noise conditions and provide more accurate estimates of noise
properties. It is important to emphasize that the noise chunks
are acquired during periods when the device is not transmitting
or receiving signals.

Noise database history approach: In some cases, there is not
sufficient information at the time of the key press to train
the ANFIS model, for example, there is a long period of
silence prior to the keypress. In such a case, we can utilise
noise characterized by an optimal selection with segments of
various types of noises within the offline historical stored
data, followed by the construction of a dictionary of noise
patterns. In our case, we have opted for this approach when the
system fails to obtain an adequate number of noise samples for
training. An example of the noise database block of this system
is shown in Fig. 3. The dictionary approach contains recent
noise sample segments from the offline stored data, which
are suitable for similar noise characterization. The dictionary
can then be used for noise estimation. The dictionary can be
constructed by training the same ANFIS model on a recent
noise sample with segments that closely match the noise
pattern found in the offline stored data. This is particularly
useful if there are not enough buffered noise segments, for
example at the start of use, or if the samples were polluted
with speech. Consequently, the system can better adjust to
changing noise conditions and provide more accurate noise
characterization. The addition of this mechanism does not
introduce significant processing overhead but does require
limited additional storage of historical noise samples.

Let us assume that the first noise frame at time instant &
is denoted n(k) and N is a matrix in which each column
contains samples of different types of noise. The goal is to
find the column vector n; in N that best matches the current
noise frame (segment) n(k). One way to achieve this is by
computing the Euclidean distance between n(k) and each
column vector in N, N;, and selecting the column vector
with the smallest distance as the best match, which is formally



expressed as:
i* = argmin ||n(k) — N,||,, @)

where ¢* is the index of the best-matching column vector
in N, and [|-||, denotes the Euclidean norm. Once the best-
matching noise segment is identified, the subsequent segments
can be extracted from it, and an ML algorithm (ANFIS) can
be employed for training. Our system uses the ANFIS model
presented in Section IV-C to estimate the noise signal based
on the historical segment and noise database.

Both the buffering and noise database history approaches
described above are performed online, i.e., characterization
and learning is carried out with minimal delay. In addition,
for both approaches, auto-gain control is an important factor
to maintain a consistent signal level in the presence of varying
input levels, as in communication applications, the signal
amplitude may vary widely over time. An auto-gain control
algorithm can thus adjust the gain of the signal to maintain a
consistent level, which can improve the overall quality of the
processed signal [7]. As noted above using both approaches
is useful to allow for situations such as after an initial start
condition (the user first turns on the radio) where the database
history approach is used before the buffering approach can be
started.

B. Intelligent sample management

The accuracy of these methods is highly dependent on the
efficiency of the noise collection process and that the stored
noise samples correctly represent the actual noise. Hence, it
is crucial to accurately estimate the statistical properties of
noise in order to effectively separate it from the speech signal.
Additionally, periodic updates of the stored noise samples is
essential so that the limited storage contains noise segments
that are mutually exclusive i.e., are statistically “different.”
One common approach to noise estimation and separation
is the use of statistical models that capture the statistical
properties of signal and noise. The Gamma distribution has
been used in [44] and is useful as it generalizes several
distributions e.g., Rayleigh, exponential, Weibull, and log-
normal [45]. In particular, the work by [44] shows that the
amplitude distribution of audio as a Gamma distribution is
a useful discriminator. Consequently, we use the Gamma
distribution parameters to distinguish the type of noise and
distinguish between speech versus noise signals.

C. Proposed low-complexity solution

ANFIS is a hybrid system that combines the advantages of
fuzzy logic and neural networks. The ANFIS model consists
of a set of fuzzy if-then rules, where the input variables are
mapped to the output variable through a set of membership
functions and a set of adaptive parameters. The ANFIS model
can be trained using a set of input-output data, and the param-
eters can be adjusted using the back-propagation algorithm.

An illustrative example of an ANFIS model with two inputs
and two membership functions is shown in Fig. 4. The ANFIS
model consists of multiple layers, including the input layer,
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Fig. 4: Example of an ANFIS model with two inputs and membership
functions.

a membership function layer, a rule layer, a normalization
layer, and an output layer. During training, the model learns
the optimal parameters for each layer based on the input data
and the desired output. The input layer takes the noisy speech
frame and two frames from the noise database as input. The
input layer applies appropriate scaling and normalization to the
input data to prepare them for processing by the subsequent
layers. The second layer is the membership function layer
that uses a clustering method (i.e., grid partitioning), which
maps the input data to a set of linguistic variables, such as
“high noise” or “low noise”. This layer helps to represent
the input data in a way that is more meaningful for the
subsequent layers to process. There are many different types
of membership function that can be used, but two commonly
used functions in ANFIS are the Gaussian and the triangular
membership functions. Here, we use the Gaussian membership
function, as we have found by experimentation that it can
capture more efficiently the statistical properties in our case.
The third layer is the rule layer, which applies fuzzy logic rules
to the output of the membership function layer to generate a
set of inference rules. These rules capture the relationships
between the linguistic variables and the desired output (i.e.,
the estimated noise in the signal). The fourth layer is the
normalization layer, which simply scales the output of the
rule layer to ensure that they sum to one. The final layer is
the output layer, which generates the estimated noise based on
the input data and the learned parameters of the model. The
model learns to recognize patterns in the data and uses them
to estimate the noise in future speech signals.

The input variables of the ANFIS model are the first noisy
speech frame and two chunks of the best-matching historical
signals. The output variable is the estimate of the statistical
noisy frame at the time instant k. As we mentioned, the ANFIS
model can be represented by a set of fuzzy if-then rules, such
that: if =1 is A; and x5 is A9 and ... and z is Ay, then
y = f(x1,x9,...,xN), Where 21, xa, ..., x y are the first noisy
speech frame and a few chunks from the best-matching column
vector, A1, Ag, ..., AN are the fuzzy sets defined over the input
variables, and f(z1,%2,...,zy) is a nonlinear function that
maps the input variables to the output variable n.

The parameters of the ANFIS model can be adjusted using
the back-propagation algorithm together using the gradient
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Fig. 5: Block diagram for speech enhancement based on the considered ANFIS
model.

descent algorithm, which iteratively updates the parameters of
the membership functions and the adaptive parameters [46].
The goal is to minimize the mean squared error between the
estimated noise signal and the true noise signal. The block
diagram of the speech enhancement process is shown in Fig. 5.
The power spectral density (PSD) of the output noise signal
generated by ANFIS is the estimate of the noise power in
the noisy speech signal, which is then used to calculate the
Wiener filter coefficients. The combination of the Wiener filter
and spectral subtraction estimates the clean speech signal by
using a transfer function that minimizes the mean square error
between the noisy signal and the estimated clean signal. This
is expressed as

S(k,w) = aW(w)w(k,w)+ (1 — a)D(w)X(k,w) (8)

where §(k,w) is the estimated clean speech signal at time
instant k& and frequency w, Wg(w) is the frequency response
of the Wiener filter, D(w) represents the frequency-dependent
attenuation applied in the spectral subtraction path, as it
determines the proportion of the noisy signal to be subtracted
at each frequency, w(k,w) is the noisy speech signal at time
instant k and frequency w, same as X (k,w) but they are used
in different filtering paths (Wiener and spectral subtraction,
respectively), and « is a weighting function that controls the
contribution of each filter at different frequencies. We have
determined by experimentation that the optimal value of «
is 0.9. The Wiener filter and spectral subtraction filter are
coupled together by the weighting function to achieve better
noise suppression performance. The filters are defined as:

Pyw(w)
Pyw(w) +Ppp(w)

where P, (w) is the PSD of the noisy speech signal and
P,.,(w) is the PSD of the noise signal.

Pon(w)
Puw (W) + Prp(w)

V. EXPERIMENTAL RESULTS

Wi(w) =

€))

D(w) = (10)

A. Experimental Configuration

To evaluate the performance of our proposed solution, we
used a half-duplex hardware AMBE2+ Vocoder [42], as it

is widely used in Digital-PMR. This device is designed to
process audio signals in real-time. It can also introduce signal
distortion and channel impairments, such as packet loss or
delay, to simulate real-life communication scenarios. The data
rate of the Vocoder is 2.4 kbits/sec. It applies a forward error
correction code (FEC) that results in a total bitrate of 3.6
kbits/sec. Our proposed approach provides a background noise
suppression technique, which is used as a front end to the
Vocoder. In our experiments, each signal was initially sampled
at a rate of 8 kHz before the AMBE2+ encode/decode process
which uses a native 20 msec frame size mandated by Digital-
PMR [47].

In our study we have used 72,000 blocks of speech to test
the system. Each block has a durationn of 20 msec. These
blocks were obtained from recordings of 10 male and 10
female speakers. Moreover, we incorporated six distinct types
of noise conditions: busy street, ambulance, exhibition hall,
busy airport, construction, and busy station. Consequently, we
combined these clean speech blocks with varying levels of
noise to mimic real-world scenarios, encompassing a range of
signal-to-noise ratio (SNR) levels spanning from -5 dB to 15
dB. Therefore, in total we have used 720,000 blocks of noisy
speech to test our methodology. Given the nuanced nature of
speech compared to images and video, our dataset comprised
720,000 blocks encompassing both speech and noise, ensuring
comprehensive evaluation of our system’s performance. For
DNN training, the clean speech signals, we used the widely
used TIMIT Acoustic-Phonetic Continuous Speech Corpus
[48]. As we have previously discussed, in general, considering
the first frame as a representative noise sample works well for
some cases. However, in our study, we take into account the
worst-case scenario where this is not the case. In doing this, we
are improving upon the general approach. By introducing these
different types of noise, we aimed to evaluate the effectiveness
of our proposed denoising methodology in improving the
quality of speech across different types of noise and SNR
levels.

B. Evaluation metrics

To evaluate the performance of the proposed approach in
reducing the noise level in speech signals while maintaining
the quality of the speech, the following metrics were used:

o Segmental SNR (SSNR): This is a metric used to evaluate
the quality of speech signals by comparing the quan-
tization noise to the energy in each underlying speech
segment. SSNR is calculated by dividing the energy in a
speech segment by the energy of the quantization noise in
the same segment. A higher SSNR value indicates better
speech quality [49].

e Perceptual Evaluation of Speech Quality (PESQ): This
is a widely used objective metric that estimates the
perceived speech quality of denoised signals. PESQ an-
alyzes the processed speech signal and compares it with
the original speech signal to estimate perceived quality.
PESQ is based on the human auditory perception model
and provides a score on a scale from -0.5 to 4.5, where
higher values indicate better speech quality [50].



TABLE I: Mean PESQ and Cbak scores for clean speech and after being
encoded by the considered Vocoder.

w PESQ score | p Cbak score

4.5 5
2.67 2.97

Speech Condition
Clean Speech
USB Vocoder

o Composite Measure of Background Noise Distortion
(Cbak): This is a metric used to evaluate the perfor-
mance of speech enhancement systems by measuring
the predicted rating of background noise distortion in
the processed speech signal. Cbak is based on human
perception and evaluates the degree of distortion caused
by the noise in the background of the speech signal. A
higher Cbak value indicates better speech quality and
intelligibility in the processed speech signal [49].

Cbak and SSNR are commonly used objective measures of
speech quality, while PESQ is a subjective measure that takes
into account human perception of speech quality.

We start our investigation by analyzing the clean speech signal
after the Vocoder in order to understand the impact of the
codec on speech quality. Table I presents the results, indicating
that the PESQ and Cbak scores for clean speech decrease from
4.5 to 2.67 and 5 to 2.97, respectively. This suggests that the
codec significantly degrades speech quality, making it more
distorted and difficult to understand in noisy conditions. It
further emphasizes the importance of using noise suppression
techniques to improve speech quality. However, it is worth
noting that although the codec does not have specific noise
suppression, encoding a noisy speech by a Vocoder suppresses,
to an extent, the non-speech noise. Therefore, one of the
objectives of our evaluation is to determine the extent our
active noise suppression technique improves the quality of
speech beyond the inherent noise suppression ability of the
codec.

C. Neuro-Fuzzy parameters tuning

Recall that, the ANFIS model is used to estimate the noise
present in speech signals. The parameterization of the ANFIS
model is important as it affects the quality of the noise
characterization. Therefore, in order to determine the best
parameters for our ANFIS model, we have extensively tested
it. The model consists of 21 nodes that represent the input and
output variables of the system. The input variables include the
first chunk of the signal after pressing the key and a history
of three chunks of noise signal, while the output variable is
the estimated noise. The model has a total of 24 parameters,
12 of which are linear and 12 nonlinear. During the training
process, the ANFIS model adjusts its parameters to minimize
the error between the estimated noise level and the actual
noise. The model did not have any checking data pairs, as
it was not necessary to assess its performance on a distinct
dataset in this situation. This is because it is designed for
online training, where data pairs might not be accessible. The
ANFIS model used in the paper has eight fuzzy rules, which
are derived from the input-output data pairs. These fuzzy
rules are used to model the relationships between the input
variables and the output variable. The rules can be expressed
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Fig. 6: Relationship between the number of inputs of ANFIS, PESQ Score,
and the number of parameters of the ANFIS model.

in equivalent linguistic terms, such as “if the speech signal is
high and the noise signal is low, then the estimated noise
level is low”. The ANFIS model was trained with a two-
step process, involving a forward pass using fuzzy inference
rules and a backward pass employing the least squares method
to minimize error. We found that 10 epochs are sufficient.
However, an epoch number between 3 to 10 can be suitable
for different noise scenarios. In addition to tuning the best
parameters for the ANFIS model, we have also examined the
impact of the number of inputs to the performance. We have
evaluated the performance of the ANFIS model by examining
the PESQ values after denoising the speech, as more accurate
noise estimation results in better PESQ scores. Our results
show that using two inputs achieves an average PESQ score
of 1.72 for 5 dB noise scenario. However, using three and four
inputs the performance of the noise estimation is improved and
the average PESQ score increases to 1.78 for three inputs and
1.79 for four inputs. We notice that beyond four inputs, the
performance gains are rather marginal. We should highlight
that a higher number of inputs is associated with an increase
in the number of parameters in the ANFIS model, making it
more computationally expensive. The tradeoff between quality
performance, in terms of PESQ score, and complexity (number
of parameters of ANFIS) is shown in Fig. 6.

D. Buffering based upon key-press events

As we have already mentioned, the proposed buffering-based
method utilizes three consecutive 20 msec frames as input for
noisy frames. To select the three frames, the system samples 60
msec segments for speech and noise frame analysis. For each
20 msec frame, the envelope is calculated using the Hilbert
transform, and its amplitude distribution is fitted to a Gamma
distribution as shown in Fig. 8. After computing the CDF of
the Gamma distribution, a threshold value is calculated on its
basis. If the amplitude of the envelope is below the threshold
value, it is considered as speech; differently, it is considered
as noise, and the sample is stored as a noise sample. This
process is repeated for three noisy frames, and if the noise
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samples meet certain criteria, they are used to update the
noise model. If the criteria are not met, the process starts
again with the next set of three noisy frames. In our work, we
used the amplitude of the audio as a criterion to discriminate
between the noise samples to be chosen, i.e., the noise samples
with the largest deviation from typical speech were chosen.
After the user presses the key and starts transmission, the
system takes the first 20 msec chunk of audio and trains it
with the previously stored noise samples to obtain the most
reliable noise statistics using ANFIS training. Every two sec,
the system updates the noise statistics by selecting new noise
chunks based on the CDF, and the ANFIS algorithm is able
to generate noise statistics based on this new data. In order
to evaluate the performance of the proposed method, the
objective evaluation used SSNR while (emulated)- subjective
evaluation was performed using the speech quality metric,
PESQ and Cbak. First, we evaluate the example noisy speech
by analyzing its spectrogram. The results show that our adap-
tive approach outperforms in handling non-stationary noise
sources. It effectively reduces background noise, enabling the
prominent frequency components of speech to become more
discernible. Additionally, we assess the SSNR improvement

achieved by our adaptive method compared to the noisy
speech. The results are presented in Fig. 7. They demonstrate
that our adaptive method consistently achieves an average
SSNR gain of 2 dB in different noisy scenarios. This highlights
the strong noise suppression capability of our adaptive method.

E. Comparison of the proposed approach with existing tech-
niques

Next, we evaluate our approach using emulated subjec-
tive scores and compare it with other conventional meth-
ods, namely combination Wiener filter [24], MTSS [3], and
LMMSE [6]. The results are shown in Fig. 9 for all comparison
methods. From the results, we can observe that the proposed
adaptive method consistently shows superior performance
compared to its counterparts across various noisy scenarios,
including exhibition, street, station, airport, construction, and
ambulance noisy situations, and for different SNR values
ranging from -5 dB to 15 dB. PESQ and Cbak comparisons
indicate significant gains when using the proposed adaptive
method, with an average PESQ score gain of 0.2 to 0.4 in
all noisy situations. These gains are attributed to our superior
noise estimation technique. This is particularly evident when
we compare with the combination filter using a Wiener filter,
where the key difference lies in our enhanced noise estimation
process. Furthermore, the proposed adaptive method exhibits
consistent improvements compared to the MTSS method.
However, we note that, in some specific scenarios, such
as the ambulance scenario, our proposed method and the
LMMSE method show similar gains in terms of PESQ which
is attributed to the specific noise characteristics and signal
conditions. Nonetheless, when considering the Cbak level
(see Fig. 10), our adaptive method outperforms the LMMSE
method for the same noisy scenario.

We continue the evaluation by examining the quality of
the output of our proposed enhancement method when the
denoised speech is encoded and then decoded using the USB
Vocoder. We compare with the case the noisy speech is not
denoised but only processed (i.e., encoded and decoded) by
the USB Vocoder. The aim of this comparison is to examine
potential gains with respect to native suppression of the
codec. Fig. 11 presents the results, which demonstrate that the
enhanced speech by the proposed method consistently achieves
PESQ gains ranging from 0.1 to 0.2 compared to the native
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suppression of the codec. Furthermore, our results align with
a recent CNN-based enhancement study [33], although that
study focused on a different codec. Similar improvements are
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supporting the efficacy of our proposed method.
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Fig. 10: Cbak comparison of the proposed adaptive method with the schemes under comparison for various SNRs and different noise sources.

F. Noise database history approach

To assess the effectiveness of utilizing various types of noisy
historical sound databases, we conducted an evaluation using a
noise sound database. For example, when the system captures
a noise sample just before a key-press event, followed by the
user pressing the key for transmission, it utilizes this noise

database. Upon finding the closest match in the database,
it proceeds to extract the next two segments for training
purposes. Then, the same ANFIS model and parameters are
employed to train both the initial noisy frame and the best-
matching frames from the database. Subsequently, the esti-

mated noise is utilized in the combination filter to enhance
the speech. The results for SNR equal to 5 dB are presented
in Table III, where the noise database approach is compared

sample segment to search for the closest match within the

with the native noise suppression achieved by only using the
codec. The noise database history approach exhibits compa-
rable performance to the buffering-based method when the
noise is close in nature to the noise stored in the database. We
have considered a worst-case scenario, such as a noisy street



TABLE II: Cbak comparison of the proposed adaptive method with Vocoder’s native noise suppression for various SNRs and different noise sources. The

Cbak scores are measured in the receiver end.

SNR = -5dB SNR = 5dB SNR = 10dB SNR = 15dB
Native Adaptive Native Adaptive Native Adaptive Native Adaptive
Exhibition 1.33 1.45 1.68 1.77 1.97 1.99 2.11 2.13
Station Noise 1.30 148 1.64 1.82 1.98 2.06 2.14 2.16
Street Noise 1.29 1.52 1.59 1.91 1.88 2.08 2.04 2.23
Airport Noise 1.33 1.36 1.65 1.73 1.94 1.97 2.15 2.16
Ambulance Noise 1 1 1.53 1.69 1.77 1.90 2.03 2.09
Construction Noise 1.10 1.17 1.65 1.72 1.82 1.94 2.03 2.09
Bird Noise 1.27 1.36 1.58 1.64 1.81 1.91 2.09 2.25
Siren Noise 1 1 1.56 1.67 1.79 1.91 2.01 2.10
Const and Street Noise 1.26 1.36 1.61 1.75 1.79 1.87 1.98 2.08
Exhibition Noise Scenario Street Noise Scenario Station Noise Scenario
2 | =—e— Codec only 7 2 || ==——e—= Codec only > 2 =—e—— Codec only - 7
== ®= Codec with proposed suppre'ssion = ®m=  Codec with proposed suppression = == Codec with proposed suppression
1.8 7 1.8 e 181 7
e} P e} ’ o] ’
77} 7} , 0 ,
w 7 w i -
o 1.6 - - o 1.6 _ - o 16 _ -
1ab = Vi 147
-5 5 10 15 -5 5 10 15 -5 5 10 15
SNR (dB) SNR (dB) SNR (dB)
Airport Noise Scenario Ambulance Noise Scenario Construction Noise Scenario
2 | =—e— Codec only =—e—— Codec only 7 2
— == Codec with proposed suppression 2|— == Codec with proposed suppression |7~ | 18
- 2 8f
o187 Py g 18f = 1 e}
] - & o R
B q16r ’,-’ &6} == *
- - - - 14 =—e— Codec only
14 - ‘ ‘ 147 ‘ ‘ 12 == #= Codec with proposed suppression
-5 5 10 15 -5 5 10 15 5 5 10 15
SNR (dB) SNR (dB) SNR (dB)
2Bird-FIeIated Environmental Noise Scenarios Siren Noise Scenario 2 Construction and Street Noise Scenario
18
(¢}
D16
o
14 I — Codec only 142 === Codec only 1492 =—o——= Codec only
12 — m— Codec with proposed suppression 12 = ®w= Codec wi‘th proposed §uppression 12 = == Codec with proposed suppression
"5 5 10 15 "5 5 10 15 "5 5 10 15
SNR (dB) SNR (dB) SNR (dB)

Fig. 11: PESQ comparison of the proposed adaptive method with Vocoder’s native noise suppression for various SNRs and different noise sources. The PESQ

scores are measured in the receiver end.

TABLE III: Comparison between the native suppression of the codec and our
adaptive noise database history approach for three different noisy scenarios
(5dB) in terms of PESQ and Cbak values.

Noisy Scenario (5dB) | Method | PESQ| Cbak
Street Sound Native 1.44 1.59
Adaptive| 1.52 | 1.89
Ambulance Sound Native 1.61 1.53
Adaptive| 1.69 1.81
Exhibition Sound Native 1.45 1.68
Adaptive| 1.53 1.77

environment in the real world. However, the database lacks the
pedestrian sound component in the stored street noise, which
is present in the real scenario. Although the training process

may adapt to these noise characteristics, it could potentially
lead to a performance decrease when compared to buffering
based on key-press events in real noisy situations. If the noise
characteristics in the database match those of the real noisy
environment, the improvement would be similar. Hence, it
becomes evident that in scenarios where the system fails to
retain recent noise frames (for instance, when a user switches
off the radio device and later turns it on to engage in a
conversation), the historical noise database approach can be
employed effectively to mitigate noise and improve sound
quality.

G. Deep neural network approach

For the sake of understanding the impact of the employed
machine learning framework, we designed a variant of our



proposed scheme where we replace our model with a 1-
dimensional CNN (1DCNN). The 1DCNN model comprises
two 1-dimensional convolutional layers (Conv1D) with a filter
width of 20 and 50 filters each. These layers apply convolution
operations to the input data, resulting in a fixed output shape.
ReLU activation layers follow each Conv1D layer to introduce
non-linearity and preserve the output shape. To prevent over-
fitting and improve generalization, dropout layers are inserted
after each ReLU activation. These dropout layers randomly set
a fraction of input units to 0 during training, making the model
more robust. After the dropout layers, 1-dimensional max
pooling layers (MaxPooling1D) are utilized with a pool size of
5 and strides of 2, enabling downsampling and dimensionality
reduction. A flatten layer is introduced to convert the 3D
tensor output into a 1D vector, preparing the data for the
fully connected layers. The flattened representation is then
passed through two dense layers. The first dense layer consists
of 1006 nodes and employs the ReLU activation function,
enabling the model to learn complex patterns and represen-
tations. The second dense layer comprises 513 nodes and also
utilizes the ReLU activation function. This layer serves as
the final output layer of the model. We use the same set of
speech samples as described in Section V-A. The proposed
1DCNN model undergoes training on 80% of the dataset and is
subsequently tested on the remaining 20% of unseen samples.
We use MSE between the enhanced speech predicted by the
model and the corresponding clean speech as the loss function.
MSE is computed in the STFT domain. Specifically, it is
calculated between the spectral magnitudes of the enhanced
speech predicted by the model and the corresponding clean
speech. This choice of domain for MSE computation allows
for a direct comparison between the predicted and clean speech
signals in the frequency domain, providing a measure of the
error in the spectral magnitudes.

We compare the IDCNN approach with the proposed method
using ANFIS. The results are presented in Table IV. From this
table, we can observe that the IDCNN performs better than
our proposed method for the 5 dB ambulance noisy scenario
(ambulance noise is distinct from babble noise and challenging
to suppress due to its unique characteristics). Specifically,
the 1DCNN achieves 0.09 PESQ score and 0.2 Cbak score
improvement compared to our proposed adaptive method. We
also compare the performance of both schemes for speech
samples with Chinese speakers affected by street noise (V),
where the noise was included during the training process.
From this comparison, it is evident that our proposed adaptive
method significantly outperforms the 1DCNN approach in
terms of both PESQ and Cbak. These findings serve as
evidence that although DNN (offline training) can effectively
improve speech quality in a few situations, it may not be as
effective in real-time systems where the noise conditions and
speech characteristics vary across different situations. This is
because DNNSs rely on sets of clean and noisy speech during
their training phase. Consequently, in real-life environments
where noise is unpredictable and varies significantly, the
IDCNN approach might not effectively reduce noise and en-
hance speech quality. The model’s reliance on specific training
data could limit its generalization capabilities in handling

TABLE IV: Achieved PESQ and Cbak score by the normal (native suppression
of the codec), adaptive approach, and IDCNN approaches for the Ambulance
noisy scenario with English speaker when SNR is 5 dB.

Method PESQ Cbak
Native 1.61 1.53
Adaptive 1.68 1.69
IDCNN 1.76 1.89

TABLE V: Achieved PESQ and Cbak score by the normal (native suppression
of the codec), adaptive approach, and 1IDCNN approaches for the Street noisy
scenario with Chinese speaker when SNR is 5 dB.

Method PESQ Cbak
Native 1.41 1.39
Adaptive 1.53 1.47
IDCNN 1.26 1.19

various real-world noise scenarios, making it less suitable for
real-time applications where robust noise reduction is crucial.

H. Comparing computational complexity of Deep neural net-
work approach and our adaptive approach

We also assess the computational efficiency of the IDCNN
model and our proposed ANFIS-based model, considering
its inference time and resource requirements. Our proposed
ANFIS-based method demonstrates a significant improvement
over 1IDCNN in terms of parameter efficiency. While IDCNN
requires a massive 6,906,497 parameters, our approach only
requires 50 parameters. Additionally, the 1DCNN approach
heavily relies on offline training, which typically consumes
around two hours of processing time using a GPU for training
data that spans several hours. In contrast, our proposed ANFIS-
based method enables real-time training, eliminating the need
for offline training. Moreover, DNNs necessitate separate
offline training for different speech and noise variations, such
as Chinese speech. On the contrary, our method does not
require separate training for different languages or noise types.

In terms of run-time performance, i.e., after all training is
carried out, we have calculated the multiply-accumulate oper-
ations (MACs) for both approaches for a 20 ms block of audio.
For the 1DCNN-based denoising system, the total MACs
are 15,384,358 while for the proposed ANFIS-based system
it is only 22,720 MACs. Our method outperforms 1DCNN
with key advantages: efficient parameters, real-time training,
language/noise independence, and enhanced low-power device
performance.

1. Deployment efficiency

We have successfully implemented our algorithm in an open-
source 32-bit microprocessor architecture, incorporating op-
tional custom instructions in a realistic test system. During
our assessment, we made certain assumptions regarding power
consumption that follow typical use cases e.g. 10 hour device
use with typical talk/receive duty cycles. Our evaluations were
based on a battery capacity of 2000 mAh and a voltage of
7.2 V, providing a battery power capacity of 14400 mWh. In
the deployment phase, we evaluated the power consumption



of various system components. We found the RF accounted
for 70% of the battery power, audio processing as a whole
consumed 4% and remainder for general device operation such
as small user interface. The denoise functionality contributed
minimally to power consumption, accounting for only 0.012%
of the battery’s capacity. ANFIS execution consumed only
0.011% of battery capacity, matching real-time sound per-
formance, consistent with results in Table II. The de-noising
system introduces an additional 24ms of latency to the system
which is relatively small, even for a real-time speech system.
It should be noted that the ANFIS model update does not
introduce any additional latency. Thus, confirming that the
contribution is extremely lightweight and reasonable for real-
time system.

VI. CONCLUSION

Our study introduces a novel denoising methodology that
utilizes ANFIS for noise segments collected historically before
key-press events as well as a noise database. This approach
yields substantial improvements in speech quality across vary-
ing noise conditions and signal-to-noise ratio levels. Notably,
our method possesses a distinctive capability to estimate noise
through training on recent noise segments and seamlessly
integrating this knowledge into the combination filter, setting
it apart as an adaptive, low-latency solution. The system
continually updates noise segments over time, ensuring its
adaptability. Subsequently, it undergoes training using these
updated noise segments upon pressing the push-to-talk key,
followed by the combination filter. The evaluation shows that
our method is highly efficient and adaptive, as the system
continuously updates noise segments and retrains on them,
in contrast to conventional denoising techniques and deep
convolutional networks. Our method offers a practical solution
for speech enhancement, especially in settings with limited
resources. Furthermore, our approach outperforms the native
noise suppression ability of the Vocoder, showcasing its effec-
tiveness in real-life communication scenarios. The successful
deployment on a low-power microprocessor further validates
its real-life applicability, emphasizing its potential to enhance
speech quality while conserving energy. Future work aims to
refine our method to show greater improvement across all
noise types and expand its application to wider systems such
as full duplex by utilising, recently, improved voice activity
detection.
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