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COMPUTATION OF GIT QUOTIENTS OF SEMISIMPLE GROUPS

PATRICIO GALLARDO, JESUS MARTINEZ-GARCIA, HAN-BOM MOON, AND DAVID SWINARSKI

ABSTRACT. We describe three algorithms to determine the stable, semistable, and torus-polystable loci of the GIT
quotient of a projective variety by a reductive group. The algorithms are efficient when the group is semisimple.
By using an implementation of our algorithms for simple groups, we provide several applications to the moduli
theory of algebraic varieties, including the K-moduli of algebraic varieties, the moduli of algebraic curves and the
Mukai models of the moduli space of curves for low genus. We also discuss a number of potential improvements
and some natural open problems arising from this work.

1. INTRODUCTION

Group actions and orbit spaces are ubiquitous in mathematics. The existence of symmetry in a given
object oftentimes enables us to prove a surprising number of rich and deep results for them. Represen-
tation theory of finite groups and classical groups is one of excellent and approachable examples of this
slogan. In geometry and topology, many interesting spaces are constructed as the orbit space (or quotient
space) of another space by a symmetry group. For example, any hyperbolic surface can be obtained by a
quotient space of the hyperbolic plane and the moduli space of Riemann surfaces is a quotient space of the
Teichmiiller space by the mapping class group action.

In algebraic geometry, one often needs to construct the quotient space of an algebraic variety under a
group action, while preserving a nice algebraic structure. There are several constructions, including the
Chow quotient and the Hilbert quotient [Kap93]. However, in applications where the group involved is
reductive, the most widely used quotient construction is the Geometric Invariant Theory (GIT) quotient,
developed by Mumford [MFK94]. There are two prominent reasons why this construction is widely used.
The computation of the GIT quotient is approachable in many interesting examples, due to the Hilbert-
Mumford criterion (Theorem 2.8). The second reason is that if the given variety is projective, the quotient
variety is also projective. Many interesting algebraic varieties, including moduli spaces of varieties and
sheaves, have been constructed in this manner.

1.1. Main results. The main goal of this article is to provide efficient computational algorithms and their
implementations to compute the GIT quotient of a projective variety by a reductive group; with emphasis
on the case where the group is semisimple.

To describe the GIT quotient of an algebraic variety X, one needs to describe two important open subsets,
the so-called semistable locus X *°° and the stable locus X*° (for the definition and why they are essential, see
Section 2). The GIT quotient X //G is not the quotient of the whole X, but its open subset X **. The ‘quotient
map’ X*° — X//G is the set theoretic quotient map only over the open subvariety X® C X*°. In principle,
these loci can be computed by employing the aforementioned Hilbert-Mumford criterion. However, the
computation typically involves highly non-trivial convex geometry calculations, and as a result, many GIT
analyses employ computer-assisted calculations. To our knowledge, in the literature, these calculations
have been carried out on an ad hoc basis; typically, each group of authors wrote a new computer program to
analyse each new GIT problem. One of our long-term goals is to completely automate these calculations. As
a first step, we clearly describe algorithms to perform three key steps in a GIT analysis, and implement them
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in SageMath.! This permits us to run many examples using one program and compare the performance of
the algorithm as the input varies, we believe for the first time.

Theorem 1.1. Let (X, L) be a pair of a projective variety X and a very ample line bundle L. Let G be a semisimple
group and suppose X admits an L-linearized G-action. The finite list PY (resp. PL) of states (see definition in
Corollary 2.16) that determines X* (resp. X *°) can be calculated by using Algorithm 3.7 (resp. Algorithm 3.20).

We describe the definition of a state and the meaning of ‘calculating” X® and X *® in Section 2. As a matter
of fact, we may replace the term projective variety in Theorem 1.1 for the more general projective scheme over
k. However we will keep it as is for simplicity.

For the study of moduli spaces of degenerated objects, it is also helpful to study the stratification of the
quotient of strictly semistable locus (X//G)\ (X*/G). Such stratification can be understood by the polystable
locus XP* C X%\ X*, insofar the GIT ‘boundary’ (X//G) \ (X*®/G) represents, as a set, the set of polystable
orbits.

To describe the stratification, it is necessary to describe a similar stratification on (X//T') \ (X°/T') for
the induced maximal torus T-action (see Section 3.3 for the notation and background). Algorithm 3.29
describes a systematic way to compute the latter.

Theorem 1.2. Let (X, L) be a pair of a projective variety X and a very ample line bundle L. Let G be a semisimple
group and suppose X admits an L-linearized G-action. Let T be a fixed maximal torus of G. The finite list Pk, of
states that determine T-polystable locus in X°° \ X*® can be calculated by using Algorithm 3.29.

Our algorithms work for any reductive group. However, we expect that for a general non-semisimple
reductive group (e.g. the case of a torus T') the algorithm is slow because of the nature of the problem. In
particular, for a non-semisimple reductive group, our algorithm characterizing the semistable locus does
not seem to have any advantage compared to that of Popov [DK15]. Consult Remarks 3.9 and 3.22.

1.2. Applications to moduli theory. Our motivation for this project is to automate part of the work re-
quired to describe compact moduli spaces. As previously hinted, the usual approach to use GIT to describe
the objects classified in a given moduli space is as follows: one finds a projective scheme H where each
point represents an object in the moduli space. For example, if one is interested in describing the moduli
space of cubic surfaces, one may consider

H =P = PH(P3, Ops (3))*

which parameterizes cubic surfaces, since the scheme H characterizes homogeneous polynomials of degree
3 in 4 variables. However, two different objects in H might be equivalent in the moduli space. Often, H
has a natural G-action so that two objects are equivalent if and only if they are equivalent up to the action
of G (in the above example for cubics, one may consider G to be PGL4). Thus, one wants to consider the
GIT quotient H**//G, where H** C H is the largest subset for which the quotient is an algebraic variety.
Our methods (and software) will provide a finite list of deformation families of objects that describe, among
other things, H\ H**. The specific way of representing these families by our software may not be very infor-
mative, so the geometer will still have to interpret the program output into geometric terms. The latter may
not be a trivial matter at all, but a subtle problem in singularity theory. For instance, in the example of cubic
surfaces, the program’s output will describe the families as polynomials, which the geometer will still have
to translate into geometric terms by describing the possible singularities of those families of polynomials.
See Section 4 for this example in detail.

By using an implementation of our algorithms in SageMath [sagemath], we recover many known com-
putational results and obtain some new results in moduli theory. We suppress any technical details in
the introduction and refer the reader to Section 4 for a worked-out example on cubic surfaces and Sec-
tion 5 for other results on many more examples, as well as to Section 6 for one example on the moduli of
anti-canonical curves in a quadric surface (which is later reinterpreted as the family 2.24 in Mori-Mukai’s
classification of Fano threefolds).

IWe chose SageMath in the hope that our code will remain useful to the community for a long time.
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1.3. Applications to K-stability. The setting for the moduli of cubic surfaces above can clearly be gen-
eralized to that of hypersurfaces in projective space, or more generally complete intersections. Since the
complexity in the analysis of the output increases with the degree and the dimension (the larger their
degree is, polynomials may have nastier singularities), the most accessible applications will be in lower
degrees, i.e. in the realm of Fano varieties. In recent years it has become apparent that Fano varieties admit
a projective compactification thanks to the theory of K-stability. The latter is an algebro-geometric stability
notion that controls the singularities of all C*-equivariant degenerations of an algebraic variety over the
germ of a curve. This relatively recent theory first emerged from analytic geometry when considering the
Calabi problem on projective manifolds of positive Ricci curvature (i.e. Fano manifolds), i.e. the prob-
lem of the existence of Kihler-Einstein metrics on these manifolds. It follows from [CDS], cf. [Tian2015;
Tian2015Corrigendum], that a smoothable Fano variety admits a Kdhler-Einstein metric if and only if it is
K-polystable. There are further generalizations of this result (in the most general statement it is known as
the Yau-Tian-Donaldson conjecture), but the stated one is enough for our purposes.

Due to the number of degenerations to consider in the definition of K-stability, determining when a Fano
variety is K-polystable is just as challenging as determining whether it admits a Kéihler-Einstein metric.
However, here moduli theory can come in handy. It is known that K-polystable smoothable Fano vari-
eties form a projective moduli space known as the K-moduli space [Odaka2014; Liu-Xu-Zhuang]. Yet,
even in dimension 3 (the highest dimension for which smooth Fano varieties are classified [Iskovskikh1;
Iskovskikh2; Mori-Mukail; Mori-Mukai2; Mori-Mukai3]), a systematic approach to determining K-stable
Fano manifolds was not attempted until recently [CalabiFanoProject] and knowledge of the K-moduli
is even more lacking—only a few of the connected components have been studied [Liu-Xu-cubic3folds;
Spotti-Sun-dP4]. Relying on our construction, we can recover a recent result of Papazachariou, who used
an ad hoc GIT computation to describe the connected component of the K-moduli for family 2.25 in the
Mori-Mukai classification.

Theorem 1.3 ([papazachariou2022k]). The compact component of the K-moduli space of smooth Fano threefolds
corresponding to family 2.25 in the Mori-Mukai classification is canonically isomorphic to the GIT quotient

P(/\ H'(P*, Os(2))")//SLa,

which parametrizes orbits of complete intersections of two quadrics in P3.

Theorem 1.3 is a proof-of-concept for an approach that uses GIT to describe the K-moduli of Fano three-
folds and the role GIT can play in it. Indeed, given that [CalabiFanoProject] and subsequent work have
pretty much completed the classification of the general element of the K-moduli of Fano threefolds, one
can now construct a GIT compactification and, for every element represented in the GIT compactification
whose K-stability is unknown, apply methods from [CalabiFanoProject] to determine it. The K-unstable
elements (if any) in the GIT compactification have to be removed and replaced by others which are K-
polystable. Then standard methods (moduli continuity method in [OdakaSpottiSun], cf. [GMGS21], or
reverse moduli continuity method in [papazachariou2022k]) can be used to find an isomorphism between
the modified GIT quotient and the K-moduli. Given that the smooth locus of the K-moduli of Fano three-
folds is now almost complete [CalabiFanoProject], its full description is within reach. We believe that this
work will provide the technical GIT cornerstone to apply the (reverse) moduli continuity method to each
of the families.

1.4. Birational models of the moduli space of stable curves. The moduli spaces M, of smooth curves and
their compactifications M, are some of the most intensively studied moduli spaces in algebraic geometry.
In a series of papers, Mukai described non-compact birational models of My with 7 < g < 9 as quotients
of open dense subsets of symmetric spaces [Mukail992survey; Mukai1992g8; Mukai1995; Mukai2010].
By taking the GIT quotients of these symmetric spaces, we obtain compactifications of Mukai’s spaces,
and they are projective birational models of M,. We analyzed (semi)-stability for the corresponding GIT
problems. For g = 7, the GIT problem is too large to analyze stability in full detail (see Section 5.4).
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However, some geometric results were described in the fourth author’s recent preprint [Swin25]. Inter-
estingly, the output of our algorithms is the simplest for g = 9, and the full (semi-)stability is described in
[sagemath-code].

1.5. Weyl group symmetry. One key ingredient to our approach is to investigate the Weyl group symmetry
carefully. For a polarized projective variety (X, L) equipped with a linearized G-action, the GIT quotient
can be described by using the induced G-action on the G-representation V := H%(X, L). For a fixed maximal
torus T of G, the T-stable/semistable loci X® and X** can be described by using the finite set of characters
Zyv of T on V. If we restrict ourselves to semisimple groups, =y has Weyl group symmetry, so we can

reduce the set =y to proper subsets of essential characters 55’5 and 55’53. For the computation of P/ and
PL, the biggest bottleneck is considering many subsets of =y, and reducing =y to Egg and E‘E/SS therefore

provides a significant improvement.

1.6. Related work. In[DK15], Popov also describes algorithms for studying GIT quotients. Here we briefly
explain the difference between his work and ours. Popov’s algorithm computes a stratification of the null-
cone, which is the complement of the semistable locus; in this work, we also provide the stable and 7'-
polystable loci computation. Also, Popov’s algorithm calculates all unstable strata, whereas Algorithm 3.20
focuses on the maximal unstable strata only. While both his approach and ours can be applied to general
reductive group actions, ours is more efficient for semisimple groups, since it makes use of the symmetry of
the Weyl group to reduce the bottleneck of the algorithm. Even for the semistable locus of a non-semisimple
reductive group action, for our purposes, our algorithm will be slightly more efficient than Popov’s, because
we only compute the maximal unstable strata.

In [Der99; DKO08], the authors provide an algorithm, based on Grébner basis techniques, to find the in-
variant subring of a given coordinate ring. Our algorithm does not compute any explicit invariants — it
only detects whether there is a non-vanishing invariant for each point or not. Since Grébner basis calcu-
lations can be very expensive in terms of time and memory, this approach is not suitable for many of the
examples we wish to study.

There are some other works on computational GIT. For a fixed algebraic variety and a group action, the
change of its linearization may provide different GIT quotients [DH98; Tha96]. For the torus action on an
affine variety, an algorithm to keep track of the variation is described in [Keil2; BKR20]. Since any Mori
Dream Space can be obtained in this way [HKO00], it has important implications to the birational geometry
of algebraic varieties, in particular Fano varieties [LMR20]. However, this direction of research does not
have any significant overlap with the contents of this article.

Since the initial appearance of this manuscript on the ArXiv, R. Hanson and the second author have
improved the code (e.g. to consider all simple groups and not only non-exceptional ones) and made a
Sagemath package from it that can be downloaded from Github [CompGIT-code]. They have also written
a new manuscript explaining how to use the code in more detail and listing several possible projects that
can arise from it [CompGIT-paper].

1.7. Organization of the paper. This article is intended to attract readers from various backgrounds. Up to
section 5, only minimal prerequisites on algebraic geometry and representation theory of classical groups
are assumed. In particular, experts in GIT may want to skip most of section 2. The last two sections are
devoted to advanced applications in moduli theory.

Section 2 gives a definition and fundamental properties of GIT quotient. In Section 3, we describe our
algorithms for the stable/semistable loci computation. Section 4 deals with a classically non-trivial well-
known example (going as far back as Hilbert’s work in the 19th century [Hil93]) to demonstrate in a simple
case how our algorithm works. In the remaining sections, we provide some statistics on the algorithms’
running times and complexity (Section 5.1), and discuss consequences in the compactification of the moduli
space of hypersurfaces (sections 5.2, 5.3), the birational geometry of the moduli spaces of curves (Section
5.4), and the theory of the moduli space of K-stable objects (Section 6). The last section discusses some
possible improvements to the algorithms and open problems for future work.
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For most of the paper, we work on an algebraically closed field k of arbitrary characteristic, with the
exception of Section 6, where we assume that the base field is C. The algorithms work for any projective
scheme, including reducible or non-reduced ones. They also work over non-algebraically closed fields and
even relative bases, if the algebraic group scheme is split over the base [Ses77]. But in order to simplify the
exposition, we do not pursue full generality.

Acknowledgement. This work was partially supported by a SQuaRE grant of the American Institute for
Mathematics (AIM) which allowed the authors to meet several times, at AIM headquarters and online, to
carry out this work. We thank AIM for their support and their patience with us during the pandemic years.

JMG is partially supported by an EPSRC grant EP/V055399/1. We also received partial support from
the University of Essex Department of Mathematical Sciences Research and Innovation Fund.

We would like to thank Tiago Duarte Guerreiro and Theodoros Papazachariou for useful discussions. We
would also like to thank Ian Morrison and Ruadhai Dervan for constructive comments on earlier versions
of the manuscript.

2. GIT QUOTIENTS

In this section, we review key definitions and results of GIT and fix notation. Standard references are
[MFK94], [Dol03], and [DK15].

2.1. Definition of projective GIT quotient. Let (X, L) be a pair of a projective variety X and a very ample
line bundle L. This is equivalent to have an embedding X — P" = PH(X, L)* (here r = dim H(X, L) — 1).
We are interested in a good algebraic group action on X.

A linear algebraic group G is reductive if its maximal smooth connected solvable normal subgroup is
a torus. This class contains many important examples of groups, including finite groups, tori, and many
classical algebraic groups, such as GL,,, SL,,, Oy, SO,,, and Sp,,. Moreover, products, finite extensions, and
quotients of reductive groups are also reductive.

A semisimple group is an algebraic group such that every smooth connected solvable normal subgroup is
trivial. Thus, all semisimple groups are reductive. Examples include SL,,, SO,,, Sp,,, and their direct sums,
finite extensions and quotients. Hence PGL,, is semisimple, too. Semisimple groups can be classified by
analyzing their Lie algebras. The Lie algebra of a semisimple group is a direct sum of simple Lie algebras,
and the simple Lie algebras are classified by their Dynkin types (A, By, Cn, Dy, Es, Er7, Es, Fu, and Gs
[FH91]). By Remark 2.15, we may assume that G is a product of simple groups.

Let G be a reductive group. Suppose that G acts on X and assume further that this G action can be
extended to L (i.e. the G-action on X is linearized to L). Then, for each m > 0, H°(X,L™) is a finite-
dimensional G-representation. We denote by H°(X, L™)¢ the subspace of G-invariant vectors.

Let
R(X,L):= @H(X,L™)
m>0
be the section ring of L. Since L is a very ample line bundle on X, X = Proj R(X, L). Because the G-action
is linearized, R(X, L) has an induced G-action. Indeed the invariant subset
R(X,L)¢ .= @ H(x,L™)°
m>0
has a sub graded ring structure.
Recall that R(X, L) is the ring of ‘coordinate functions” of X. If there is a good quotient variety X/G,

then its ring of coordinate functions should be identified with the G-invariant coordinate functions of X.
This motivates the following definition.

Definition 2.1. The GIT quotient of X (with respect to L and the G-action on L) is defined by
X//1G := Proj R(X,L)“.
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As G is reductive, by Nagata’s theorem [Dol03] (for positive characteristics, see [Hab75], [Ses77]), R(X, L)¢
is also a graded finitely generated k-algebra, so X// ;G is a projective variety.

If there is no chance of confusion, then we drop the subscript L and write X//G.

Remark 2.2. In the literature, the choice of L and the extended G-action on L is called a linearization. The
GIT quotient depends on a choice of a linearization, and if we choose a different very ample line bundle L,
or a different extension of G-action to L, the quotient may change. See [DH98; Tha96] for details.

2.2. Stability and semi-stability. The GIT quotient X//; G is different from the quotient X/G in the cate-
gory of topological spaces in two ways. First of all, X//1G is not the quotient of the whole X, but that of an
open subset of X. From the embedding R(X, L)“ — R(X, L), we obtain a map

7: X = Proj R(X, L) --» Proj R(X, L)% = X//1G.

However, in most cases, 7 is not a regular map, but a rational map. Indeed, for x € X, let m, be the
associated homogeneous maximal ideal of R(X,L). Then the image m(x) is a point associated to m, N
R(X, L)%, but it may be the irrelevant ideal @, , R(X, L)“, which does not correspond to any point on
X//1G. This observation leads to the following definition.

Definition 2.3. A point z € X is called semi-stable if there is a G-invariant section s € H(X, L™)“ for some
m > 0 such that s(z) # 0. Let X*%(L) be the set of semi-stable points on X. (If the choice of the linearization
L is not ambiguous, we often simplify the notation to X*°.)

The set X**(L) is open. If z € X**(L), then m, N R(X, L)“ is not an irrelevant ideal. This implies that
there is a G-invariant section which does not vanish at z. Thus, we have a regular morphism 7 : X**(L) —
X//1.G, which is clearly G-invariant.

A second issue that arises in GIT (compared to quotients in the category of topological spaces) is that
X//1.G may not be the orbit space of X**(L), because some of the orbits are identified on X//;G. This is
because a reductive group G is not compact if it is positive dimensional, so the G-orbits are often not closed,
hence the closure of an orbit may contain another orbit. These two orbits must be identified in the quotient,
to obtain a separated quotient variety.

Definition 2.4. A point z € X is called stable if:

(1) there is a section s € H°(X, L™)% for some m > 0 such that s(x) # 0 (i.e. z is semistable),
(2) the orbit Gz has the same dimension as GG, and
(3) the orbit Gz C X, = {y € X | s(y) # 0} is closed.

Let X*(L) be the set of stable points on X. (If the choice of the linearization L is not ambiguous, we often
simplify the notation to X*.)

The subset X*(L) C X*°(L) is open. The restriction of 7 to X*(L) is now a genuine quotient map, and
m(X?(L)) is precisely the set of G-orbits in X*(L). On X**(L) \ X*(L), the map X*°(L) — X//rG is not
a set-theoretic quotient map, as several orbits can be identified to a single point. However, for each point
y € X//1LG\ X*(L)//1G, there is a unique closed orbit Gz C X*°(L) such that 7(Gz) = y. Such a point
x is called a strictly polystable point. In other words, the description of the GIT boundary X//,G \ X°/G is
equivalent to the classification of strictly polystable points.

The following notions complete the picture:
Definition 2.5. A point z € X is unstable if x € X \ X°*(L). A point € X is non-stable if x € X \ X°(L).

The set of unstable points and the set of non-stable points are denoted by X“*(L) and X"*(L), respectively
— or X™* and X™® when no confusion is likely.

We close this section with the following observation, which reduces the computation of the (semi-)stable
locus to that of the ambient projective space. Set V := H°(X, L). Then, since L is very ample, ¢ : X < PV*.
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Furthermore, PV* has an induced G-action on O(1) = Opy (1) because H*(PV*,O(1)) = H(X, L). Thus
we may consider another GIT quotient PV* //»(1)G. The map  is G-equivariant. The next theorem tells us
that the (semi-)stable locus is also compatible.

Theorem 2.6 ({MFK94]). Under the above situation, X**(L) = X NPV***(O(1)) and X*(L) = X NPV*(O(1)).

Thus, the map ¢ induces the morphism between GIT quotients X//.G — PV*//o(1)G.

2.3. Hilbert-Mumford criterion. One of the many reasons why the GIT quotient is useful when compared
to other algebro-geometric quotients (for example the Chow quotient [Kap93]) is that we may describe the
quotient explicitly by calculating the (semi/poly-)stable locus. A key tool for this is the Hilbert-Mumford
criterion, which provides a way to describe the (semi-)stable locus explicitly and combinatorially.

By Theorem 2.6, we may assume that X = PV* where V is a finite dimensional G-representation. We
want to describe X** and X* by describing their complements, X“* and X"?, respectively.

Let A € Hom(k*, G) be a one-parameter subgroup. V has an induced k*-representation structure. Since
k* is abelian, we may find a basis {so, s1, . .., s, } of V and integers wy, . . ., w, such that

)\(t) S = twisi.
Definition 2.7. Let x € PV* and A be a one-parameter subgroup. We define a numerical function p(x, A) as
w(z, A) == min{w; | s;(x) # 0}.

Theorem 2.8 (Hilbert-Mumford criterion [MFK94], [Dol03]). Let G be a reductive group, V' be a finite dimen-
sional G-representation and x € PV*. Then

(1) x is semi-stable if and only if pu(z, X) < 0 for all \;
(2) «x is stable if and only if (2, A) < 0 for all A.

To simplify the calculation, we may use the following ‘reduction-to-maximal-torus’ trick (or the torus
trick, for simplicity). Observe that:

(1) A point z € PV* is (semi/poly-)stable if and only if gz is (semi/poly-)stable for g € G;
(2) Forany z € PV*, A € Hom(k*,G), and g € G, we have pu(z, \) = u(gz, ghg™').

The image of any one-parameter subgroup is contained in a maximal torus of G. Furthermore, any two
maximal tori of G are conjugate to each other. So the Hilbert-Mumford criterion can be restated as:

Theorem 2.9 (Hilbert-Mumford criterion, second version). Let G be a reductive group, V' be a finite dimensional
G-representation and x € PV*. Then x is G-(semi-)stable if and only if x is T-semi-stable for all maximal tori T.

Thus, we may analyze (semi-)stability in two steps.

(1) Fix a maximal torus T" of G and study (semi-)stability with respect to T;
(2) Describe the G-orbit of each stratum of the unstable/non-stable locus with respect to 7. In many
cases, this step is done by describing each orbit geometrically or in a coordinate-free way.

The first step is a highly non-trivial combinatorial calculation, and we provide an algorithm for it in this
paper, together with an implementation for simple groups of type A, B, C' and D (the most common ones
in applications) in SageMath [sagemath-code]. Our algorithm works for all reductive groups. However, it is
more efficient for semisimple groups. Representations of these groups have Weyl group symmetry, which
we exploit to increase the efficiency of the algorithm significantly.

For many moduli problems, which are central applications of GIT calculation, the second step involves
the geometry of parameterized objects. We do not focus on this step in this paper, but see Section 4 for an
example.
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2.4. State polytopes. The Hilbert-Mumford criterion and the torus trick enable us to interpret (semi-)stability
in terms of polyhedral geometry. The purpose of this section is to explain this connection.

Let G be a reductive group and let T be a fixed maximal torus of G. Let N := Hom(k*, T') be the set of
one-parameter subgroups, which has a lattice structure. Set Ny := N ®z Q and Ng := N ®z R. Then Ng
and Ny are finite dimensional vector spaces and their dimension is called the rank of G.

Let M := Hom(T,k*) be the group of characters. We may define Mg and Mg in the same way. An
element of Mg is called a weight. There is a perfect pairing
NxM — Z
A x) = (A x):=m, where (x o \)(t) =t™.

For a finite dimensional G-representation V, consider the induced T-action on V. Then there is a unique
decomposition of V' as a direct sum of eigenspaces

V=P

XEM
where V,, = {v € V | \(t) - v =ty forall A € N}.
Definition 2.10. The state of Vis 2y := {x € M | V,, # 0} C M. For any = € PV*, the state of x is

= ={x €Eyv |IseV,, s(z) #0} CEy.

Note that the above definition depends on the choice of maximal torus T" (but not of the choice of basis
for a given T'). Since our second step above ultimately aims to describe the G-orbits of unstable/non-stable
points in a coordinate-free way, this is inconsequential for the whole program. Note further that for a
general v € PV*, =, = Ey.

Remark 2.11. Let V and W be two finite dimensional T-representations. It is straightforward to verify that
Evew = Zv UZw and Eygw is the Minkowski sum of =y and Zyy. The state of the wedge product V AW
corresponds to a ‘truncation’ of Sy gy .

Any nontrivial A € N defines a linear functional ¢, : Mg — R by the formula ¢ (x) = (A, x)-
Definition 2.12. Fix a finite dimensional T-representation V. Let A € Nz. For any ¢ € R, we may define
Evaze = {X €Ev [ (A x) = ¢}
Similarly,

Evase = {xX €Ev | (\,x) >c}.

We define EV,A:C = EV,AZC \ EV,)\>c-

We may restate the Hilbert-Mumford criterion (Theorem 2.8) for a torus T, in terms of states. For a set
S C Mg, the convex hull of S is denoted by Conv(5S).

Theorem 2.13 (Hilbert-Mumford criterion, third version [Dol03]). (1) Apoint x € PV* is semi-stable with
respect to T if and only if Conv(E,) contains the trivial character.
(2) A point & € PV* is stable with respect to T if and only if the interior of Conv(Z,) contains the trivial
character.

By the perfect pairing between N and M, each one-parameter subgroup A induces a hyperplane in M
with the sign of (), £) being positive, zero or negative, depending whether the character ¢ is ‘over’, ‘on” or
‘under’ the hyperplane induced by A, respectively. Thus, theorems 2.8 and 2.13 imply the following result.

Corollary 2.14. (1) A point x € PV* is unstable with respect to T if and only if =, C Sy, x>0 for some A € N.
(2) A point x € PV* is non-stable with respect to T if and only if 2=, C Ey, x>0 for some A € N.
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Remark 2.15. In addition to Corollary 2.14, we can observe that T-stability is determined by the set of
weights of the given G-representation V. In other words, it can be described by the associated Lie algebra
g. Thus, any finite extension and finite quotient of an algebraic group induce the same (semi-)stable locus.
For example, if one has a PGL,,-action, one may replace it by a compatible SL,,-action.

Since Zy is a finite set of points, it is sufficient to check (semi)-stability with respect to finitely many one-
parameter subgroups. This explains the finiteness statement in Theorem 1.1 even for arbitrary reductive
group actions.

Corollary 2.16. There is a finite set Ag5 := {\; }icr of one-parameter subgroups such that x € PV* is unstable with
respect to T' if and only if =, C Sy >0 for some i € I. Equivalently, there is a finite set Pss := {Zv,x,>0}ier of
maximal unstable states. And there is a finite set Ay := {\;}jes of one-parameter subgroups such that x € PV*
is non-stable with respect to T if and only if =, C Zvy x;>0 for some j € J. Equivalently, there is a finite set
P, := {Ev ;>0 }ier of maximal non-stable states.

Therefore for the computation of the (semi-)stable locus, the following question is the first step.

Question 2.17. Find efficient algorithms to determine Ps; and P;.

In the next section we present algorithms to find these two sets of one-parameter subgroups. For any
finite dimensional representation V' of a semisimple group G, =y has a Weyl group symmetry around the
origin. This group action is quite rich, allowing us to reduce the size of the problem significantly.

Recall that the Wey! group W of a semisimple group G is defined as W = N¢(T')/T where Ng(T) is the
normalizer of T in G. Alternatively, W may be encoded in the root datum of G. W acts linearly on both
N and M, and induces an action on Zy. The Weyl group action on any G-representation is induced from
the action of G, in other words, the ‘coordinate change’ by the group G. In particular, W acts on the set
of characters of any G-representation V' as reflections, so it is linearly extended to the actions on Mg and
Ng. Choose a general hyperplane on Mg and take the set R} of roots on the one half of the hyperplane
(they are called positive roots). There is a unique basis A C R, of Mg such that any positive root can be
written as a nonnegative Z-linear combination of A [Humphreys]. This basis A is called a base. Then the
fundamental chamber is the intersection of half-planes (], (—, @) > 0 [Humphreys]. Note that a choice of
a fundamental chamber depends on a choice of a base. Then W acts transitively on the set of fundamental
chambers [FH91].

Therefore, if we denote one fundamental chamber of the W-action on N by F, then it is sufficient to
find the maximal elements of the set {Zy 3>} such that A € F, because other maximal elements will be
obtained by applying the Weyl group symmetry. Thus, Question 2.17 is reduced to the following.

Question 2.18. Fix a fundamental chamber F of Ng. Let P! be the set of maximal elements in {Ey x>0}
such that A € F, and PZ be the set of maximal elements in {Ey >} such that A\ € F. Find effective
algorithms to calculate P! and PZ.

Since a base in My is a basis of My, the following fact is immediate from the definition

F=()(-a)>0.

aEA

Lemma 2.19. The fundamental chamber F is a simplicial cone. Thus, any vector in F' can be written uniquely as a
non-negative linear combination of its ray generators.

Remark 2.20. If the group G is not semisimple, then the state of V' need not have any symmetry, and then
the computation can be significantly more expensive. For instance, if G = T, any finite set = C M can be
Ey for some representation V. So we cannot expect any symmetry on =y, and we need to compute the full
sets P, and Pi;.
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3. ALGORITHMS

In this section, we describe algorithms to calculate two finite sets P, and P of maximal unstable states
and of maximal non-stable states, described in Question 2.18.

Let T' < G be a choice of a maximal torus in a semisimple group G, and let V' be a finite dimensional
G-representation. As before, N is the lattice of one parameter subgroups of 7', and M is the lattice of
characters, and d = rank N = rank M. If we denote by g the Lie algebra associated to G, then M is
naturally identified with the weight lattice of g. Let F' be a fixed fundamental chamber in N with respect
to the Weyl group action.

For the GIT quotient PV* //G, we need to calculate two finite sets P and PI". The input of the algorithm
is 2y, the set of characters of V' in M. The state Zy can be calculated using standard formulae in repre-
sentation theory. For instance, in SageMath [sagemath], the ‘Weyl Character Ring” package can compute

=y

3.1. Stable locus. A simple but important observation is that for any maximal Zy. x>0, the set Ey,y—¢ must
have at least (d — 1) linearly independent characters. Otherwise, by perturbing A by X', we would be able
to obtain a strictly larger state 2y, y/>¢. Therefore, we have the following outline of an algorithm.

(1) Let C be the set of all (d — 1) linearly independent subsets of characters

{x1,x2:---,Xa-1} C Evy.

(2) For each subset I € C, compute a nontrivial A € N such that (A, x;) = 0 forall x; € I. By the linearly
independence of I, up to a scalar multiple, A is unique. Let A be the set of such A’s which is in F.

(3) For each A € A, compute Zy, y>¢. Let S be the set of such Sy, y>¢'s.

(4) Let S,, C S be the set of maximal elements with respect to the inclusion order. Then P! C S,,,.

Remark 3.1. Note that S,, is the set of maximal elements in {Ey, y>0}rer, While PF is the set of maximal
elements in {ZEy, x>0} such that A € F. Clearly PF C S,,. We can compute PF from S, effectively. We
describe an algorithm for this later.

In general the algorithm outlined above will be slow, because the set C is very large. However, we can
improve its performance by reducing the number of characters that need to be considered. We do not need
to consider the whole set =y of characters to calculate the set of subsets; instead, it is enough to use a
proper subset E‘b;’s C Ey that we call the essential characters for the stability calculation. We give more
details below.

Each character x € =y \ {0} defines a hyperplane H,, := {A € Nr | (A, x) = 0} on Nr. Suppose that
H, N F = {0}. Then for every (d — 1) subset of characters I which contains x, the one-parameter subgroup
A that I determines is not on F' (because it is on H, ). Therefore, we may discard such x.

Proposition 3.2. Let v1,72,...,7q be ray generators of F. For x € =y \ {0}, H, N F # {0} if and only if

d d
1 X € U EVyi0 \ m EV,y,>0-
i=1 i=1

Proof. If x € ﬂle Zv,y:>0, then (v;,x) > 0 for all i. Since by Lemma 2.19, any A € F can be written
uniquely as a non-negative linear combination of {7, }, we have that (A, x) > 0 for all A € F'\ {0}. Therefore
H.NF={0}Ifx ¢ U?Il Ev,y,>0, then (75, x) < 0 for all 4, and hence (A, x) < 0 for all A\ € F'\ {0}. Thus
H, N F ={0}. Thus H, N F # {0} implies (1).

Conversely, if (1) holds, then there is one 7, such that (v;, x) > 0 and there is one ~; such that (v;, x) <
By taking a nontrivial positive linear combination of v; and 7;, we may find A € F'\ {0} such that (X, x) =

0.
0.
Then A € H, NF. O
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Another observation is that if x1, x2 € Ey are proportional to each other, then we may discard one of
them. Indeed, for any subset J of size d — 2, I := J U {x1} and I := J U {x2} define the same A € Ng,
hence the same =y y>¢. Thus, we define:

Definition 3.3. A set of essential characters Z1°° is a maximal subset of the right hand side of (1) where no
two elements are proportional to each other.

Note that Eg"s is not uniquely defined, since any character in E‘E;’S can be replaced by a proportional one
to it and it will still satisfy the definition. However, for our purposes, this will not make a difference.

Finally, we explain how to compute P! from S,,.

Definition 3.4. Let W be the Weyl group of G and let Ey x>¢ € S,,. Let W' C W be the set of all non-
identity elements that move the fundamental chamber F' to another cone F’ that intersects F' non-trivially,
so FNF' #{0}.

Remark 3.5. The only element in W which preserves F' is the identity. For any two chambers F' and F”,
there is a unique element in W which maps F' to F’. Now if F” intersects F' nontrivially, we can make a
sequence of reflections that maps F' to F” while fixing the intersection. Thus, W’ = | J, Stab(v;) \ {e}, where
7 are the generators of F.

Lemma 3.6. Let Sy x>0 € S, The state Zv x>0 € PL if and only if there is no g € W' and Zy >0 € Sy, such
that Ev)g)\zo _g EV’MZO.

Proof. Suppose that Ey,y>¢ € PF. Since it is maximal in {Ey,,>0} forall v € N, Ey x>0 D Ey,gu>0 for all
g € Wand Ey, ;>0 € Sy, such that g € F. But 2y x>0 D Zy,gu>0 is equivalent to 2y ;-13>9 D Ey,u>0. By
Remark 3.5, g~ € W',

Conversely, suppose that Zy\>o ¢ PF. This implies that Zy, >0 is not maximal in {Zy,,>¢}. This is
possible if there is u € N so that Zy x>0 € Ev, >0 where p is not in F, but its adjacent cone F’. We may

assume that =y ,,>¢ is maximal. Since F is a fundamental chamber, there is ¢ € W’ such that gu € F. So
EV,guZO S PSF C S,.. Therefore EV,gAEO - EV79M20 €S |

Given a finite set C' and an integer k£ > 0, we use the notation ((,i) to refer to the set of all subsets of C of
cardinality k. By combining these ideas, we can make an optimized algorithm for the computation of P/

Algorithm 3.7. [Algorithm for the computation of P']
Input: The state =y .
Output: The set of maximal non-stable states P

1. AO = EV
2. Ay = Ui Eviizo \ L1 Evineso
3. A2 = A1 \ {0}
4. A3 = @
5. forall y € A, do
6. is_dependent := false
7. forall ' € A3
8. if x = ¢y’ for some ¢ € R then is_dependent := true
9. if is_dependent = false then A3 := A3 U {x}
10. S, =0

—_
—_

. forall I € (dAfl) do

12. if I is linearly independent then do

13. Calculate A # 0 such that (A, x) =0forall y € I
14. if \ ¢ F then A := -\

15. if A\ € F then do
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16. Compute Ey x>0

17. is_maximal := true

18. forall Zy >0 € S, do

19. if Eva>0 C Ev >0 then is_maximal := false and break
20. if Ev)\zo D Evﬂzo then Sm = Sm \ {EV,HEO}

21. if is_maximal = true then S,, := S,, U{Ev. >0}

22. PF =90

23. forall 2y, y>0 € Sy, do

24. is_maximal := true

25. forallg € W' do

26. forall Zy >0 € S,, do

27. if EVL‘]AZO g_ EV7MZO then is_maximal := false and break
28. if is maximal = true then P! := PF U {2y >0}

29. return PF

Remark 3.8. The Weyl group symmetry is used in two different ways. First, the symmetry is used to
significantly reduce the set of one-parameter subgroups we need to consider (lines 14-15). Indeed, F' and
—F do not cover the whole vector space but a rather smalls section of it (one can fit as many copies of F as
the order |W|), thus the number of one-parameter subgroups to consider is very small. Secondly, in lines
23-28 of the algorithm, we apply the action of W (or a subset W’ of W) to make the output non-redundant,
removing nonstable states that are not maximal because they are subsets of some nonstable maximal state
in another Weyl chamber.

Remark 3.9. Algorithm 3.7 works for a more general reductive group, after the following modification. If
the group is not semisimple, we may not expect any symmetry on Zy, so we need to set A; = A = Ey and
let F' = Ng. The rest of the algorithm works the same.

3.2. Semistable locus. In this section we present an algorithm to calculate the semi-stable locus. This
algorithm is a generalization of the algorithm described in [GMG18] (cf. [GMG19; GMGZ18]), which
considers a special case of G = SL, and V = Sym?C" ® Sym°C".

In this section, we assume that G is a semisimple group of rank d, and T be a fixed maximal torus of G.

For the semi-stable locus computation, we need one technical assumption.

Assumption 3.10. From now on, we assume that the T-stable locus PV **(T') is nonempty. Equivalently, we
assume that the state Zy is full-dimensional and the trivial character xg is in int Conv(Zy/).

Assumption 3.10 is true for many GIT problems, as we illustrate in the following lemmas.

Lemma 3.11. Let G be a simple group. For any nontrivial G-representation V, Assumption 3.10 holds.

Proof. By Theorem 2.13, it is sufficient to show that the trivial character x is in the interior of Conv(Ey).

First, assume that G is a simple group and V is an irreducible representation. Then Zy has a nontrivial
character. Since the Weyl group W is generated by reflections associated to roots, and the roots span Ng,
Conv(Ey ) is top-dimensional W-invariant polytope. Choose any x € Conv(=Zy ) and set 7 = Wl‘ > gew 9X-
Then 7 € Conv(Ey ) and W-invariant. Since the only W-invariant vector is zero, 7 = xo. Note that [W| > d.
Since y is a positive linear combination of linearly dependent vectors in Conv(=Zy ), xo is in the interior of
Conv(Ey).

When V is not irreducible, let W be a nontrivial irreducible factor of V. Then =y, C Zy.. So Zy contains
the trivial character in its interior, too. O

For a general semisimple group G, by Remark 2.15, it is sufficient to consider the case that G = G; x
-+ X G, where G; are simple groups.
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Lemma 3.12. Let G = Gy X --- X Gy, be a semisimple group which is a product of simple groups. Let V' be a finite
dimensional G-representation whose induced G;-representations are nontrivial for all 1 < i < k. Then V satisfies
Assumption 3.10.

Proof. Here we give a proof when G = G; x 2. The general case easily follows by induction. Since the two
induced representations are nontrivial, there are two possibilities: V' has an irreducible factor of the form
Vi ® Vi, where V; is a nontrivial irreducible G;-representation, or V' has two irreducible factors V; and V5
where V; is an irreducible G;-representation and G3_; acts trivially. Note that Mg = Mg ® Mor where M;g
is the space of characters of G;, and W = W x W, where W; is the Weyl group of G;. In each case, Conv(Ey)
is top-dimensional. Therefore one can argue it in the exactly same way to the proof of Lemma 3.11: The
average of an element of Conv(Zy, gy, ) or Conv(Ey, v, ) is W-invariant, thus it is a trivial character x, and
it is in the interior of Conv(Zy ). O

Remark 3.13. That Assumption 3.10 holds for a fixed maximal torus 7" (even for all maximal tori!) does
not imply the nonemptiness of the G-stable locus PV**(G) when dim V' is small compared to dim G. For
instance, consider G = SLy and V = Sme(CS. Then by Lemma 3.11, for every maximal torus 7" C SL3, the
T-stable locus PV**(T') is nonempty. However, dimV = 6 < dimSL3 = 8, so every point on PV*** has a
positive dimensional stabilizer, hence it is non-stable.

Lemma 3.14. Suppose Assumption 3.10 is true. Then for any maximal unstable state Ev, x~, the dimension of its
convex locus satisfies dim Conv(=Zy x>0) > d — 1. Furthermore, if dim Conv(Ey, x>o) = d — 1, then Zy x>¢ is not
contained in a hyperplane passing through the origin.

Proof. Suppose that dim Conv(Ey,y>0) < d — 1. Then there is a hyperplane H C Mg such that Ey, x50 C H.
Since Assumption 3.10 is true, dim Conv(Zy ) = d. So there must be x’ € Zy \ H. There is a linear functional
¢ : Mg — Rsuch that {|z = 0 and ¢(x’) = 1. Because there is a perfect pairing Ng x Mr — R, there is
p € Ng such that £(x) = (i, x) for all x € Mgr. Now for m > 0, we have Ey x1mu>0 O Zva U {X'}. It
contradicts the maximality of Zv, ¢, proving the first statement.

Now suppose that dim Conv(Zy,x~0) = d — 1. If there is a hyperplane H C Mg passing through the
origin and ZEy y~¢ C H, then we can choose x’ € Zy \ H and ¢ : Mg — R such that |z = 0 and 4(x’) = 1.
Then we may argue in the same way to show the non-maximality of Zy, y~( as before. O

The next proposition is the key observation for the computation of the semi-stable locus.

Proposition 3.15. Suppose Assumption 3.10 is true. Let 2y, x~¢ be a maximal unstable state. There is \' € Ny such

that:
(1) Evaso =Evaso
(2) The minimum value of (X', x) for all x € Zy, x>0 is achieved at d linearly independent characters x1, x2, ..., Xd €
Zv, x>0

Proof. By Lemma 3.14, we know that dim Conv(Zy,x>0) > d — 1.

First of all, suppose that dim Conv(Zy,x>9) = d. Since it is a convex polytope, it is an intersection of

finitely many half-spaces:
Conv(Ey,x>0) = ﬂ Hy, >ch,
keK

where Hy, >, = {x € Mg | (MAk,x) > ¢} and K is a finite index set. Furthermore, by eliminating
redundant half-spaces, we may assume that for all k € K, Hy, >, N Conv(ZEy x>0) is a ((d — 1)-dimensional)
facet of Conv(ZEy,a>0), 50 Hy, >, contains at least d linearly independent characters in Zy, y~¢. Since Zy, x>0
is unstable, the trivial character x, is not in Conv(Zy,y>¢). Thus there is k € K such that xo ¢ H), >.,. Note
that this implies ¢; > 0.

We claim that we may take A = Ai. Clearly Zy x>0 C Eya,>c, C Zva,>0- By the maximality of 2y, x>0,

Eva>0 = SV >er = SV,A>0-
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From the first equality, we obtain the minimum value of (X, x) = (A, x) is cx. We checked that Hj, ., has
d linearly independent characters of Zy, x/>.

Now suppose that dim Conv(Zy,x>0) = d — 1, so Conv(Zy,y>0) is ‘thin’. Let A be the unique hyper-
plane (not passing through the origin by Lemma 3.14) containing Zy, y~¢. Take ¢ € Mg such that (|4 = ¢
for some ¢ > 0. Find X' € Ng such that £(x) = (X,x). Then ) is what we want. Moreover, since
dim Conv(=y y»>0) = d—1, it has at least d linearly independent characters x1, X2, - - . , x¢ which correspond
to vertices of Conv(Zy, y>o) and X (x;) = c. a

Proposition 3.15 suggests the following outline for an algorithm to describe all maximal unstable states.

(1) Let C be the set of all d linearly independent subsets of characters {x1, x2, ..., x4} C Ev.

(2) For each subset I € C, compute a one-parameter subgroup A € Ny such that (A, x;) = (A, x;) >0
for all x;, x; € I. Itis unique up to a positive scalar multiple. Let A be the set of such A\’s which is in
our previous choice of fundamental chamber F.

(8) For each A € A, compute Sy y~¢. Let S be the set of such Ey, y~¢s.

(4) Let S,, C S be the set of maximal elements with respect to the inclusion order. Then Pf C S,,,.

As in the case of the stable locus, it may be possible that P is a proper subset of S,,,. We may calculate
PZL from S,,, by using Lemma 3.6 with an obvious modification:

Lemma 3.16. Let v yso € Sy, The state Ey aso € PE if and only if there is no g € W' and Ev.u>0 € Sm such

that ZEy,grx>0 € Ev,u>o-

The computational bottleneck of this approach is the computation of the set C as before. Here we again
calculate a proper subset Z1°° C =y, of essential characters.

Lemma 3.17. Let 1,72, ...,7q be the ray generators of F. Let I = {x1,X2,---,Xd} be a linearly independent
d-subset of characters in Zy,. Suppose that

d
X1 ¢ U =V, >0
i=1

Let A € Ng such that (X, x;) = (A, x;) > 0 forall x;, x; € I, which is unique up to a nonzero scalar multiple. Then
Aé¢F.

Proof. By the assumption on x1, (v, x1) < 0 for all j. If A € F, then ) is a nonnegative linear combination
of v1,72, - .,7a- Thus (A, x1) < 0, which contradicts one of the assumptions. Therefore A ¢ F. O

Lemma 3.17 tells us that to construct a linearly independent d-subset of characters that define X to form
a Ey,a>o wWith A € F, it is sufficient to take the characters on

d
U SV,y >0
1=1

Note that Zy, x>0 = ZEv, x> for some ¢ > 0. By perturbing A slightly, we may assume that the supporting
affine hyperplane Zy, y—¢ has d-linearly independent characters. The d-subset of characters that we will
choose lie on the supporting hyperplane of Conv(Zy, x—.). Then we expect that if y € Zy lies on Zy y>. =
Eviase \ Ev,a=c for every A € F, then we do not need to use x to construct d-subsets.

Let K := ﬂle Ev,~;>0. Define a partial order > on K as x > x’ if and only if (v;, x) > (s, x’) for all 7.
Lemma 3.18. Let K,,, C K = ﬂ?:l Ev.~,>0 be the set of non-minimal elements of K with respect to >. Let

X € K. Then for every maximal unstable state =y x>o = Eva>c with A € F\ {0}, x € Eyxse.

Proof. Being x € K, means that there is x’ € K such that (v;, x) > (v, x’) for all 3. Since A € F'\ {0}, A
can be written uniquely as a nontrivial linear combination > a;; with a; > 0. Then

(A x) = Z%‘(%’JO > Z%‘(%’J& ={\X) >0
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Thus X/ S EV7)\>0. Since EV7)\>0 = E’V,)\ZCI <>\,X’> > cand X € EV,)\>(:~ O

Therefore to construct the set of d-subsets of characters, it is sufficient to consider the set
d
() B9 = U Ev,yi>0 \ Knm-
i=1
Remark 3.19. On the other hand, we cannot eliminate one of two proportional characters, as we can for
the stable locus computation in Section 3.1. This is because the semi-stable locus computation is based on
supporting affine spaces, not hyperplanes passing through the origin.

Based on these observations, below is the optimized algorithm.

Algorithm 3.20. [Algorithm for the computation of PZ
Input: The state =y.
Output: The set P, of maximal unstable states.

1. Bo = Ev.

2. Bl = U?:l EV’%>0

3. K:= ﬂ?:l EV,%‘>0

4. J:=K

5. forall x € J do

6. is_minimal := true

7. Tox =N X € T (i X') > (3,0}

8. if J-, # 0 then do

9. J =T\ Jsy
10. is_minimal := false
11. break

12. if is minimal = false go to Step 5.
13. Kpm =K\ J
14. BQ = Bl \ Knm

15. S, =10

16. forall I € (%?) do

17. if I is linearly independent then do

18. Calculate A # 0 such that (X, x;) = (A, x;) > 0forall x;, x; € I.
19. if A € F then do

20. Compute Zy x>0.

21. is_maximal := true

22. forall 2y 50 € Sp, do

23. if v >0 C Ev, >0 then is_maximal := false and break
24. if EV7)\>0 D) E’V,[L>O then S,, .= S,, \ {EV,,u>O}-

25. if is_maximal = true then S,, := S, U{Ev >0}

26. PL =10

27. forall 2y >0 € S, do

28. is_maximal := true

29. forallg € W' do

30. forall Zv -0 € S, do

31. if Sy gras0 € Ev,uso then is_maximal := false and break
32. if is maximal = true then P := P U {Ey 50}

33. return PZ

Remark 3.21. The same two uses of Weyl symmetry that we saw in Algorithm 3.7 are present for Algorithm
3.20 (see Remark 3.8). The reduction set of one-parameter subgroups considered is reduced in lines 19-25
and the action of W (or a subset W’ of W) to reduce redundancy in the output is considered in lines 27-32.
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Remark 3.22. Suppose that G is reductive but not semisimple, or Assumption 3.10 is not satisfied. One may
not expect a similar algorithm in general, because the state polytope =y can be contained in an affine space
of large codimension, so there is no easy way to describe a maximal unstable state with d-set of linearly
independent characters. This problem can be resolved if we replace Mg by the smallest linear subspace of
My that contains Conv(Zy).

Even after that, since we do not have any Weyl group symmetry, we need to consider all d-sets of char-
acters. So if we set By = By = Zy and set ' = N, the algorithm gives the correct output.

3.3. GIT boundary. When one studies the geometry of moduli spaces constructed by GIT, it is essential
to study the geometry of the strictly polystable locus. It enables us to apply Kirwan’s partial desingular-
ization procedure [Kir85] to obtain a moduli space with better singularities, or to apply the wall-crossing
analysis as the linearization varies [DH98; Tha96]. In this section, we describe the G-polystable locus and
an algorithm to find T-polystable loci, where T is a maximal torus of G.

Set theoretically, the image of the strictly semistable locus in the quotient, namely the points in (X//1G)\
(X?®/@G), is not in a bijection with the set of G-orbits of strictly semistable points, but that of polystable
points. Recall that a strictly polystable point is a strictly semistable point with a positive dimensional
stabilizer group and with a closed orbit in the semistable locus.

The following lemma shows how T-polystability and G-polystability are related.

Lemma 3.23. Let G be a reductive group acting linearly on (X, L), and let T be a maximal torus of G. Let x € X*°
be a strictly G-polystable point. Then there is g € G such that gx is strictly T-polystable.

Proof. Recall that z € X is strictly G-polystable if the following hold:

(1) ze X°°\ X7,
(2) « has a positive dimensional stabilizer group, and
(3) its orbit Gz is closed in X*%.

By Theorem 2.9, x is semistable with respect to all maximal tori. The connected component of the stabilizer
of z is reductive [Kir85]. Since it is positive dimensional, it includes a positive dimensional torus T}, and
hence there is a maximal torus 75 O 7. Since all maximal tori are conjugate to each other, there is g € G
such that gT5g~! = T. Then gz is gT5g~'-semistable and we set T := gT5g~ . Because gT; g ! stabilizes gx,
gz has a positive dimensional stabilizer.

Now Ggxz = Gz has a closed orbit in X*® if and only if for any one-parameter subgroup A C G,
lim; 0 A(t)z € Gz if the limit exists in X*°. In particular, for any one-parameter subgroup A in 7" such
that lim;_,o A(t)gz exists, then lim; o A(t)gz € Ggz N Tgx = Tgx. Thus, Tgx is closed in X*. In summary,
gx is strictly T-polystable. O

Remark 3.24. The converse of Lemma 3.23 is not true. Namely, even if x is T-polystable for a fixed maximal
torus T' C G, it may be possible that  does not have a closed G-orbit in X**. See the example in Section 4.

Even though T-polystability does not provide a complete description of G-polystability, it can be re-
garded as the first step toward the polystability computation.

T-polystability has the following combinatorial criterion.
Lemma 3.25. A point x € X*° \ X*® is T-polystable if and only if

(1) the state =, is in a positive codimensional linear subspace in My and;
(2) the trivial character x is in the relative interior of Conv(Z,).

Proof. Suppose that x € X*° is T-polystable. Then the identity component of its stabilizer for the T-action
is a positive dimensional subtorus U of T'. Thus, every one parameter subgroup in Hom(k*, U) acts with the
same weight, hence =, must lie on an affine translation of Hom(k*,U)% C Mg. But since =, is semistable,
it must include o, so it is lying on A := Hom(k*, U)+, proving the first claim.
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If xo is on a relative interior of a proper face @ of Conv(E,), we may take a supporting hyperplane
A C Mgsuchthat Q C At NA# Aand =, C {x € Mg | {(x,\) > 0}. Then with respect to A\ € Ng,
lim;_,o A(t)z € Tz \ Tx and z is not polystable. If x, is on the outside of Conv(ZE,), then z is T-unstable by
Theorem 2.13. Therefore, x is in the relative interior of Conv(E,). The converse is similar. O

The T-polystable locus has a stratification. In the following discussion, (semi-)stability is for the T-action.

Definition 3.26. Let A C Mg be a proper linear subspace. Let Y4 C X*° be the subset of strictly T-polystable
points z such that Conv(Z,) spans A and x € int Conv(Z,). Then for only finitely many A, Y, is nonempty.
LetY , be the image of Y4 in X//T. Then | |, Y , is a stratification of (X //T) \ (X*®/T). This stratification is
called the T-polystable stratification.

Remark 3.27. In terms of realizable matroids defined by 2y, the stratification is parametrized by the set of
non-maximal flats whose convex hull includes the origin in its relative interior.

Since our eventual interest is the polystable stratification for X//; G for a semisimple group G-action, we
may assume that the state polytope =y has Weyl group symmetry. Thus, it is sufficient to find the index set

Pl={24:=ZEy N A4},

where A is a proper subspace of Mg such that Conv(Z,) spans A, of the orbits of the Weyl group action.
For each index A, we may recover a general T-polystable point on Y, by taking z € X such that =, = = 4.

Question 3.28. Find an algorithm that computes the index set Pf.

Let G be a semisimple group and let z € X be a T-polystable point and =, = =4 for some proper
subspace A C M. Since a polystable point x is not stable, its associated state =, = Z 4, up to a Weyl group
action, must be contained in one of Zy x>0 € PF. Moreover, by Lemma 3.23, =, C ZEy,x=0. So we can start
from the subset of {Ey y—¢} that contains the trivial character xq. If xo € int Conv(Ey x=¢), then Zy = €
P;;. If xo is on the relative boundary of Conv(Ey,y~¢), then by eliminating some characters in Ey, y—o, we
can find a state that corresponds to a deeper stratum, corresponding to A" C A. If xo ¢ Conv(Zy,x—o), then
Ev.a=0 is unstable, so we can discard it and any proper subsets.

Based on this strategy, we can describe the algorithm for the T-polystable stratification.
Algorithm 3.29. [Algorithm for the computation of P[]

Input: The set PL".
Output: The set Pf.

1. 8§,:=0

2. P;; =10

3. forall EV,)\EO S P5F do

4, if xo € int Conv(Zy,z=¢) then do

5. P;; = P‘zﬁU{Evy)\:()}

6. if Xo € COHV(E‘/’)\:()) then do

7. Sp = Sp U {Ev))\:()}

8. forallT € S, do

9. forall7' C T do
10. if dim Conv(7T") < dim Conv(T) do
11. if xo € int Conv(7”) do
12. Pl = PE U{Span T'NEy}
13. forall T € Pf; do
14. forall g € W do
15. if g7 # T and gT € P[; then do

16. P;; = sz; \ {¢gT}
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17. return P;;

We implemented the above algorithm in SageMath [sagemath-code].

Remark 3.30. The above algorithm can be applied to reductive groups, if we disregard the Weyl group
action. More precisely, the input is the set P; instead of PX’, and we may skip Lines 13-16.

Remark 3.31. We implemented these algorithms (for simple groups) in SageMath. The interested reader
can find the code with documentation at: [sagemath-code]. In line 25 in Algorithm 3.7 and in line 29 in
Algorithm 3.20 (but not in 3.29), W’ can be replaced by W and the output does not change. However, more
unnecessary iterations of the loop will take place and, as the size of =y grows, this can have a consider-
able effect in execution time. On the other hand, one needs additional computational time to construct
W', so for small problems using W may partially compensate this time. In the current implementation in
[sagemath-code] we use W for simplicity of coding.

4. CUBIC SURFACES

In this section, we present a classical example (the moduli space of cubic surfaces) to illustrate how the
algorithms in Section 3 work and describe how the outputs can be interpreted in moduli theory. In this
case, the GIT stability analysis was first done by Hilbert in [Hil93]. One can find the computation in several
modern textbooks, for instance in [Muk03].

Recall that a degree d hypersurface in P"*! can be identified with a nonzero section in H? (P" ™!, Opn+1(d)),
up to a scalar multiplication. Two hypersurfaces are projectively equivalent if there is a projective automor-
phism Aut(P"*1) = PGL,, ;2. So the moduli space of n-dimensional degree d hypersurfaces is

3) PHO (P, Opni1(d))* //PCGLyy2 = PHY (P Opns1(d))* //SLpso.

The isomorphism is obtained because the scalar matrices in SL,, 2 act trivially. Because SL,,;» has no torus
factor, there is only one linearization of the SL,s-action and the GIT quotient is uniquely determined
[Dol03].

Any smooth n-dimensional hypersurface of degree d > 2 in P"*! is GIT stable [Dol03]. Thus, the GIT
quotient is indeed a compactification of the moduli space of smooth degree d hypersurfaces.

Definition 4.1. The GIT compactification H,, 4 of the moduli space of n-dimensional smooth degree d hyper-
surfaces is the GIT quotient in (3).

We now focus on Hj 3, the moduli space of cubic surfaces. Let S' = k* be the standard SL4-representation.
Then V := HO(P*, Op4(3)) = Sym®S = T3, is an irreducible SL,-representation whose highest weight is
3&)1. For SL4, the rank d = 3, NR = {(:Cl,xg,l’g, :Z}4) S R4 | ZLE,L = O} and M]R = {(yl,yg,yg, y4) €
R*} /(3" vi). The pairing (, ) : Ng x Mg — R is induced from the standard dot product of R*. By using the
pairing, we may identify Ng and M. For V =T',,,

Ev = {(y1,92,y3,92) € Mi | y; € Z0, Y i = 3},

which are 20 lattice points in a regular tetrahedron (Figure 1) in M. The fundamental chamber (technically,
in Ng) is drawn as a grey simplicial cone.

The Weyl group W is isomorphic to S; and its action on all latices /vector spaces is induced by its natural
permutation action on the four coordinates of Ng and Mg. The fundamental chamber in Ng is

F = {(x1,22,23,24) € R |2y > 29 > 23 > $4,Z$i =0}
and it is a three-dimensional simplicial cone generated by v, = (3,—1,—1,—-1), 7» = (1,1,-1,—-1), and
v3 = (1,1,1,-3). Figure 2 shows the set A; == J?_; Zv.,50 \ N_; Ev.yi>0 in (1). Ten white circles are
excluded and |A;| = 10. Finally, there are two pairs of vertices (each pair contains one of two remaining

extremal vertices) which are proportional. Thus, the set E‘E;’S of essential characters is

Eg’s ={(2,0,0,1),(1,1,0,1),(1,0,2,0),(1,0,1,1),(1,0,0,2),(0,2,1,0), (0,2,0,1),(0,1,2,0)}.
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3 = 3 =
FIGURE 2. The set |J;_; Zv,v,>0 \ i1 Ev,vi>0

For each pair {x1,x2} C 55, we compute a (unique up to scalar multiple) one-parameter subgroup A
with (A, x;) = 0. If A € F, record Ey, x>0 and compute maximal elements among them. There are three
maximal sets, corresponding to three one-parameter subgroups A1 = (1,0,0,—-1), A2 = (2,0,—1,—-1), and
A3 = (1,1,0,—2):

EV,X]EO :{(27 1a Oa 0)7 (1a la 0) 1)7 (2a 07 07 1)7 (Oa 1) 27 0)7 (17 07 27 O)a (05 27 17 O)a (07 37 07 O)a
(3,0,0,0),(1,0,1,1),(2,0,1,0),(1,1,1,0),(1,2,0,0), (0,0,3,0)},
EV,)\QZO :{(23 17 0) 0)7 (13 17 0) 1)7 (27 0) 07 1)7 (17 1) 17 O)a (Oa 37 07 0)7 (35 07 07 0)7 (1, 07 13 1)a
(2,0,1,0),(1,2,0,0),(1,0,2,0),(1,0,0,2)},
Evas>0 =1(2,1,0,0),(0,2,0,1),(1,1,0,1),(2,0,0,1),(0,1,2,0), (1,0, 2,0), (0,2, 1,0),
(0’ 3’ O? 0)7 (3? 07 0’ 0)7 (23 O? 17 0)7 (17 1, 17 0)’ (17 27 07 0)’ (0’ 07 37 0)}'
Now we turn to a geometric interpretation. In this example, each character x = (yo,¥1, y2,¥3) can be

identified with a monomial [] X, where (X0, X1, X2, X3) is a fixed homogeneous coordinate of P3. Then
for A\; = (1,0,0, —1), a general polynomial associated to the maximal state =y, y, >¢ is of the form

XoX3f1(Xo, X1, X2) + f3(Xo, X1, X3),
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where f; is a degree d homogeneous polynomial. At the point P := (0,0,0,1) € P3, the zero locus has the
tangent cone X f1(Xo, X1, X2), that is a union of two planes. Similarly, for Ey ,>0, we have
X3 4 Xof2(Xo, X1, Xo, X3),
with ¢ € k. Then the surface contains a line X, = X; = 0, and a singular point on it, where the tangent cone
contains a plane X, = 0. Finally, for =y ,>0, we obtain
X3 fo(Xo, X1) + f3(Xo, X1, X2).

At P, the surface has the tangent cone f2(Xo, X1), that is a quadric of rank two. Recall that an ordinary
double point of a surface is a singular point where the tangent cone is a full rank quadratic cone. The
above computation tells us that if a cubic surface is not stable, then it has a singular point which is not an
ordinary double point. The reader can verify that our outcome recovers the equations in [Muk03]. Indeed,
the converse is also true [MukO03].

For the semistable locus, we need to compute U?:1 Ev,7,50 \ Kpm in (2), where K,,,, is the set of non-
minimal elements in ﬂle Ev 0. It is straightforward to see that Ule Evqyi>0 = Ule Ev,~,>0- By a direct
calculation of the paring (7;, x;), we can see that ﬂle Ev,y:>0| = 5 and there is a unique minimal element

(1,1,1,0). Thus, for the semistable locus calculation,
2y ={(2,0,0,1),(1,1,1,0), (1,1,0,1),(1,0,2,0),(1,0,1,1),(1,0,0,2), (0,3,0,0),
(07 27 1’ 0)7 (07 27 07 1)7 (07 1’ 2) 0)7 (O’ 07 37 O)}'

—FE, ss

By using all triples of characters in =y,"°°, with Algorithm 3.20, we obtain three one-parameter subgroups
= (3,—-1,-1,-1), po = (5,1,1,-7), us = (3,3, —1, —5) which correspond to maximal unstable states.
These are:

Zv,a>0 ={(2,1,0,0),(2,0,0,1),(1,1,0,1),(3,0,0,0), (1,2,0,0),(1,0,1,1),
(2,0,1,0),(1,0,2,0),(1,1,1,0),(1,0,0,2)},

Ev,u.>0 ={(2,1,0,0),(2,0,0,1),(1,0,2,0),(1,1,1,0),(0,1,2,0),(3,0,0,0),
(0,3,0,0),(2,0,1,0),(0,2,1,0),(1,2,0,0),(0,0,3,0)},

Ev,us>0 ={(2,1,0,0),(2,0,1,0),(1,1,0,1),(2,0,0,1),(1,0,2,0),(1,1,1,0),
(0,1,2,0),(3,0,0,0),(0,3,0,0),(0,2,0,1),(0,2,1,0), (1,2,0,0) }.

In [Muk03], for the semistability computation, he found the one parameter subgroups
v = (3,-1,-1,-1), w1:=(3,3,—1,-5), wv3:=(3,1,1,-5).

Thus, the list of the one parameter subgroups are different. However, one can check that 2,9 = Z,,50. By
analyzing the equations of unstable cubic surfaces associated to 2y, ,, 0, one can conclude that a semistable
cubic surface may have one extra class of singularities than those appearing for stable surfaces — a double
point whose tangent cone is the union of two planes and the intersection of the planes does not lie on the
surface. For the details, consult [Muk03].

Finally, by using Algorithm 3.29, we can describe the T-polystable stratification. There are five strata in
total. For each \;, the associated T-polystable state is

Eva=0 = {(1,1,0,1),(1,0,1,1),(0,0,3,0),(0,3,0,0), (0,1,2,0),(0,2,1,0)},

Eva.=0 = {(0,3,0,0),(1,0,1,1),(1,0,2,0),(1,0,0,2) },

Evas=0 = {(0,2,1,0),(1,1,0,1),(2,0,0,1),(0,0,3,0)}.
The dimension of each convex hull is two. In 2y, 5, =, there are two subsets, whose convex hulls are one-
dimensional, and contain the origin (which, due to the description of My as a quotient, corresponds to a
scalar multiple of (1,1, 1, 1)): namely, these are the sets 25 := {(1,1,0,1),(0,0,3,0)} and =5 := {(1,0,1,1),(0,3,0,0)}.
E; is also contained in Ey, »,—¢ and is the only one in it. On the moduli space H> 3, two strata associated to
E9 and Z3 are identified by the SL4-action and their image in H» 3 is a point. Indeed, =5 and Z3 are in the
same orbit of the W-action. On the other hand, the larger dimensional strata are not closed with respect
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to the SLy-action, hence they are not SL-polystable (Remark 3.24). Therefore, the GIT quotient H 3 is a
one-point compactification of the quotient of the stable locus [Muk03].

5. EXAMPLES AND STATISTICS

5.1. Statistics. In Table 1 we present statistics obtained from running Algorithms 3.7, 3.20, and 3.29. Most
of these statistics were obtained using our SageMath implementation, except for the genus 7 Mukai model,
which was computed using C++ instead. In the table, we cite a reference for the results that we have found
in the literature. (Our citations are not necessarily to the first appearance, especially for the classical GIT
problems.) In the subsections following the table, we comment on some of the results that are, to our
knowledge, new.

For each example in the table, we give the following data.

e a short description of the GIT problem;

o the root system and representation. Here V'(\) denotes the irreducible representation with highest
weight ), and w; are the fundamental dominant weights for this root system;

the run times for Algorithms 3.7, 3.20, and 3.29 in seconds (unless otherwise indicated);

the size of the set =y, which serves as a measure of the complexity of the input;

the size of the set A3 computed in Algorithm 3.7;

the size of the set B, computed in Algorithm 3.20;

the sizes of the output sets P, PX, and P[,

ss7

Our current code implements Algorithms 3.7, 3.20, and 3.29 faithfully except in one aspect: in Algorithm
3.7 line 25 and Algorithm 3.20 line 29, the code uses the full Weyl group W instead of the subset W’. This
should give identical output. This saved us programming time at the cost of additional computing time.

Unless otherwise indicated, the examples were run on an Amazon Web Services c4.2xlarge instance to
allow for comparison of the running times. Each such instance had 8 vCPUs, 2.9GHz processors and 15GB
memory, and 24GB storage.

In Figure 3 we plotted selected data from Table 1. Specifically, we plotted the run time for Algorithm
3.7 and the size of its output |P’| for four series of examples: hypersurfaces in P2, P3, and P*, and cubic
hypersurfaces of dimensions 1-5.

5.2. Quintic threefolds. Because of its significance in mathematical physics, Calabi-Yau threefolds have
been intensively studied in last several decades. A smooth quintic threefold is one of the simplest kind
of a Calabi-Yau threefold of Picard number one. The GIT compactification of the moduli space of smooth
quintic threefolds is given by

Hs 5 = PH°(P*, Ops(5))" //SLs.

The stable locus is described in [lakhani2010git], but the semistable locus is not given there because of its
computational complexity. By using our algorithms, we computed the list of maximal states describing the
stable locus and the semistable locus. The number of maximal states for the stable locus is 38, and that
for the semistable locus is 57. The running time for the stable locus is less than 15 minutes, and for the
semistable locus is less than two hours. The computational output is available at [sagemath-code].

5.3. Cubic fivefolds. Over an algebraically closed field k of characteristic # 2, up to isomorphism, there is
only one smooth hypersurface of degree d < 2. Thus, each of these moduli spaces is a point. Cubic hyper-
surfaces are thus the lowest degree cases that have non-trivial moduli, and they have attracted attention
from many researchers. The GIT analysis of cubic threefolds is done in [A1103], and for cubic fourfolds it is
completed in [Laz09]. The GIT stability of cubic fivefolds was investigated by Shibata in [Shi14] (note that
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FIGURE 3. Run time and output size for Algorithm 3.7 for four series of examples.

Curves in P? by degree Surfaces in P? by degree

3.0 12 18.0 16
3 0 x 0
o] ey 5 g

[%) . 2} : 12

T 201 <
g >0 x 78 EJ g§ 120 L 10 EJ
S 151 °* t S 10.0 It
3 . x 16 B & T8 B
\q.)/ 1.0+ ° o E/ 8.0 6 o
1y 8 le &
g 05l . o o " 4 & = 6.0 . I el
=) x g g a0t . g
0.0+ . X T2 =] 1o =]
. o x X Z 2071 % z
0 X X X + + 0 0 + X + + 0
0 2 4 6 8 10 12 14 16 0 1 3 4 6
Degree Degree
Threefolds in P* by degree Cubic hypersurfaces by dimension

1000 . 40 20000 25
900 1 >< 1o 2 . o
Z 8097 + zi 5 215000 1 - {20 §
T 7001 g T =
5 tos 2 g =
S 600+ T S 115 ©
§ so0t 120 5 § 10000 1 H
o 4001 . lis 5 p f10 &
£ 3007 110 B E 5000 * E
B 200+ . g = ® 15 S
100 . x 5 z o * Z

0 % * + 0 0 X % Xk % + 0
0 2 3 4 5 6 0 1 2 3 1 5
Degree Dimension
x  Run time for Algorithm 3.7

Size of the output | PF|

it does not appear to be peer-reviewed, and it does not give a complete geometric characterization of the
non-stable locus). However, to the authors” knowledge, the semistable locus has not been published yet.

By using the algorithms in Section 3, we recovered the results in [A1103; Laz09; Shi14].

5.4. Mukai models. In a series of papers beginning in 1992, Mukai introduced three projective GIT quo-
tients that are birational models of the Deligne-Mumford compactification M, of the moduli space of curves
of genus g for 7 < g < 9. See the announcement [Mukail992survey] for an overview and [Mukai1992g8;
Mukail995; Mukai2010] for details. Although nearly 30 years have passed years since these models were
introduced, very little is known about their boundaries. We discuss them briefly now.

5.4.1. Genus 7. In [Mukail995] Mukai showed that the GIT quotient Gr(7,S)//Spin(10) is a birational
model of M. Here Spin(10) is a double cover of SO(10), and ST = T, is the 16-dimensional half-spin
representation of Spin(10) with highest weight w,. The map to My arises because the intersection of a
generic 6-dimensional projective linear space with the orthogonal Grassmannian OG(5,10) C P(S*)* is a
canonically embedded genus 7 curve. The orthogonal Grassmannian is a homogeneous space for Spin(10),
and moving the linear space by an element of Spin(10) does not change the isomorphism class of the curve.

This quotient corresponds to the GIT problem for the representation A" S*. We have (*%) = 11,440. The
group Spin(10) has rank 5. We compute | A3| = 852 for Algorithm 3.7. Thus (/) ~ 21.8 x 10°. We deemed
this too large to run Algorithm 3.7 using our SageMath software. However, we wrote C++ code [cpp-code]
to compute a superset Sy, of the set S,,, using a variation of Algorithm 3.7 as follows.

Algorithm 5.1. [Algorithm for the computation of S,,,]
Input: The state =y.
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Output: A set <S~’m containing all the maximal non-stable states.

1-9. Compute Az as in Algorithm 3.7.

10. S, =10

11. forall I € (;*,) do

12. if I is linearly independent then do

13. Calculate A # 0 such that (A, x) =0forall y € I
14. if A ¢ F then \ := —)\

15. if A € I then do

16. Sm = Sm U{Eva>0}

17. return §m

This C++ code is specific to this GIT problem. For instance, given I as in Step 12, we compute A as in
Step 13 using the cofactors of the 4 x 5 matrix whose rows are x € I. These cofactors in turn are computed
by evaluating the determinant polynomial of a 4 x 4 matrix. These calculations may be performed using
integers in C++, and hence this step can be performed very quickly and using very little memory.

We find that |S,,| = 10, 620, 905. Due to the large size of S, we did not attempt to compute the maximal
elements of S,,, with respect to inclusion.

Any attempt at geometrically analyzing the maximal non-stable states also seems doomed, due to the
size of S,,. We therefore explored other approaches to studying Mukai’s model of M;. In the article
[Swin25], the fourth author uses invariant theory to establish the GIT semistability of some singular curves
in this GIT problem, including a 7-cuspidal curve, the genus 7 balanced ribbon, and a family of highly
reducible nodal curves.

5.4.2. Genus 8. In [Mukai1992g8] Mukai showed that the GIT quotient Gr(8, A>V)//SL¢ is a birational
model of Mg. Here V 2 T, is the standard representation of SLg. The map to Mg arises because the
intersection of a generic 7-dimensional projective linear space with the Grassmannian Gr(2, V") C IP( A V)*
is a canonically embedded genus 8 curve. We compute |A3| = 739 for Algorithm 3.7. Thus ( d“fl) ~ 12.3 x
10%. Once again, we deemed this too large for our SageMath software. In future work we will apply our C++

code instead.

5.4.3. Genus9. In [Mukai2010] Mukai showed that the GIT quotient Gr(9,T,,,)//Spg is a birational model of
M. Here I',,, is the irreducible representation of Sp,; with highest weight ws. It has dimension 14. The map
to My arises because the intersection of a generic 8-dimensional projective linear space with the symplectic
Grassmannian Sp(3,6) C P(I',,,)* is a canonically embedded genus 9 curve.

In this case, we have |A3| = 51 for Algorithm 3.7, and |Bz| = 120 for Algorithm 3.20. We used our
SageMath software to compute |Pf| = 142 and |Pf| = 186. The running times for these calculations were
approximately 2 hours and 4 hours, respectively. We did not attempt to run Algorithm 3.29 for this example.

6. AN APPLICATION TO K-MODULI OF FANO THREEFOLDS

In this section, we assume thatk = C.

We discuss the compactification of the one-dimensional moduli space of Fano threefolds with —K% = 32,
h*? = 1. This is family 2.25 in the Mori-Mukai classification. The smooth member of this family of Fano
varieties is obtained by blowing up P? along a smooth complete intersection of two quadric surfaces, i.e. a
smooth elliptic quartic. By [GLHS18], the main component Hilb, (IP?) of the Hilbert scheme associated to
such curves is a double blow up of the Grassmanian

Hilb,!

main

(P?) — Gr (2, H(P?, 0ps(2))) 2 G (P!, P?).
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Two elliptic curves are isomorphic if and only if they are equivalent by a projective automorphism of P?.
Thus, the action of the projective automorphism of P? lifts to the above Grassmanian and the GIT moduli
space of elliptic quartics in P? is equal to

(4) Gr (2,H°(P?, Ops(2))) //PGL4 = Gr (2,H(P?, Ops(2))) //SL4
Next, we describe the GIT (semi)stability analysis in detail. By Theorem 2.6 we can use the Pliicker embed-
ding
2 10
Cr (2, H(P?, Ops (2))) — P(/\ HO(P?, Ops (2)))" = P(2) 1 o pi4
to determine the (semi)stable locus. We denote the coordinates of the Pliicker embedding as X; X; A X, X
with 4, j, s, € {0,1,2,3}. So, the action of a diagonal one-parameter subgroup A = (ag, a1, a2, as) is
)\(t) . (Xin A Xer) — t(l'i+aj+as+arXin AX.X,.
Let
[(Xo, X1, X9, X3) = Zai,inXm 9(Xo, X1, X2, X3) == Z bi 1 X Xk

i<k i<k

be the equations of two quadrics such that C' := {f = g = 0}. The Pliicker coordinates of the curve C are
all the (2 x 2)-minors of a (2 x 10) matrix H given by

H— Gp,0 ao,1 Go2 0ai1 ai2 G222 4ap3 13 daz3 ass3
boo bo1 bo2 b1 bia ba2 boz b1z baz b33

Lemma 6.1. The complete intersection of two quadrics C' := Q1 N Q2 has a singular point if and only if up to the
SLy-action, the equations of the quadrics can be written as

[1(Xo, X1, X2, X3) = apX3Xo + q(Xo, X1, X2)
f2(Xo, X1, X0, X3) = X3(boXo+ b1 X1 +b2X2) + ¢ (Xo, X1, X2),

where either ag = 0 or by = by = 0 and q, ¢’ are quadratic forms.

Proof. Without loss of generality, we may assume that the singular point of C'is p := [0 : 0 : 0 : 1]. The
condition that p € C implies that the equations of the quadrics can be written as

fi(Xo, X1, X2, X3) = X30(Xo, X1, X2) + q(Xo, X1, X2)
f2(Xo, X1, X0, X3) = X30'(Xo, X1, X2) + ¢'(Xo, X1, X2),

where £(Xy, X1, X2) and ¢'(Xo, X1, X2) are linear forms while ¢(Xo, X1, X2) and ¢'(Xo, X1, X2) are qua-
dratic forms. Applying a projective transformation fixing p, we can write ¢(Xo, X1, X2) as Xo. Then, we
can write the above equations as

f1(Xo, X1, X2, X3) = apX3Xo+ q(Xo, X1, X2)
f2(Xo, X1, X5, X3) = X3 (boXo+ b1X1 + b2Xo) + ¢'(Xo, X1, Xo2).

The curve C is singular at p if and only if the rank of the Jacobian matrix evaluated at that point is less than
two. In our particular case such matrix is given by

(V h (p)> _ (ao 0 0 0)
sz (p) bo b1 bg 0)°
Its rank is less than two if and only if apb; = agbz = 0. O

Let V := A®HO(P3 Ops(2)). Then V = T, 1, is an irreducible SL,-representation with the highest
weight w = 3wy + ws.
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6.1. Stability analysis. Algorithm 3.7 gives a set of maximal non-stable sets P/ associated to the five one
parameter subgroups
(5) )‘1 = (171a1a_3)7 )‘2 = (150707_1)7 A3: (371a_17_3)a

A= (3,-1,—-1,-1), As = (1,1,—-1,-1).

The following lemma gives a geometric characterization of the nonstable locus. We know of two different
proofs of this lemma. One strategy is to do a case-by-case analysis of the outputs of our algorithms. For a
different strategy, see [papazachariou2022k].

Lemma 6.2 (cf. [papazachariou2022k]). The complete intersection C' is not stable if and only if it is singular.

Proof. First, suppose that C is singular. By Lemma 6.1, up to a change of coordinates, we have
C = {aoX3Xo + q(Xo, X1, X2) = X3(boXo + b1 X1 + b2 X2) + ¢ (X0, X1, X2) = 0}
with either ag = 0 or by = b1 = 0. We examine both cases and show they imply u(C, A1) > 0.

Indeed, if ay = 0, the Pliicker embedding of C' has nonzero coefficients only for the vectors of the form
X3 X; N XX, and X; X; A X X, with4,7,s,7 € {0,1,2} and i + s + r = 3. Then

M) XX A XX, =t 3T X XA X X, = Xa XA XX, M) XX A XX, = 41X XA X X

So u(Cy A1) > 0. If b = by = 0, then a similar direct calculation shows that the Pliicker coefficients are
nonzero only for the same forms to the previous case. So we obtain p(C, A1) > 0. As a consequence, the
curve is not stable by Theorem 2.8.

Conversely, suppose that C' is not stable. The hypothesis that C is not stable implies that it is projectively
equivalent to a curve C’ whose state Z¢- is contained in one of Zy , >0 with ); as listed on Equation (5). We
present the analysis of one of the five cases, E¢c C Ey,», >0, below.

Algorithm 3.7 and its implementation gives the maximal non-stable state::
Eya,s0 ={(1,2,1,0),(2,0,0,2),(2,0,2,0),(1,0,2,1), (1,1,1,1),(1,1,2,0), (1,0, 3,0),
(3,0,0,1),(1,3,0,0),(1,2,0,1),(2,2,0,0),(2,1,1,0),(2,1,0,1),(1,0,0,3),
(1,1,0,2),(1,0,1,2),(3,1,0,0),(2,0,1,1),(3,0,1,0)},

The containment Z¢ C =y, >0 implies that the curve C’ can be written as
2

2
{doX§ + X3 <Z aiXi> + q2(Xo, X1, X5) = co X3 + X3 <Z biXZ) + 45(Xo, X1, Xs) = 0}

i=0 =0
where ¢2 (X0, X1, X2) and ¢5(Xo, X1, X2) are homogeneous polynomials of degree two.

The first conclusion is that dycy = 0. Otherwise, the monomial X3 will be present in both quadratic
equations with non-zero coefficients. This will imply the existence of the character (0,0, 0,4) in E¢/, but it
does not exist in Zy. 5, >0, contradicting E¢ C Ey.x, >o0.

By symmetry, we may assume that dy = 0. If ¢y # 0, then we have nonzero Pliicker coordinates for
X2 A H?:l X" whose associated character is (mg, m1,ma, ms + 2). The only such character with mg = 1
in Zy.,>0,1s (1,0,0, 3). Thus, the equations for C’ are of the form

2

{aoX3Xo + ¢2(Xo, X1, X2) = co X3 + X3 (Z bin') + 45(Xo, X1, X2) = 0} :
i=0

Further inspection of the characters within Zy ),>o and the last coordinate is 2, which are (1,1,0,2),
(1,0,1,2), and (2,0,0,2), we find that the first coordinate must be nonzero. This last fact constrains the
possible monomials with nonzero coefficients, and C" is

2
{Xofl(Xo7X1,X27X3) = coX3 + X3 (Z biXi> + 5(Xo, X1, Xo) = 0} :

=0



26 PATRICIO GALLARDO, JESUS MARTINEZ-GARCIA, HAN-BOM MOON, AND DAVID SWINARSKI

Now it is straightforward to check that C” is singular, as it is on the intersection of a quadric surface and a
union of two planes.

The proofs for the other cases are similar. O

6.2. Polystability analysis. Next, we discuss the polystable curve with maximal stabilizer. In this par-
ticular example, after relabeling, we have the equation {X(X; = X2X3 = 0}. Note that the associated
Pliicker point XoX; A X5X3 is invariant with respect to a maximal torus 7" because the associated state is
(1,1,1,1), which corresponds the trivial character (Recall that for the type A,, Mg can be identified with
R /(3" e; = 0).). The curve C represents the union of four lines supported on the toric boundary of P3.

Thus, we conclude that a curve C in this one-dimensional family Gr(2, H?(P3, Op=(2)))//SLy is stable if
and only it is smooth and it is strictly polystable if and only if it is Cj := { X0 X; = X2 X3 = 0}. By blowing-
up P? along each such curve, one can construct a one-dimensional compact family of (possibly singular)
Fano threefolds over the GIT quotient (4), where all smooth elements are K-stable (see [CalabiFanoProject]).
The singular curve Cj is toric, so the blow-up Yy of P3 along Cj is a toric variety. One can check that the
barycentre of its toric polytope is the origin (e.g. by running a script on Magma), which means that Yj is
K-polystable. Thus, one has that (4) parametrizes compact family of K-polystable Fano threefolds. Now,
using the inverse moduli continuity method in [papazachariou2022k], it follows that (4) is isomorphic to
the K-moduli component of this family.

7. POTENTIAL IMPROVEMENTS AND NEW PROBLEMS

In this section, we mention three known improvements and one conjectural improvement to the algo-
rithms in Section 3, which may be worth considering for large problems. Finally, we discuss three open
problems for future work.

7.1. A sufficient condition for maximality for nonstable states. For each state Zy, y>( that we computed
in Line 16 of Algorithm 3.7, there is a sufficient condition for maximality.

Proposition 7.1. If xo € int Conv(Zy,y—) C A, then Ey, x>0 is maximal in {Zy, >0 }.

Proof. Suppose not. Then there is i € N such that Zy y>0 € ZEv,u>0. In particular, A and p are not

proportional. Then ZEy,yx—¢ N Ev,,>0 is a half-space in Zy,y—g, so by the assumption, it cannot include all
characters in Zy, y—o. Therefore, thereis a x € Zy, x>0 \ Ev,u>0- O

7.2. Essential pairs and triples. In Line 11 of Algorithm 3.7, we consider the set of all (d — 1)-subsets of
essential characters. When d is large, this is expensive. One possibility to reduce the size of the set is to
extend the notion of essential characters to essential subsets.

Definition 7.2. A finite set of nontrivial characters S := {x1, x2, ..., X&} is essential if S is linearly indepen-
dent and Span(S)* N F # {0}, where F is a fixed choice of fundamental chamber.

When S = {x} is a singleton set, S is essential if and only if x € Ule Evy>0 \ ﬂ?zl Ev,~ >0 (Proposition
3.2). If T'C S and S is essential, then T is essential.

A computation of essential pairs is relatively easy. By definition, a pair {x1, x2} is essential if and only
if Span(x1, x2)* N F # {xo} and x1 and 2 are not proportional. Because F is a full-dimensional strongly
convex cone, this is equivalent to the condition that for the projection map

()
¢ : Ng X2, R2,
¢(F) = R2. Tt occurs if and only if
0 € int Conv(¢(71), ¢(12), - - -, ¢(7d))-
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Since this is a convex geometry computation in two dimensional space, the verification is quick. And we
expect that the set of essential pairs is very small compare to (“;3).

Note that in Algorithm 3.7, to make S,,,, instead of using ( ;‘31)/ it suffices to use the proper subset of
essential (d — 1)-sets. Any (d — 1) essential set can be obtained by taking a union of [4;1] essential pairs.

A similar approach is possible for Algorithm 3.20. For the semistability, we need to use the following
definition.

Definition 7.3. A finite set of nonzero characters S = {x1, X2, - - ., Xk } 1S essential

1) if S = {x}, then y € U?_, 2,50 \ Knm (Lemma 3.18);
(2) if |S| > 1, then the set of vectors in Ng that is perpendicular to the affine space generated by S,
which is a sub vector space of Ng, intersects F' nontrivially.

Note that in Line 16 of Algorithm 3.20, instead of (%2), we only need to take the set of all essential d-
subsets. Note also that if S is essential and 7' C .S, then T is also essential. Furthermore, if |S| = 3, then we
can obtain the following criterion for essentiality — the triple {x1, x2, x3} is essential if and only if for the

projection
< X1~ X2 )
6:Ng * V¢ g2

we have ¢(F) = R?, or equivalently, 0 € int Conv(¢(71), ¢(72), - - -, #(74)). Now every essential d-sets can
be obtained by taking a union of [4] of essential triples.

7.3. Parallel computation and existing algorithms to find maximal sets. Several steps in algorithms 3.7,
3.20, and 3.29 can be parallelized, allowing the answers to be computed more quickly. For example, lines
12-16 in Algorithm 3.7 can be executed for each set I € ( dA_Sl) in parallel, and lines 17-20 in Algorithm 3.20

can be executed for each set I € (”?) in parallel.

Finding maximal elements of a given set of states can also be performed in parallel (cf. lines 18-21,23-28
in Algorithm 3.7 and 22-25,29-32 in Algorithm 3.20); indeed, this is a well-researched problem. Given a
collection F of subsets S, ..., Sy, over some common domain (which in our case is almost always =y or a
subset of it), one chooses N = ) |.S;| to be the problem size and considers finding the maximal elements in
F. In [Yellin-Jutla], the authors provided an algorithm requiring O(N?/log N) dictionary operations with
worst-case running time of O(N?/y/log N).

Nonetheless, the real bottleneck for mathematicians applying these algorithms will not be in the com-
putation of states or the finding of maximal states, but in the interpretation of the outputs (P, PX, P,
in geometric terms. Indeed, in our experience, such interpretation for one state in any of these sets takes
significantly longer than executing several times the algorithms that produced them. Thus, until significant
improvement takes place in the automatic recognition of singularities and invariants of families of vari-
eties produced by our algorithms, the potential optimizations at implementation level discussed above will

mean very little.

7.4. A conjecture about the Weyl group action. Algorithms 3.7 and 3.20 each use the Weyl group sym-
metry in two different ways. First, the Weyl group symmetry is used to significantly reduce the set of
one-parameter subgroups we need to consider. Then in the last stage of each of these algorithms (lines
23-28 of Algorithm 3.7, or lines 27-32 of Algorithm 3.20) we apply the action of W (or a subset W’ of W)
to make the output non-redundant. These lines are intended to remove nonstable (respectively unstable)
states that are not maximal because they are subsets of some nonstable (resp. unstable) maximal state in
another Weyl chamber.

A priori, such a containment seems possible to us. However, in all the examples that we have run so far
[sagemath-code], we have not seen such a containment occur; that is, the last optimization step does not
make any difference to the output. This leads to the following conjecture.
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Conjecture 7.4. At the last step of the algorithms, the optimization routine using W' C W does not reduce the
output of algorithms 3.20 and 3.7.

Proving Conjecture 7.4 would allow us to remove these steps from Algorithms 3.7 and 3.20, improving
their speed.

7.5. On a question from a 2004 workshop at AIM. The following question was posed at the workshop
‘Compact moduli spaces and birational geometry’ at the American Institute of Mathematics in 2004.

Question 7.5 ([Van04]). “For hypersurfaces of a given dimension [n] and degree [d], is there a bound on the expo-
nents appearing in the diagonal 1-PS that need to be checked?”.

The existence of such a bound follows immediately from the finiteness of the sets Ass and A of Corollary
2.16, but the true intention of [Van04] is to give a explicit estimate in terms of n and d, preferably one that
is sharp or nearly sharp. We will not give a thorough solution to this problem here, but we want to point
out that the ideas used to develop Algorithms 3.7 and 3.20 can be used to give a coarse upper bound.

Consider the stable locus. (A similar discussion applied to the semistable locus.) By Algorithm 3.7, it
is enough to consider 1-parameter subgroups A that are orthogonal to each element in a subset I of A3
having size (d — 1). Such a A can be expressed using the cofactors of the (d — 1) x d matrix whose rows
consist of the characters x € I. Then any bound on these cofactors (for instance, Hadamard’s Inequality,
|det A| < T[}_, [|4;]l, where Ais n x n and A; is the 4" column) leads to a bound on the coefficients of
A. However, this can be far from sharp. For example, for cubic surfaces, Hadamard’s Inequality gives
9 as the bound on each cofactor. But the output from Algorithm 3.7 shows that it suffices to work with
one-parameter subgroups with coefficients in {0, +1, +2}.

7.6. Variation of GIT quotients. Recall the original setting of a polarized pair (X, L) with a reductive
linearized G-action on it. If rankPic(X) > 2 or G has a torus factor, there are many possible linearizations,
and different linearizations can give rise to non-isomorphic GIT quotients X// G [Tha96; DH98].

Most of the work on computational VGIT has focused on the case of an affine variety modulo a torus
([Kei12; BKR20]), rather than a projective variety modulo a noncommutative group. In [GMG18] the first
two authors introduced the notion of compactification of the moduli space of log pairs formed by a Fano or
Calabi-Yau hypersurface X; C P" of degree d and a hyperplane section using VGIT quotients by the group
SLy+1. They also provided algorithms in the spirit of Algorithms 3.7, 3.20, 3.29 (although less complete, ef-
ficient and only for certain choice of group) and demonstrated their use to describe VGIT compactifications
of the moduli space of log pairs formed by a cubic surface and an anti-canonical divisor in [GMGS21]. It
would be interesting to extend the algorithms studied here to study VGIT of semisimple/reductive groups
acting on X = P" x ... x P"*, with the goal of describing both the VGIT wall-and-chamber decomposition
as well as the (semi/poly)stable points within each chamber. Then, using Theorem 2.6, one may be able to
extend this description to a more general X (e.g a Mori dream space, where the space of stability conditions
is polyhedral).

7.7. On the limits of functoriality. In theory, Theorem 2.6 is sufficient to determine the stability of any
X with a linearized reductive group action G. But the suggested algorithms in this paper are not efficient
enough to deduce X*°(L) = X NPV***(O(1)) and X*(L) = X NPV**(O(1)), as many states (as a subset of
Ey) are not realized as Z,, for some point z € X.

Many natural explicit parameter spaces are given by the Grassmanianns Gr(k, V). Instead of using
its Pliicker embedding Gr(k,V) C P(A*V)* and applying Algorithms 3.7, 3.20, and 3.29, it is desirable
to find an algorithm that directly calculates P/, P[, and P, from Gr(k,V). Combining our ideas and
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[papazachariou2022k] to describe GIT quotients of Grassmannians by simple groups algorithmically may
be possible and it may have applications to moduli theory.
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TABLE 1. Statistics for Algorithms 3.7, 3.20, and 3.29 via our SageMath implementation.

Description Type Rep. Time (sec) | |Ev| 1As| |Be| | |PF| |PE| |PL
Algorithm 3.7 3.20 3.29
Plane curves
degree 2 A2 o, 0.114 0.024 0.019 6 1 4 1 2 1
3 [HM98] A2 | 0.025 0.018 0.028 10 3 5 2 1 2
4[AA23] A2 | 0.027 0.06 0.009 15 3 8 2 2 1
5 [MFK94] A2 | 0.065 0.136 0.01 21 5 11 3 3 1
6 [Shah-sextics] A2 Céw, 0.076 0.145 0.058 28 5 13 3 2 3
7 A2 | T 0.155 0.352 0.016 36 9 17 4 4 1
8 A2 Csw, 0.18 0.559 0.031 45 9 21 4 4 2
9 A2 Tow, 0.311 0.661 0.177 55 9 24 5 4 4
10 A2 0w, 0.52 1.242 0.059 66 13 29 6 6 3
11 A2 T, 0.798 1.836 0.052 78 19 34 7 7 2
12 A2 T2, 0.882 2.116 0.616 91 13 38 7 6 5
13 A2 | T 1.681 3.658 0.094 | 105 25 44 9 9 3
14 A2 4w, 2.25 5.032 0.17 | 120 25 50 10 10 5
15 A2 Ti50, 3.087 5.974 2.205 136 21 55 11 10 7
Surfaces
Quadrics A3 Tow, 0.191 0.128 0.078 10 4 7 2 2 3
Cubics [Muk03] A3 | 0.277 0.886 0.122 20 8 15 3 3 3
Quartics [Shah81] A3 | P 1.181 2.377 2.196 35 17 21 5 3 7
Quintics [Gal19] A3 Csu, 5.647 19.259 2.808 56 26 37 10 11 4
Sextics A3 Usu, 16.736 69.257 99.363 84 29 54 15 18 13
Threefolds
Quadrics A4 o, 0.795 1.813 0.438 15 9 12 2 3 3
Cubics [A1103; Yok02] A4 sw, 8.999 38.812 7.657 35 21 28 6 6 4
Quartics A4 | P 101.999 814.157  4222.452 70 39 56 16 23 15
Quintics [lakhani2010git] A4 5w, 907.658 5769.867 —* | 126 76 84 38 57 —
More Cubics
4folds [Laz09; Yok08] A5 | 178.57 2020.521 24235.369 56 34 44 8 10 14
5folds [Shi14] A6 | 17052.308 - — 84 60 72 23 — —
Pencils of quadrics
in P? [Papazachariou-thesis] | A2 ATy, 0.025 0.048 0.007 12 3 7 2 2 1
P? [Papazachariou-thesis] | A3 A’Ta,, 1.076 1.524 1.955 31 15 18 5 3
P* [AM99] A4 ATay, 92.536 598.388 570.602 65 39 52 16 22 12
P° A5 ATy, | 12424.738 —b —| 120 73 98| 57 @— @ —
Nets of quadrics
in P2 A2 ATa, 0.162 0.05 0126 | 13 3 7 3 2 3
P3 A3 NTau, 6.981 24.104 52.355 56 17 37 11 14 10
P* [FS13] A4 A3Taw, | 25993.535 57726.588¢ — | 165 93 124 | 196 268 —
Pencils of cubics
in P? [Mir80] A2 A’T'3,,, 0.181 0.124 0.126 25 5 12 3 2 3
| A4 | S 0.482 0.539 0.108 10 6 8 2 2 1
B4 | S 60.775 131.591 —° 65 22 36 8 7 —
C4 | 23.353 46.532 40.812 40 13 24 6 7 13
D4 | 0.295 0.524 0.481 8 3 5 1 2 3
Byun-Lee
d = 3 [BL15] B2 Iaw, 0.159 0.096 0.097 25 3 10 3 2 4
d=14 B2 | 0.195 0.262 0.298 41 4 15 4 3 5
d=5 B2 Csu, 0.584 0.771 1.046 61 6 22 6 5 7
d="6 B2 Céw, 1.055 1.575 4.113 85 7 29 7 6 8
d=17 B2 | 2.716 3.553 16.417 | 113 10 38 10 9 11
d=28 B2 Csw, 5.017 6.486 67.564 | 145 12 47 12 11 13
Mukai Problems
Genus 7 D5 AT, — — — | 1456 852 1026 — — —
Genus 8 A5 AT, — — — | 1086 739 863 — — —
Genus 9 C3 AT, 7079.337 13324478 —* | 242 51 120 | 142 186 —

— Not attempted; —® Stopped after 48 hours; —b  Qutof memory; ¢ Ran on AWS r5 instance
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