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Object categorization is essential to navigate everyday life. It is ultra-rapid, can be completed by purely feedforward mechanisms, 
and is therefore thought to rely on neural representations that are robust. But how do these representations adapt when category 
boundaries change (eg buying fruit versus buying apples)? We tested this by asking participants to categorize images at different levels 
of abstraction while measuring their scalp electrical activity (EEG) with high temporal resolution. Participants categorized images either 
at the superordinate (animal/non-animal) or at the basic (bird/non-bird) level. We compared classification accuracy and representational 
similarity of EEG signals between birds, non-bird animals, and vehicles to determine if neural representations are modified according 
to categorical requirements. We found that neural representations of birds and non-bird animals were indistinguishable in the 
superordinate task but were separable in the b asic task from ∼250 ms. On the other hand, the separability of neural representations
between non-bird animals and vehicles did not differ by task. These findings suggest that top-down influences modulate categorical
representations as needed, but only if discrimination is difficult. We conclude that neural representations of categories are adaptively
altered to suit the current task requirements.
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Introduction 
Humans quickly recognize objects in their environment. An 
important aspect of visual recognition is the ability to sort objects 
into categories based on shared properties such that even newly
encountered objects can be recognized (Mervis and Rosch 1981; 
DiCarlo et al. 2012; Goldstone et al. 2013; Tacchetti et al. 2018; 
Almeida et al. 2023). Neural representations of object categories 
need to be stable to enable rapid, consistent, and accurate 
recognition. However, they also need to be flexible to account for 
changes in the environment (illumination, appearance, point-of-
view, etc.) and support the changing goals of the observer (which 
category is relevant). In this stud y, we investigated whether and
how categorizing objects at different levels of abstraction might
influence neural representations of object categories.

Visual categorization has been extensively studied in humans 
and non-humans using a range of methods from beha vior to
single cell recordings and neuroimaging (Epstein and Baker 2019; 
Bracci and Op De Beeck 2023; Robinson et al. 2023). Such studies 
have shown that humans can saccade toward a p respecified
category in just 120 ms (Kirchner and Thorpe 2006; Crouzet 
et al. 2010) and categorize complex visual scenes in <300 ms 
using manual responses (Thorpe et al. 1996; Rousselet et al. 2003; 
Joubert et al. 2007; Macé et al. 2009; Fabre-Thorpe 2011). fMRI 
studies have revealed that visual categorization relies on neural 
processing in the ventral visual pathway (Haxby et al. 2001; Kiani 
et al. 2007; Kriegeskorte et al. 2008; Grill-Spector and Weiner 2014; 
Rosenke et al. 2020; Contier et al. 2024) and that regions in the 

lateral-occipitotemporal cortex show specialized responses to 
object categories such as faces, tools, places, bodies, and letter
strings (Kanwisher et al. 1997; Epstein and Kanwisher 1998; 
Chao et al. 1999; Cohen et al. 2000; Downing et al. 2001; Haxby 
et al. 2001). More generally, brain responses to visual objects 
contain sufficient information to distinguish different object 
exemplars and, more interestingly, also contain conceptual 
information about the category of the object. For example, 
magnetoencephalography (MEG) and electroencephalography 
(EEG) responses to animal ima ges are distinguishable from
those evoked by non-animal images as early as between 80 and
150 ms after stimulus onset (Thorpe et al. 1996; Carlson et al. 
2013b; Cichy et al. 2014; Ritchie et al. 2015). Similarly, categorical 
information can be decoded as early as 100 ms from intra cranial
field potentials in human visual cortex (Liu et al. 2009)  and  from  
single neuron activity in V4/PIT of monkeys (Cauchoix et al. 2016). 

The focus of most of the above studies was to determine 
where (fMRI studies) and when (M/EEG studies) information 
about object categories is represented in the brain. Surprisingly, 
however, most of these studies did not require participants to 
perform a categorization task. Nevertheless, object categories
seem to be processed and represented in the brain automatically,
regardless of the participants’ task (Groen et al. 2016;  se  e
also Delorme et al. 2018), which might explain why real-world 
objects only require minimal attention to be categorized (Li 
et al. 2002; Rousselet et al. 2002; Fei-Fei et al. 2005; Poncet 
et al. 2012). Indeed, Ritchie et al. (2015) found that classification
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performance for animate and non-animate images based on 
the MEG signals they evoked was the same irrespective of 
whether participants performed an animate/non-animate task 
or an orthogonal letter categorization task (vowel vs. consonant). 
Similarly, while fMRI studies have found that tasks do affect 
brain responses to object categories, these effects are mainly
observed in the prefrontal cortex with at best relatively small
effects of task on representations in the ventral stream (Erez and 
Duncan 2015; Bracci et al. 2017; Vaziri-Pashkam and Xu 2017; 
Long et al. 2018; Vaziri-Pashkam and Xu 2019; Xu and Vaziri-
Pashkam 2019). Confirming these results, the activity of category 
selective neurons in the infero-temporal cortex of monkeys do 
not r eflect the category boundary between stimuli unlike in the
prefrontal cortex (Freedman et al. 2003; Meyers et al. 2008; McKee 
et al. 2014). It has thus been suggested that the ventral stream 
is not involved in decision-related processing, but that its main 
function would be to create object representations that are stable
and robust.

On the other hand, other studies have reported an effect of 
task on the distributed responses of neurons in the ventral visual
stream. For example, Emadi and Esteky (2014) found that category 
selectivity of macaque IT neurons improved when the monkeys 
performed a visual shape categorization task compared to a pas-
sive fixation condition. Similarly, Sereno and Lehky (2018) showed 
that the separability of population responses in the ventral stream 
between shapes was higher when monkeys attended to the 
shape rather than the location of the stimuli. In humans, Harel 
et al. (2014) also found evidence for task-dependent modulation 
of representations in the ventral temporal (and prefrontal) 
cortex. In their experiment, they asked human participants to 
categorize the same eight object categories in six different tasks. 
fMRI multivoxel responses in the early visual cortex allowed 
comparable classification of object categories within and between 
tasks, indicating task-independent representations. Howeve r,
decoding performance was higher when discriminating categories
within than between tasks in the ventral temporal and prefrontal
cortex, indicating task-dependent representations. More recently,
Nastase et al. (2017) demonstrated that for the same stimuli, 
attention selectively enhanced the discriminability of response 
patterns along behaviorally relevant dimensions (better discrim-
inability of actions when the task was to attend to animal behav-
ior, or better discriminability of categories when the task was to 
attend to animal taxonomy). Thus, there is evidence that the goal
of the observer (top-down signals) influences the processing and
representation of objects in the ventral temporal cortex.

Task effects on categorical representations seem to be strongly 
related to attention. In fact, the effect of task in visual areas 
seems to be more evident when selective attention i s involved,
which is especially the case when multiple categories are pre-
sented simultaneously (Peelen et al. 2009; Peelen and Kastner 
2011; Çukur et al. 2013; Kaiser et al. 2016; Bugatus et al. 2017; 
Battistoni et al. 2018; Keller et al. 2022). One clear example of 
the effect of selective attention comes from the study by Bugatus 
et al. (2017). In their experiment, they compared three tasks: an 
oddball task, a working memory task, and a selective attention 
task in which participants had to attend to one of the two super-
imposed objects chosen from different categories and indicate 
if the stimulus was presented upside down. They found that 
distributed responses in high-level visual cortex were primarily 
driven by category, while distributed responses in ventrolateral 
prefrontal cortex were dominated by task demands. Importantly, 
attention modulated category representations in high-le vel visual
cortex when the task included an element of visual competition,
that is in the selective attention task where two stimuli were

superimposed, but not in the other two tasks where only one
stimulus was presented at a time. Similarly, using artificial stimuli
varying in shape and color, Barnes et al. (2022) found better 
category decoding (between different shapes or different colors) of 
the relevant than the irrelevant feature when selective attention 
was involved, that is, when two stimuli were presented simul-
taneously compared to if only one stimulus was presented at a 
time. Thus, attention could selectively exaggerate the distance 
between neural representations of visual objects along relevant
dimensions when multiple objects are presented simultaneously.
Some have argued that attention itself can be reframed as task
demands (Rosenholtz 2024). Thus, the above findings can be taken 
to suggest that task demands modify neural r epresentations of
categories.

In this study, we directly tested whether and how the discrim-
inability between object categories changes depending on the task 
while keeping the same object always relevant (ie not manip-
ulating selective attention). For this, we used two very similar 
categorization tasks that differed only by their level of abstraction 
(superordinate or basic) instead of changing the nature of the
tasks (semantic vs. perceptual) or using tasks that rely on different
stimulus attributes, as was done in previous studies (Harel et al. 
2014; Nastase et al. 2017). This means that in our study, both 
tasks rely on neural processing in the same brain areas (category 
selective areas in higher level visual areas), while in previous 
studies differe nt tasks could rely on neural processing in different
visual areas (eg categorizing the orientation or color of an object).

Superordinate categorization, such as categorizing animals 
against non-animal objects, is faster and more accurate than 
basic-lev el categorization, such as categorizing birds against
other animals (Macé et al. 2009; Praß et al. 2013; Poncet and 
Fabre-Thorpe 2014; Wu et al. 2015; Vanmarcke et al. 2016). 
This superordinate categorization advantage has been explained 
as due to categories at the superordinate level (bird vs. car) 
being more dissimilar compared to those at the basic level
where categories are more similar to each other (bird vs. dog)
(Bowers and Jones 2008; Kadar and Ben-Shahar 2012; Mohan 
and Arun 2012). Indeed, using a computational model based on 
task-specific perceptual discriminability between images, Sofer 
et al. (2015) could accurately predict behavioral responses in 
different categorization tasks. Thus, behavioral performance in 
categorization tasks at different levels of abstraction are tightly
related to the discriminability of the stimulus categories.

Interestingly, behavioral performance in categorizing animate 
from inanimate images is also related to the discriminability of 
neural representations. MEG studies have found that reaction 
times in an animate/non-animate categorization task could be 
predicted by the distance between the neural representation of 
an object and its task-defined category boundary (the boundary
dividing representations of animate and inanimate objects): the
closer the neural representation to the task boundary, the longer
the RT in the categorization task (Carlson et al. 2013a; Ritchie 
et al. 2015; see also Bankson et al. 2018). Although such stud-
ies highlight the relationship between discriminability of neural 
representations with categorization speed, they only in vestigated
categories at the superordinate level (animate, inanimate). Some
studies (Carlson et al. 2013b; Cichy et al. 2014; Contini et al. 2017) 
compared neural responses to objects grouped at different level 
of categorization, but they did not require participants to actively 
categorize the stimuli (and thus also did not directly correlate 
RT performance with similarity in neural patterns). Therefore, 
these results are purely based on passive viewing that might
not be directly relevant to behavioral findings. In fact, these
studies did not find support for the superordinate advantage seen
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in behavioral performance. There was very little variability in 
peak decoding times between individual exemplars and different 
levels of category abstraction. When considering the represen-
tational geometry of the neural representations, Carlson et al. 
(2013b) found a maximal differentiation of individual exemplars 
at 120 ms and a distinction between animate and non-animate 
categories later, at 240 ms. It is possible that the superordinate 
advantage found in behavioral performance is due to differences 
in decisional processes and not in how/when categories are rep-
resented in the ventral visual pathway. On the other hand, it is 
also possible that the differ ences in peak decoding times between
different levels of abstraction do not reflect the discriminability of
the categories per se, since participants were doing an orthogonal
task, but instead might reflect arbitrary stimulus level differences
(Badwal et al. 2024). 

Differences in the neural representations of object categories 
might be observable and more relevant when participants are 
activ ely performing categorization tasks, particularly those with
differing requirements (Nau et al. 2024). As reviewed earlier, the 
discriminability of neural representations is modulated by atten-
tion and task demands. In addition, the abstraction level at which 
the category of an object is processed seems to be dependent on
the current categorization goal of the participant (Poncet et al. 
2020). Even when a very briefly presented (20 ms) image should 
be ignored, its category interferes with the categorization of a 
subsequent image, but this interference depends on the task: 
in superordinate animal/non-animal categorization task, a dog 
prime facilitates the categorization of a target bird image as an 
animal while in a basic bird/non-bird categorization task, the 
same dog prime hinders the categorization of the target bird 
image as a bird. Importantly, in the basic categorization task, a 
dog prime hinders the categorization of a bird target image more
than a vehicle prime does. That is, the distance of the prime object
category to the task-defined category boundary affects behavioral
performance. This suggests that the neural representation of
object categories might be modulated depending on the current
discrimination demands.

In this study, we investigated how the level of categorization 
(superordinate and basic) influences the discriminability of neu-
ral representation between three different stimulus categories: 
birds, non-bird animals, and vehicles. The two categorization 
tasks require recognizing and categorizing objects and therefore 
rely on the same visual areas. Our design thus specifically targets 
how neural responses in the visual pathway to object categories 
change depending on task demand. At the superordinate level, 
birds and non-bird animals are both targets and do not need to 
be discriminated. At the basic level, ho wever, the task requires
birds to be discriminated from the other animals. By comparing
responses to the three different categories in the two categoriza-
tion tasks, we can examine when and how the discriminability
requirement for a given task might affect behavioral performance
and the separability of neural representations.

Method 
The experimental program, original behavioral data, preprocessed 
EEG data, programs for running the behavioral and EEG data 
analysis, and their results are available at https://osf.io/q84t3/. 

Participants 
Twenty participants (6 males and 14 females, all University 
undergraduates) took part in the experiment. They had self-
reported normal or corrected-to-normal vision and provided 

written informed consent. T he experiment received the approval
of the Psychology Ethics Committee, University of Aberdeen
(PEC/3893/2018/5).

Material and stim uli
Participants were seated in a dimly lit room, ∼50 cm in front of 
a CRT monitor (800 × 600 pixel resolution, 41 cm screen width, 
refresh rate 100 Hz). The stimuli, colored natural images of ani-
mals and vehicles, were presented i n the center of the screen
on a gray background. They were displayed using MATLAB with
PsychToolbox extensions (Brainard 1997; Kleiner et al. 2007)  with  
a  size  of  16◦ × 16◦ visual angle and were synchronized with the 
refresh rate of the monitor . We used a set of 3,072 images used
in a previous study (Poncet et al. 2020). Half of the images were 
birds, a quarter were vehicles, and the final quarter were non-bird 
animals (mammals and fish). The image presented in a trial was 
randomly selected from each category and never repeated across 
the experiment. This allowed us to make sure that any differences 
that arise in EEG analyses between object categories reflect cat-
egorical differences and are not based on spurious differences 
between individual images. This is particularly problematic when 
the same i mages are presented multiple times in the train and test
set in EEG decoding analysis. In addition, not repeating images
prevent potential effects of stimulus–response associations that
could arise (and which might be appropriate or inappropriate for
the current task) (Denkinger and Koutstaal 2009; Eckstein and 
Henson 2012). It has also been shown that humans can hold a 
large number of images in long-term memory (estimates exceed 
2,500 over a session) even when viewed for a short duration (Brady 
et al. 2008; Konkle et al. 2010; Brady et al. 2011). Thus, it is likely 
that participants would be able to notice that they are viewing the 
same images, and potential associations could come into play.

Procedure 
At the beginning of a trial, a black fixation cross was presented at 
the center of a gra y screen for a random interval between 800 and
1,200 ms (Fig. 1). The stimulus then appeared for 150 ms, followed 
by the fixation cross. At the beginning of each block, participants 
were informed about the task in that block: they were asked to 
categorize the stimulus at the superordinate level (whether the 
image contained an animal) or at the basic level (whether the 
image contained a bird) by pressing the left (“yes” response) or 
right (“no” response) arrow key using the same hand. Participants 
were given feedback on their accuracy and encouraged to aim 
for high accuracy. A beep was produced if they made a mistake 
or if they did not answer within 2,000 ms. The next trial started 
immediately after the participant’s response or after a maximum 
of 2,000 ms after the onset of the stimulus. Participants performed 
10 blocks of 200 trials each, 5 for superordinate categorization 
and 5 for basic categorization. In superordinate bloc ks, 50% of
the images contained an animal (half of which were birds and
the other half non-bird animals) and the remaining 50% were
vehicles. In basic blocks, 50% of the images were birds, 25% were
other animals, and the remaining 25% were vehicles. The order of
the blocks and trials was randomized for each participant. Before
the main experiment, participants were trained on 32 trials of
each categorization task.

EEG recording and preprocessing
Participants’ EEG was recorded using a 64-channel BioSemi Active 
Two system at a sampling rate of 1,024 Hz. Four additional exter-
nal electrodes were used to monitor eye movements and blinks.
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Fig. 1. Paradigm. In each trial, participants were asked to categorize 
an image presented for 150 ms at the superordinate level (animal/non-
animal) or at the basic level (bird/non-bird) in separate blocks.

One was placed below the left eye, one above, and two were placed 
at the outer canthi of both eyes.

The EEG recordings were preprocessed using EEGLAB (Delorme 
and Makeig 2004) extensions in MATLAB. The signal was filtered 
between 0.5 and 48 Hz (using the default parameters for the 
function eegfiltnew; parameters are listed in Supplementary 
Materials, section 1.1) and re-referenced to the average . The
resulting raw data were cleaned using the inbuilt EEGLAB function
clean rawdata with conservative criteria (see Supplementary 
Materials, section 1.1). Independent component analysis was 
applied to the cleaned signal. For each participant, eye-blinks were 
identified and removed automatically using a 90% confidence 
threshold. Epochs were created ranging from 150 ms before to 
500 ms after stimulus o nset. Baseline correction was applied to
each channel by subtracting the average activity between −150 
and 0 ms relative to stimulus onset. Epochs with a difference
of >150 μV between the two vertically placed eye channel 
electrodes were removed. Noisy channels were interpolated 
using spherical interpolation. At the end of this process, three 
participants with very noisy signal (with >40% of trials rejected 
or >20% noisy channels) were excluded from further anal ysis. On
average, 4 electrodes were interpolated and 273 (13.7%) trials per
participants were rejected for the 17 participants included in the
final analysis.

All 64 electrodes were used in the EEG analyses. We included 
both correct and incorrect trials in our analyses since participants’ 
accuracy was very high in all conditions (the number of trials 
would be roughly the same for analyses based on all trials vs. 
those based on correct-only trials). We further reasoned that it 
is unclear whether an incorrect trial reflects a difference during 
visual processing stages or during the decision process. Similarly, 
there could be a certain amount of lapse rate (pressing the wrong 
button unintentionally). We thus used a conservative approach 
and i ncluded all trials in all EEG analyses. However, to ascertain
whether our results were affected by the inclusion of incorrect
trials, we ran additional analyses (specifically, MVPA) with only
correct trials. The pattern of results was highly similar to that
reported here (see Supplementary Materials, section 2.3). 

Data anal ysis
Behavior 
We analyzed participants’ accuracy using d-prime (following Hau-
tus 1995 correction) and reaction times (RTs) for correct responses 
separately for the superordinate and basic-level categorization 
tasks. Anticipatory responses (RT faster than 200 ms) and trials 
without any response (no response within 2 s) were excluded 
from the analysis. To investigate the effect of task on the three 

categories of interest (bird, non-bird animal, vehicle), we com-
puted R T and hit rates for these three categories separately at
each categorization level. We used JASP to perform pairwise t-tests
between them. All results are reported after Bonferroni correction
(total of 3 comparisons).

We ran a Hierarchical Drift Diffusion Model (HDDM; Wiecki 
et al. 2013) on the behavioral data to identify whether task affects 
one or more of processes involved in decision making. Specifically, 
we assessed the effect of task on evidence accumulation (or drift-
rate, v), decision boundary (a), and non-decisional (t) processes. 
The three parameters of the model (a, t, v) were fitted using an 
accuracy-coding procedure for each of the three object categories 
with the upper threshold corresponding to corr ect responses
(hit) and the lower threshold to incorrect responses (miss). We
evaluated the convergence of the model by visually inspecting
the traces of the posteriors, the autocorrelation, the marginal
posterior, and by using the Gelman–Rubin diagnostic (Gelman and 
Rubin 1992) which resulted in R values that were all <1.0019. We 
also performed posterior predictive checks (see Supplementary 
Materials, section 1.2). 

Hypothesis testing was performed by taking advantage of the 
Bayesian estimation of the DDM parameters provided by the 
HDDM toolbox. We analyzed the probability, P, that two conditions 
are different from each other by determining the amount of 
overlap between the posterior distributions of the two conditions 
(if P = 0.5, the two distributions fully overlap; if P = 1 or P = 0, they do  
not overlap). In contrast to P -values used in frequentist statistics,
this analysis provides a direct probability measure, but it can still
be interpreted in a similar way as P-values.

Event-related potential 
We wanted to compare our results to an earlier study that used a 
similar design and r eported differences between animal and vehi-
cle images (VanRullen and Thorpe 2001). For this, we averaged the 
trials for each category within each categorization task to obtain 
the corresponding event-related potential (ERP), for each par-
ticipant. We then computed the differential responses between 
pairs of categories (bird vs. non-bird animal, non-bird animal vs. 
vehicle, bir d vs. vehicle) separately for the two categorization
tasks (superordinate and basic). This resulted in six differential
waveforms per participant.

To allow comparison with previous results, we averaged the 
ERPs across electrodes in three ROIs: occipital electrodes (O1 PO3 
PO7 Oz O2 PO4 PO8), central electrodes (C3 C1 Cz C2 C4), and
frontal electrodes (AF3 F1 AFz Fz F2 AF4), within shortened epochs
lasting −50 to 250 ms. The statistical significance of the differ-
ential responses between pairs of categories was assessed using
cluster-based permutation tests (Maris and Oostenveld 2007)  with  
the “permutest” function (Gerber 2024). Alternative statistical 
analyses can be found in Supplementary Material (section 2.1.1), 
as well as ERP results using unfiltered data (section 2.1.2). Overall, 
outcomes of these additional analyses align with the findings of
the study.

Decoding 
We could evaluate neural representations of categories using 
multivariate classification procedures, as no two images were 
the same across the entire experiment. For each participant, we 
performed multivariate pattern analysis on a trial-by-trial basis 
for each timepoint of the EEG data. We used linear discriminant 
classifiers through inbuilt MATLAB functions (fitcdiscr) with 10-
fold cross-validation to discriminate between pairs of image cat-
egories (three pairs: bird vs. animal, animal vs. vehicle, bird vs.
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vehicle) for the two categorization tasks separately. The same 
number of trials per category was randomly sampled and used 
to train the six classifiers. We repeated this 10 times to sample 
different sets of trials being included in the analysis (and different 
subsets for cross-validation). We performed the same analysis but 
while randomly shuffling the labels of the pairs of conditions to 
obtain the corresponding baseline (chance) performance. Signifi-
cance testing was performed by comparing decoding performance 
and baseline performance (i.e. real vs. shuffled conditions) using 
cluster-based permutation tests. Using shuffled conditions as a 
baseline is a more conservative approach than using a fixed 50% 
chance level (e.g. a fixed baseline has no variance and is easier to
be “different” from than a shuffled baseline). Additional cluster-
based permutation tests between the decoding performance in
the superordinate and the basic tasks for each category pair were
performed to examine the effect of task. Alternative statistical
analyses were conducted examining the robustness of the find-
ings (Supplementary Materials, section 2.1.1)  as  well  as  sensitivity  
analyses testing the outcomes for a range of sample sizes (section 
2.1.3). The latter confirmed that our results are already reliable 
with a sample of 10 participants. Note that we did not directly 
compare the same category across the two tasks , as the trials were
in separate blocks. Noise levels and patterns might differ across
blocks, and these might drive decoding performance (Hebart and 
Baker 2018; Li et al. 2021) and need not reflect modulation of 
neur al representations.

Representational similarity analysis
We followed the procedure outlined by Guggenmos et al. (2018). 
For each participant, we selected an equal number of trials for 
each condition (equal to the number of trials in the condition 
with the fewest trials). For each condition, these trials were then 
randomly partitioned into five subsets and averaged within each 
subset to form five pseudotrials. Multivariate noise normalization 
was applied to these trials at each time point in the epoch. Cross-
validated Euclidean distances were then computed between rel-
evant pairs of conditions, at each time point, by training on 
four pairs of pseudotrials and testing on the remaining pair. 
This process was repeated 20 times for each participant and the 
obtained distances were averaged across all iterations to produce
a measure of dissimilarity between them. Significance testing
was performed using cluster-based permutation tests comparing
the cross-validated Euclidean distances against 0. The effect of
task was tested by performing cluster-based permutation tests
between the cross-validated Euclidean distances in the superor-
dinate and the basic tasks for each category pair.

Multidimensional scaling 
At selected time points over the epoch (50 to 400 ms in 50-ms 
steps, and 480 ms), cross-validated Euclidean distances computed 
above were averaged over a 30-ms window (15 ms on either side 
of the selected time point) and then represented as dissimilarity 
matrices for each of the two task levels (superordinate and basic). 
This dissimilarity matrix was subjected to multidimensional scal-
ing (MDS) using the MATLAB function cmdscale to obtain coordi-
nates in a multidimensional representational space. Coordinates
in the first two dimensions were used to plot the relative locations
of categories for visualization.

Temporal gener alization
In addition to the decoding procedure outlined above, we also 
investigated the generalization of the decoding performance over 
all timepoints. We used the same method as for the decoding 

analysis except for the following. To decrease the amount of 
computation, the EEG signal of each trial w as averaged every
∼ 4 ms (thus reducing the total number of timepoints by 4). The
classifier was then trained at each timepoint (ie −150 to 500 ms 
in steps of ∼ 4 ms) and tested on all timepoints. Significance 
testing was performed by comparing decoding performance and 
baseline performance (ie real vs. shuffled conditions) using (2D) 
cluster -based permutation tests; small nonsignificant timepoints
enclosed within a significant cluster were also considered signif-
icant using the MATLAB function imfill.

Functional source localization
To determine the electrodes involved in discriminating pairs of 
categories, for each participant and each of the six conditions we 
transformed the LDA classifier’s weights obtained in the decoding
analysis back to an activation pattern following Grootswagers 
et al. (2017) (see also Haufe et al. 2014). These activation patterns 
represent the scalp topographies of weights used by the classifier 
that best discriminate between pairs of categories in the two tasks. 
Because we used an LDA classifier, these activation patterns are 
equivalent to the EEG difference between two conditions in mass-
univariate analysis (ie they are the same as the difference in ERPs
at each electrode between the two conditions that are entered in
the decoding analysis) (Haufe et al. 2014). 

We further investigated the brain areas involved in discriminat-
ing pairs of categories by using a functional sour ce localization
method based on EEG templates (Poncet and Ales 2023). The 
time courses of the classifier’s weights for each the six pairwise 
decoding conditions (bird vs. non-bird animal, non-bird animal 
vs. vehicle, bird vs. vehicle, at the superordinate and basic levels) 
were simultaneously submitted to this analysis. To determine the 
statistical significance of differences between pairs of categories, 
we computed null distributions for each pair (1,000 bootstrap 
samples for each of the 6 comparisons) by applying the template 
method to classifier’s weights while randomly shuffling the labels 
of (paired) conditions by randomly assigning a positive or negati ve
sign to the classifier’s weight. We then fitted a Gaussian dis-
tribution to the bootstrapped null distributions and determined
the z-score of the actual data relative to this distribution (for
each paired category, each brain area, and time point). We then
obtained a P-value from the z-score using equation 1: 

P = 2 ∗ (
1 − normcdf

(
abs(z)

))
(1) 

where z is the z-score and normcdf is the cumulative distribution 
function of the normal distribution. We take any difference with P
<0.005 (Benjamin et al. 2018) for at least 15 consecutive millisec-
onds as statistically significant.

Results 
Behavior 
Participants were accurate in categorizing natura l scene images
(Fig. 2A). They were better at the superordinate-level task than at 
the basic-level both in terms of d-primes (t(19) = 5.05; P < 0.001; 
Cohen’s d = 1.13) and reaction times (t(19) = 7.61; P < 0.001;
Cohen’s d = 1.70), replicating previous findings (Macé et al. 2009; 
Praß et al. 2013; Poncet and Fabre-Thorpe 2014; Vanmarcke et al. 
2016). 

Since we are particularly interested in the processing of the 
three object categories (bird, non-bird animal, vehicle), we also
investigated the change in behavioral performance for these
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Fig. 2. Results of the experiment. Behavioral performance for categorizing the images is plotted by task (A) and by image category (B). Error bars represent 
95% within-subject confidence interval (Cousineau 2005; Morey 2008). (C) Estimated HDDM parameters for the different categories of images in the two 
categorization tasks. Error bars represent 95% credible interval. (D) Difference in ERPs between the three pairs of object categories. Each line plots the 
difference in responses between two categories for a given categorization task averaged over electrodes located at occipital, central, or frontal sites. 
Shaded areas around the mean amplitude re present SEM. Note that the time window is shorter than that used in other analyses for easier comparison 
with previous studies. Significant differences between pairs o f categories are represented with matching-colored dots at the bottom of the figures.

three categories across the two categorization levels (Fig. 2B). 
The results show that performance for categorizing bird images 
was better at the superordinate than at the basic level for both 
hits (t(19) = 3.27; P = 0.012; Cohen’s d = 0.73) and RTs (t(19) = 8.02; 

P < 0.001; Cohen’s d = 1.79). Similarly, categorizing non-bird 
animal images was also easier (t(19) = 3.56; P = 0.006; Cohen’s
d = 1.29) and considerably faster (t(19) = 10.89; P < 0.001; Cohen’s
d = 2.43) in the superordinate than in the basic task. Finally,
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vehicle images were categorized with a higher accuracy in the 
basic task than in the superordinate task (t(19) = 4.91; P < 0.001; 
Cohen’s d = 1.10), while categorization speed remained the same 
(t(19) = 0.05; P = 1; Cohen’s d = 0.01). Better performance at the 
basic than at the superordinate level might seem surprising and 
even contradictory to previous results, but the primary bottleneck 
of the basic-le vel task is to differentiate between bird and non-
bird animal images (as observed in the effect of task on bird and
non-bird animal images). Vehicles are on the other hand easier to
exclude from the target category.

Drift diffusion modeling
The behavioral data discussed above indicate that categorization 
level affects visual processing of objects. To determine the pro-
cessing stage at which these differences arise, we modeled the
data using HDDM (Fig. 2C). The results suggest that the Crite-
rion parameter, “a,” is not affected by the level of categorization 
(Ps > 0.13 for the three object categories). Non-decisional pro-
cesses, t, are also not affected by the change between superor-
dinate and basic levels for bird and vehicle categories (Ps > 0.14). 
However, they are slower in the basic than in the superordinate 
categorization task for non-bird animals (P = 0.046). This probably 
reflects the fact that non-bird animals change status from target 
to distractor across the two tasks, while the other two categories 
always remain targets (bird) or distractors (vehicle) across tasks. 
Importantly, for all object categories, the drift-rate parameter 
“v” changes significantly from superordinate to basic level. It 
becomes slower at the basic level for animal (P = 0.0046) and 
bird (P = 0.057) categories while it becomes faster for the vehicle 
category (P = 0.003). These r esults directly mirror the difficulty
in discriminability between the three categories: while birds and
non-bird animals become harder to discriminate at the basic
level, vehicles, on the other hand, are farther away from the
categorization boundary, and hence easier to categorize at the
basic level. These results indicate that the rate of evidence accu-
mulation required to categorize images, which likely takes place
in higher visual areas, is modulated by the level at which they are
categorized.

Event-related potential 
We analyzed the differences in ERPs between the three pairs of 
categories (birds and non-bird animals, non-bird animals and 
vehicles, birds and vehicles) in the two categorization tasks. First,
we computed these differences in sets of electrodes located in
the occipital, central, and frontal regions (Fig. 2D). The ERP differ-
ence between bird and non-bird animal images shows significant 
clusters from ∼125 ms after stimulus onset in all three electrode 
sets and for both tasks. This aligns well with previous studies
showing categorical EEG differences around a similar timepoint
after stimulus onset (Thorpe et al. 1996; Fabre-Thorpe et al. 2001; 
VanRullen and Thorpe 2001). Although the differences in ERP 
responses to non-bird animal and vehicle images are not evident 
in all electrodes, the overall shape of these ERP differences are 
impr essively similar to that reported in figure 3 of VanRullen
et al.’s study (VanRullen and Thorpe 2001). These findings remark-
ably replicate the >20-year-old result with different images, differ-
ent EEG setups, and different preprocessing pipelines. Significant 
clusters starting at ∼75 to 80 ms and lasting until 160 ms are 
visible in occipital electrodes in both superordinate and basic 
categorization tasks. In their study, VanRullen et al. argued that 
these early effects were perceptual and task independent (while 
effects at 125 to 160 ms would reflect categorical differences).
This might be a result of, for example, differences in the spatial

frequency envelope of animal (natural) and vehicle (man-made)
images (Oliva and Torralba 2001). In fact, this early effect is also 
visible in the ERP difference between bird and vehicle images at 
the basic level (the effect at the superordinate level is weaker). 
In addition, when comparing bird and vehicle images, we observe 
significant clusters from ∼145 to 170 ms across all electrodes and 
tasks. In general, the ERP differences that we report here con-
firm previous results showing early effects, ∼75 to 80 ms, which 
might be attributable to differences in low-level image statistics 
between natur al and man-made images, while later effects, ∼125
to 160 ms, are likely reflecting categorical differences. The ERP
results for each electrode separately and for the entire time
window from 150 ms before to 500 ms after stimulus onset are
reported in Supplementary Material (section 2.2). 

Multivariate anal ysis
The goal of the current study was to investigate if and how the 
level of categorization affects the neural representation space of 
(ie discrimination between) object categories. We expected to find 
the strongest effect of task between bird and non-bird animal 
categories: at the superordinate level, bird and non-bird animal
images do not need to be discriminated while at the basic level
they do.

Overall, linear discriminant classifiers were able to use the 
information contained in the EEG signals to allo w differentiation
between members of all six tested pairs of categories (Fig. 3A). 
Decoding performance confirmed that neural representations are 
more similar between bird and non-bird animal at the superor-
dinate level than at the basic-level categorization. In fact, at the 
superordinate level, the two categories were barely discriminated 
by the classifier, perhaps only at ∼360 ms after stimulus onset, 
while they could already be classified above the baseline from
140 ms onwards in the basic categorization task (latencies of
the cluster-based permutation tests). Cluster-based permutation
tests between the two tasks indicated that they were significantly
different from 245 ms.

On the other hand, the discriminability of non-bird animal 
and vehicle neural representations was not affected by the task. 
These two categories could be decoded better than the base-
line from ∼120 ms. Furthermore, in both the superordinate and 
basic categorization tasks, decoding performance was the same. 
Decoding performance reached an initial plateau at 120 ms and 
a second higher plateau at ∼300 ms. V ery similar results were
found for the discriminability of bird and vehicle neural repre-
sentations with slightly noisier decoding performance at early
timepoints (with significant cluster differences starting ∼130 to
150 ms) and reaching higher decoding performance at the second
plateau.

Representational similarity analysis and 
multidimensional scaling
Decoding performance is based on a binary prediction of cate-
gories and hence a dichotomous measure of whether an image 
in a given trial was correctly discriminated or not. To obtain 
further insight into the discriminability of the pairs of categories ,
we computed the distance between the neural representations of
the categories. The pattern of results is similar to that of decod-
ing performance (Fig. 3B). The discriminability of (cross-validated 
Euclidean distance, or dissimilarity between) bird and non-bird 
animal representations is higher in the basic categorization task 
while being close to 0 in the superordinate categorization task. 
While the neural representations of these two categories are
reliably separable with a significant cluster from ∼90 ms after

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/35/8/bhaf212/8223256 by guest on 21 August 2025

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaf212#supplementary-data


8 | Poncet et al.

Fig. 3. Results of the multivariate analyses. Results of the decoding (A) and the representational similarity (B) analyses between the three pairs of 
categories either at the superordinate (blue) or at the basic (orange) level. Significant differences compared to baseline decoding performance are 
represented with matching-colored dots at the bottom of the figures. The green dots represent significant differences between the two categorization 
tasks. Shaded areas around the mean represent SEM. (C) Representational distances between bird, non-bird animal, and vehicle categories in the t wo 
categorization tasks using MDS analysis at different timepoints after stimulus onset. Note that the absolute locations are not relevant as they are 2D 
projections of the locations of the t hree categories from a multidimensional space. The relative locations (to each other) are more informative.

stimulus onset in the basic-level task, a cluster is observed only 
∼355 ms in the superordinate-level task. A significant cluster 
reflecting the differences between the two tasks can be seen from 
275 ms onwards suggesting that the discrimination of bird and
non-bird animal images is still relatively noisy before this time.

The distance between neural representations of animal and 
vehicle categories and that of bird and vehicle categories does not 
seem to be affected by the level of the categorization task. As with 
results from our classification analysis, we find two plateaus of 
discriminability, one between 150 and 300 ms and one between 

300 and 500 ms. Distances between bird and vehicle categories
seem to be less noisy at the earlier timepoints in the superordinate
task and to be higher than that of non-bird animal and vehicle
representational distances.

We used MDS on the cross-validated Euclidean distances 
obtained above to map out the rep resentational space of all three
categories in the two tasks (see Fig. 3C for different timepoints 
after stimulus onset). Descriptively, at 50 ms, and to some extent 
100 ms, after stimulus onset, the three categories, within each
task, are overlapping and not differentiable. At 150 ms, the three
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Fig. 4. Temporal generalization of decoding accuracy. Decoding performance between the three pairs of categories at the superordinate (top row) and at 
the basic (bottom row) level when trained and tested at different time points. Points within the black contours are significantly different from baseline 
decoding performance, a s determined by cluster-based permutation tests.

categories are separated but there are no noticeable differences 
across tasks. Note that the overlap of categories across tasks is 
not informative; only the relative distance between categories 
within each task is meaningful. With time, the effect of task 
becomes evident. The representations of the three categories 
in the basic task move away from each other from 250 ms, 
unlike in the superordinate task. The distances among the former 
keep increasing after 300 ms while they change minimally for 
the categories in the superordinate task context. In fact, one 
dimension in the representational space is lost from 400 ms,
suggesting that activity along a single dimension is sufficient to
separate the three categories. Interestingly, in the superordinate
task, bird and non-bird animal category representations are closer
to each other than either is with the vehicle category. On the other
hand, bird, non-bird, and vehicle appear equidistant from each
other in the basic task.

Temporal generaliza tion
It is possible that the neural information that discriminates cate-
gories is transient, and that the extent of this transience might be 
task dependent. That is, information that allows the classifiers to 
distinguish categories might change from timepoint to timepoint, 
and this variability might be higher in one task r elative to the
other, implying that representations are more stable during one
task than the other. To examine this, we performed a temporal
generalization analysis of decoding (Fig. 4). 

As expected, bird and non-bird animal representations are not 
separable for the superordinate task, and there is no generalizabil-
ity. The same categories are nevertheless separable at the basic 
level from 120 ms onwards. Decoding performance is relatively 
low until 300 ms but generalizable across most of the epoch,
indicating that the information present is stable across time.

On the other hand, temporal generalization of discrimination 
between non-bird animals and vehicles seems to vary between 
superordinate and basic levels. The information used to decode 
the two categories at early timepoints (∼120 ms) is comparable 

to that at later timepoints for superordinate-level categorization 
but is more transient and does not seem to be similar across 
timepoints for basic-level categorization; that is, the distinguish-
ing information is more time specific. The early visual category– 
specific information (from ∼120 ms) might not be useful for the 
basic categorization as non-bird animal and vehicle categories 
are both distractors (they need to be merged). On the other 
hand, the same category-specific information might still be useful 
for superordinate categorization in which non-bird animals are 
targets and vehicles are distractors (the two categories need to be 
separa ted). The difference in the temporal generalization for non-
bird animal versus vehicle at the two levels of categorization could
thus be explained by a difference in the utility of early categorical
information for the task. Note that information in both tasks
can be sufficient to provide similar decoding performance along
the diagonal (timepoint-specific decoding). That is, information is
stable at the superordinate level and transient at the basic level
but discriminates equally well at both levels.

The discrimination between bird and vehicle categories does 
not seem to differ much with the level of categorization, except 
that decoding accuracy is higher overall at the basic than at 
the superordinate level (as observed in the other results). The 
information used to separate the two categories in early stages 
(∼120 ms) is also used at later stages, as in the case of non-bird 
animal versus vehicle r epresentations for superordinate catego-
rization. This provides converging evidence that early visual infor-
mation is category specific and task independent and generalize
to later timepoints if it is useful for the task (ie if the task requires
discriminating between the two categories).

Functional source localiza tion
In order to determine the contribution of each of the 64 elec-
trodes to decoding performance, we projected the classifier’s 
weights back to a scalp activation pattern. The topographies,
while relatively similar across conditions (see Fig. 5A), also display 
differences. To further uncover the visual areas responsible for
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Fig. 5. Source localization results. (A) Topographies of each electrode’s 
contribution to the decoding performance (classifier weights) for each 
pair of categories in the superordinate (sup) and basic (bas) categorization 
tasks. (B) Time courses of the contribution of visual areas to discriminat-
ing pairs of object categories (one line for each of the six conditions). 
Significant contributions (P < 0.005 for at least 15 ms) are represented 
with matching-colored dots at the bottom of the figures.

the observed topographies, we fed the time courses of decoding 
weights to a functional source localization method based on EEG
templates (Fig. 5B). Remarkably similar results are obtained by 
using ERP differential waveforms for source localization, given 
their similarity in topographies to that of the classifier weights
(Supplementary Materials, section 2.4). 

The functional source localization of the classifier’s weights 
confirmed that processing differences between object categories 
occurs mainly in extrastriate and higher level visual areas. Over-
all, the results suggest two stages. First, category differences are 
processed from ∼120 to 150 ms mainly in the LOC (and to a lesser
extent by V3v and V3d) from ∼150 to 170 ms. This result is con-
sistent with previous studies finding that LOC represents object
categories (Kourtzi and Kanwisher 2001; Grill-Spector and Weiner 
2014; Bracci and Op De Beeck 2023). In a second stage, from ∼270 
to 280 ms after stimulus onset, categorical differences are mainly 

observed in V2v, V3v, and in V4 from 300 ms. Although this effect 
is clear regardless of the task (superordinate or basic), it is not 
e vident for the difference between non-bird animal and vehicle
categories. This second stage might reflect feedback processes to
ventral extrastriate areas.

When comparing bird and non-bird animal categories, the 
topographies at 150 ms are largely similar between the two tasks 
but the activity is more sustained over time at the basic level (up 
to 250 ms) than at the superordinate level. Electrode contributions 
(weight topographies) for the two tasks are noticeably different 
between 350 and 450 ms, with activations in the basic task similar 
to that observed between bird and vehicle categories between 350 
and 450 ms. These differences seem to be driven by continuous 
activation (starting fr om 250 to 500 ms) of V2v, V3v, V4, and LOC in
the basic task but not in the superordinate task. These differences
in activity could reflect additional feedback processes required
in the basic task where the two similar categories need to be
separated, unlike in the superordinate task.

Classifier weight topographies are similar between the super-
ordinate and basic tasks for decoding between non-bird animal 
and vehicle categories. There seems to be some differences in late 
timepoints (450 ms) driven by differ ences in V2v and V3v activity
between the two categories for the superordinate task that are
absent in the basic task.

For discriminating bird and vehicle categories, the topographies 
are largely the same, except that the weights are higher in the 
basic than the superordinate task. The waveforms obtained from 
the functional source localization are highly similar between the 
two tasks with V2v, V3v, V4, and LOC contributing substantially
to the categorical discrimination. The effect of task is mainly
observed in LOC from 250 ms.

Discussion 
In this study, we examined whether and how the level at which 
an object is categorized affects the neural representations of 
object categories. Behavioral results show that superordinate-
le vel categorization is faster and more accurate than basic-level
categorization. This replicates previous findings (Macé et al. 2009; 
Praß et al. 2013; Poncet and Fabre-Thorpe 2014; Wu et al. 2015; 
Vanmarcke et al. 2016) and confirms that behavioral performance 
in categorization tasks reflects the discriminability of object cat-
egories: similar categories are more difficult to discriminate than
dissimilar ones (Carlson et al. 2013a; Ritchie et al. 2015; Sofer et al. 
2015; Ritchie and Carlson 2016; Poncet et al. 2020). Interestingly, 
the decrease in performance at the basic level was driven by an 
increase in the difficulty to categorize non-bird animal images 
and, to some extent, bird images. Drift diffusion modeling of these 
results suggests that this was primarily due to a slow-down in 
evidence accumulation toward the non-bird animal category at 
the basic level compared to the superordinate level. Importantly, 
several EEG analyses using different approaches all confirmed 
that the neural representations of these two categories (birds and 
non-bird animals) change with task demands. When categorizing 
at the superordinate level, the neural representations of bird 
and non-bird animal images are very similar. However, when the 
task is to categorize at the basic level, they are more separated.
This task effect is reliable from ∼250 ms after the onset of the
stimulus, primarily driven by activity in V2v, V3v, V4, and LOC.
In contrast, the level of categorization had almost no effect on
the separability of neural representations of bird and vehicle
categories and between non-bird animals and vehicles. Thus, the
results of this study clearly show that task goals affect behavioral
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and neural responses in a directed manner during ra pid visual
processing of object categories.

Neural (ERP) responses for bird, non-bird animal, and vehicle 
categories are very similar but yet do show reliable differences 
that can be observed starting in the LOC ∼130 ms. These effects
are likely to reflect the processing of categories in higher level
visual areas (Liu et al. 2009; Bracci and Op De Beeck 2023). While 
pairs of categories could be discriminated from one another, 
decoding performance was overall very low between bird and non-
bird animals in the superordinate task. This is consistent with 
the drift diffusion modeling results showing a slower drift-rate for 
processing birds and especially non-bird animals in the basic than
in the superordinate task. These results further confirm that the
superordinate advantage seen in behavioral responses (in this and
previous studies; eg Bowers and Jones 2008; Macé et al. 2009; Sofer 
et al. 2015) can be explained by the difficulty in separating neural 
representations in the ventral stream of objects that belong to the
same superordinate category during basic-level categorization.

The MDS results show that while between 150 and 200 ms the 
neural representations of birds, non-bird animals, and vehicles are 
separated, the effect of the level of categorization task only starts 
from 250 ms. This effect of task is evident for discriminating bird 
and non-bird animals. Our results suggest that the fine-grained 
discrimination required at the basic level to discriminate birds 
from non-bird animals might be subserved by feedback to early
visual areas in the ventral stream (V2v, V3v, V4), likely from higher
areas involved in category representation (LOC), from 250 ms.
These timings are consistent with those of Hebart et al. (2018) 
who reported that task-related information could be decoded 
from MEG signals from ∼240 ms while object category–related 
information could be decoded earlier, ∼105 ms. This suggests an 
initial feedforward processing stage of visual categorization that 
is largely task independent, which might explain the previously
documented similar peak decoding times across different levels
of category abstraction (Carlson et al. 2013b; Cichy et al. 2014; 
Contini et al. 2017), particularly under passive viewing conditions 
that these studies tested. The temporal generalization results also 
show that the early information used to discriminate pairs of 
categories is used at later time points during visual processing. 
The results further suggest that this generalization is probably 
the consequence of the utility of this information for the task (for 
discriminating the tw o categories). When the two categories do
not need to be discriminated but instead need to be merged, as is
the case between non-bird animals and vehicles at the basic level,
early information is not as clearly generalizable.

An effect of task ∼250 ms is also consistent with studies 
showing an effect of attention on neural representations ∼250 ms
(Groen et al. 2016; Battistoni et al. 2018; Moerel et al. 2022). 
For exampl e, Groen et al. (2016) found that while categorical 
ERP differences between natural and man-made scenes were 
present from 80 to 200 ms, these differences also recurred after 
250 ms when participants actively categorized the images but,
interestingly, not when they performed a task on an unrelated
superimposed stimulus. Similarly, Battistoni et al. (2018) found 
that although the presence of the target category could be 
decoded from 180 ms, the effect of spatial attention, that is, higher 
decoding of target location than distractor location, emerged only 
from 240 ms. Thus, categorical differences ∼250 ms seem to be 
related to selective attention enhancing the representation of 
the attended stimulus category. In our study, there is only one 
stimulus presented at a time and hence there is no requirement 
for attention to bias any competition between two stimuli. 
How ever, other top-down mechanisms such as in our case task

requirements and the necessity to separate bird representations
from other animals might influence how object categories are
processed and represented in the ventral visual pathway (Kay 
et al. 2023; Rosenholtz 2024). 

We also observed a general increase in the separability of 
neural representations between pairs of categories from 300 ms, 
reaching maximum dissimilarity in the representational space 
(MDS) between representations at 400 ms. These effects, again, 
possibly originating in early visual areas (V2v, V3v, and V4) might 
be the consequence of feedback until reaching a decision (RTs 
are on average ∼550 to 600 ms). This suggests that although 
category-related information might be processed in a feedforward 
manner, feedback and modification of representations continue 
to occur at later timepoints. In summary, categorical differences,
irrespective of task, are processed by higher visual areas by ∼150
to 200 ms. Later, current goals and requirements modify these
representations through top-down, possibly feedback, directed
mechanisms to extrastriate visual cortex from 250 ms onwards.

The effect of categorization level was predominantly visible 
on the (task mandated) separability of bird and non-bird animal 
neural representations which increased during the basic, com-
pared to superordinate, categorization task. The separability of 
other pairs of categories was not affected by the task. The lack 
of difference in the separability of representations across catego-
rization levels between animal and vehicle categories indicates 
that the observed difference among birds and non-bird animals is 
not merely due to a change in the status of non-bird animals from 
target (superordinate task) to distractor (basic task). If it were so, 
we should have expected a similar effect on representations of 
non-bird animals and vehicles, as non-bird animals change status 
across tasks relative to vehicles. The same argument applies 
to differences in motor responses. Indeed, if neural responses 
were driven by differences in motor responses between target 
and distractors, we should have found a difference between non-
bird animals and vehicles at the superordinate level but not at 
the basic level. We also note that the lack of discriminability 
between representations of vehicles and other categories is not 
due to a floor effect. In a ddition, if motor responses were driving
differences in neural responses, we should observe a system-
atic latency difference between the superordinate and the basic
tasks. Given the strong effect of categorization level on RT for
non-bird animal images (∼100 ms), this latency effect should be
evident in the neural discriminability between non-bird animal
representations and vehicle representations as well as in the
temporal generalization results as an offset, which we did not
observe. Therefore, the changes in discrimination between non-
bird animal and bird neural representations cannot be attributed
to differences in target status, response preparation, or motor
responses.

We did observe an effect of the status (target vs. distractor) of 
categorical representations in the temporal generalization results. 
Information distinguishing non-bird animal and vehicle cate-
gories was more generalizable at the superordinate level than at 
the basic level. Furthermore, the distance between the categorical 
representations, as determined by time-specific decoding and rep-
resentational similarity analysis (RSA) results, were comparable 
at both levels of categorization. These results suggest that neural 
representations, while similarly separable across tasks, are more 
stable at the superordinate than at the basic level. This might be 
attributable to the status of the image as target versus distractor:
while the two categories are mapped on different responses at the
superordinate level, they must be mapped onto the same response
at the basic level. Note that this, nevertheless, cannot explain
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the effect of task on bird and non-bird animal discrimination, 
where separability is substantially different across the two tasks. 
A second point to note is that the status of the image is most 
certainly represented in the brain and most probably in frontal
regions (for decision making) as shown in several previous studies
(Harel et al. 2014;  e  g Bracci et al. 2017). However, the method 
we used (EEG and our analytical approaches) might not be the 
most suitable for finding effects in frontal regions; indeed, o ur
focus was to investigate modifications of neural representations
in visual areas.

We can think of two possibilities that could explain why the 
effect of task is only observed when comparing bird and non-bird 
animal categories. One is that the task always induces changes 
in neural representations but is sometimes not visible because 
those changes are too small. The second possibility is that the task 
induces changes in neural representation space only for objects 
belonging to the same superordinate category (objects that are 
more similar), not for objects that are very distinguishable. In 
our case, we could imagine a representational space in which 
only the bird representations change at the basic le vel to become
separated from the rest of the animals while the distance between
other animals and vehicles remains the same. This would explain
the absence of an effect of task between other animals and
vehicles. The distance between bird and vehicle neural represen-
tations might change as well but not necessarily.

Consistent with this idea, in a previous study (Poncet et al. 2020) 
we found that the interference effect of a vehicle prime on the 
categorization of a subsequent bird image was relatively small 
compared to that of a non-bird animal prime, suggesting that the 
competition in neural representation was relatively weak in the 
presence of vehicle primes. These findings suggest that the neural 
representation of vehicles is likely very distinct from the neural 
representation of animal categories such that the task we used 
here would not meaningfully change the distance between vehicle
and animal neural representations. In addition, it appears that
during category-learning, discriminability of neural representa-
tions improves mainly for representations of boundary-adjacent
exemplars (Ester et al. 2020; O’Bryan et al. 2024). This suggests that 
neural representations for distant objects do not change even if 
the task does. Thus, the lack of an effect of categorization level 
on the discrimination between vehicle neural representations 
and other categories could illustrate the robustness of category 
processing in high visual areas. Additional experiments could 
examine the conditions (ie at which degree of similarity) under 
which task begins to affect the neural re presentational space of
categories in the visual ventral stream. In general, our results
suggest that neural representations of object categories are very
stable and are only modified when a task boundary has to be
placed between similar representations to classify them.

The higher separability of bird neural representations from 
other animals at the basic level might be the consequence of 
higher signal-to-noise ratio of the neural responses during basic 
categorization. When learning to categorize objects accor ding to
new rules, the neural discriminability of object representations in
the visual cortex is increased between relevant category dimen-
sions (Folstein et al. 2013). Other category-learning studies using 
inverted encoding models found that neural representations in 
early visual cortex become more selective and biased away fr om
the newly learned decision boundary, especially for challenging
exemplars near a category boundary (Ester et al. 2020; O’Bryan 
et al. 2024). It is thus possible that during basic-level categoriza-
tion, bird representations underwent a similar enhancement or a 
stronger bias away from other animal representations, leading to
better neural discriminability (decoding performance, RSA, MDS)

relative to non-bird animal representations. Indeed, Emadi and 
Esteky (2014) found that during active viewing, compared to pas-
sive viewing, neural responses in the IT cortex of monkeys showed 
a larger firing rate enhancement for the preferred category and 
smaller response variability for both preferred and nonpreferred 
categories . Further experiments would be necessary to determine
the exact mechanisms underlying the modulation observed in our
study.

Conclusion 
In this study, we show that behavioral and neural responses to 
object categories are affected by task context. Our results demon-
strate both robustness in how categories are represented and 
flexibility in their representational space, depending on current 
goals. Information about the category of an object is processed 
rapidly, around the same time, and in the same brain areas regard-
less of the task. Furthermore, the neural representation of object 
categories that are easily discriminable do not seem affected by 
task requirement. On the other hand, neural representations o f
similar categories that need to be discriminated will be more
segregated from each other than when they do not need to be
discriminated, likely through feedback to extrastriate areas. This
flexibility in representational space allows appropriate behavior
corresponding to current goals.
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