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Abstract
Purpose – Cracks in powder metallurgy (PM) components, being a common problem, pose significant 
manufacturing challenges but are detrimental to be detected as they affect the material’s mechanical properties. To 
detect these cracks, non-destructive testing (NDTs) methods are often used, but they come with high costs and time 
delays, as samples need to be extracted from production at given intervals. To overcome these limitations, an indirect 
method of crack detection, that is, modelling it as a binary classification, is explored in this work.
Design/methodology/approach – This study introduces a supervised machine learning (ML) approach using 
force signal feature extraction to detect cracks. More specifically, a supervised learning algorithm is developed 
and validated for the classification of samples into samples with or without cracks based on the sensory data of 
the hydraulic press used for production. We compare different ensemble classifiers, including random forest 
(RF), AdaBoost (ADA), bagging, gradient boosting (GB) and extra trees (ET), in terms of their ability to classify 
workpieces using a dataset from real production.
Findings – To this end, the present study deals with experimental workpieces of a specific type produced by 
manually adjusting the press parameters to artificially induce cracks in parts of the workpieces. The best-
performing model resulted in a classification accuracy as high as 99% offering a cost-effective and efficient 
alternative to traditional NDT methods.
Originality/value – This study provides a novel and indirect method for detecting cracks in PM components 
using ML models trained on press sensor data, which can significantly reduce the need for costly and time-
consuming NDT techniques.
Keywords Crack detection, Feature extraction, Powder metallurgy, Supervised learning, Ensemble classifiers, 
Powder compaction
Paper type Research article

1. Introduction
In powder metallurgy (PM), cracks are usually defined as fractures or discontinuities in the 
powder compact (green/sintered) that are detrimental to be detected, as they affect the
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material’s mechanical properties. There can be different causes of crack occurrence, such as 
mechanical loading, improper compaction, etc. (Tweed, 2008; Mustafa et al., 2023).

Detection of cracks is critical to ensure the quality and longevity of the parts produced. 
Non-destructive testing (NDT) methods, such as ultrasonic testing, radiography and magnetic 
particle inspection, are traditionally employed to identify such defects without damaging the 
specimens (Sharma, 2023; Kumpati et al., 2021; Gandhi et al., 2022).

Generally, NDT methods are complex and involve high operational costs (Sharma, 2023; 
Kumpati et al., 2021). The equipment required for techniques such as ultrasonic testing or 
radiography is not only expensive but also demands regular calibration and maintenance 
(Gandhi et al., 2022). Moreover, these methods typically require skilled operators. In addition, 
methods such as X-ray tomography involve the use of hazardous materials, necessitating 
stringent safety protocols and specialised handling. Furthermore, the application of NDT 
methods can be time-consuming. The setup of the equipment, the preparation of specimens, 
the execution of the tests and the interpretation of the results all contribute to delays in the 
quality assurance process (Achenbach, 2000; Balayssac and Garnier, 2017). The need for 
potentially halting operations to conduct quality assurance measures can lead to production 
losses, which is particularly detrimental in high-demand sectors such as the manufacturing 
sector (Hellier, 2003).

Given the limitations of NDT methods, there has been a recent growth in the 
development of cost-effective and efficient methods for crack detection. Machine learning 
(ML), particularly supervised learning, is emerging as a promising alternative. Using 
labelled data and sophisticated algorithms, ML models can be trained to identify crack-
indicating patterns, potentially serving as an indirect method for crack detection (Zhao 
et al., 2019). Furthermore, recent studies have emphasized the importance of accounting for 
signal variability and small-sample uncertainty in mechanical failure analysis, which 
further motivates the application of data-driven classification methods for crack detection 
(Liu et al., 2022a, b). Supervised learning involves training a model on a labelled dataset, 
where the model learns to associate specific features with given outcomes. In the context of 
crack detection, inputs to the models can include surface images, acoustic emissions, or 
vibration signals, the results being “crack” or “no-crack” (Hellier, 2003). Once trained, 
these models can rapidly analyse new samples and accurately classify them, and thus 
overcome the shortcomings of traditional NDT methods.

The adoption of supervised learning models for crack detection offers several advantages: 
Firstly, once developed, these models can be deployed at a relatively low cost compared to 
traditional NDT equipment. Primary expenses involve initial data collection and model 
training (LeCun et al., 2015). Secondly, ML models can provide real-time analysis, enhancing 
efficiency and reducing downtime. By integrating these models with existing monitoring 
systems, industries can continuously assess the quality and structural integrity of their assets 
without interrupting operations (Goodfellow, 2016). This capability is particularly valuable in 
sectors where continuous operation is critical, such as in manufacturing lines (Bishop and 
Nasrabadi, 2006). Supervised learning models can be trained on diverse datasets, improving 
their ability to detect even small defects (Ronneberger et al., 2015). This study aims to develop 
and validate a supervised learning model for the detection of cracks in specimens. Using a 
comprehensive data set and a unique feature extraction method, the proposed model seeks to 
offer a cost-effective and efficient alternative to traditional NDT methods. The key 
contributions of this study are the introduction of an accurate and lightweight ML-based 
pipeline for classifying the produced workpieces into workpieces with and without cracks, and 
identification of the most important features that significantly impact the crack detection 
capability of the proposed model.

The remainder of the article is structured as follows: Section 2 outlines the materials and 
methods, the experimental design to produce cracks in green workpieces using a hydraulic 
press, the processing of data and feature extraction, the classification protocol, and the 
methods of classification by employing different ML models. Section 3 details various plots of
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the processed data, the plots of decision boundaries, and results of the models used in the study 
for classification. The article concludes with Section 4, which presents a summary of the 
contributions and potential future research directions.

2. Experimentation and methodology
Green compacts were produced using a hydraulic powder press under various constant 
settings. The part being examined is illustrated in Figure 1. It is a 4-level compact, 
manufactured using a press equipped with two upper punches (TR and UL2) and three 
lower punches (LL1, LL2, and LL3) active during production, see Figure 2, which presents 
a schematic of the hydraulic powder press used to produce the part (for further details, see 
Ganthaler et al. (2023)). A typical press cycle for part production, along with the forces of 
the different punches (levels) in operation, is depicted in Figure 3. For more in-depth 
explanations, interested readers are directed to the study by MoradiMaryamnegari et al. 
(2023). Within each cycle, the compaction and ejection phases are particularly critical, as 
cracks are known to occur during the transition from the compaction to the ejection phase. 
In a hydraulic press, the press position (PP) refers to the position of the punch where the 
press exerts maximum force by moving the ram or piston downward to compress or shape 
the material. During this stage, the hydraulic fluid is actively pressurising the system to 
perform the required work. The relieve position (RP) corresponds to the position of the 
punches when the press releases the applied pressure by retracting the piston, allowing the 
material to be removed and preparing the press for the next operation. This also accounts for 
the elastic effect of the tool attached to the punch.

2.1 Experimental design
Cracks were artificially induced at different positions in the specimen (as indicated in 
Table 1) by changing the RPs of different punch levels of the hydraulic press. In total, four 
experiments were performed. Experiment 1 served as the baseline, featuring samples 
without cracks. The remaining three experiments involved cracks at different locations on 
the workpiece. Table 1 also outlines the experimental setups for each trial, where cracks 
were introduced by adjusting the RPs of the press. This adjustment involved either 
maintaining alignment of the RPs at their original status (oRP) or modifying the RPs of 
different punch levels to generate cracks.

In the experimental design for this study, two factors were considered: The relieve position 
(RP) of the levels and the expected crack position (CP). As independent variables, the 
respective RP were considered for each of the punches: LL1, LL2, LL3, TR and UL2. The 
dependent variable CP corresponds to the position of the crack occurrence in the specimen: no-
crack, TR-UL2, LL1-LL2, and LL2-LL3. CP is the outcome variable, indicating whether a 
crack is expected at a specific position based on the change in the RP. The RP for each level was 
gradually changed in small steps to achieve a dataset with very close settings for results of 
cracks and no-cracks, to make the classification problem more challenging, and ensure that the 
dataset also contains non-trivial cases for classification. Initially, the step-size was chosen as 
0.1 mm in order to limit the number of experimental settings. The RP of the different punches

Figure 1. The experimental workpiece. Top view (left) and cross-sectional view (right). Source: Mustafa 
et al. (2024)
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Figure 2. Schematic of the hydraulic press. Source: Mustafa et al. (2024)

Figure 3. The press cycle with different phases: filling, compaction, ejection and removal. Source: Authors’ 
own work
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was changed gradually until a crack was seen, and this particular value of RP was taken as a 
reference. The level was then moved back by half the step size (0.05 mm) to check for cracks. If 
there was still a crack, the level was moved back again by half the previous step size 
(0.025 mm). This iterative process was applied to Experiments 2–4 in Table 1. For example, 
for collecting the data for cracks at the location TR-UL2, the iterative process of change in the 
RPs can be seen in the settings 2 a–2 g in Table 2, where “x” stands for no-crack and “TR-UL2” 
denotes the presence of cracks at that particular position. For this location, the experiment 
started with an initial RP of 0.3 mm, moving by 0.1 mm to check for crack occurrence. At 
0.6 mm the presence of a crack was observed, and the RP was reduced by half step to 0.55 mm. 
Since the crack was still present at 0.55 mm, again the RP was moved by the same step size to a 
value of 0.5 mm. At this point, no-crack was observed. The RP was now moved back by half 
the previous step size to a value of 0.525 mm, and the cracks occurred again. Data from these 
last two settings were used for classification by labelling them as 0 and 1 for no-crack and

Table 1. Relieve position and expected crack position

Exp. Relieve position (mm) 
Expected crack 
position

LL1 LL2 LL3 TR UL2

1 5 oRP 5 oRP 5 oRP 5 oRP 5 oRP No-crack (base line)
2 5 oRP 5 oRP 5 oRP Up 5 oRP TR-UL2
3 Down Down Down Up Up LL1-LL2
4 Up 5 oRP 5 oRP Up 5 oRP LL2-LL3
Source(s): Authors’ own work

Table 2. Different relieve positions and resulting crack positions

Exp. No. Relieve position (mm) 
Real crack 
position

LL1 LL2 LL3 TR UL2

1 (baseline) �0.48 �0.23 0 0.2 0.56 x
2 a �0.48 �0.23 0 0.3 0.56 x
2 b �0.48 �0.23 0 0.4 0.56 x
2 c �0.48 �0.23 0 0.5 0.56 x
2 d �0.48 �0.23 0 0.6 0.56 TR-UL2
2 e �0.48 �0.23 0 0.55 0.56 TR-UL2
2 f �0.48 �0.23 0 0.5 0.56 x
2 g �0.48 �0.23 0 0.525 0.56 TR-UL2
3 a 0 �0.23 0 0.3 0.56 x
3 b 0 �0.23 �0.1 0.3 0.56 x
3 c 0 �0.23 �0.2 0.3 0.56 LL2-LL3 (inside)
3 d 0 �0.23 �0.15 0.3 0.56 LL2-LL3 (inside)
3 e 0 �0.23 �0.125 0.3 0.56 LL2-LL3 (inside)
3 f 0 �0.23 �0.11 0.3 0.56 LL2-LL3 (inside)
3 g 0 �0.23 0.105 0.3 0.56 x
4 a 0 �0.23 0.05 0.4 0.5 x
4 b 0 �0.23 0.05 0.4 0.4 x
4 c 0 �0.23 0.05 0.4 0.3 TR-UL2
4 d 0 �0.23 0.05 0.4 0.35 TR-UL2
4 e 0 �0.23 0.05 0.4 0.375 x
Source(s): Authors’ own work
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crack, respectively, with a balanced dataset of 200/200 samples. This table also shows the 
different relieve positions and the corresponding occurrence of cracks at different locations. 
During the experiment, it was found that in contrast to expectations, cracks could only be 
induced at two positions, as detailed in the table.

2.2 Data processing and feature extraction
The dataset consists of various time-dependent values recorded using different sensors 
installed on the press. The hydraulic press implements built-in low-level closed-loop 
controllers, which use a sampling rate of 2 kHz. The press also has dedicated pressure sensors 
installed in the double-acting hydraulic cylinders for each level of the press (TR, UL2, etc.) 
from which the force acting on each level is calculated. This is done by dividing the difference 
in the pressures in the cylinders by the respective cross-sectional area of the tool attached to the 
level in action. This force calculation is pre-programmed and recorded in real time. These 
recordings also define the completion of the press cycle for producing a workpiece. Data is 
recorded at different instances of the full press cycle on a percent basis.

Position signals were not considered, as the tool position has to be calibrated each time a 
new experiment is run and a new tool is mounted (change of specimen shape, remounting the 
tools, etc). Further, as the press uses a fixed die, the powder can be pressed at different heights, 
and thus the punch positions cannot be considered for this method, as it will be different after 
every new setup of the machine.

In order to train the model for consistent performance over a large dataset recorded under 
different setup conditions and to overcome calibration issues, only signals that are independent 
from calibration could be considered, and thus only the force signals were chosen for 
this study.

The recorded data needed to be synchronised and converted into an organised form 
through data preprocessing since classifiers are presumed to work better on the pre-
processed data rather than raw data, leading to higher accuracies and better reliability 
(Massimo et al., 2023). In this study, the variables considered are the forces of each active 
level during production. Here, the feature extraction process involves calculating the 
difference between forces of each of the five active levels and then performing statistical 
operations to calculate the mean, minimum, maximum, and standard deviation of these 
differences. These are denoted as min_forc_TR_UL2 or std_forc_TR_UL2 to denote, 
respectively, the minimum force difference between TR and UL2 and the standard 
deviation of the force differences between TR and UL2. These features were calculated by 
using the formulae below:

μ ¼ 1
n

X n

k¼1
ΔF k ; σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 
n

X n

k¼1
ðΔF k � μÞ 2

s 

; ΔF k ¼ F ðiÞ k � F 
ðiþ1Þ
k

where μ is the mean, σ is the standard deviation, and ΔF k is the difference between the force of 
the adjacent levels.

Altogether, there are 16 extracted features that are converted into a data frame to be used as 
a feature matrix for ML algorithms. While more complex time-domain or mutation-based 
features could potentially enrich the input space, our objective in this study was to develop a 
method that is practical for real-world deployment on industrial production lines. Thus, we 
limited the feature set to simple, interpretable statistical measures, as explained earlier, to 
ensure computational efficiency, ease of implementation, and robustness across varying 
process conditions.

The press cycle can be divided into 4 phases (see Figure 3), whereby relevant for cracks are 
the compaction and the ejection phases. Thus, it was decided to evaluate the ML algorithms on 
sectors corresponding to the compaction and ejection phases only.
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2.3 Classifier selection and hyperparameter optimization
Classifiers serve as fundamental components in ML, enabling models to learn patterns from 
data and make informed decisions by assigning labels to new, unseen samples. In this study, we 
employed several tree-based classifiers as our classification models, specifically random 
forest (RF) (Breiman, 2001), AdaBoost (ADA) (Schapire, 2013), gradient boosting (GB) 
(Konstantinov and Utkin, 2021), bagging (Opitz and Maclin, 1999) and extra trees (ET) 
(Kharwar and Thakor, 2022) classifiers. The choice was informed by (1) the fact that our data 
was not linear, (2) their demonstrated effectiveness in prior research work (Massimo et al., 
2023), (3) their equal effectiveness on small/large datasets, and (4) their robustness to
overfitting. 

Additionally, hyperparameter tuning plays a critical role in maximising the performance of 
these ensemble models (Bergstra and Bengio, 2012). Properly tuning parameters such as the 
number of trees in RF or the learning rate in ADA can significantly influence the model’s 
accuracy and efficiency. Grid search was performed for each of the models to achieve optimal 
performance by finding the best combination of parameters. The hyperparameter ranges 
explored are listed in Table 3.

The selected hyperparameter ranges were informed by commonly recommended values in 
the literature for tree-based ensemble methods and refined through preliminary experiments. 
For example, learning rates in the range of 0.01–1 balance learning stability and convergence 
speed in boosting-based models. Similarly, maximum depth values ranging from 10 to 30 
allow the trees to capture sufficient data complexity while avoiding overfitting, which is 
particularly important given our structured and low-dimensional feature space. These ranges 
ensure coverage of both conservative and more expressive model configurations without 
making the search space excessively large.

The process of choosing the optimal model is detailed in algorithm 1. The algorithm 
outlines a process for hyperparameter tuning and evaluation of the classifiers used in this study. 
It begins by defining parameter grids for the classifiers, each with various hyperparameters to 
be tuned. These classifiers are initialised with a fixed random state for reproducibility. For each 
classifier, a grid search is performed to find the best hyperparameters based on accuracy. The 
best classifiers are then evaluated through additional cross-validation to calculate accuracy 
scores and confusion matrices. The results, including mean accuracy, standard deviation and 
general classification reports, are printed and visualised with heatmaps (see Figure 11) of the 
confusion matrix for each classifier.

Table 3. Hyperparameter tuning for different models

Classifier Hyperparameter Range

RF Number of estimators 25 to 200 in steps of 25 
Maximum depth None to 30 in steps of 10

ADA Number of estimators 25 to 200 in steps of 25 
Learning rate 0.01, 0.1, 1

GB Number of estimators 25 to 200 in steps of 25 
Learning rate 0.01, 0.1, 0.2
Maximum depth 3, 4, 5

Bagging Number of estimators 25 to 200 in steps of 25 
Maximum samples 0.5, 0.7, 1

ET Number of estimators 25 to 200 in steps of 25 
Maximum depth None to 30 in steps of 10

SVM C 0.1, 1, 10,100
Kernel linear, rbf, poly
Gamma scale, auto

Source(s): Authors’ own work
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Algorithm 1. Hyperparameter tuning and evaluation of classifiers

Define Parameter Grids and Initialize Classifiers:

Define parameter grids and initialize classifiers: param_grid_rf, rf_classifier, etc. 

Create Classifiers Dictionary:

Store classifiers and parameter grids in a dictionary: classifiers

Initialize StratifiedKFold:

kf ← StratifiedKFold(n_splits 5 5, shuffle 5 True, random_state 5 42) 

Perform Grid Search:

for each name, (classifier, param_grid) in classifiers do

grid_search ← GridSearchCV(classifier, param_grid, cv 5 kf)

grid_search.fit(X, y)

best_classifiers[name] ← grid_search.best_estimator_

end for

Evaluate Best Models:

for each name, model in best_classifiers do

accuracy_scores ← []

for each train_index, test_index in kf.split(X, y) do

X_train, X_test ← X[train_index], X[test_index]

y_train, y_test ← y[train_index], y[test_index]

model.fit(X_train, y_train)

y_pred ← model.predict(X_test)

accuracy_scores.append(accuracy_score(y_test, y_pred))

end for

Calculate mean, std of accuracy: mean_accuracy, std_accuracy

y_pred_all ← cross_val_predict(model, X, y, cv 5 kf)

overall_conf_matrix ← confusion_matrix(y, y_pred_all)

Print results: classification reports, accuracies, confusion matrices.

end for

2.4 Evaluation using decision trees and support vector machines
To visualise the decision boundaries between the classes “crack” and “no-crack” for each 
experiment, decision tree (DT) and support vector machine (SVM) classifiers were used. 
Plotting decision boundaries using DTs is a valuable technique for visualising how these 
models classify data in a multi-dimensional space. By graphically representing the regions 
where different classes are predicted, insights can be gained into the model’s decision-making 
process and the complexity of the underlying data distribution. This visualisation helps
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identify potential issues such as overfitting, where the model may create overly complex 
boundaries that do not generalise well to unseen data. Similarly, plotting decision boundaries 
for SVM models reveals how these models maximize the margin and separate classes in 
transformed feature spaces, helping to diagnose underfitting or overfitting (Shahbudin, 2010). 
Recent studies emphasise that visualising decision boundaries not only aids in model 
evaluation but also fosters trust in ML applications by making the decision-making process 
more accessible to non-experts (Blockeel et al., 2023; Costa and Pedreira, 2023).

Algorithm 2 explains the process to plot the decision boundaries by using the extracted 
features in the feature matrix. Firstly, a Principal Component Analysis (PCA) is applied to 
reduce the feature matrix X to two principal components for easier 2D visualisation. A DT 
classifier is then initialised, and a 5-fold cross-validation is performed to maintain balanced 
class distribution. For each fold, the model is trained on the training set and evaluated on the 
test set, with accuracy scores recorded. Finally, the decision boundaries of the trained classifier 
are plotted on a mesh grid, with the PCA-transformed data overlaid as a scatter plot, providing 
a visual representation of how the classifier separates different classes in the reduced 
dimensional space. The SVM classifier was trained and evaluated, and the decision boundaries 
were plotted in a similar way as defined in Algorithm 2.

Algorithm 2. Plotting Decision Boundaries using DTs 

Apply PCA:

X_pca ← PCA(n_components 5 2).fit_transform(X){Reducing feature matrix X to 2 
Principal Components. }

Initialize Cross-Validation and Classifier:

kf ← StratifiedKFold(n_splits 5 5, shuffle 5 True, random_state 5 42)

dt_classifier ←DecisionTreeClassifier(random_state 5 42) 

Cross-Validation:

for each train_index, test_index in kf.split(X_pca, y) do

X_train, X_test ← X_pca[train_index], X_pca[test_index]

y_train, y_test ← y[train_index], y[test_index]

dt_classifier.fit(X_train, y_train)

accuracy_scores.append(accuracy_score(y_test, dt_classifier.predict(X_test)))

end for

Print Results:

mean_accuracy ←np.mean(accuracy_scores)

std_accuracy ←np.std(accuracy_scores)

Print mean_accuracy ± std_accuracy

Plot Decision Boundary:

Create mesh grid for plotting decision surface.

Use DecisionBoundaryDisplay.from_estimator to plot the decision boundary. 

Scatter plot PCA-transformed data.
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2.5 Classification protocol
For each experimental setting (each row in Table 2), data for 200 workpieces was collected. 
The stroke rate of the press was kept constant at 35 strokes per minute for every setting, where 
each stroke corresponds to the production of one workpiece. For each of the experiments with 
cracks in Table 1, features from the two closest settings were extracted, where the difference in 
the relief positions was minimum.

For each of the three crack locations in Table 2 balanced dataset of 200/200 samples was 
used for the crack/no-crack conditions corresponding to these two closest settings. The reason 
behind the selection of only the closest settings is that during the experiments the positions of 
the punches were changed gradually according to the design of the experiment. Thus, we were 
interested in detecting only these small, subtle changes between crack and no-crack 
conditions. After feature extraction, the dataset was labelled as 0 for samples without cracks 
and 1 for those with cracks. For classification, the feature matrix of dimension n 3 16 was 
used, where n is the number of samples, each with 16 features. The target vector contained 
binary values of 0 and 1. In addition to classifying cracked versus non-cracked workpieces 
within each experiment, a combined classification task was performed to identify the crack 
location in samples belonging to different experiments.

A 5-fold cross-validation (see Figure 4) was performed due to its advantages in terms of 
model evaluation and generalisation performance (Yadav and Shukla, 2016). By dividing the 
dataset into five subsets and training the model multiple times, cross-validation reduces 
variance in performance estimates, leading to more stable and reliable results. This iterative 
process helps mitigate overfitting risks, ensuring that the chosen model generalises well to 
unseen data, making x-fold cross-validation a preferred choice in many ML applications. To 
evaluate the performance of the classifiers using 5-fold cross-validation, 10-fold cross-
validation was also performed, and the accuracies of both methods were compared.

3. Results and discussions
To provide insights into the difficulty level of the classification problem, the difference 
between the forces of each level in action for the samples with cracks and no-crack are shown 
in Figure 5–7. As can be observed from these plots, the force curves for the samples with and 
without cracks are not much distinct and cannot be easily distinguished visually, and hence the 
problem is non-trivial for a human decision maker. Thus, it requires further analysis and 
evaluation using different ML models to detect cracks.

3.1 Training of different models and hyperparameter tuning
The best hyperparameters for the different classifiers across experiments are summarised in 
Table 4. These models, with their respective tuned hyperparameters, were utilised for training

Figure 4. 5-fold cross validation. Source: Authors’ own work
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Figure 5. Difference in forces between LL1-UL2, LL1-LL2, and LL2-LL3, respectively, during compaction 
and ejection for Exp. 2. Source: Authors’ own work

Figure 6. Difference in forces between LL1-UL2, LL1-LL2, and LL2-LL3, respectively, during compaction 
and ejection for Exp. 3. Source: Authors’ own work

Figure 7. Difference in forces between LL1-UL2, LL1-LL2, and LL2-LL3, respectively, during compaction 
and ejection for Exp. 4. Source: Authors’ own work

Table 4. Best hyperparameters for different models across experiments

Classifier Hyperparameter Exp. 2 Exp. 3 Exp. 4

RF Number of Estimators 100 200 125
Maximum Depth None None None

ADA Number of Estimators 200 200 50
Learning Rate 1 1 1

GB Number of Estimators 200 125 200
Learning Rate 0.2 0.2 0.2
Maximum Depth 3 3 4

Bagging Number of Estimators 100 50 150
Maximum Samples 0.7 0.5 0.7

ET Number of Estimators 25 200 125
Maximum Depth None 10 None

SVM C 1 0.1 100
kernel rbf rbf rbf
gamma scale scale scale

Source(s): Authors’ own work
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and evaluation in each individual experiment as well as for combined analysis across 
experiments. Specifically, the learning rate for ADA and GB classifiers remained unchanged, 
suggesting that these models exhibit robustness and generalisability in their hyperparameter 
configurations when applied to different datasets. Conversely, the hyperparameters for RF, 
bagging and ET classifiers varied across experiments. The RF, bagging, and ET classifiers did 
not use the same hyperparameters across all experiments. While ADA and GB ended up with 
stable (or consistent) hyperparameters in each experiment.

While this study employed individually tuned hyperparameters for each experiment, future 
research could explore the feasibility of identifying average or generalised hyperparameter 
values for RF, bagging, and ET classifiers. Such an approach could streamline model 
deployment across diverse datasets, reducing computational costs associated with repeated 
hyperparameter optimisation. Additionally, exploring advanced tuning techniques such as 
Bayesian optimization (Snoek et al., 2012) or hyperband (Li, 2018) could further refine these 
findings and enhance model reliability across varying experimental setups.

3.2 Visualisation using decision boundaries
The decision boundaries generated by the DT and SVM classifiers (Figures 8 and 9) illustrate 
the separation between the two classes of samples with cracks and without cracks based on the 
two principal components. While the simplicity of DT classifiers makes them interpretable, the 
performance varies significantly across the experiments due to the level of overfitting, as 
reflected in the accuracy.

3.2.1 DT. For Exp. 2, the decision boundaries are relatively simple, resulting in an accuracy 
of 78%. The model successfully captured the general patterns in the data without much 
overfitting. However, some misclassification was evident in regions where the two classes 
overlap significantly. On the other hand, for Exp. 3 and Exp. 4, the decision boundaries became 
more complex, reflecting the DT classifier’s attempt to model fine-grained details in the 
training data. This results in overfitting, where the model focuses on noise rather than 
meaningful trends. Consequently, the accuracy dropped to 54%, indicating poor
generalisation. 

3.2.2 SVM. Exp. 2 demonstrates a relatively clear separation between the two classes of 
crack/no-crack, reflected in the highest observed accuracy of 85% among all the three

Figure 8. Decision boundaries from DT for: Exp. 2, accuracy 5 78% (left), Exp. 3, accuracy 5 54% (middle) 
and Exp. 4, accuracy 5 55% (right). Source: Authors’ own work

Figure 9. Decision boundaries from SVM for: Exp. 2, accuracy 5 85% (left), Exp. 3, accuracy 5 59% (middle) 
and Exp. 4, accuracy 5 58% (right). Source: Authors’ own work
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experiments. The SVM boundary here is well aligned with the distribution of the data points, 
indicating that the features extracted in this experiment provide good discriminatory power 
between cracked and non-cracked samples. The classifier successfully created a margin that 
generalises well, with minimal misclassification along the boundary.

In contrast, plots of Exp. 3 (59% accuracy) and Exp. 4 (58% accuracy) show significantly 
less distinct class separation. The decision boundaries in these cases are noticeably more 
complex and irregular, failing to capture the true underlying distributions. The overlap 
between classes is substantial, resulting in higher misclassification rates and much lower 
predictive performance. This might suggest that the signal patterns or feature sets for these 
experiments do not contain sufficient information for the SVM to effectively distinguish 
between crack and no-crack samples, or that the class distributions themselves are less 
separable in the chosen feature space.

Overall, these results highlight the sensitivity of SVM classifiers to the quality and 
discriminatory power of the extracted features. While SVM is capable of drawing complex, 
non-linear boundaries, its effectiveness is ultimately constrained by the inherent separability 
of the data.

3.2.3 Decision boundaries for different locations of cracks. Figure 10 compares the
decision boundaries for different locations of cracks in the workpiece using DT and SVM. The 
DT boundaries in this case are simple, leading to a high accuracy of 93%. Similarly, SVM also 
performs well with a slightly higher accuracy of 94%. For both the models, it can be observed 
that the clusters corresponding to each location of cracks are well-separated in the PCA-
transformed space. Here, the decision boundaries split the feature space into distinct regions, 
effectively classifying most samples with minimal overlap. One notable observation is that in 
the case of DT, the no-crack region is confined to a narrow vertical strip, suggesting that the

Figure 10. Decision boundaries for different locations of cracks: DT, accuracy 5 93% (left) and SVM, 
accuracy 5 94% (right). Source: Authors’ own work

Figure 11. Confusion Matrices of the best-performing model for Exp. 2: ADA (left), Exp. 3: GB (middle) and 
Exp. 4: ET (right). Source: Authors’ own work
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principal components provide a clear separation for this class. The TR-UL2 and LL2-LL3 
regions are primarily divided by a horizontal boundary, reflecting a strong distinction along the 
second principal component. The clear separation of clusters indicates that the principal 
components effectively capture the variance among the three classes, allowing the DT to make 
relatively straightforward and interpretable splits. However, there is a little overlap between 
some samples of no-crack and TR-UL2 regions (samples belonging to Exp. 2), which might 
result from similar settings of the RPs as shown in Table 2, where the only difference lies 
between the RPs of the TR.

For SVM, the data points for each class are well separated in the PCA-transformed 
feature space, resulting in distinct and largely non-overlapping clusters. The SVM has 
generated clear, smoothly curved boundaries that partition the space according to the 
natural grouping of the data. This clustering suggests that the features extracted for these 
classes are highly discriminative, allowing the SVM to achieve a high classification 
accuracy with minimal ambiguity along the boundaries. The effectiveness of the SVM in 
this scenario demonstrates the benefit of strong class separability in the feature space, both 
for model interpretability and for predictive accuracy. The clear margins between classes 
indicate that the chosen features, when combined with dimensionality reduction, provide 
robust information for distinguishing between different crack locations. This result 
contrasts with Exp. 2–4, where the classes overlap substantially, highlighting the 
importance of both feature engineering and visualisation for assessing classification 
feasibility in practical applications.

Altogether, the complex decision boundaries for Experiments 2–4 observed for DT and the 
low accuracy found for the SVM classifier indicate that the problem of visually classifying the 
samples in classes of cracks and no-cracks within single experiments is not trivial, as discussed 
previously. Thus, the choice of ensemble classifiers in the classification analyses is justified.

3.3 Performance analyses
Table 5 summarises the performance of the five classifiers across the three experiments using 
two metrics: F1-score (for crack and no-crack classes) and 5-fold cross-validation accuracy 
(expressed as x% ± y%, where x is the mean accuracy across five folds and y is the percentage 
variation). The results indicate that classifier performance varies depending on the 
experimental dataset, with notable differences in both metrics across classifiers and 
experiments.

Table 5. Comparison of classifier performance across experiments

Experiment
Metric (Crack/ 
No-Crack) RF ADA GB Bagging ET

Exp. 2 Precision 0.98/0.96 0.98/0.98 0.97/0.97 0.97/0.97 0.99/0.99
Recall 0.96/0.98 0.97/0.98 0.97/0.97 0.96/0.97 0.98/0.99
F1-Score 0.97/0.97 0.98/0.98 0.97/0.97 0.97/0.97 0.99/0.99
5-Fold Accuracy 97 ± 2% 98 ± 1% 97 ± 1% 97 ± 2% 99 ± 1%

Exp. 3 Precision 0.93/0.92 0.93/0.93 0.93/0.94 0.91/0.91 0.94/0.92
Recall 0.92/0.93 0.93/0.93 0.94/0.93 0.91/0.92 0.92/0.94
F1-Score 0.92/0.93 0.93/0.93 0.94/0.93 0.91/0.91 0.93/0.93
5-Fold Accuracy 93 ± 3% 93 ± 3% 94 ± 2% 91 ± 3% 93 ± 3%

Exp. 4 Precision 0.85/0.83 0.83/0.86 0.84/0.85 0.85/0.84 0.85/0.89
Recall 0.82/0.85 0.83/0.86 0.85/0.83 0.84/0.85 0.90/0.84
F1-Score 0.84/0.84 0.84/0.85 0.85/0.84 0.84/0.85 0.87/0.87
5-Fold Accuracy 84 ± 4% 84 ± 2% 84 ± 2% 85 ± 3% 87 ± 2%

Source(s): Authors’ own work

IJSI

Downloaded from http://www.emerald.com/ijsi/article-pdf/doi/10.1108/IJSI-05-2025-0131/10320585/ijsi-05-2025-0131en.pdf by University of Essex user on 20 October 2025



In Experiment 2, ET achieved the highest F1-scores (0.99 for both classes) and 5-fold 
accuracy (99% ± 1%), outperforming other classifiers. ADA closely followed with an F1-
score of 0.98 and 98% ± 1% accuracy. RF, GB, and Bagging demonstrated slightly lower, but 
comparable performance, with consistent F1-scores of 0.97 and accuracies around 97% ± 1– 
2%. These results suggest that the classifiers are highly effective at distinguishing between 
crack and no-crack cases for this dataset, with ET being particularly robust.

In Experiment 3, performance across all classifiers declined slightly compared to 
Experiment 2. This might stem from the fact that the crack is present between LL2 and LL3, 
and the RP of these levels has higher positioning resolution. Further, the lower levels 
correspond to greater relative movement of the punches and more powder volume in the die, 
potentially leading to noise in the dataset. GB demonstrated the highest F1-score (0.93 for 
crack and 0.94 for no-crack) and accuracy (94% ± 2%), indicating its ability to generalise 
better under these conditions. RF, ADA, and ET showed comparable F1-scores (around 0.93) 
and accuracies (93% ± 3%), while Bagging had the lowest performance (F1-score of 0.91 and 
accuracy of 91% ± 3%).

Experiment 4 presented the most challenging dataset, reflected in overall lower 
performance metrics for all classifiers. ET again outperformed others, achieving the highest 
F1-scores (0.87 for both classes) and accuracy (87% ± 2%). The remaining classifiers 
exhibited similar performance, with F1-scores around 0.84–0.85 and accuracies ranging from 
84% ± 2%–85% ± 3%. This indicates that while all classifiers struggled with the complexity 
of this dataset, ET maintained a slight advantage in both precision and consistency.

These findings suggest that ET consistently provides superior performance across datasets 
of varying complexity, while GB and ADA also demonstrate reliable generalisation 
capabilities. The results further highlight the impact of dataset characteristics on model 
performance, emphasising the need for careful model selection and evaluation based on 
specific application requirements. Future work could explore ensembling these models or 
employing advanced techniques for feature engineering to improve classification outcomes 
further.

The outputs of the best-performing model for each of the experiments are shown as 
confusion matrices in Figure 11. In all three experiments, there are a few misclassified pieces, 
as can be seen in Figure 11, with the minimum accuracy of 85% for the best-performing model 
for Exp. 4. In contrast, in the case of all the crack locations combined, all the classifiers 
predicted cracks at each location with a perfect classification accuracy of 100%, irrespective of 
the values of the hyperparameters used. Finally, Figure 12 also shows the classifier 
performance in detecting the cracks at different locations in the workpiece. This indicates that

Figure 12. Classification based on the location of cracks. Source: Authors’ own work
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the models can identify the crack locations as different clusters far apart from each other. This 
further implies that in future applications, with a large data set containing labelled data based 
on cracks occurring at different levels of a complex workpiece, the crack locations can easily 
be distinguished using any of the five classifiers and with less computational cost.

We also evaluated the above models using 10-fold cross-validation and the results indicated 
the same mean accuracy as in 5-fold cross-validation.

Overall, the five ensemble classifiers used in this study overcome the limitations of 
single DT and SVM models by combining the predictions of multiple trees. These methods 
inherently reduce overfitting and improve generalisation due to reduced variance by 
aggregating the predictions of multiple decorrelated trees, and by focussing on correcting 
errors iteratively, leading to improved model performance. The ensemble models 
consistently achieved better performance metrics, suggesting their ability to capture 
complex patterns without overfitting. Although DT and SVM models suffer from 
overfitting when decision boundaries become overly complex, as shown in Experiments 
3 and 4, the ensemble classifiers effectively addressed this issue, as exhibited by their high 
classification accuracies.

3.4 Feature importance
Additionally, the feature importance for each of the best performing models was studied. 
Figure 13 shows the feature importance scores for each of the three experiments. The values 
for the feature importance for a model sum up to 1, where larger values indicate a more 
important feature for classification in a particular dataset. For Exp. 2, the most important 
features involved the force differences between LL2 and LL3, and LL1 and UL2. A high 
importance to max_forc_diff_LL1_UL2 aligns with the location of the crack present 
between TR and UL2, where TR and UL2 move relative to each other. On the other hand, 
higher importance to min_forc_diff_LL2_LL3 signifies higher resultant forces occurring 
around these lower levels. This might occur due to the upward shift in the RPs of TR during 
part ejection.

For Exp. 3, the most important feature was std_forc_diff_LL2_LL3, accounting for about 
50% importance among all features. This feature denotes the standard deviation of the force 
differences between LL2 and LL3, which aligns with the CP in Exp. 2, i.e. between LL2 and 
LL3. Since the cracks were induced by shifting the RP of LL3 downwards, a high 
importance given to features involving LL2 and LL2 confirms the presence of cracks at the 
expected position (LL2-LL3). In the case of Exp. 4, the cracks were induced by shifting the 
RP of UL2 upwards, which is also reflected in the third plot, where max_forc_diff_LL1_ 
UL2 is one of the most important features. In this study, all features were used to evaluate 
the models, as the total number of extracted features was feasible considering the total 
computational time.

Figure 13. Feature importance for Exp. 2 (TR-UL2), Exp. 3 (LL2-LL3) and Exp. 4 (TR-UL2), respectively. 
Source: Authors’ own work
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4. Conclusion
This study presented a robust, indirect method of crack detection in metal powder 
compacts using supervised ML models. The results are promising, with high accuracy of 
the ML algorithms to classify the datasets into good and bad pieces based on the labels of 
crack and no-crack. Consequently, a robust and simple alternative to traditional NDT 
methods is the key finding of this study. While commonly used NDT methods in PM can 
be complex and cost-intensive, they are also often destructive in practice—such as when, 
during production, the samples inspected under a microscope need to be discarded, or 
when destructive cross-sectioning after sintering needs to be performed for observing 
cracks. In contrast, the present approach can detect cracks in production lines based on the 
extracted features from the real datasets, offering a more efficient and non-destructive 
alternative. The proposed method of crack detection seems to be promising for use online 
during production as future research, making this indirect method of testing a better and 
cheaper alternative.

However, a key drawback of supervised learning approaches is the substantial effort 
required to collect and label large, diverse datasets for training. This limitation underscores the 
potential of unsupervised learning techniques, which could reduce dependence on labelled 
data while still enabling effective defect detection. Future research could explore unsupervised 
learning models like isolation forest, etc., to improve adaptability across different types of 
parts produced by PM, further enhancing the feasibility of this method as a cost-effective 
alternative. Further research will focus on ensembling the individual classifiers used in this 
study to be able to develop a model that generalises over different settings and types of parts 
produced. Also, the study of crack propagation mechanisms presents a promising avenue for 
future research, building upon the modelling techniques described in this paper. Future work 
may consequently also focus on integrating continuous monitoring to capture crack evolution 
and developing modelling frameworks capable of predicting propagation paths under varying 
process conditions.
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