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Abstract
Recently, strategic games inspired by Schelling’s influential model of residential segrega-
tion have been studied in the TCS and AI literature. In these games, agents of k different 
types occupy the nodes of a network topology aiming to maximize their utility, which is a 
function of the fraction of same-type agents they are adjacent to in the network. As such, 
the agents exhibit similarity-seeking strategic behavior. In this paper, we introduce a class 
of strategic jump games in which the agents are diversity-seeking: The utility of an agent 
is defined as the fraction of its neighbors that are of different type than itself. We show that 
in general it is computationally hard to determine the existence of an equilibrium in such 
games. However, when the network is a tree, diversity-seeking jump games always admit 
an equilibrium assignment. For regular graphs and spider graphs with a single empty node, 
we prove a stronger result: The game is potential, that is, the improving response dynam-
ics always converge to an equilibrium from any initial placement of the agents. We also 
show (nearly tight) bounds on the price of anarchy and price of stability in terms of the 
social welfare (the total utility of the agents).
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1  Introduction

In his seminal work [37, 38], the economist Thomas Schelling proposed an elegant model to 
explain the phenomenon of residential segregation in American cities. In his model, agents 
of two types are placed uniformly at random on the nodes of a network. An agent is happy 
if at least some fraction τ  of its neighbors are of the same type as itself, and unhappy oth-
erwise. An unhappy agent will jump to an unoccupied node in the network, or exchange 
positions with another unhappy agent of a different type. Schelling showed experimentally 
that this random process would lead to segregated neighborhoods, even for τ ≈ 1/3. His 
work showed that even small and local individual preferences for one’s own type can lead 
to large-scale and global phenomena such as residential segregation. As such, it inspired a 
significant number of follow-up studies in sociology and economics [5, 33, 36], with many 
empirical studies being conducted to study the influence of different parameters on segrega-
tion models [4, 10, 13, 22, 41].

Inspired by Schelling’s model, there have been a few lines of inquiry pursued by com-
puter scientists as well. Some researchers attempted to prove analytically the conditions 
under which segregation takes place [9, 26], while a more recent line of research used game-
theoretic tools to study the problem [11, 12, 15, 18, 20, 27]. In the latter setting, strategic 
agents are placed at arbitrary positions in the network and move to new positions to improve 
their utility, defined as a function of the fraction of their neighbors which are of the same 
type as themselves. Two main classes of games have been considered. In jump games, the 
agents can move to previously unoccupied locations aiming to improve their utility, while in 
swap games, unhappy agents of different types can swap their locations if this increases the 
utility of both of them. Researchers have mainly studied questions related to the existence, 
quality, and computational complexity of equilibria, which are stable assignments of agents 
to the nodes of the network such that no agent wants or can deviate.

1.1  Our contribution

In this paper, we introduce a new class of strategic games, called diversity-seeking jump 
games. In such games, the utility of an agent is the fraction of its neighbors of a different 
type than itself. To the best of our knowledge, this is the first time such a utility function 
has been studied in the context of jump games on networks that are inspired by Schelling’s 
model. Data from the General Social Survey [39] show that people prefer diverse neigh-
borhoods rather than segregated ones. This survey, which is regularly conducted in the US 
since 1950, shows that the percentage of people preferring diverse neighborhoods has been 
steadily increasing. There are also other settings that could be modeled using this new utility 
function; e.g., teams composed of people with diverse backgrounds and skill sets to bring 
a broader range of perspectives to their business, or research groups composed of people 
bringing expertise from different disciplines. Indeed, many studies show that ethnically and 
gender-wise diverse teams lead to better outcomes for business [3, 17, 19, 21, 23, 30, 34, 
35, 40].

It may seem at first glance that Schelling jump games are intimately related to our diver-
sity-seeking jump games, but the relationship is not obvious. Observe that the utility of an 
agent in a Schelling similarity-seeking jump game is not always equal to the complement 
of its utility in the diversity-seeking setting. To see this, consider an agent placed at a node 
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of degree 1 that is adjacent to an empty node. Such an isolated agent has utility 0 in both 
similarity-seeking and diversity-seeking settings, thus showing that the models are not sim-
ply complements of each other.

We present a series of results related to the computational complexity, the existence, and 
quality of equilibrium assignments in diversity-seeking jump games. We first show that 
given a network topology and a number of agents drawn from a set of types, it is NP-hard 
to determine whether there exists an equilibrium if some of the agents are stubborn (and 
do not ever move from the nodes they are initially placed).1 This hardness reduction can be 
found in Section 3.

In terms of positive existence results, in Sections 4 and 5, we show that there are always 
equilibrium assignments in games where the network topology is a tree graph with any 
number of empty nodes, if all agents are strategic. For some classes of graphs, we show a 
stronger result: The diversity-seeking jump game is a potential game when the topology is a 
regular graph or a spider graph with a single empty node, or a line with any number of empty 
nodes. This means that from any initial placement of agents to the nodes of the topology, 
improving response dynamics (IRD) by the agents always converges to an equilibrium. Our 
positive results show a sharp difference between diversity-seeking jump games and similar-
ity-seeking jump games, for which there are instances with tree topologies that do not admit 
equilibria [20], and instances with spider graph topologies which are not potential games.

Finally, we show that there is not much loss of efficiency at equilibrium assignments 
in diversity-seeking jump games in terms of social welfare, defined as the total utility of 
all agents. In particular, we show that the price of anarchy (that is, the worst-case ratio of 
the optimal social welfare over the minimum social welfare achieved at equilibrium) is at 
most n/(k − 1) when there are n strategic agents partitioned into k ≥ 2 types, and at most 
k/(k − 1) when the agents are partitioned into k symmetric types each consisting of the 
same number of agents. These bounds are (nearly) tight even for simple topologies, such 
as a line graph in some cases or a star graph in other cases. We remark that, in contrast to 
similarity-seeking games where the price of anarchy has been shown to be increasing in k 
for symmetric types [20, 28], it is decreasing in k for diversity-seeking games and tends to 
1. Intuitively, this is because in the games we study here, the social welfare is a measure 
of integration which is easier to achieve when there are a lot of different types of agents, 
whereas the social welfare is a measure of segregation in the model of Elkind et al. [20] 
which is harder to achieve when there are many types. We also prove a lower bound of 
65/62 ≈ 1.048 on the price of stability (which is the worst-case ratio of the optimal social 
welfare over the maximum social welfare achieved at equilibrium), thus showing that opti-
mal assignments are not necessarily equilibria. These results can be found in Section 6.

1.2  Related work

In the last decade, there have been attempts in the computer science literature [9, 26] to 
theoretically analyze the random process described by Schelling. It was shown that the 
expected size of the resulting segregated regions is polynomial in the size of the neighbor-

1 We remark that stubborn agents naturally exist in scenarios like the ones captured by Schelling’s model 
where agents are people that form neighborhoods or groups. In particular, there are people that due to the 
underlying cost of moving or other factors (such as age or beliefs) are not willing or cannot move.
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hood of agents on a line topology [9] and exponential in its size on a grid topology [26]; 
however, in both cases it is independent of the overall number of agents.

The study of the above process as a strategic game played by two types of agents rather 
than as random process appears to have been initiated by Zhang [42], who introduced a 
game-theoretic model where agents have a noisy single-peaked utility function that depends 
on the ratio of the numbers of agents of two agent types in any local neighborhood. Chau-
han et al. [15] introduced a game-theoretic model that incorporates Schelling’s notion of 
a tolerance threshold. In their model, each agent has a threshold parameter τ ∈ (0, 1) and 
may have a preferred location. The primary goal of an agent is to find a location where the 
happiness ratio exceeds τ ; if such a location does not exist, the agent aims to maximize 
its happiness ratio. Its secondary goal is to minimize the distance to its preferred location. 
Chauhan et al. [15] studied the convergence of best-response dynamics to an equilibrium 
assignment in both jump and swap games with two types of agents and for various values 
of the threshold parameter. Echzell et al. [18] generalized the model of [15] by considering 
games with agents of k ≥ 2 different types, in which the cost of an agent is related to the 
ratio of agents of its own type over the whole neighborhood, or the ratio of agents of its own 
type over the part of the neighborhood that includes the agents of the majority type differ-
ent than its own. They showed results related to the convergence of the dynamics and the 
computational hardness of finding placements that maximize the number of happy agents.

More related to our model, Elkind et al. [20] studied similarity-seeking jump games (that 
is, τ = 1) for k ≥ 2 types of agents that can be either strategic (aiming to maximize their 
utility) or stubborn (who stay at their initial location regardless of the composition of the 
neighborhood). Elkind et al. [20] showed that, while equilibria always exist when the topol-
ogy is a star or a graph of degree 2, they may not exist even for trees of degree 4. They also 
showed that it is computationally hard to find equilibrium assignments or assignments with 
optimal social welfare, and bounded the price of anarchy and stability for both general and 
restricted games. Agarwal et al. [1] considered the utility function of [20], but focused on 
swap games and, besides the social welfare, also considered a new social objective called 
the degree of integration. They showed similar results about the existence and the computa-
tional complexity of equilibrium assignments. An extended version of these two works that 
includes more results was later published as [2]. The hardness results of [2] were improved 
by Kreisel et al. [29], who showed that the problem of determining the existence of equi-
libria is NP-hard in both jump and swap games, even if all agents are strategic. Bilò et al. 
[7] investigated the influence of the underlying topology and locality in swap games when 
agents can only swap with other agents at most a number of hops away, and also improved 
some price of anarchy results of [2].

Other variants of the model have been considered by Kanellopoulos et al. [27] who 
focuses on a slightly different utility function where an agent is also counted as part of its 
neighborhood, by Chan et al. [14] who considered social Schelling games where the agents 
are not partitioned into type but rather are connected via a social network, and by Bilò et 
al. [8] who considered a model in which the types are continuous rather than discrete (as 
in most papers). The computational complexity of finding assignments with high objective 
value according to different functions, including the social welfare, the Nash welfare, and 
other optimality notions has been considered by Bullinger et al. [11], and also by Deligkas 
et al. [16] from the parameterized complexity perspective.
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Some other recent papers that are related to ours are that of Bilò et al. [6], Friedrich et 
al. [24] and Kanellopoulos et al. [28], which are also motivated by the observation that 
real-world agents might favor diverse neighborhoods to some extend. Bilò et al. [6] and 
Friedrich et al. [24] considered swap and jump games, respectively, in which agents of two 
types have single-peaked utility functions that increase monotonically with the fraction of 
same-type neighbors in the interval [0, Λ] for some Λ ∈ (0, 1), and then decrease monotoni-
cally afterward; this is in contrast to our model here, where the utility is a monotone func-
tion. Kanellopoulos et al. [28] considered the case where there are k ≥ 2 types of agents and 
there is an implicit ordering of the types such that the distance between the types according 
to this ordering determines how much different types affect the utility of an agent whenever 
there are agents of those types in its neighborhood. All these papers showed instances where 
equilibria do not always exist, but also identified restricted classes of games for which exis-
tence of equilibria is guaranteed either by explicit constructive algorithms, or because IRD 
converges. They also present tight bounds on the price of anarchy and the price of stability 
in terms of the social welfare or the degree of integration.

2  The model and notation

In an instance I = (R, S, T , G, λ) of the diversity-seeking jump game , there is a set R of 
strategic agents and a set S of stubborn agents with |R ∪ S| = n ≥ 2. The agents are further 
partitioned into k ≥ 2 different types T = (T1, . . . , Tk). Each agent occupies a node of an 
undirected graph G = (V, E) that satisfies |V | > n; G is referred to as the topology. The 
locations (nodes of G) of the stubborn agents are fixed and given by an injective mapping 
λ from S to V. In contrast, the strategic agents can choose their locations freely, subject to 
the constraint that no two agents can share the same node. An assignment C determines the 
node vA(C) that each agent A( strategic or stubborn) occupies on the topology, that is, it is 
an injective mapping of agents to the nodes that respects λ; let C(I) be the set of all possible 
assignments for game I.

We define nT (v, C) to be the number of neighbors of node v that are occupied by agents 
of type T ∈ T  according to assignment C. Let n(v, C) =

∑
T ∈T nT (v, C) be the total 

number of agents in v’s neighborhood according to assignment C. The satisfaction of the 
agents for an assignment C is measured by a utility function. In particular, the utility of an 
agent A of type T that occupies node vA(C) in assignment C is defined as the fraction of 
agents of type different than T in A’s neighborhood. That is,

	
uA(C) =

∑
t̸=T nt(vA(C), C)
n(vA(C), C)

Observe that uA(C) ∈ [0, 1]. By convention, the utility of an agent without neighbors is 0.

2.1  Equilibria and improving response dynamics

We are interested in stable assignments of diversity-seeking jump games, in which strate-
gic agents do not have incentive to deviate by jumping to empty nodes of the topology to 
increase their utility.

1 3
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Definition 1  An assignment C is said to be a pure Nash equilibrium (or, simply, equilibrium; 
NE) if uA(C) ≥ uA(C ′) for every strategic agent A and any assignment C ′ that is obtained 
from C by moving agent A to an empty node while all other agents occupy the same nodes 
as in C. We will denote by NE(I) the set of all equilibrium assignments of game I.

More specifically, we study the convergence of improving response dynamics (IRD) to equi-
librium assignments in diversity-seeking jump games: In each step, a single strategic agent 
tries to move to an unoccupied node where it gets higher utility. We say such a move of an 
agent A from assignment C to assignment C ′ is an improving move if uA(C) < uA(C ′). 
Note that in assignment C, a single agent may have many different improving moves, and 
multiple agents may have improving moves. We do not make any assumptions about which 
improving move will take place if multiple ones are available.

A game is a potential game if and only if there exists a generalized ordinal potential 
function, that is, a non-negative real-valued function Φ on the set of assignments such that 
for any two assignments C and C ′ where there is an improving move from C to C ′, we have 
Φ(C ′) < Φ(C). As observed by Monderer and Shapley [31], such games always admit 
an equilibrium, and furthermore, regardless of the starting assignment, any sequence of 
improving moves is finite and will terminate in an equilibrium.

Not all games are potential ones in case there is an improving response cycle (IRC) that 
is a sequence of assignments obtained by unilateral improving moves of the agents such 
that the first and the last assignment in the sequence are the same. In other words, a game 
is potential if and only if there are no IRC. We also remark that, while the existence of an 
IRC implies that the IRD does not converge to an equilibrium, it does not imply the non-
existence of an equilibrium.

For particular topologies that we will consider in later sections, we will show that the fol-
lowing function is a generalized ordinal potential function. Similar potential functions have 
been used before in different models [15, 18, 20].

Definition 2  For an assignment C and some value m ∈ (0, 1), let Φ(C) =
∑

e wC(e), 
where the weight wC(e) of any edge e = {u, v} ∈ E is defined as:

	
wC(e) =

{
1 if u and v are occupied by agents of the same type
m if either u or v is unoccupied
0 otherwise.

The following lemma shows that, if a diversity-seeking jump game without stubborn agents 
is a potential game for a particular class of topologies, then it is also a potential game if some 
of the agents are stubborn for the same class of topologies. This will allow us to consider 
only the case when all agents are strategic when showing that a game is a potential one for 
a class of networks.

Lemma 2.1  For any given k ≥ 2  and topology G, if the game I = (R,∅, T , G, λ) is a 
potential game, then every game I ′ = (R′, S ′, T , G, λ) in which S ′ and R′ form a partition 
of R, is also a potential game.
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Proof  Suppose I = (R,∅, T, G, λ) is a potential game for a given topology G, and let C 
be the set of valid assignments for I. Now consider the game I ′ = (R′, S′, T, G, λ) where 
S′ ̸= ∅, R′ ⊂ R and S′ ⊂ R; let C′ be the set of valid assignments for I ′. Since R′ ⊂ R, 
C ⊂ C ′, and any move between two assignments in I ′ is also possible in I, though the con-
verse does not hold. Consequently, if there is an IRC in I ′, then this IRC also exists in I. But 
this is impossible since I is a potential game, which implies that I ′ is also a potential game. 
                                                                                                                                                □

2.2  Price of anarchy and stability

We are also interested in the welfare guarantees of equilibrium assignments in terms of the 
social welfare that is defined as the total utility of all strategic agents. In particular, for an 
assignment C, the social welfare is

	
SW(C) =

∑
A∈R

uA(C).

For a given game I, let OPT(I) = maxC∈C(I) SW(C) be the optimal social welfare that 
can be achieved among all possible assignments of I. The price of anarchy is a pessimistic 
measure of the loss of welfare at equilibrium and is defined as the worst-case ratio, over all 
possible games I with NE(I) ̸= ∅, of the optimal social welfare OPT(I) over the minimum 
social welfare achieved among all equilibrium assignments, that is,

	
PoA = sup

I:NE(I) ̸=∅

OPT(I)
minC∈NE(I) SW(C)

.

On the other hand, the price of stability is an optimistic measure of the loss of welfare at 
equilibrium and is defined as the worst-case ratio of the optimal social welfare over the 
maximum social welfare at equilibrium, that is,

	
PoS = sup

I:NE(I) ̸=∅

OPT(I)
maxC∈NE(I) SW(C)

.

Clearly, the price of anarchy and the price of stability are both always at least 1; the closer 
they are to 1, the smaller the loss of welfare at equilibrium. Besides showing bounds on 
these two measures for all possible games, we will also focus on specific classes of games 
with particular topologies.

3  Complexity of computing equilibria

In this section, we study the computational complexity of determining if a given diversity-
seeking jump game admits an equilibrium assignment.

Theorem 3.1  For any k ≥ 2 , it is NP-complete to decide whether a given diversity-seeking 
jump game I = (R, S , T , G, λ) admits an equilibrium assignment.

1 3
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Proof  We give a proof for k = 2; it is straightforward to extend it to k ≥ 2. We can clearly 
verify if a given assignment is an equilibrium, so the decision problem belongs to NP. To 
show hardness, we will use a reduction from the Independent Set (IS) decision problem 
[25]. Recall that an independent set in a graph is a subset of vertices of the graph such that 
no two vertices in the subset are connected by an edge. An instance of the IS problem is an 
undirected graph H = (X, Y ), where X and Y are the set of vertices and edges respectively, 
and an integer s; it is a yes-instance if and only if H has an independent set of size ≥ s. We 
construct a diversity-seeking jump game I as follows (see also Fig. 1): 

1.	 There are two agent types: red and blue.
2.	 There are a total of 8s + 16 agents; s + 1 of them are strategic red agents, 2s + 4 are 

stubborn red agents, and 5s + 11 are stubborn blue agents.
3.	 The topology G = (V, E) consists of two components G1 and G2, as follows:

	● G1 = (V1, E1), where V1 = X ∪ W , |W | = 7s + 1, and 
E1 = Y ∪ {{v, w} : v ∈ X, w ∈ W}; 5s + 1 stubborn blue agents and 2s stubborn 
red agents are placed at the nodes of W.

	● G2 has exactly three nodes (denoted x, y, and z) available to strategic agents, while 
all the other nodes are occupied by stubborn agents. Node x is connected to y and 
one blue agent. Node y is connected to six nodes, containing one red agent and five 
blue agents. Finally, z is connected to 7 nodes containing 4 blue agents and 3 red 
agents. Observe that when the other two nodes in G2 are unoccupied, x, y, and z 
offer utilities 1, 5/6 and 4/7, respectively.

	● There is an edge between two (arbitrarily chosen) nodes containing stubborn agents 
in G1 and G2, thereby connecting the graph.

The main idea of the reduction is as follows: We will show that, if an IS of size ≥ s exists 
in H, then placing s strategic agents at the nodes of the IS and the remaining strategic agent 
at node x is an equilibrium assignment in I. Conversely, if no IS of size at least s exists in H, 
then we will show with a case analysis that there cannot be an equilibrium assignment in I.

Fig. 1  G1 and G2 are the two components of G, connected by a single edge. Every node in H is con-
nected to every node in W
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We proceed with the proof that I admits an equilibrium if and only if H has an IS of 
size at least s. First, suppose that H contains an IS of size at least s. Consider the following 
assignment in I: s red agents occupy the nodes of the IS in X and one red agent occupies 
node x in G2. We argue this is an equilibrium. The utility of each agent at a node in IS is 
5s+1
7s+1 . Note that any remaining empty node in G1 offers a utility that is at most 5s+1

7s+1 < 1, 
while the utility of the agent at x is 1. Therefore, the agent at x does not benefit by moving 
to an empty node in G1. Also, note that when node x is occupied, the highest utility a red 
agent can achieve in G2 is 5/7 by moving to y. We have 5s+1

7s+1 > 5/7, therefore no agent in 
G1 has an improving move to an empty node in G2, and the assignment is an equilibrium.

On the other hand, suppose that H does not contain an IS of size at least s. Suppose 
towards a contradiction that I admits an equilibrium assignment. There are four possible 
cases: 
1.	 All available nodes in G2 are empty. Then since there is no IS of size s in H, and there-

fore in G1, at least one strategic red agent is adjacent to another strategic red agent and 
has utility at most 5s+1

7s+2 . Since 5s+1
7s+2 < 1, that agent can increase its utility by moving 

to node x in G2. Therefore, this cannot be an equilibrium assignment.
2.	 Exactly one available node in G2 is occupied by a strategic agent. Then this agent must 

occupy x as it provides the highest utility. As in the previous case, since there is no IS 
of size s, at least one strategic red agent is adjacent to another strategic red agent in G1 
and has utility at most 5s+1

7s+2 . Since 5s+1
7s+2 < 5/7, that agent can improve its utility by 

moving to node y in G2. Therefore, this also cannot be an equilibrium assignment.

3.	 Exactly two available nodes in G2 are occupied. If x and y are occupied, the agent at x 
has utility 1/2 and is motivated to move to z to get utility 4/7. If x and z are occupied, 
the agent at z has utility 4/7 and is motivated to move to y to get utility 5/7. If y and z 
are occupied, the agent at y has utility 5/6 and is motivated to move to x to get utility 1. 
In all cases, there is an agent that wants to move to increase its utility, so this cannot be 
an equilibrium assignment.

4.	 All available nodes in G2 are occupied. Every empty node in G1 offers a utility that is at 
least 5s+1

(7s+1)+(s−2) = 5s+1
8s−1 . Note that the agent at x has utility 1/2 < 5s+1

8s−1 . Therefore, 
the agent at x is motivated to move to an empty node in G1. Therefore, this cannot be 
an equilibrium assignment.

We have shown by contradiction that, if H does not contain an IS of size s, there is no equi-
librium assignment in I. This completes the proof of the NP-hardness.                      	       □

The proof of the hardness result above relies heavily on the existence of stubborn agents, 
as in the proofs of similar results for similarity-seeking jump games in [20]. In a recent 
paper, Kreisel et al. [29] showed that deciding the existence of an equilibrium in a similar-
ity-seeking game is NP-complete, even when all agents are strategic. Their techniques are 
not immediately applicable to our setting, and in fact we have not been able to construct a 
diversity-seeking jump game with only strategic agents that does not have an equilibrium.
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4  Seeking diversity in tree topologies

In this section, we consider diversity-seeking jump games with tree topologies. We first 
show that the IRD does not always converge to an equilibrium for such games, even when 
there is a single empty node. However, there is always an equilibrium assignment; we give 
a polynomial-time algorithm to find one. In contrast, recall that similarity-seeking games 
do not always admit an equilibrium when the topology is a tree [20]. In Section 4.1, we will 
show that the game is a potential game when the topology is a spider graph (i.e., a tree in 
which there is a single node of degree at least 3).

Theorem 4.1  For every k ≥ 2 , there exists a diversity-seeking jump game I = (R, S , T , G, λ) 
such that G is a tree and I is not a potential game, even when there is just one empty node.

Proof  Figure  2 shows an IRC in a diversity-seeking jump game on a tree with a single 
empty node and two types of agents. In the figure on the left, the red agent at node x has 
utility 1/2 and jumps to node z where it gets utility 4/7. Next, as shown in the center figure, 
the red agent at node y has utility 5/6 and jumps to node x to get utility 1. Finally, as shown 
in the figure on the right, the red agent at z has utility 4/7 and jumps to node y where it gets 
utility 5/7, thereby returning to the configuration of the figure on the left. Thus, these three 
moves lead to an IRC.                                                                                                           □

In fact, if only the agents that occupy x, y or z in Fig. 2 are strategic, and the remaining 
agents are all stubborn, then this diversity-seeking jump game does not admit an equilib-
rium. Thus, equilibria are not guaranteed to exist when the topology is a tree and there exist 
stubborn agents. Nevertheless, we show that there is always an equilibrium assignment 
when the topology is a tree if all agents are strategic; we give an algorithm to find such an 
assignment. As a warm-up, we first consider the case where the tree has a single empty node.

Algorithm to find equilibrium assignment C on a tree when |V | = |R| + 1 and 
S = ∅  Pick a node r of degree 1 to be the root of the tree and call v its unique neighbor. 
Order the agents by type. The algorithm proceeds in two phases. In the first phase, starting 
with the deepest odd level in the tree, place agents in the current level ℓ, moving from left to 
right. When the current level is completely filled, skip a level, go to level ℓ − 2 and repeat, 
until the unique node v in level 1 is filled, say by an agent of a type Tx: For convenience, we 
call this type the red type, and agents of this type red agents. This ends the first phase. In the 
second phase, move downwards from level 2, filling even levels from left to right. At the end 
of this procedure, only the root node is empty. See Fig. 3 for an example.

Fig. 2  An IRC in a game with a tree topology. The dotted lines indicate improving moves
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Lemma 4.2  The assignment C computed by the algorithm has the following properties: 

(P1)	Every non-red agent has utility 1.
(P2)	Every red agent with a non-red parent can only have non-red children2 and therefore has 

utility 1.

Proof  We prove each property separately: 

(P1)	This follows because all non-red agents are either placed exclusively on odd levels, or 
exclusively on even levels. Thus, any non-red agent cannot be adjacent to an agent of 
its own type, and has utility 1.

(P2)	Consider a red agent A all of whose children are not red. Note that the parent and the 
children of this red agent are either both on odd levels or both on even levels. Suppose 
A is at an even level in the tree. Then since odd levels were filled from bottom to top 
and red agents are the last type of agents to start filling the odd levels, if an odd level 
contains a non-red agent, no odd level below that level contains red agents. Thus if A
’s parent is non-red, A cannot have red children. Similarly, even levels are filled from 
top to bottom, with red agents being the first to fill them, so if an even level contains a 
non-red agent, no even level below that level contains red agents. Thus if A is at an odd 
level, and has a non-red parent, then none of A’s children can be red.                         □

Theorem 4.3  Given k ≥ 2 , every diversity-seeking jump game (R, S , T , G, λ) where G is a 
tree, |V | = |R| + 1  and S = ∅ admits an equilibrium assignment.

Proof  Consider the assignment C computed by the above algorithm for a given game with 
a tree topology. By Lemma 4.2, all non-red agents are guaranteed to have utility one, and 
have no incentive to move. The only empty node is the root of the tree, which offers util-

2 For brevity, we say an agent is a child (neighbor/parent) of another agent to mean an agent is placed at a 
node that is the child (neighbor/parent) of the node where the other agent is placed.

Fig. 3  An equilibrium assignment for an 
instance with k = 3. By convention, r is 
on level 0. In the first phase, red agents are 
placed first, starting at level 5, and then at 
odd levels 3 and 1. In the second phase, we 
go downwards placing agents at even levels. 
The remaining red agents are placed at level 
2, followed by yellow agents and then blue 
agents on even levels 4 and 6. Agents are 
placed left to right on each level
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ity 0 to a red agent. Thus, though there may be red agents that have utility less than 1, they 
cannot improve their utility by moving to the root. This proves that the assignment C is an 
equilibrium.                                                                                                                                □

Next we consider the case where the number of empty nodes is more than 1. The key idea is 
as follows: we first find a connected sub-tree with one more node than the number of agents, 
and find an equilibrium assignment for the sub-tree using the method of Theorem 4.3. Next 
we adjust this assignment to get an assignment for the original tree by moving some agents 
to empty nodes in the original tree that were not present in the sub-tree in such a way that no 
agent will have an improving move. This adjustment has to be done carefully, as moving an 
agent may reduce its neighbors’ utilties.

From Lemma 4.2, non-red agents as well as red agents with non-red parents have util-
ity 1, and do not have improving moves. So the only possible agents that have improving 
moves are red agents whose parents are red. Of these, some may have children that are all 
red, or all non-red, or they may have some children that are red and some that are non-red. 
We call a red agent which has both red and non-red children a mixed agent. Such agents 
need special care in our algorithm, and we show the following technical lemma about these 
agents.

Lemma 4.4  In the assignment C, there are at most two mixed agents. In addition, if there are 
two mixed agents A and B with A closer to the root than B: 

1.	 A and B are on adjacent levels.
2.	 If B is not a child of A, then the red children of A have only red children.

Proof  Observe that there are at most two levels that can have both red and non-red agents, 
namely the levels where we start and finish placing red agents; call these levels ℓs and ℓf  
respectively. Consider one of these levels, say ℓs. Since agents are placed left to right in 
each level in order of their type, there can be at most one agent in the level ℓs − 1 that has 
both red and non-red children. If this agent is red, then it is a mixed agent. A similar argu-
ment applies to ℓf . It follows that there are at most two mixed red agents, and they are on 
different levels.

Suppose there are two mixed agents A and B, with A being closer to the root. Recall that 
ℓf  is even and ℓs is odd. 
ℓf < ℓs:	 Then A is on the odd level ℓf − 1 and B is on the even level ℓs − 1. Since ℓf  

is the last (and therefore largest) even level on which we place red agents, it 
must be that ℓs − 1 = ℓf . This shows (1). Furthermore, observe that since we 
place agents from left to right, the level ℓf  must start with red agents and end 
with non-red agents. If B is not a child of A, since it is a red agent, it must be 
to the left of all children of A, and all the red agents that are to the right of B 
on the same level (including children of A) can only have red children, if any 
(see Fig. 4), thus proving (2).

ℓs < ℓf :	 Then A is on the even level ℓs − 1 and B is on the odd level ℓf − 1. Since ℓs 
is the first odd level on which we place red agents, it must be that ℓf − 1 = ℓs

, which establishes (1). In this case, since ℓs is a level that starts with non-red 
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agents and ends with red agents, it follows that B must be to the right of all 
children of A. Therefore all the red agents that are to the left of B on the same 
level (including children of A) can only have red children, if any (see Fig. 4), 
thus proving (2).

□We are now ready to describe how to obtain an equilibrium assignment in a tree with 
more than one empty node.

Theorem 4.5  Given k ≥ 2 , every diversity-seeking jump game (R, S , T , G, λ) where G is a 
tree, |V | > |R| + 1  and S = ∅ admits an equilibrium assignment.

Proof  Given the tree G = (E, V ), fix a root node of degree one, and repeatedly remove 
leaf nodes until we have a tree with exactly |R| + 1 nodes, call it G′ = (E′, V ′). Then G′ 
is a graph that will have only one empty node in any assignment of the agents in R. Let 
CG′ , denote the equilibrium assignment in G′ as described in the proof of Theorem 4.3. 
As before, let us call the type of the agent assigned to the unique neighbor of the root a red 
agent.

Now consider the original tree G, and consider the same placement of agents as in CG′ , 
call this assignment CG. Clearly the utility of agents in CG is exactly the same as their 
utility in CG′ , as acquiring new empty neighbors does not change an agent’s utility. From 
Property (P1) in Lemma 4.2 all non-red agents have utility 1. As in CG′ , there may be some 
red agents that have utility less than one in CG, but in G, they may have improving moves 
available, i.e., CG may not be an equilibrium.

Next we show how to convert CG into an equilibrium assignment on G, by changing the 
locations of some agents one by one in such a way that the agent being moved increases 
its utility and no other agent decreases its utility. Our algorithm proceeds in three phases: 
pre-processing the children of mixed agents; creating an ordered list of candidate agents 
to move; identifying a list of available empty nodes to move to, and moving the candidate 
agents from the created list to these nodes.                                                                          □

Fig. 4  The red areas are occupied by red agents and the grey areas by non-red agents. In the figure on the 
left, ℓf = ℓs − 1, and agent B is on the even level ℓf . In the figure on the right, ℓs = ℓf − 1, and agent 
B is on the odd level ℓs
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Pre-processing of children of mixed agents  By Property (P2) of Lemma 4.2, there are at 
most 2 red mixed agents, and if there are two, they must be on adjacent levels. Let A be 
such an agent; if there are two, call the agent closer to the root A and the one further from 
the root B. We make the following local adjustment to the placement of children of A. Let 
S1 be the set of red children of A that are adjacent to at least one more agent, and let S2 be 
its non-red children with no other agents as neighbors. Thus, an agent in S2 is either located 
on a leaf in G, or at a node that has only empty nodes as children.

	● If S2 ̸= ∅, we swap3 the positions of min(|S1|, |S2|) agents in S2 with the agents in 
the other set. If the second mixed agent B exists and is a child of A, then it must be in 
the set S1, and we make sure that B participates in the swap. See Fig. 5 for an example.

	● If S2 = ∅, and the second mixed agent B exists and is a child of A, we swap the posi-
tion of B with any non-red child of A. Note that the non-red child in its new position 
still has utility 1, as do all non-red children of A in this case.

Claim 4.6  After the pre-processing operation, all non-red agents retain utility 1. Also, if 
there remains another mixed agent in the tree, then this agent B is not a child of A.

Proof  Note that the pre-processing operation moves a non-red agent to a different location 
in the same level. As mentioned in the proof of Property (P1), there are no agents of its own 
type in adjacent levels. It follows that they cannot become adjacent to agents of their own 
type. Furthermore, it remains a child of A, and therefore retains utility 1. Next, suppose 
there was a second mixed agent B and it was a child of A. If S2 ̸= ϕ, B was swapped with 
an agent in S2 that had no other agents as neighbors. Thus B is no longer a mixed agent. If 
instead S2 = ϕ, B was swapped with a non-red child of A. Since B had both red and non-red 
children in its original location, it cannot be that it also has red and non-red children in its 
new location (since agents are placed in order of type). Thus B is no longer a mixed agent. 
                                                                                                                                              □

3 Note that this is a jump game, so the swap referred to here is not to be confused with improving response 
dynamics.

Fig. 5  Swapping the red children adjacent to at least one more agent (S1) with non-red children with no 
other agents as neighbors (S2). (a): |S1| ≤ |S2|. (b): |S1| > |S2|. Red dotted arrows show the swaps
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If there remains another mixed agent in the tree, then as shown in Claim 4.6, this agent B is 
not a child of A, and we perform the same pre-processing operation for B’s children as well.

Claim 4.7  After the pre-processing operation, at least one of the following two conditions 
holds: 

1.	 All red children of A have utility 0.
2.	 All of A’s non-red children would have utility 1 even if A was moved.

Proof  If |S1| ≤ |S2|, by (P2), the agents in S2 that swapped positions now have children of 
a different color than themselves, and still have utility 1. The remaining agents in S2 have no 
neighbors other than A and retain utility 1. Also, all the red children of A, have no neighbors 
other than A and have utility 0, so (1) holds. See Fig. 5 (a).

Otherwise, if |S1| > |S2|, all agents in S2 are moved to locations where they have chil-
dren, and so all non-red children of A have children. As mentioned in the proof of Claim 4.6, 
any such non-red child of A must have children of different types than itself. Thus if A 
moves from its position, these non-red agents would still have utility 1, so (2) holds. See 
Fig. 5 (b).								              □

Creating an ordered list of candidate agents to move  From Claim 4.6, even after prepro-
cessing, all non-red agents have utility 1, and thus there is no need to move them. We now 
create an ordered list of candidate red agents to move that could improve their utilities. 
Starting with level 1, moving down level by level, we put in red agents that have utility 0 in 
this list. Next we consider agents of utility strictly between 0 and 1. It follows from Property 
(P2) of Lemma 4.2 that these are red agents with red parents and at least one non-red child: 
these are either agents that are mixed, or they are children of red agents who have all non-
red children. Call this second set S3. The agents in S3 will not be in the list of candidate 
agents to move; our algorithm for moving agents will ensure that for any agent in S3, either 
its red parent will move, causing it to have utility 1, or if its red parent does not move, there 
is no empty node offering it a higher utility.

It remains to determine whether or not the mixed agents will be added to the list of 
candidate agents to move. The potential problem with moving a mixed agent is that if it 
has a non-red child with no other agents as neighbors, now that child could have utility 0. 
First consider agent A. If Condition (1) of Claim 4.7 holds, then all of A’s red children are 
already in the list of candidates. If they all move, then A’s utility will change to 1, so we do 
not put A into the candidate list. Otherwise, Condition (2) of Claim 4.7 holds, and so it is 
safe to move A. In this case, we put A in the list of candidates.

If there is a second mixed agent B, by Claim 4.6, it is not a child of A, and by Lemma 4.4, 
the red children of A only have red children. Therefore, condition (1) of Claim 4.7 is satis-
fied, and A was not placed in the candidate list. We now use the same procedure as used 
for A to determine if B should be placed in the candidate list. Therefore, there is at most 
one mixed agent in the candidate list. To recap, the ordered list of candidates consists of red 
agents of utility 0, placed in increasing order of their distance from the root, and possibly 
one mixed agent, which is the last agent in the list.
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Moving the candidate agents to appropriate empty nodes  Next we describe where to move 
the candidate agents. Note that all empty nodes have the property that they are adjacent to 
at most a single node containing an agent. This follows from the manner in which G′ was 
extracted from G by repeatedly removing leaves. Therefore, all empty nodes either offer 
utility 0 or 1 to a red agent. When moving agents, we will maintain this property of the set 
of empty nodes.

Call a node available if it is empty and adjacent only to a non-red agent, and perhaps 
other empty nodes. We are now ready to describe our procedure to convert CG into an 
equilibrium assignment. We repeatedly take the first candidate from the ordered list of can-
didates and move it to an available node. Observe that if a candidate red agent X  moves to 
an available node, we have the following properties:

	● The utility of X  increases to 1.
	● The utility of all other agents stays the same or increases. In particular, if X is an agent of 

utility 0 before the move, then all its neighbors are red agents. For a neighbor of X  that 
is a mixed agent, the move of X  will increase the mixed agent’s utility. For any other 
neighbors of X , their utility does not change because of A’s move, and remains 0. For 
the case when X  itself is a mixed agent, it is condition 2 of Claim 4.7 must have held 
after the preprocessing, so all non-red neighbors of X  will still have utility 1. Also, the 
utility of any red neighbors of X  will not decrease as the result of X  moving. Thus, for 
any move of a candidate agent, the utility of all other agents stays the same or increases.

	● If the agent that is moved had utility 0, the newly vacated node is adjacent only to red 
agents and possibly empty nodes, and therefore offers utility 0 to any red agent.

	● If the agent that is moved was is a mixed agent, the newly vacated node may offer utility 
greater than 0 to a red agent, but since it must be the last candidate agent in the list, all 
other red agents already have utility 1 and therefore have no incentive to move.

	● Any empty neighbor of the newly occupied node offers utility 0 to any red agent. Thus, 
we do not create any new available nodes, and the number of available nodes and the 
number of candidate agents each decreases by 1.

This process ends when there are no more available nodes or there are no more candidates. 
If there are no more available nodes, we have an equilibrium assignment, as all other empty 
nodes offer utility 0 to a red agent. If there are no more candidates, then all red agents have 
utility 1, and we have an equilibrium assignment.                                                                □

4.1  Spider topologies

As we showed at the beginning of this section, if the topology is an arbitrary tree, the game 
might have an IRC, even when there is a single empty node (see Theorem 4.1). Neverthe-
less, there is a class of tree graphs for which the game turns out to be potential, namely that 
of spider graphs. A spider graph is a tree in which all nodes besides one, called the center 
node c, have degree of at most 2 (see Fig. 6 for an example); the degree of c is δ(c) ≥ 3. We 
will show that any diversity-seeking jump game in which the topology is a spider graph with 
a single empty node is a potential game.
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Theorem 4.8  For k ≥ 2 , every diversity-seeking jump game (R, S , T , G, λ) where G is a 
spider graph and |V | = |R ∪ S | + 1  is a potential game.

The proof of Theorem 4.8 (which is deferred to the appendix) is based on a careful case 
analysis aiming to show that, while the function Φ given in Definition 2 is not a general-
ized ordinal potential function for any value of m ∈ (0, 1), any long enough sequence of 
improving moves is guaranteed to result in a lower value of the function; this suffices to 
show convergence of IRD. We remark that our proof assumes that there is a single empty 
node. It is unclear what happens when there are more empty nodes in the graph. In contrast 
to the above result, the similarity-seeking jump games studied in [20] are not potential; see 
the example given in Fig. 6.

5  Networks of bounded degree

In this section, we consider diversity-seeking jump games on networks of fixed degree. We 
first show that diversity-seeking jump games are potential games whenever the topology is 
a regular graph and there is a single empty node.

Theorem 5.1  For any k, δ ≥ 2 , every diversity-seeking jump game (R, S , T , G, λ), where 
G is a δ-regular graph and |V | = |R ∪ S | + 1 , is a potential game.

Proof  Assume that there are no stubborn agents. We show that the function Φ from Defini-
tion  2 is a generalized ordinal potential function. Consider an improving move of an agent 
A in assignment C0 and call the resulting assignment C1. Let x0 and x1 be the number of 
A’s neighbors of type different than that of A in C0 and C1, respectively. If A does not 
move to a neighboring node, then we have uA(C0) = x0/δ and uA(C1) = x1/δ, where 
uA(C0) < uA(C1) and therefore x0 < x1. Hence,

	 Φ(C1) − Φ(C0) = mδ + (δ − x1) − (δ − x0) − mδ = x0 − x1 < 0.

It is easy to verify that the difference in potential is the same if A moves to a neighboring 
empty node. This shows that Φ is a generalized ordinal potential function (for any value of 

Fig. 6  An IRC in a spider graph with similarity-seeking strategic agents
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m ∈ (0, 1)) which completes the proof for the case where there are no stubborn agents. By 
Lemma 2.1, the game is also a potential game when S ̸= ∅.                                               □

Theorem 5.1 does not generally extend to the case where there are more empty nodes in 
the topology. We show next that when there are 4 or more empty nodes, there can be IRCs 
in the dynamics.

Theorem 5.2  For every δ ≥ 4  and k ≥ 2 , there exists a diversity-seeking jump 
game I = (R, S , T , G, λ) where G is a δ-regular graph and |V | = |R ∪ S | + δ such that I 
is not a potential game.

Proof  Note that since |V | = |R ∪ S| + δ, there will be δ empty nodes in any assignment. 
For δ = 4, we show an IRC in a regular graph of degree 4 as depicted in Fig. 7. It is easy to 
verify that the moves shown are improving ones. Indeed, in the first move, the utility of the 
red agent improves from 0 to 1/2. In the second move, the utility of the blue agent improves 
from 3/4 to 1. In the third move, the utility of the red agent improves from 2/3 to 3/4. In 
the next three moves, the red and blue agents interchange roles, with the same changes in 
utilities.

We now give an inductive argument for the case of δ > 4. Suppose inductively that there 
is an IRC in game I on a δ-regular graph G for some δ ≥ 4. We now construct a (δ + 1)
-regular graph H by creating a duplicate of graph G called G′ and connecting every node 

Fig. 7  An IRC in a regular graph of degree 4 with 4 empty nodes
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in G′ to its counterpart in G. Consider now the (δ + 1)-regular graph G ∪ G′, and the fol-
lowing placement of agents. We keep the same assignment of agents in G. The counterpart 
in G′ of the node containing the moving red agent has no agents assigned to it, while all 
other nodes in G′ are assigned yellow agents. It can be verified that the same IRC exists in 
this graph for the same red agent and blue agent visiting the same nodes as in G. Indeed, 
in the first move, the utility of the red agent improves from 0 to d−3

d−2 . In the second move, 
the utility of the blue agent improves from d−1

d  to 1. In the third move, the utility of the red 
agent improves from d−2

d−1  to d−1
d . As before, in the next three moves, the red and blue agents 

interchange roles, with the same changes in utilities. This completes the inductive argument. 
                                                                                                                                               □

Note that there is a gap between the results of Theorems 5.1 and 5.2. The question of 
whether diversity-seeking jump games are potential games in regular graphs of degree 3, or 
regular graphs of degree 4 with 2 or 3 empty nodes remains open. Finally, we remark that an 
IRC on a regular graph with k = 2 can be constructed from the tree shown in Fig. 2 but the 
number of empty nodes would be greater than 4.

Next, we consider topologies of maximum degree 2 (that may not be regular), and show 
that, regardless of the number of empty nodes, any diversity-seeking jump game is a poten-
tial game.

Theorem 5.3  For k ≥ 2 , every diversity-seeking jump game (R, S , T , G, λ) where G is a 
graph of maximum degree 2 is a potential game.

Proof  Assume that there are no stubborn agents and there are at least 3 nodes in G. Con-
sider an improving move of an agent A in assignment C0 that leads to assignment C1. 
Suppose A moves from node s (in C0) to node t (in C1). We first consider the case where 
s and t are neighbors: If s has degree 1 and t has degree 2, since this is an improving 
move for A, t’s other neighbor must have an agent of a different type from A, and thus 
Φ(C1) − Φ(C0) = −m. If, instead, s has degree 2 and t has degree 2, it must be that A’s 
other neighbor in C0 is of the same type as A or empty, while t is adjacent to an agent of a 
different type than that of A. Thus, Φ(C1) − Φ(C0) ≤ −m.

Next, we look at the cases where s and t are not neighbors:

	● s and t have degree 1. Then, let s’s neighbor be an agent of the same type as A or it is an 
empty node, while t’s neighbor must be an agent of type different than that of A. Hence, 
Φ(C1) − Φ(C0) ≤ −m.

	● s has degree 1 and t has degree 2. Then, either A improves its utility from 0 to 1/2 
and thus Φ(C1) − Φ(C0) ≤ 1 − 2m, or improves its utility from 0 to 1 and thus 
Φ(C1) − Φ(C0) ≤ −m.

	● s has degree 2 and t has degree 1. Then, either A improves its utility from 0 to 1 
and thus Φ(C1) − Φ(C0) ≤ −m, or improves its utility from 1/2 to 1 and thus 
Φ(C1) − Φ(C0) = 2m − 1 − m = −m − 1.

	● s and t have degree 2. Then, either A improves its utility from 0 to 1/2 and thus 
Φ(C1) − Φ(C0) ≤ 1 − 2m, or from 0 to 1 and thus Φ(C1) − Φ(C0) ≤ −m, or from 1

2  
to 1 and thus Φ(C1) − Φ(C0) ≤ m − 1.
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In all possible cases, Φ(C1) − Φ(C0) < 0 for all values of m ∈ (0, 1). Therefore, Φ is a 
generalized ordinal potential function, and the diversity-seeking jump game is a potential 
game. From Lemma 2.1, the result is also true when stubborn agents exist.                       □

6  Efficiency at equilibrium

In this section, we turn our attention to showing welfare guarantees at equilibrium by bound-
ing the price of anarchy and the price of stability. We show bounds on the price of anarchy 
for games consisting of n ≥ 2 strategic agents that are partitioned into k ≥ 2 types; note 
that we do not consider games with stubborn agents in this section, we focus exclusively on 
the case of strategic agents as they are the ones that care about their utility and the quality 
of the assignment. The types might be asymmetric or symmetric. In the asymmetric case, 
each type T consists of some number nT ≥ 1 of agents without any restriction other than 
that the types form a partition of the set of all agents. In contrast, in the symmetric case, 
each type T consists of the same number nT = n/k of agents; here we assume that n/k is an 
integer. We show that the price of anarchy is at most n/(k − 1) for asymmetric types and at 
most k/(k − 1) for symmetric types. We complement these upper bounds with tight lower 
bounds, which in some cases are even achieved in games with a topology as simple as a 
line. For the price of stability, we provide a lower bound of 65/62 ≈ 1.048 for k = 2 types 
showing that there are games in which the optimal assignments (in terms of social welfare) 
are not always equilibria.

We start be showing the upper bounds on the price of anarchy.
Theorem 6.1  For k ≥ 2  types, the price of anarchy of any diversity-seeking jump game with 
n strategic agents is at most n

k−1  if the types are asymmetric, and at most k
k−1  if the types 

are symmetric.

Proof  Consider an arbitrary game I and denote by C some equilibrium assignment, in which 
there is an empty node v that is adjacent to xT  agents of type T. Let x =

∑
T xT ≥ 1 be the 

total number of agents adjacent to v. First, suppose that x = xT = 1 for some type T. Then 
the agents of all types different than T must have utility 1 to not have incentive to deviate 
to v, which means that SW(C) ≥

∑
t̸=T nt. Since the maximum utility of each agent is 1, 

OPT(I) ≤ n, leading to a price of anarchy of at most n
n−nT

. If the types are asymmetric, 
then nT ≤ n − k + 1, and the price of at anarchy is at most n

k−1 . If the types are symmetric, 
then nT = n/k, and the price of anarchy is at most k

k−1 .

So, now we assume that x ≥ 2. To not have incentive to deviate to v, any agent of type T 

that is adjacent to v must have utility at least 
∑

t̸=T
xt

x−1 = x−xT

x−1 , while any agent of type T 

that is not adjacent to v must have utility at least 
∑

t̸=T
xt

x = x−xT

x , So, the social welfare at 
equilibrium can be lower-bounded as follows:
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SW(C) ≥
∑

T

(
xT · x − xT

x − 1
+ (nT − xT ) · x − xT

x

)

≥ 1
x

∑
T

nT · (x − xT )

= n − 1
x

∑
T

nT xT .

If the types are asymmetric, then nT ≤ n − k + 1 for every type T, and the social welfare 
at equilibrium is

	
SW(C) ≥ n − 1

x

∑
T

(n − k + 1)xT = n − (n − k + 1) = k − 1.

If the types are symmetric, then nT = n/k for every type T, and the social welfare at equi-
librium is

	
SW(C) ≥ n − 1

x

∑
T

n

k
xT = n − n

k
= n

k − 1
k

.

Since OPT(I) ≤ n, we conclude that the price of anarchy is at most n
k−1  if the types are 

asymmetric, and at most k
k−1  if the types are symmetric.                                                    □

Next, we investigate under which conditions the upper bounds of Theorem 6.1 are tight. 
We start with the case of asymmetric types. We show that for games in which the topology 
is a line, a better price of anarchy bound can be shown; in particular, the price of anarchy 
can be shown to be at most a function of n that tends to 2, for any number of types and any 
distribution of agents into types.
Theorem 6.2  The price of anarchy of any diversity-seeking jump game with a line topology 
and n strategic agents of k ≥ 2  types is at most 2n

n−1 .

Proof  Consider an arbitrary game I with a line topology, and let C be some equilibrium 
assignment. First, suppose that there is an empty node v in C that is adjacent to only agents 
of one type, say red. Then, to not have incentive to deviate to v, the non-red agents must all 
have utility 1. Observe that there must exist some red agent with utility at least 1/2; otherwise 
there would exist some empty node that is adjacent to non-red agents (since G is a connected 
line), where the red agents could jump to get positive utility. So, SW(C) ≥ n − nr + 1/2, 
where nr is the number of red agents. We consider the following two cases:

	● If nr ≤ ⌊n/2⌋ + 1, then since OPT(I) ≤ n and SW(C) ≥ n − nr + 1/2 ≥ ⌈n/2⌉ − 1/2, 
the price of anarchy is at most n

⌈n/2⌉−1/2 . This is at most 2n
n−1  if n is even, and at most 

2 if n is odd.

	● If nr > ⌊n/2⌋ + 1, then it is not possible to achieve social welfare n since some red 
agents cannot have only neighbors of different type. In particular, the maximum possible 
social welfare is OPT(I) ≤ 2(n − nr) + 1 = 2(n − nr + 1/2); this can be achieved 
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by creating n − nr pairs of agents of different type (which, in the optimal assignment, 
are placed one after the other on the line) and possibly one more red agent placed at the 
beginning or the end of the line getting utility 1. Hence, the price of anarchy is at most 2.

Finally, suppose that the empty node v in C is adjacent to agents of two different types, say 
red and blue. Then, to not have incentive to deviate to v, the non-red and non-blue agents 
must all have utility 1, the two agents adjacent to v must also have utility 1, and the remain-
ing red and blue agents must have utility at least 1/2. Therefore, since every agent gets utility 
at least 1/2 and the maximum utility is 1, the price of anarchy is at most 2.                        □

We next show that the price of anarchy approaches the upper bound for asymmetric types 
when the topology is slightly more general than a line. In particular, we show the following 
lower bound.
Theorem 6.3  There is a diversity-seeking jump game with a star topology and n strategic 
agents of k ≥ 2  asymmetric types such that the price of anarchy at least n−1

k−1 .

Proof  Consider a game with star topology and k ≥ 2 types such that k − 1 types have size 
1 while one type, say red, has size n − k + 1. Any assignment such that the center node of 
the topology is occupied by an agent of the first k − 1 types is optimal with social welfare 
n, whereas the assignment according to which the center node is occupied by a red agent is 
an equilibrium with social welfare k − 1 + k−1

n−1 = (k − 1) n
n−1 . Hence, the price of anarchy 

is at least n−1
k−1 .                                                                                                                       □

We now turn our attention to the case of games with symmetric types. We first show that 
for k = 2 symmetric types, a slightly better bound than that of Theorem 6.2 can be shown 
when the topology is a line; this bound is a different function of n that again tends to the 
upper bound of 2 when n becomes large.
Theorem 6.4  For diversity-seeking jump games with line topology and n strategic agents of 
k = 2  symmetric types, the price of anarchy is exactly 2n

n+4 .

Proof  For the lower bound, consider a game with a line topology consisting of n + 1 nodes 
and n agents of two types, red (r) and blue (b). In the optimal assignment, the agents occupy 
the nodes of the line so that each red agent is followed by a blue agent. This guarantees 
that every agent has only neighbors of different type and thus achieves a maximum utility 
of 1, leading to an optimal social welfare of n. Now consider the assignment in which the 
agents are ordered according to their types as follows: (r, b, b, r, r, . . . , r, r, b, b, r, v, b, r), 
where v is the empty node. This is an equilibrium since the empty node is adjacent to a 
red and a blue agent, and every agent has either only neighbors of different type (and thus 
utility 1), or one red and one blue neighbor (and thus utility 1/2); hence, no agent would 
have incentive to jump to the empty node since it only offers utility 1/2. There are exactly 
4 agents that achieve utility 1 and n − 4 agent that achieve utility 1/2, for a social welfare 
of (n − 4)/2 + 4 = (n + 4)/2. Consequently, the price of anarchy is at least 2n/(n + 4).

For the upper bound, let C be an equilibrium assignment. First observe that, if there is an 
empty node v in C that is adjacent to a single agent or two agents of the same type, say red, 
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then it has to be the case that all blue agents have utility 1, and consequently the same holds 
for the red agents due to symmetry, leading to price of anarchy of 1. So, we can assume that 
v is adjacent to one red agent A and one blue agent B. Since C is an equilibrium, both A 
and B must have a neighbor of different type and utility 1 since otherwise they would jump 
to v to connect to each other. In addition, since the topology is a line, there must be at least 
two more agents with a single neighbor and utility 1; otherwise they would have utility 0 
and incentive to jump to v for a utility of 1/2. Similarly, all remaining agents must already 
achieve utility at least 1/2 to not have incentive to jump to v. Hence, the social welfare at any 
equilibrium assignment must be at least (n − 4)/2 + 4 = (n + 4)/2. Since the maximum 
possible social welfare is n, the price of anarchy is at most 2n/(n + 4).                             □

For games with k ≥ 3 symmetric types and line topology, we show a bound of n
(k−1) n

k +1/2  
which almost matches the upper bound of k/(k − 1).
Theorem 6.5  For diversity-seeking jump games with a line topology and n strategic agents 
of k ≥ 3  symmetric types such that the price of anarchy is exactly n

(k−1) n
k + 1

2
.

Proof  For the lower bound, consider a game with a line topology consisting of n + 1 nodes. 
Suppose that the k types are identified by the integers {1, . . . , k}. An optimal assignment 
is to arrange the agents so that an agent of type T is followed by an agent of type T + 1, 
for every T ≤ [k − 1]. Hence, every agent gets utility 1 for an optimal social welfare of n. 
Now consider the following assignment: There is a repeated sequence of agents so that an 
agent of type T is followed by an agent of type T + 1, for every T ∈ {1, . . . , k − 2}. This 
sequence is followed by all agents of type k and the last node is left empty. Clearly, all 
agents of the first k − 1 types have utility 1 and no incentive to deviate to the empty node, 
while there is exactly one agent of type k with utility 1/2 and all others have utility 0. So, this 
is an equilibrium with social welfare (k − 1) n

k + 1/2, leading to the desired lower bound 
on the price of anarchy.

For the upper bound, let C be an equilibrium assignment. We consider the following two 
cases:

	● There is an empty node v in C that is adjacent to a single agent or two agents of the same 
type, say red. Observe that all non-red agents must have utility 1 so that they do not have 
incentive to deviate to v. In addition, at least one of the red agents must be adjacent to an 
agent of different type and thus have utility at least 1/2; otherwise, if all red agents are 
adjacent only to other red agents or empty nodes, then there must exist a non-red agent 
that is adjacent to an empty node where the red agents would like to jump. Hence, the 
social welfare of this equilibrium is at least (k − 1) n

k + 1/2. Since the optimal social 
welfare is at most n, we get the desired upper bound on the price of anarchy.

	● There is an empty node v in C that is adjacent to two agents of different type, say red and 
blue. Then all non-red and non-blue agents must have utility 1 so that they do not have 
incentive to deviate to v. In addition, both agents that are adjacent to v must have utility 
1 to not have incentive to deviate to v and connect to each other, while all other red and 
blue agents must have utility at least 1/2. Hence, the social welfare of this equilibrium 
is at least (k − 2) n

k + 2 + 2
(

n
k − 1

)
· 1

2 = (k − 1) n
k + 1 ≥ (k − 1) n

k + 1/2, leading 
to the desired upper bound again.
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This completes the proof.							             □
We conclude this section with a lower bound of 65/62 on the price of stability, showing 

that the assignment with optimal social welfare is not always an equilibrium.

Theorem 6.6  There is a diversity-seeking jump game with k = 2  types of strategic agents 
such that the price of stability is at least 65/62 ≈ 1 .048 .

Proof  Consider a diversity-seeking jump game with 2 red agents and 4 blue agents. The 
topology is as shown in Fig. 8(a). The assignment of the agents in Fig. 8(b) is the optimal 
one with social welfare 65/12, while that in Fig. 8(c) is the best equilibrium with social wel-
fare 62/12 ≈ 5.16. We will now argue that any equilibrium assignment C has social welfare 
at most 62/12, yielding the desired lower bound on the price of stability. For simplicity in 
our notation, for any node v, we will denote by A(v) the agent that occupies it (if any).

First note that if there is an agent with utility 0, or two agents with utility at most 1/2, 
then the social welfare is bounded above by 5, and we are done. So, we can assume that C 
has the following two properties: (1) No agent has utility 0, and (2) at most one agent has 
utility ≤ 1/2. Property (1) implies immediately a third property: (3) Either node a is empty, 
or a and b are occupied by agents of different types. This follows since agent A(a) would 
have utility 0 if node b is empty, or if both a and b are occupied by agents of the same type.

Next, observe that if the degree-2 nodes d1 and d2 are occupied by agents of different 
types, then either they both have utility 1/2 (violating Property (2)) or one of them has util-
ity 0 (violating Property (1)). Therefore it must be the case that either one of d1 and d2 is 
left empty, or both are occupied by agents of the same type. We consider these two cases 
separately:

Case 1: d2 is empty; the case where d1 is empty is symmetric  If A(d1) is red, then since it 
must obtain utility strictly larger than 0 and one of the agents at a or b must be red by Prop-
erty (3), it must be the case that c, e1 and e2 are all occupied by blue agents and have utility 
at least 1/2, a contradiction to Property (2). If on the other hand A(d1) is blue, then since 

Fig. 8  (a) The topology of the game used to show the lower bound on the price of stability; (b) The opti-
mal assignment with social welfare 65/12; (c) The best equilibrium assignment with social welfare 62/12
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either a or b must be occupied by a red agent by Property (3), e1 and e2 must be occupied 
by agents of different type,say e1 is occupied by a red agent and e2 is occupied by a blue 
agent. However, this means that A(d1) and A(e2) have utility at most 1/2, a contradiction 
to Property (2).

Case 2: d1 and d2 are occupied by agents of the same type  If the agents A(d1) and A(d2) 
are red, then all the blue agents must be at the remaining nodes, which means that at least 
one of them must get utility 0, thus contradicting Property (1). So, the agents A(d1) and 
A(d2) must both be blue. To satisfy Properties (1) and (2), either both e1 and e2 are both 
occupied by red agents, or one of them is empty and the other is occupied by a red agent.

	● Both A(e1)    and A(e2) are red. To satisfy Property (3), since it is not possible to 
assign different-type agents at a and b, it has to be the case that a is empty. However, 
such an assignment cannot be an equilibrium as the red agents at e1 and e2 have utility 
less than 1 (since they are connected to each other) and would jump to a to get utility 1.

	● One of e1   and e2   is occupied by a red agent, while the other is empty. Suppose 
without loss of generality that e1 is empty and e2 is occupied by a red agent. Since a and 
b must have agents of different types due to Property (3), only two assignments are pos-
sible. The first one is when A(a) is blue and A(b) is red. This is the optimal assignment 
with social welfare 65/12, which however is not an equilibrium since A(b) has utility 
2/3 and would prefer to deviate to the empty node e1 to get utility 3/4; see Fig. 8(b). The 
second one is when A(a) is red and A(b) is blue. This is the best possible equilibrium 
with social welfare 62/12; see Fig. 8(c).

The proof is now complete.							             □

7  Open problems

In this paper we proposed a new class of diversity-seeking jump games in networks. We 
showed that determining if there exists an equilibrium assignment in a given instance is NP-
hard, using a reduction that relies on the existence of stubborn agents. Do games with only 
strategic agents always admit an equilibrium? If not, what is the complexity of deciding if 
an equilibrium exists in a given diversity-seeking jump game with only strategic agents?

We also showed that the game is not potential for tree topologies; however, if all agents 
are strategic, there is always an equilibrium, regardless of the number of empty nodes in 
the tree. It would be interesting to know if the game is weakly acyclic in trees. For spider 
graphs with a single empty node, we showed that the game is potential. We conjecture the 
same holds for any number of empty nodes. While games on δ-regular graphs are always 
potential games when there is a single empty node, there are games that are not potential 
when there are 4 or more empty nodes. It would be very interesting to know whether the 
game is potential for up to 3 empty nodes. Similar questions would be interesting for other 
classes of graphs, such as bipartite graphs and grids.

Finally, while our price of anarchy bounds are essentially tight, it would be interesting to 
further investigate the price of stability and either improve the lower bound of 65/62 that we 
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managed to show for two types, or show an upper bound for it that is better than the upper 
bounds shown for the price of anarchy.

A: Proof of Theorem 4.8

We start with a lemma providing upper bounds on the change in potential caused by differ-
ent types of moves. Recall the definition of the function Φ( Definition 2).

Lemma A.1  For k ≥ 2 , in every diversity-seeking jump game (R, S , T , G, λ) where G is a 
spider graph, for an improving move of an agent A of type T in assignment C0  that results 
in assignment C1 , we have: 

1.	 Φ(C1) − Φ(C0) ≤ −m if the improving move does not involve the center node;
2.	 Φ(C1) − Φ(C0) ≤ 2m − 1 + nT (c, C1) − mδ(c) if the improving move is from a 

degree-2 node to the center node;
3.	 Φ(C1) − Φ(C0) ≤ m − mδ(c) + nT (c, C0) if the improving move is from a leaf to the 

center node;
4.	 Φ(C1) − Φ(C0) ≤ 1 − 2m + mδ(c) − nT (c, C0) if the improving move is from the 

center node to any other node.

Proof  We first consider all possible types only involve non-central nodes (Case 1), and then 
all possible moves that involve the center node, switching subcases based on the degree of 
the other node involved (Cases 2, 3 and 4). For each case, we consider all the possible utility 
scenarios that the deviating agent can derive at source and target. Tables 1 and 2 provide a 
detailed counting of the change in potential based on the source and target node of a move. 

1.	 The improving move does not involve the center node c. As an illustrative example, 
Fig. 9 depicts the configurations corresponding to case a). 

(a)	 Agent A jumps from a degree-2 node to another degree-2 node: 

i.	 uA(C0) = 0 and uA(C1) = 1
2 . Figure 9 (i) shows the configuration C0 and the 

jump from node s to d that would lead to C1. The jump only affects the potential 
on edges incident on s and d. In C0, the potential on the edges incident on s is 2, and 
the potential on edges incident on d is 2m, for a total of 2 + 2m. In configuration 
C1, the potential on edges incident on s is 2m, and that on edges incident on d is 
1, for a total of 1 + 2m. Then Φ(C1) − Φ(C0) = (1 + 2m) − (2 + 2m) = −1.

ii.	 uA(C0) = 1
2  and uA(C1) = 1. Then 

Φ(C1) − Φ(C0) = (2m) − (1 + 2m) = −1.
iii.	 uA(C0) = 0 and uA(C1) = 1 and source and target nodes are not adjacent. 

Then Φ(C1) − Φ(C0) = (2m) − (2 + 2m) = −2.
iv.	 uA(C0) = 0 and uA(C1) = 1 and source and target nodes are adjacent. Then 

Φ(C1) − Φ(C0) = (2m) − (2m + 1) = −1.

(b)	 Agent A jumps from degree-2 node to leaf node: 
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i.	 uA(C0) = 0 and uA(C1) = 1. Then 
Φ(C1) − Φ(C0) = (2m) − (2 + m) = m − 2.

ii.	 uA(C0) = 1
2  and uA(C1) = 1. Then 

Φ(C1) − Φ(C0) = (2m) − (1 + m) = m − 1.

(c)	 Agent A jumps from leaf node to degree-2 node: 

i.	 uA(C0) = 0 and uA(C1) = 1
2 . Then 

Φ(C1) − Φ(C0) = (m + 1) − (1 + 2m) = −m.
ii.	 uA(C0) = 0 and uA(C1) = 1 and source and target nodes are not adjacent. 

Then Φ(C1) − Φ(C0) = (m) − (1 + 2m) = −1 − m.
iii.	 uA(C0) = 0 and uA(C1) = 1 and source and target nodes are adjacent. Then 

Φ(C1) − Φ(C0) = (m) − (2m) = −m.

(d)	 Agent A jumps from leaf node to leaf node: Φ(C1) − Φ(C0) = (m) − (1 + m) = −1.

2.	 The improving move is from a degree-2 node to center node: 

(a)	 uA(C0) = 1
2  and uA(C1) > 1

2 : 
Φ(C1) − Φ(C0) = (2m + nT (c, C1)) − (1 + mδ(c)).

(b)	 uA(C0) = 0 and uA(C1) > 0 and source and target nodes are not adjacent: 
Φ(C1) − Φ(C0) = (2m + nT (c, C1)) − (2 + mδ(c)).

(c)	 uA(C0) = 0 and uA(C1) > 0 and source and target nodes are adjacent: 
Φ(C1) − Φ(C0) = (2m + nT (c, C1)) − (1 + mδ(c)).

3.	 The improving move is from a leaf to center node: 

(a)	 Source and target nodes are not adjacent: 
Φ(C1) − Φ(C0) = (m + nT (c, C1)) − (1 + mδ(c)).

(b)	 Source and target nodes are adjacent: 
Φ(C1) − Φ(C0) = (m + nT (c, C1)) − (mδ(c)).

4.	 The improving move is from center node to any other node: 

(a)	 Agent A jumps from center node to degree-2 node: 

i.	 uA(C0) < 1
2  and uA(C1) = 1

2 . Then 
Φ(C1) − Φ(C0) = (1 + mδ(c)) − (nT (c, C0) + 2m).

ii.	 uA(C0) < 1 and uA(C1) = 1 and source and target nodes are not adjacent. 
Then Φ(C1) − Φ(C0) = (mδ(c)) − (nT (c, C0) + 2m).

iii.	 uA(C0) < 1 and uA(C1) = 1 and source and target nodes are adjacent. Then 
Φ(C1) − Φ(C0) = (mδ(c)) − (nT (c, C0) + 2m).

(b)	 Agent A jumps from center node to leaf node: 
Φ(C1) − Φ(C0) = (mδ(c)) − (nT (c, C0) + m).The proof is now complete.       □
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For the remainder of the section we will assume that m < 1
2 . Lemma A.1 then implies 

that any improving move of an agent that does not involve the center node always decreases 
the value of the potential function Φ. However, an improving move of an agent that moves 
to or out of the center can increase the potential by a non-constant amount. The change in 
potential is related to the degree of the center node and the number of neighbors of the same 
type as the agent that moved to or from the center node. We claim, however, that such a 
move that increases the potential must be followed by moves that collectively decrease the 
potential below its value before the move in question, and thus that the game is a potential 
game.

Suppose towards a contradiction that there is an IRC. Consider the smallest IRC of 
length p, and denote the assignments that it involves by C0, C1, . . . Cp−1. Since any improv-
ing move of an agent that does not involve the center node always decreases the potential, 
our IRC must involve moves to or out of the center node. Since every move of an agent A to 
the center node must be followed by a move of agent A out of the center node, we calculate 
the change in potential resulting from the set of moves that includes the move to the center, 
move out of the center, and any moves in between. Let Cj0 , Cj1 , . . . Cjw , be the assignments 
in the cycle in which the center node c is unoccupied, listed in increasing order. We denote a 

Type of move Source utility Target utility ∆Φ ≤
degree 2 to degree 2 0 1/2 −1

0 1 −1
1/2 1 −1

degree 2 to leaf 0 1 m − 2
1/2 1 m − 1

Leaf to degree 2 0 1/2 −m

0 1 −m

Leaf to leaf 0 1 −1

Table 1  Summary of the changes 
of the potential when the topol-
ogy is a spider graph, resulting 
from improving moves that do 
not involve the center node

Note that m < 1/2

 

Fig. 9  Example configurations corresponding to case 1(a) illustrating improving moves between two 
nodes of degree 2 that does not involve the center node. Node c is the center of the spider graph
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segment i by a pair of consecutive assignments Cji  and Cji+1 ; For readability, we use i + 1 
to mean (i + 1) mod (w + 1) when referring to the indices of the assignments. It is easy to 
see that the total change in the potential in the IRC is the sum of changes in the potential of 
segments. Furthermore, we define C+

ji
, C−

ji
 to be the immediate successor and predecessor 

of Cji , respectively. Notice that since we have a single empty node, for every segment i, 
the center node is occupied in C+

ji
, C−

ji+1
, and any intermediate assignment between them. 

Also, notice that C+
ji

 and C−
ji+1

 are two distinct assignments as it is impossible for an agent 
to move to the center node (going from assignment Cji  to C+

ji
) and move out of it (going 

from assignment C−
ji+1

 to Cji+1 ) immediately. We show that, for every segment i, the dif-
ference in potential is always at most 0. Furthermore, we show that it is impossible for the 
difference to be 0 for every segment, which yields a contradiction to the existence of an IRC.

The following lemma gives an upper bound on the change in potential between assign-
ments C+

ji
 and C−

ji+1
, for any 0 ≤ i ≤ w.

Lemma A.2  Suppose the center node c is occupied by an agent A of type T in segment 
i. Then, for any 0 ≤ i ≤ w, the change in potential between assignments C +

ji
 and C −

ji+1
 is 

Table 2  Summary of the potential change when the topology is a spider graph, resulting from improving 
moves that involve the center node
Type of move Source utility Target utility ∆Φ ≤
degree 2 to center (adjacent) 0 > 0 2m − 1 + nT (c, C1) − mδ(c)
degree 2 to center (non-adjacent) 0 > 0 2m − 2 + nT (c, C1) − mδ(c)

1/2 > 1/2 2m − 1 + nT (c, C1) − mδ(c)
Center to degree 2 < 1/2 1/2 1 − 2m + mδ(c) − nT (c, C0)

< 1 1 −2m + mδ(c) − nT (c, C0)
Leaf to center (adjacent) 0 > 0 m + nT (c, C1) − mδ(c)
Leaf to center (non-adjacent) 0 > 0 m − 1 + nT (c, C1) − mδ(c)
Center to leaf < 1 1 −m + mδ(c) − nT (c, C0)
Note that m < 1/2

where ∆T = nT (c, C −
ji+1

) − nT (c, C +
ji

).

Proof  We will start with the easiest case when neither s nor t is adjacent to the center. It 
is clear that every change in the number of neighbors of the center that are occupied by 
agents of type T requires a pair of improving moves, an agent of type T to move out of the 
neighborhood and an agent of some other type to move to its place (thereby decreasing the 
number of neighbors of type T), or an agent of a different type to move out of the neighbor-
hood and an agent of type T to move to its place (increasing the number of neighbors of 
type T). From Table  1, we get an upper bound on the change in potential of each such pair 
of moves. First we note that it is impossible for both such moves to be (leaf to degree 2), or 
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both such moves to be (degree 2 to leaf). It is straightforward to verify that all other pairs of 
moves have a net change in potential of at least −1. Inequality (1) follows.

Now suppose that s is not adjacent to the center, but t is. Then, the agent B at node t in 
the assignment before C−

ji+1
 moved out to leave t vacant in C−

ji+1
. If B is not of type T, it did 

not contribute to a change in the number of neighbors of type T of the center, and the same 
reasoning as in the previous case applies to give us Inequality (1), which implies Inequal-
ity (2). If B instead is of type T, then its move out of t does change the number of neighbors 
of type T, but does not have a matching move back to the center. Noting that t cannot be a 
leaf since A would not jump to it in the next step, the move of B out of t causes a potential 
change of at most m − 1( using Table 1). Together with the potential change due to the 
remaining ∆T − 1 pairs of improving moves, we get Inequality (2).

If s is adjacent to the center and t is not, observe that the agent that moves to s immedi-
ately after A moves to the center is not of type T and does not contribute to the change in 
neighbors of type T. The change in the potential resulting from this improving move is at 
most m − 1 as shown in Table 1, and together with the change in potential caused by ∆T  
pairs of improving moves as in the first case, we get Inequality (3).

Last we consider the case when both s and t are adjacent to the center. The first move 
does not contribute to the change in neighbors of type T and changes the potential by at most 
m − 1, while the last move may contribute to this change, and in that case, would not have a 
matching move of an agent back to a neighbor of the center. The total change in potential is 
at most m − 1 for the first move, at most m − 1 for the last move, and |∆T | − 1 for pairs of 
improving moves contributing to change in neighbors of type T. Thus, we get Inequality (4). 
									               □

Now we consider the difference in potential between Cji+1  and Cji . We analyze sepa-
rately the cases when s is a degree-2 node or a leaf node.

Lemma A.3  If s is a degree-2 node, then Φ(Cji+1 ) − Φ(Cji ) < 0 .

Proof  The source utility of A at node s could be either 0 or 1/2 and the target utility at node 
t could be 1/2 or 1. We consider all possible combinations below: 
1.	 uA(Cji ) = 0, uA(Cji+1 ) = 1/2 and the source node s is not adjacent to the center. In 

assignment Cji , agent A is located at s and has two neighbors of the same type. Since 
uA(Cji ) = 0, uA(C+

ji
) > 0. Eventually agent A moves out of the center node to the 

target node t to reach assignment Cji+1  where it has a neighbor of the same type and a 
neighbor of different type. Note that t must be a degree-2 node and it cannot be adjacent 
to the center node. Since uA(Cji+1 ) = 1/2, uA(C−

ji+1
) < 1/2. Therefore, in assign-

ment C−
ji+1

, more than half of the neighbors of agent A are of type T. From Table  2, we 
obtain: 

	 Φ(C+
ji

) − Φ(Cji ) ≤ −mδ(c) + nT (c, C+
ji

) + 2m − 2 � (5)

 and 

	 Φ(Cji+1 ) − Φ(C−
ji+1

) ≤ mδ(c) − nT (c, C−
ji+1

) + 1 − 2m. � (6)

1 3

   32   Page 30 of 37



Autonomous Agents and Multi-Agent Systems…

 Then, since any improving move between C+
ji

 and C−
ji+1

 decreases the potential as shown 
in Lemma A.1, we obtain an upper bound on the net potential change from Cji  to Cji+1  by 
adding Inequalities (1), (5), and (6): 

	Φ(Cji+1 ) − Φ(Cji ) ≤ nT (c, C+
ji

) − nT (c, C−
ji+1

) − 1 − |(nT (c, C+
ji

) − nT (c, C−
ji+1

))| < 0.

2.	 uA(Cji ) = 0, uA(Cji+1 ) = 1/2, and the source node s is adjacent to the center. In 
assignment Cji , agent A is located at s and is adjacent to an agent of the same type and 
the empty center node. Since uA(Cji ) = 0, uA(C+

ji
) > 0. Eventually agent A moves 

out of the center node to node t to reach assignment Cji+1  where it has a neighbor of 
the same type and a neighbor of different type. Note that t must be a degree-2 node and 
it cannot be adjacent to the center node. Since uA(Cji+1 ) = 1/2, uA(C−

ji+1
) < 1/2. 

Therefore, in assignment C−
ji+1

, more than half of the neighbors of agent A are of type 
T. From Table  2, we obtain: 

	 Φ(C+
ji

) − Φ(Cji ) ≤ −mδ(c) + nTx (c, C+
ji

) + 2m − 1 � (7)

 and 

	 Φ(Cji+1 ) − Φ(C−
ji+1

) ≤ mδ(c) − nTx (c, C−
ji+1

) + 1 − 2m. � (8)

 Then, since any improving move between C+
ji

 and C−
ji+1

 decreases the potential as shown 
in Lemma A.1, we obtain an upper bound on the net potential change from Cji  to Cji+1  by 
adding Inequalities (3), (7), and (8): 

	Φ(Cji+1 ) − Φ(Cji ) ≤ nT (c, C+
ji

) − nT (c, C−
ji+1

) + m − 1 − |(nT (c, C+
ji

) − nTx (c, C−
ji+1

))| < 0.

 Note that, if nT (c, C+
ji

) > nT (c, C−
ji+1

), then the number of agents of type T that are adja-
cent to the center node should have decreased, i.e., replaced by agents of other types. Each 
replacement requires a pair of moves: a move out of the neighborhood by an agent of type T 
and a move into the neighborhood by an agent of other type. As such, the agent that moves 
to s after A moves to the center is not part of the replacement pair and causes an additional 
decrease in the potential. Therefore, the net potential is negative.
3.	 uA(Cji ) = 0 and uA(Cji+1 ) = 1. In assignment Cji , agent A is located at s and either 

both its neighbors are of same type, or it is adjacent to an agent of the same type and the 
empty center node. Since uA(Cji ) = 0, uA(C+

ji
) > 0. Eventually agent A moves out of 

the center node to node t to reach assignment Cji+1  where it has a neighbor of different 
type. Since uA(Cji+1 ) = 1, uA(C−

ji+1
) < 1. From Table  2, we obtain: 

	 Φ(C+
ji

) − Φ(Cji ) ≤ −mδ(c) + nT (c, C+
ji

) + 2m − 1 � (9)

 and 

	 Φ(Cji+1 ) − Φ(C−
ji+1

) ≤ mδ(c) − nT (c, C−
ji+1

) − m. � (10)
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 Since any improving move between C+
ji

 and C−
ji+1

 decreases the potential as shown in 
Lemma A.1, we obtain an upper bound on the net potential change from Cji  to Cji+1  by 
adding Inequalities (2), (9), and (10): 

	Φ(Cji+1 ) − Φ(Cji ) ≤ nT (c, C+
ji

) − nT (c, C−
ji+1

) + 2m − 1 − |(nT (c, C+
ji

) − nT (c, C−
ji+1

))| < 0.

4.	 uA(Cji ) = 1/2 and uA(Cji+1 ) = 1/2. In assignment Cji , agent A while located at s 
has a neighbor of the same type and a neighbor of different type. Since uA(Cji ) = 1/2, 
uA(C+

ji
) > 1/2. Therefore, in assignment C+

ji
, less than half of the neighbors of agent 

A are of type T. Eventually agent A moves out of the center node to the target node 
t to reach assignment Cji+1  where it has a neighbor of the same type and a neigh-
bor of different type. Note that t must be a degree-2 node. Since uA(Cji+1 ) = 1/2, 
uA(C−

ji+1
) < 1

2 . Hence, in assignment C−
ji+1

, more than half of the neighbors of agent 
A are of type T, and we obtain 

	 nT (c, C+
ji

) < nT (c, C−
ji+1

).� (11)

 We claim that the net potential change is negative for improving moves that leads from Cji  
to C+

ji
, from C−

ji+1
 to Cji+1 , and from C+

ji
 to C−

ji+1
. Since agent A must improve its utility 

from 1/2 in Cji  to strictly more than 1/2 in C+
ji

, from Table 2, we obtain: 

	 Φ(C+
ji

) − Φ(Cji ) ≤ −mδ(c) + nT (c, C+
ji

) + 2m − 1. � (12)

 Similarly, since agent A must improve its utility from strictly less than 1/2 in C−
ji+1

 to 1/2 
in Cji+1 , from Table 2, we obtain: 

	 Φ(Cji+1 ) − Φ(C−
ji+1

) ≤ mδ(c) − nT (c, C−
ji+1

) + 1 − 2m. � (13)

 So, since all any improving move between C+
ji

 and C−
ji+1

, decreases the potential as shown 
in Lemma A.1, we obtain an upper bound on the net potential change from Cji  to Cji+1  by 
adding Inequalities (1), (12), and (13): 

	Φ(Cji+1 ) − Φ(Cji ) ≤ nT (c, C+
ji

) − nT (c, C−
ji+1

) − |(nT (c, C+
ji

) − nT (c, C−
ji+1

))| < 0

 where the last inequality follows from Inequality  (11).
5.	 uA(Cji ) = 1/2 and uA(Cji+1 ) = 1. In assignment Cji , agent A while located 

at s has a neighbor of the same type and a neighbor of different type. Since 
uA(Cji ) = 1

2 , uA(C+
ji

) > 1
2 . Eventually agent A moves out of the center node to 

node t to reach assignment Cji+1  where it has a neighbor of different type. Since 
uA(Cji+1 ) = 1, uA(C−

ji+1
) < 1. From Table  2, we obtain: 

	 Φ(C+
ji

) − Φ(Cji ) ≤ −mδ(c) + nT (c, C+
ji

) + 2m − 1 � (14)

 and 
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	 Φ(Cji+1 ) − Φ(C−
ji+1

) ≤ mδ(c) − nT (c, C−
ji+1

) − m. � (15)

 Since any improving move between C+
ji

 and C−
ji+1

 decreases the potential as shown in 
Lemma A.1, we obtain an upper bound on the net potential change from Cji  to Cji+1  by 
adding Inequalities (2), (14), and (15): 

	Φ(Cji+1 ) − Φ(Cji ) ≤ nT (c, C+
ji

) − nT (c, C−
ji+1

) + 2m − 1 − |(nT (c, C+
ji

) − nT (c, C−
ji+1

))| < 0.

This completes the proof for the case when there exists an assignment Cji  where A occu-
pies a degree-2 node.						            □

Lemma A.4  If s is a leaf node, then Φ(Cji+1 ) − Φ(Cji ) ≤ 0 . Furthermore, 
Φ(Cji+1 ) − Φ(Cji ) = 0  if s is adjacent to the center and uA(Cji+1 ) = 1/2 .

Proof  The source utility of A at node s should be 0 and the target utility at node t could be 
1/2 or 1. We consider the four possible cases below: 
1.	 uA(Cji+1 ) = 1 and s is not adjacent to the center. In this case, agent A moves out of 

the center node to node t to reach assignment Cji+1  where it has a neighbor of different 
type. Since uA(Cji+1 ) = 1, uA(C−

ji+1
) < 1. From Table  2, we obtain: 

	 Φ(C+
ji

) − Φ(Cji ) ≤ −mδ(c) + nT (c, C+
ji

) + m − 1 � (16)

 and 

	 Φ(Cji+1 ) − Φ(C−
ji+1

) ≤ mδ(c) − nT (c, C−
ji+1

) − m. � (17)

 Since any improving move between C+
ji

 and C−
ji+1

 decreases the potential as shown in 
Lemma A.1, we obtain an upper bound on the net potential change from Cji  to Cji+1  by 
adding Inequalities (2), (16), and (17): 

	Φ(Cji+1 ) − Φ(Cji ) ≤ nT (c, C+
ji

) − nT (c, C−
ji+1

) + m − 1 − |(nT (c, C+
ji

) − nT (c, C−
ji+1

))| < 0.

2.	 uA(Cji+1 ) = 1 and s is adjacent to center. In this case, agent A moves out of the center 
node to node t to reach assignment Cji+1  where it has a neighbor of different type. Since 
uA(Cji+1 ) = 1, uA(C−

ji+1
) < 1. From Table  2, we obtain: 

	 Φ(C+
ji

) − Φ(Cji ) ≤ −mδ(c) + nT (c, C+
ji

) + m � (18)

 and 

	 Φ(Cji+1 ) − Φ(C−
ji+1

) ≤ mδ(c) − nT (c, C−
ji+1

) − m. � (19)

 Since any improving move between C+
ji

 and C−
ji+1

 decreases the potential as shown in 
Lemma A.1, we obtain an upper bound on the net potential change from Cji  to Cji+1  by 
adding Inequalities (4), (18), and (19): 
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	Φ(Cji+1 ) − Φ(Cji ) ≤ nT (c, C+
ji

) − nT (c, C−
ji+1

) + 2m − 1 − |(nT (c, C+
ji

) − nT (c, C−
ji+1

))| < 0.

3.	 uA(Cji+1 ) = 1/2 and s is not adjacent to center. In this case, agent A moves out of the 
center node to node t to reach assignment Cji+1  where it has one neighbor of the same 
type and one neighbor of different type. Since uA(Cji+1 ) = 1/2, uA(C−

ji+1
) < 1

2 . From 
Table  2, we obtain: 

	 Φ(C+
ji

) − Φ(Cji ) ≤ −mδ(c) + nT (c, C+
ji

) + m − 1 � (20)

 and 

	 Φ(Cji+1 ) − Φ(C−
ji+1

) ≤ mδ(c) − nT (c, C−
ji+1

) + 1 − 2m. � (21)

 Since any improving move between C+
ji

 and C−
ji+1

 decreases the potential as shown in 
Lemma A.1, we obtain an upper bound on the net potential change from Cji  to Cji+1  by 
adding Inequalities (1), (20), and (21): 

	 Φ(Cji+1 ) − Φ(Cji ) ≤ nT (c, C+
ji

) − nT (c, C−
ji+1

) − m − |(nT (c, C+
ji

) − nT (c, C−
ji+1

))| < 0. � (22)

4.	 uA(Cji+1 ) = 1/2 and s is adjacent to center. In this case, agent A moves out of the 
center node to node t to reach assignment Cji+1  where it has one neighbor of the same 
type and one neighbor of different type. Since uA(Cji+1 ) = 1/2, uA(C−

ji+1
) < 1/2. 

From Table  2, we obtain: 

	 Φ(C+
ji

) − Φ(Cji ) ≤ −mδ(c) + nT (c, C+
ji

) + m � (23)

 and 

	 Φ(Cji+1 ) − Φ(C−
ji+1

) ≤ mδ(c) − nT (c, C−
ji+1

) + 1 − 2m. � (24)

 Since any improving move between C+
ji

 and C−
ji+1

 decreases the potential as shown in 
Lemma A.1, we obtain an upper bound on the net potential change from Cji  to Cji+1  by 
adding Inequalities (3), (23), and (24): 

	Φ(Cji+1 ) − Φ(Cji ) ≤ nT (c, C+
ji

) − nT (c, C−
ji+1

) − |(nT (c, C+
ji

) − nT (c, C−
ji+1

))| ≤ 0.

The proof is complete.						            □

We are now finally ready to prove Theorem 4.8.

Proof of Theorem 4.8  Suppose instead that there is a game that is not a potential game. Then, 
there exists an IRC, and the net potential change of the moves in this cycle must be 0. By 
Lemma A.1, every improving move that does not involve the center node decreases the 
potential. It follows that the cycle must involve moves to and out of the center node. Let 
Cj0 , Cj1 , . . . Cjw , be the assignments in the cycle in which the center node c is empty, listed 
in increasing order. Lemmas A.3 and  A.4 show that for every i, the difference in potential 
between Cji  and Cji+1  is at most 0. Since the potential never increases, and the net potential 
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change must be 0, it must in fact be that, for every i, Φ(Cji+1 ) − Φ(Cji ) = 0. It follows 
from Lemma A.4 that, for every i, an agent moves to the center node from a leaf node adja-
cent to the center, and subsequently moves out to a degree-2 node to get a utility 1/2.

Assume without loss of generality that an agent A of type T makes a move from such a 
leaf node s neighbor of the center to occupy the center in C+

j0
. Before A moves out of the 

center node, clearly no agent of type T would move to s, as it would get a utility 0. It follows 
that, if every agent that move to the center in the cycle is of the same type T, then the number 
of neighbors of the center of type T must decrease during the moves comprising the cycle, 
which is a contradiction.

Therefore, it must be the case that, for some ji, an agent A of type T occupies the center 
node in C+

ji
, and an agent B of type T ′ ̸= T  occupies the center in C+

ji+1
. By Lemma A.4, 

we have uA(Cji+1 ) = 1/2, therefore uA(C−
ji+1

) < 1/2. Since B is of a different type to A, 
it must be that uB(C+

ji+1
) > 1/2.

Since the change in potential between Cji+1  and Cji+2  is also 0, by Lemma A.4, it must 
be that B moves to a node t to get a utility 1/2, and thus uB(C−

ji+2
) < 1/2. This means 

that the number of agents of type T ′ that occupy the nodes adjacent to the center must 
have increased, that is, nT ′ (c, C+

ji+1
) − nT ′ (c, C−

ji+2
) < 0. Now, as in the proof of case 3 in 

Lemma A.4, we have:

	Φ(Cji+2 ) − Φ(Cji+1 ) ≤ nT ′ (c, C+
ji+1

) − nT ′ (c, C−
ji+2

) − |(nT ′ (c, C+
ji+1

) − nT ′ (c, C−
ji+2

))| < 0,

which is a contradiction. As such, there can be no cycle in the assignment graph, and we 
conclude that the game must be potential.					           □
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