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Abstract

Deep learning has witnessed an unprecedented evolution over the past decade, trans-

forming from theoretical concepts into practical applications that permeate numerous do-

mains of human activity. The exponential growth in computational power, availability of

large-scale data, and advancements in neural network architectures have collectively fa-

cilitated the development of increasingly sophisticated deep learning models (e.g., large

language models, LLMs) with performance levels that often surpass human capabilities in

specific tasks. Despite these advancements, the deployment of deep learning models for

healthcare presents substantial methodological and paradigmatic challenges. The trans-

ition from general to healthcare-specific contexts requires addressing fundamental differ-

ences in (i) representation learning, (ii) domain knowledge, (iii) data characteristics and

(iv) explainability and interpretability. To address these issues, this study aims to system-

atically investigate the methodological and paradigmatic transition of deep learning and

explainable & interpretable AI from general domain to healthcare. Our contributions

are in following key areas: (i) we introduce multi-label relations in multi-label super-

vised contrastive learning (MSCL) and propose a novel contrastive loss function, termed
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Similarity-Dissimilarity Loss, which dynamically re-weights based on the computed sim-

ilarity and dissimilarity factors between positive samples and anchors, applying for areas

from multi-label classification to automated medical coding; (ii) We propose a Prompt-

ing Explicit and Implicit knowledge (PEI) framework for multi-hop question answering

(QA) in biomedical domains, which employs CoT prompt-based learning to bridge expli-

cit and implicit knowledge, aligning with human reading comprehension; (iii) we intro-

duce a lexical-based imbalanced data augmentation (LIDA) for mental health modera-

tion, which an easy-to-implement and interpretable DA method that strategically lever-

ages sensitive lexicons by incorporating them into negative samples to transform these

instances into positive examples. Through rigorous theoretical analyses and extensive

experimental validation across multiple domains, this thesis contributes novel method-

ologies that enhance the performance, interpretability, and clinical applicability of deep

learning methods from general domain to healthcare.
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Chapter 1

Introduction

1.1 Deep Learning and Generalist Foundation Models

1.1.1 Deep Learning

Deep learning represents a transformative paradigm within the broader field of artificial

intelligence (AI), specifically as a subset of machine learning methodologies that employ

multiple layers of neural networks to progressively extract higher-level features from raw

input data. Unlike traditional machine learning approaches that often require manual

feature engineering, deep learning algorithms autonomously discover intricate patterns

and representations within data through hierarchical learning processes [1]. This cap-

ability has fundamentally altered the landscape of computational intelligence, enabling

unprecedented advances across diverse domains including computer vision, natural lan-

guage processing, speech recognition, and scientific discovery.

1



2 CHAPTER 1. INTRODUCTION

The conceptual foundations of deep learning can be traced back to the mid-20th cen-

tury with the introduction of the perceptron by Rosenblatt [2], which demonstrated the

possibility of machines learning binary classification tasks. However, the limitations of

single-layer neural networks, famously highlighted by Minsky and Papert [3], temporar-

ily dampened enthusiasm for neural network research. The resurgence of interest began

with backpropagation algorithms [4], allowing for efficient training of multi-layer net-

works, though computational constraints continued to limit practical applications. The

deep learning renaissance truly commenced in the early 2010s, catalyzed by three con-

current developments: exponential growth in computational capacity through graphics

processing units (GPUs), the availability of massive datasets, and algorithmic innovations

that addressed previous training inefficiencies [5].

A pivotal moment in deep learning’s ascendance occurred in 2012 when Krizhevsky

et al. demonstrated the remarkable efficacy of convolutional neural networks (CNNs) in

the ImageNet competition, reducing error rates by an unprecedented margin [6]. This

watershed event, often referred to as the "ImageNet moment," precipitated a paradigm

shift across computer vision and subsequently influenced numerous other fields. In the

ensuing years, deep learning architectures achieved and frequently surpassed human-

level performance across diverse benchmarks: from image classification [7] and object

detection [8] to speech recognition [9] and natural language understanding [10].

The technical evolution of deep learning has been characterized by architectural in-

novations that address specific computational challenges. CNNs exploit spatially local

correlation through weight sharing mechanisms, making them particularly effective for
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visual data processing. Recurrent Neural Networks (RNNs), especially variants such as

Long Short-Term Memory (LSTM) networks [11] and Gated Recurrent Units (GRUs)

[12], capture temporal dependencies in sequential data through feedback connections.

Transformative advancements emerged with attention mechanisms [13], which dynam-

ically weight input features based on relevance, culminating in the Transformer architec-

ture [14] that has become foundational for state-of-the-art natural language processing

systems.

Critical to deep learning’s success are optimization techniques that facilitate efficient

training of increasingly complex models. Stochastic gradient descent variants, partic-

ularly Adam [15], have enabled stable convergence during training. Regularization

strategies such as dropout [16], batch normalization [17], and weight decay mitigate

overfitting and improve generalization capabilities. Additionally, architectural search

methodologies [18] have automated the discovery of optimal network configurations,

further enhancing performance across tasks.

The confluence of these methodological innovations with hardware advancements,

which particularly specialized accelerators like TPUs [19] has enabled the training of in-

creasingly parameter-dense models with billions or even trillions of parameters. This

scaling trajectory has revealed emergent capabilities where quantitative increases in

model capacity yield qualitative shifts in functional abilities, establishing the founda-

tion for the generalist foundation models that characterize contemporary deep learning

research.



4 CHAPTER 1. INTRODUCTION

1.1.2 Generalist Foundation Models

Generalist foundation models represent a paradigmatic evolution in AI, characterized by

large-scale neural network architectures trained on diverse, expansive datasets that serve

as versatile computational substrates adaptable to numerous downstream tasks with min-

imal task-specific training [20]. Unlike traditional machine learning systems designed for

singular, narrowly-defined objectives, foundation models establish general-purpose rep-

resentational frameworks that capture broad statistical patterns across multiple domains

of knowledge.

The technical underpinnings of foundation models synthesize several methodological

advances within deep learning. At their core, most contemporary foundation models

employ Transformer architectures [14], which utilize self-attention mechanisms to dy-

namically model relationships between all elements in a sequence. This architectural

paradigm has proven remarkably effective for capturing complex dependencies in data

across modalities including text [10, 21], images [22], audio [23], and multimodal com-

binations thereof [24].

Large-scale pretraining constitutes the second critical component in foundation model

development. This approach involves exposure to massive datasets, often encompassing

hundreds of gigabytes or even petabytes of information, through self-supervised learning

objectives that do not require explicit human annotation. For language models, these

objectives typically involve predicting masked tokens or subsequent words in a sequence

[10, 25], while vision models may employ contrastive learning between transformed
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views of the same image [26]. The unprecedented scale of this pretraining enables

models to internalize statistical regularities across diverse contexts, forming rich internal

representations that generalize beyond specific tasks or domains.

Moreover, transfer learning represents a fundamental operational principle for found-

ation models, wherein knowledge acquired during pretraining is repurposed for down-

stream tasks through fine-tuning or adaptation techniques. Fine-tuning involves updat-

ing model parameters using task-specific data, often requiring substantially less super-

vision than training from scratch [27]. Parameter-efficient tuning methods such as ad-

apter layers [28], prefix tuning [29], and Low-Rank Adaptation (LoRA) [30] reduce

computational requirements by modifying only a subset of parameters while preserving

general knowledge. Prompt learning has emerged as one of particularly transformat-

ive parameter-efficient tuning methods, recasting downstream tasks as variations of the

original pretraining objective through carefully constructed input formulations. Initially

developed as a technique to elicit knowledge from language models through "prompt

engineering" [21], this approach has evolved into sophisticated methodologies includ-

ing prompt tuning [31], where continuous prompt vectors are learned to optimize task

performance, and chain-of-thought prompting [32], which guides models through in-

termediate reasoning steps. These techniques have effectively blurred the distinction

between training and inference, establishing natural language as a flexible programming

interface for neural computation.

The developmental trajectory of foundation models has witnessed exponential growth

in both model capacity and capability. GPT (Generative Pre-trained Transformer), intro-
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duced by OpenAI in 2018, demonstrated how autoregressive language modeling with

modest parameter counts (117 million) could achieve strong performance across diverse

language tasks [33]. Its successor, GPT-2 (1.5 billion parameters), revealed emergent

text generation abilities that approximated human writing quality in certain contexts

[25]. GPT-3 (175 billion parameters) represented a quantum leap, exhibiting few-shot

learning capabilities where the model could adapt to novel tasks through natural lan-

guage instructions alone, without parameter updates [21].

Parallel developments have occurred across other modalities. In computer vision,

Vision Transformers (ViT) adapted the transformer architecture for image recognition

tasks, achieving state-of-the-art performance while utilizing uniform architectural prin-

ciples across modalities [22]. CLIP (Contrastive Language-Image Pre-training) demon-

strated how joint training on image-text pairs could produce visual representations with

remarkable zero-shot generalization capabilities to previously unseen visual concepts

[24]. More recent models like DALL-E [34] and Stable Diffusion [35] extended gen-

erative capabilities to visual synthesis from textual descriptions, while models such as

Flamingo [36] and GPT-4 [37] have further advanced multimodal understanding and

generation capabilities.

1.1.3 The Generic Nature

The defining characteristic of generalist foundation models lies in their domain-agnostic

versatility, namely their capacity to operate effectively across diverse contexts without
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specialized architectural modifications. This "generic" nature manifests through several

key properties that distinguish foundation models from their predecessors.

Foundation models exhibit cross-domain transfer capabilities, wherein knowledge ac-

quired in one context facilitates understanding in seemingly unrelated domains through

abstract pattern recognition. For instance, language models trained primarily on tex-

tual data demonstrate surprising effectiveness at tasks involving logical reasoning [32],

mathematical problem-solving [38], and even protein structure prediction [39]. This

transfer capability suggests the emergence of abstract representational frameworks that

capture fundamental principles transcending specific domains.

The scaling laws governing foundation model performance further emphasize their

generic utility. Empirical analyses indicate that model capabilities improve predictably

with increases in parameter count, dataset size, and computational resources [40]. Cru-

cially, these improvements generalize across diverse tasks without domain-specific engin-

eering, indicating that larger models inherently develop more flexible and comprehens-

ive internal representations. Recent work has demonstrated that this scaling trajectory

often yields emergent capabilities, referring to functionalities not present in smaller mod-

els that appear spontaneously beyond certain scaling thresholds [32], such as advanced

reasoning, multilingual translation, and code generation.

The adaptability of foundation models represents another dimension of their gen-

eric nature. Through techniques like in-context learning [21], prompt engineering [41],

and parameter-efficient fine-tuning [30], these models can rapidly adapt to novel tasks

without extensive retraining or architectural modifications. This adaptability effectively



8 CHAPTER 1. INTRODUCTION

transforms foundation models into computational substrates that can be specialized

through data and instruction rather than through fundamental redesign, significantly

lowering the technical barriers for deployment across diverse applications.

The advantages of generalist foundation models relative to specialized architectures

are multifaceted. First, they demonstrate superior sample efficiency, requiring fewer

task-specific examples to achieve high performance through transfer of generalizable

knowledge. Second, they reduce the engineering overhead associated with developing

domain-specific architectures, instead centralizing development efforts on foundational

capabilities that benefit numerous downstream applications simultaneously. Third, they

exhibit enhanced robustness to distribution shifts between training and deployment en-

vironments by learning more abstract representations that capture invariant features

across contexts [42].

Perhaps most significantly, foundation models manifest emergent capabilities beyond

their explicit training objectives. GPT models [33, 25, 21, 37], while trained simply to

predict the next token in a sequence, demonstrate abilities ranging from mathematical

reasoning to creative writing; CLIP [24], trained to align images with textual descrip-

tions, develops visual representations that generalize to novel classification tasks without

specific training. These emergent properties suggest that scale and diversity in training

data naturally induce the formation of generalizable computational primitives that can

be composed to address previously unseen challenges.

The economic advantages of generalist foundation models are equally compelling.

By amortizing the substantial costs of pretraining across numerous applications, they en-
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able more efficient resource allocation than developing specialized models for each task.

Additionally, their adaptability through relatively lightweight fine-tuning reduces com-

putational requirements for deploying AI systems in new domains, democratizing access

to advanced AI capabilities for organizations lacking extensive computational resources

[43].

Despite these advantages, generalist foundation models present unique challenges.

Their generic nature may sacrifice performance on specialized tasks compared to tailored

architectures in cases where domain-specific inductive biases provide critical constraints

[44]. Moreover, their "black-box" nature and massive parameter counts complicate inter-

pretability, raising concerns regarding trustworthiness in high-stakes applications [45].

Nevertheless, the paradigm shift toward foundation models represents a fundamental re-

conceptualization of AI development, moving from narrowly-specialized systems toward

adaptable computational substrates that can be shaped through data and instruction

rather than explicit programming.

As these generalist foundation models continue to evolve, they increasingly serve as

the technological infrastructure underlying numerous AI applications, establishing a new

paradigm where domain adaptation occurs through interaction with pre-trained capabil-

ities rather than architectural engineering. This transition fundamentally alters the rela-

tionship between model development and deployment, creating new opportunities for AI

applications across domains including healthcare, which will be explored in subsequent

sections.



10 CHAPTER 1. INTRODUCTION

1.2 Foundation Models for Healthcare

The emergence of foundation models has catalyzed a paradigm shift in AI applications

for healthcare, offering unprecedented opportunities to address longstanding challenges

in clinical decision support, medical knowledge extraction, and health outcome predic-

tion. These models, characterized by their massive parameter counts and broad know-

ledge acquisition through self-supervised pretraining, present distinct methodological

pathways for healthcare adaptation [46]. Two principal strategies have emerged for

leveraging foundation models in biomedical and clinical contexts: (i) the development

of domain-specific foundation models through specialized pretraining or adaptation on

healthcare data, exemplified by models such as BioBERT [47], PubMedBERT [48], and

Med-PaLM [49]; and (ii) the utilization of prompt engineering methodologies to elicit

domain knowledge from general-purpose foundation models without specialized retrain-

ing, as demonstrated by approaches such as MedPrompt [44] and clinical prompting

frameworks [50, 51].

The domain-specific approach prioritizes architectural and representational special-

ization through exposure to biomedical literature, clinical notes, or structured health

records during pretraining or fine-tuning phases. This methodology emphasizes domain

adaptation at the parameter level, reconfiguring model weights to better capture the stat-

istical patterns and semantic relationships unique to healthcare contexts [52]. In con-

trast, the prompting approach preserves the original parametric configuration of general-

purpose foundation models while formulating inputs that strategically guide model be-
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havior toward healthcare-specific reasoning pathways [44]. This methodology leverages

the implicit medical knowledge embedded within models trained on diverse internet-

scale corpora, which often include substantial quantities of health-related information

[53].

These complementary strategies represent fundamentally different philosophical ori-

entations toward knowledge specialization: structural adaptation versus inferential guid-

ance, each with distinct advantages, limitations, and resource requirements that signific-

antly impact their applicability across various healthcare domains. The optimal approach

depends on numerous factors including data availability, computational constraints, task

complexity, and performance requirements for specific clinical applications.

1.2.1 Domain-Specific Approaches

The development of domain-specific foundation models for healthcare applications rep-

resents a systematic effort to tailor general architectural frameworks to the unique lin-

guistic, conceptual, and relational characteristics of biomedical knowledge. This ap-

proach emerged from empirical observations that general-domain language models fre-

quently underperform when directly applied to specialized medical tasks due to distribu-

tional shifts in vocabulary, syntactic structures, and semantic relationships [52, 54].

The methodological trajectory of domain-specific models began with BioBERT [47],

which extended BERT’s pretraining using PubMed abstracts and PMC articles, demon-

strating significant performance improvements across biomedical named entity recogni-



12 CHAPTER 1. INTRODUCTION

tion, relation extraction, and question answering tasks. This approach was further re-

fined through PubMedBERT [48], which employed pretraining from scratch exclusively

on biomedical corpora rather than continued pretraining from general-domain check-

points, yielding additional performance gains. The progression continued with more

sophisticated architectures such as BioGPT [55], which adapted autoregressive trans-

former models to biomedical generation tasks, and specialized clinical models like Clin-

icalBERT [52] and GatorTron [56], which incorporate electronic health record (EHR)

data to capture clinical language patterns.

More recently, multimodal domain-specific foundation models have emerged, integ-

rating textual, imaging, genomic, and structured clinical data. Models such as Med-PaLM

Multimodal (Med-PaLM M) [57] and LLaVA-Med [58] establish unified representational

frameworks across multiple healthcare data modalities, facilitating cross-modal inference

tasks such as generating radiology reports from medical images or predicting clinical out-

comes from multimodal inputs. These developments reflect the heterogeneous nature of

healthcare data and the importance of integrating diverse information streams for com-

prehensive medical reasoning.

The primary advantage of domain-specific foundation models lies in their representa-

tional precision for healthcare concepts and relationships. Through specialized pretrain-

ing, these models develop nuanced semantic embeddings that capture fine-grained dis-

tinctions between medical terms, recognize domain-specific abbreviations and acronyms,

and model complex biomedical relationships that may be obscured in general-domain

models [48]. Empirical evaluations consistently demonstrate superior performance on
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specialized tasks such as medical entity recognition, clinical relation extraction, and bio-

medical question answering compared to general-domain alternatives [59, 54].

Additionally, domain-specific models often exhibit enhanced sample efficiency when

fine-tuned for downstream tasks, requiring fewer labeled examples to achieve compet-

itive performance [52]. This characteristic proves particularly valuable in healthcare

contexts where annotated data is frequently scarce due to privacy constraints and an-

notation expertise requirements. The structural adaptation of domain-specific models

also facilitates integration with existing healthcare taxonomies and ontologies such as

SNOMED CT, ICD-10, and UMLS, enabling more coherent alignment with established

medical knowledge frameworks [60].

Despite these advantages, domain-specific foundation models face substantial limit-

ations. The most significant constraint involves computational and data requirements

for pretraining or adaptation. Specialized biomedical corpora, while extensive, repres-

ent only a fraction of the textual data available for general-domain training, potentially

limiting the models’ linguistic flexibility and generalization capabilities [46]. The com-

putational resources required for pretraining large-scale models from scratch on domain-

specific data often exceed the capabilities of academic or clinical research environments,

creating barriers to innovation and reproducibility.

Furthermore, domain-specific models risk overfitting to particular biomedical subdo-

mains or literature distributions, potentially compromising performance when applied

to emerging medical fields or underrepresented specialties [56]. The rapid evolution of

medical knowledge exacerbates this challenge, as models trained on historical literature
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may struggle to incorporate recent developments without continual updating. Finally, the

increased specialization may come at the cost of reduced capabilities for commonsense

reasoning and general world knowledge that often prove valuable for contextualizing

medical information within broader patient circumstances [53].

1.2.2 Prompt Engineering-Based Approaches

The prompt engineering-based paradigm for healthcare applications leverages the impli-

cit biomedical knowledge embedded within general-domain foundation models through

strategically designed input formulations. This approach operates from the premise that

large-scale pretraining on internet-scale corpora inherently captures substantial medical

information, which can be accessed through appropriate prompting strategies without

specialized architectural modifications [50]. The methodology has gained prominence

following empirical demonstrations that state-of-the-art general foundation models such

as GPT-4 [37] and PaLM [61] contain considerable medical knowledge accessible through

carefully constructed prompts.

The conceptual foundation for prompting based healthcare applications emerged

from in-context learning capabilities demonstrated in large language models [21], where

performance on specialized tasks improved dramatically through demonstration examples

incorporated directly in the input context. This capability has evolved into sophisticated

prompting methodologies specific to medical applications, including chain-of-thought

medical reasoning [49], retrieval-augmented clinical prompting [51], and structured
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medical prompting frameworks such as MedPrompt [44].

MedPrompt exemplifies the advancement of healthcare-specific prompting strategies,

incorporating techniques such as knowledge retrieval from authoritative medical sources,

step-by-step reasoning chains that emulate clinical diagnostic processes, and self-verification

mechanisms that evaluate the model’s initial responses. These approaches have demon-

strated remarkable effectiveness, enabling general-domain models to perform compet-

itively on standardized medical examinations such as USMLE and medical question-

answering benchmarks without domain-specific pretraining [50, 51].

The prompt engineering-based approach offers several distinct advantages compared

to domain-specific pretraining. Most significantly, it provides substantially greater flexib-

ility and adaptability, allowing rapid iteration of prompting strategies without the com-

putational overhead of model retraining or fine-tuning. This adaptability proves partic-

ularly valuable in healthcare contexts where requirements may vary significantly across

clinical specialties, institutional settings, or patient populations [49]. Prompt engineer-

ing allows for customization of model behavior at inference time rather than training

time, facilitating more agile deployment in diverse healthcare environments.

Additionally, prompt engineering-based methodologies maintain access to the broad

world knowledge and commonsense reasoning capabilities inherent in general-domain

foundation models, which often prove valuable for contextualizing medical information

within broader patient circumstances and societal factors. The integration of medical

reasoning with general knowledge supports more holistic approaches to health that

consider social determinants, patient preferences, and quality-of-life factors alongside
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strictly biomedical considerations [51].

From a practical implementation perspective, prompt engineering-based approaches

significantly reduce the computational resources required for deployment, eliminating

the need for specialized model training infrastructure while leveraging existing general-

purpose foundation model capabilities. This accessibility democratizes advanced AI cap-

abilities for healthcare organizations with limited technical resources, potentially ex-

panding the reach of AI-assisted healthcare solutions [62].

However, prompt engineering-based approaches face several substantial limitations.

The most significant concern involves the reliability and precision of medical knowledge

extracted through prompting. Unlike domain-specific models that systematically incor-

porate comprehensive biomedical literature during pretraining, general-domain models

acquire medical knowledge incidentally and potentially inconsistently through internet-

scale corpora [53]. This acquisition process may introduce biases, misconceptions, or

outdated information prevalent in public sources, raising concerns about factual accur-

acy for clinical applications.

Furthermore, general-domain models typically lack specialized representations for

complex medical terminology, relationships between biomedical entities, and domain-

specific reasoning patterns that may be essential for advanced clinical applications [46].

The absence of structured medical knowledge representations complicates integration

with established healthcare information systems, taxonomies, and ontologies that form

the backbone of clinical informatics infrastructure.

Additionally, prompt engineering-based approaches exhibit greater sensitivity to in-
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put formulation variations, potentially yielding inconsistent results across similar queries

with superficial linguistic differences [62]. This variability introduces concerns regarding

reliability in clinical settings where consistent performance is essential for establishing

practitioner trust and ensuring patient safety.

1.3 Explainable and Interpretable AI

Perhaps the most critical challenge for healthcare applications involves the explainability

and interpretability of deep learning and foundation models. The black-box nature of

deep learning, characterized by billions or trillions of parameters with complex interde-

pendencies, fundamentally conflicts with healthcare’s requirements for transparent, ac-

countable decision processes that clinicians and patients can understand and trust. This

challenge is particularly acute in high-stakes clinical contexts where model recommend-

ations may influence diagnostic or therapeutic decisions with significant consequences

for patient outcomes.

This section presents a thorough scoping background and analysis of explainable and

interpretable deep learning in healthcare AI. The term "eXplainable and Interpretable

Artificial Intelligence" (XIAI) is introduced to distinguish XAI from IAI. Different models

are further categorized based on their functionality (model-, input-, output-based) and

scope (local, global).
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1.3.1 XAI and IAI

In healthcare settings, where trustworthy and transparent decision-making is paramount,

there is a growing need for interpretable or explainable models [63]. Both explainability

and interpretability pose significant challenges, as understanding how NLP embeddings

translate into deep learning decision-making mechanisms remains complex [64, 65]. For-

tunately, recent research in explainable [66, 67] and interpretable [68, 69] deep learn-

ing in healthcare shows promise. Furthermore, the rise of large language models (LLMs)

highlights the growing importance of evaluating which explainable and interpretable

methods are most beneficial for healthcare, especially as data and model complexity

increase over time.

Despite extensive research in the field, a consensus regarding precise definitions and

clear distinctions between interpretability and explainability remains elusive [70, 71],

with numerous studies using these terms interchangeably [72]. The term "explainable

artificial intelligence (XAI)" [73] has emerged as an umbrella concept encompassing both

interpretability and explainability approaches. Nevertheless, this terminological ambigu-

ity has significant implications, resulting in inconsistent model taxonomies and imprecise

reporting of model outcomes across the literature.

In response to the terminological ambiguity described above, this section introduces

a unified terminology of eXplainable and Interpretable Artificial Intelligence, i.e., XIAI,

based on previous studies [70, 71, 72, 74]. To resolve inconsistencies in how these

concepts are applied within deep learning research [72], we employ Rudin’s statistical
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definitions [74] to delineate precise boundaries: (i) IAI focuses on designing inherently

interpretable models; (ii) XAI aims to provide post hoc model explanations. This funda-

mental distinction facilitates a systematic taxonomy of XIAI methodologies across three

paradigms: model-, input-, and output-based approaches. To improve clarity and under-

standing, XIAI is further grouped based on their scope (local, global): local XIAI yields

insights derived from particular inputs, whereas global XIAI grants a wider understanding

based on the entire predictive mechanism of the model [63]. By carefully investigating

XIAI in healthcare AI, our chapter aims to provide insights into the scientific and clinical

impact that can potentially be important for XIAI democratization in healthcare AI.

1.3.2 XIAI Paradigms

We introduce three distinct XIAI categories: model-, input- and output-based methods.

These definitions are conceptualized based on whether an XIAI method relies on in-

ternal/external modules (model) to perform XIAI, measures how the input features af-

fect model decisions or explains/interprets model behaviour through analyzing predic-

tion outcomes, respectively. Table 1.1 presents prevalent XIAI methods in healthcare,

and their categories and scopes [75].

Model-based XIAI methods focuses on describing how deep learning functions through

the use of internal or external modules, such as SHAP [76], LIME [77], and t-SNE [78],

offering important advantages by providing both global and local deep learning inter-

pretability options. These methods are designed to be transparent and accessible as
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XIAI category XIAI methods Explainable/Interpretable Local/Global

Model-based

Causal graph Interpretable Global
Logistic regression-based
parametric predictor Interpretable Global

Opinion aggregator Interpretable Global

Case-based reasoning Interpretable Global

Interactive classification Interpretable Global

LIME Explainable Local

MAXi Explainable Local

SHAP Explainable Local

SKET X Explainable Local

STEP Explainable Local

t-SNE Explainable Local

Input-based
Feature importance Interpretable Local

Knowledge base/graph Interpretable Local

Output-based

Attention Interpretable Local

Evidence-based Explainable Local

Sentiment intensity score Explainable Local

Table 1.1: Explainable and interpretable artificial intelligence (XIAI) methods, their cat-
egory, and scope

ready-to-use entities thus, potentially being able to democratize XIAI tools for a wide

audience [67]. Intuitive visualizations can to some extent elucidate complex model pre-

dictions, enhancing trust and facilitating the communication of findings. However, they

also have drawbacks, such as the instability of methods like LIME, which is prone to

minor data variations that can affect XAI reliability [74, 79]. Moreover, relying on sep-

arate modules for XIAI may be subject to misinterpretations, in case these modules have

inherent biases or limitations. Hence, despite their ease of use, they require technical
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expertise to evaluate any biases or implementation incompatibilities.

Input-based XIAI methods allow for deep learning model interpretation by lever-

aging specific input feature importance [80, 81, 82] and medical KG [83, 84, 85], to

discern how different inputs influence model decisions. These methods are intuitive

and accessible to computer scientists and AI researchers, due to their relative ease of

being combined with deep learning architectures. In that context, the incorporation of

"important features" or medical KGs into AI can enrich models with domain-specific in-

sights, which in turn allows them to interpret even complex medical concepts that are

common in clinical practice [83].

Input methods based on feature importance requires the incorporation of techniques

that are not readily transparent to non-technical medical professionals (end-users). Hence,

it may not always be straightforward for end-users to understand "how an important fea-

ture was derived and/or evaluated" [80, 86, 87]. The effectiveness of KG methods relies

on medical professionals with expertise and capacity to develop comprehensive medical

KG, posing a challenge if such expertise is scarce. Integrating medical KG into deep learn-

ing presents challenges in terms of ontology construction as well as knowledge extraction

[68], which are labor-intensive techniques.

Output-based XIAI methods, are important to interpret deep learning outputs and

can offer computational insights through mechanisms like attention [88]. Output-based

methods focus on explaining/interpreting deep learning models by uncovering how in-

ternal computations within deep learning converge to output decisions, which can be

mainly useful to computer scientists/ modellers. Nevertheless, attention mechanism-
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based IAI faces debates [89, 90, 91, 92, 93], as high attention weights do not necessarily

linearly correlate with model predictions [64]. This can lead to ambiguity while emphas-

izes the need for further research on IAI methods and their evaluation.

1.4 Research Objectives

Despite above advancements of deep learning, the deployment of foundation models

from general domains to healthcare presents substantial methodological and paradig-

matic challenges [94, 45, 95, 96]. The transition from general to healthcare-specific

contexts requires addressing fundamental differences and challenges in (i) representa-

tion learning, (ii) domain knowledge, (iii) data characteristics and (iv) explainability

and interpretability.

In general-domain foundation models, representation learning is typically optimised

for broad semantic understanding across diverse, large-scale datasets such as natural

language corpora or generic image collections. In healthcare, however, the nature of the

input data and the semantics of the task require representations that capture clinically

meaningful, fine-grained, and often subtle features [47, 81, 60]. For example, in medical

imaging, disease-specific patterns may be imperceptible in the latent spaces learned from

non-clinical data, while in clinical text, domain-specific terminology, abbreviations, and

context-dependent meanings require tailored embeddings [97]. Bridging this gap re-

quires developing methods to adapt or retrain representation spaces so that they capture

the physiological, pathological, and procedural nuances critical for reliable healthcare
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decision-making.

Foundation models from general domains typically lack embedded clinical domain

knowledge, which is crucial for meaningful interpretation and decision support in health-

care. Clinical reasoning relies not only on recognising patterns but also on understanding

causal relationships, disease progression, treatment effects, and medical guidelines [98].

This knowledge is often formalised in ontologies such as SNOMED CT, UMLS, or ICD-10

[99], and is implicitly embedded in clinicians’ diagnostic processes [60]. Without this

domain grounding, models risk making statistically plausible but clinically implausible

inferences, undermining trust and utility. Incorporating domain knowledge into found-

ation models, whether through knowledge graphs, structured annotations, or domain-

constrained pre-training, presents both methodological and computational challenges.

Achieving this integration is critical for ensuring that the model’s outputs align with es-

tablished medical reasoning and can be validated against clinical standards.

Healthcare data are distinctive, entailing high variability, scarcity, sensitivity, and het-

erogeneity [100, 101]. Clinical datasets often suffer from limited size, restrictive access

due to privacy regulations, and non-standard formats. In some cases, models trained on

public biomedical corpora (e.g., PubMed [59], MIMICs [99]) are evaluated on small or

narrowly scoped datasets, undermining generalizability. Data heterogeneity arises from

differences in patient populations, imaging protocols, language variations, and care set-

tings. For example, mental health datasets may underrepresent marginalized groups,

leading to biased outcomes [102]. These challenges hinder model transferability and

fairness. Addressing these issues requires novel approaches for data augmentation, bias
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mitigation, and privacy-preserving learning, ensuring that adapted foundation models

can perform robustly across real-world clinical settings.

These challenges necessitate novel frameworks that can effectively bridge the gap

between general-domain AI advancements and the specialized requirements of health-

care applications [103, 104]. This thesis identifies and addresses above critical chal-

lenges that represent significant barrier to effective the application and methodological

transition of deep learning from general to domain-specific. Firstly, the investigation

confronts the methodological limitations in modeling multi-label semantic relationships

within supervised contrastive learning frameworks, with particular emphasis on auto-

mated International Classification of Diseases (ICD) coding which is a multi-label clas-

sification task characterized by extreme-scale label spaces and pronounced long-tailed

distributions that remain inadequately addressed by conventional methodologies [105,

106]. Secondly, complex multi-hop reasoning across the spectrum from general to bio-

medical domains remains an intricate challenge in knowledge fusion [44], such as how

to optimally integrate prior knowledge embedded within foundation models, includ-

ing domain-specific knowledge, to enhance inferential capabilities. Thirdly, data in-

sufficiency and distributional imbalance in sensitive contexts remain persistent chal-

lenges. Data augmentation (DA) offers an effective approach; however, developing novel

augmentation strategies that advance beyond generalized content moderation toward

domain-specific techniques remains difficult. These techniques must be tailored to ad-

dress the nuanced requirements of mental health applications, where contextual sensit-

ivity is paramount.
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Through systematic examination of these interconnected challenges, this research

contributes substantive theoretical advancements and pragmatic implementation strategies

that facilitate the responsible and efficacious deployment of deep learning, and explain-

able & interpretable AI from general domain to healthcare.

1.5 Contributions of This Study

This study aims to systematically investigate the methodological and paradigmatic trans-

ition of deep learning and explainable & interpretable AI from general domain to health-

care. The contributions are summarized as follows:

• We introduce multi-label relations in multi-label supervised contrastive learning

(MSCL) and propose a novel contrastive loss function, termed Similarity-Dissimilarity

Loss, which dynamically re-weights based on the computed similarity and dissimil-

arity factors between positive samples and anchors, guided by multi-label relations.

Furthermore, We establish the theoretical foundations of our approach through rig-

orous mathematical analysis, demonstrating both the formal derivation, and the

upper and lower bounds of the weighting factor. Our method is applied from

multi-label classification to automatic medical coding. This work is available at

[107, 108].

• We propose a Prompting Explicit and Implicit knowledge (PEI) framework, which

employs CoT prompt-based learning to bridge explicit and implicit knowledge,
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aligning with human reading process for multi-hop QA. PEI leverages CoT prompts

to elicit implicit knowledge from LMs within the input context, while integrating

question type information to boost model performance. Moreover, we propose two

training paradigms to PEI, and extend our framework on biomedical domain QA

to further explore the fusion and relation of explicit and implicit biomedical know-

ledge via employing biomedical LMs to invoke biomedical implicit knowledge and

analyze the consistency of the domain knowledge fusion. This work is available at

[41, 109].

• We introduce a lexical-based imbalanced data augmentation (LIDA) for content

moderation, which an easy-to-implement and interpretable DA method that stra-

tegically leverages sensitive lexicons by incorporating them into negative samples

to transform these instances into positive examples. Through this mechanism, LIDA

facilitates the creation of balanced datasets, thus mitigating skewed distribution

challenges. Furthermore, we extend the application of our method to the mental

healthcare domain. This work is available at [110].

1.6 Thesis Outline

The sections of this thesis are organized as follows: Chapter 1 provides an overview of

background, motivation, objectives and contribution in this research; Chapter 2 presents

Similarity-Dissimilarity Loss for multi-label supervised contrastive learning; Chapter 3

describe PEI framework for multi-hop QA in general and biomedical domains; Chapter
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4 introduce LIDA in areas from content moderation to mental health; finally, Chapter 5

give a conclusion for this thesis.



Chapter 2

Similarity-Dissimilarity Loss for

Multi-label Supervised Contrastive

Learning

Supervised contrastive learning has achieved remarkable success by leveraging label in-

formation; however, determining positive samples in multi-label scenarios remains a crit-

ical challenge. In multi-label supervised contrastive learning (MSCL), relations among

multi-label samples are not yet fully defined, leading to ambiguity in identifying posit-

ive samples and formulating contrastive loss functions to construct the representation

space. To address these challenges, in this chapter, we: (i) first define five distinct

multi-label relations in MSCL to systematically identify positive samples, (ii) introduce a

novel Similarity-Dissimilarity Loss that dynamically re-weights samples through comput-

28
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ing the similarity and dissimilarity factors between positive samples and given anchors

based on multi-label relations, and (iii) further provide theoretical grounded proof for

our method through rigorous mathematical analysis that supports the formulation and

effectiveness of the proposed loss function. We conduct the experiments across both im-

age and text modalities, and extend the evaluation to automated medical coding. The

results demonstrate that our method consistently outperforms baselines in a compre-

hensive evaluation, confirming its effectiveness and robustness. Code is available at:

https://github.com/guangminghuang/similarity-dissimilarity-loss.

2.1 Introduction

Multi-label classification presents significant challenges due to its inherent label correla-

tions, extreme and sparse label spaces, and long-tailed distributions. For instance, in the

International Classification of Diseases (ICD) [106, 105], the presence of one label (e.g.,

"Pneumococcal pneumonia") may increase the probability of co-occurring labels (e.g.,

"fever" or "cough"). Furthermore, multi-label datasets frequently exhibit long-tailed dis-

tributions, where a small subset of labels occurs with high frequency while the majority

appear rarely. This imbalance typically results in models that perform adequately on com-

mon labels but underperform on infrequent ones [111, 112]. Additionally, the number of

potential label combinations increases exponentially with the number of labels, resulting

in heightened computational complexity and substantial memory requirements.

Supervised contrastive learning effectively utilizes label information to yield prom-

https://github.com/guangminghuang/similarity-dissimilarity-loss
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ising results in single-label scenarios [113]. However, identifying positive samples in

multi-label supervised contrastive learning (MSCL) remains a challenge. For example,

consider a set of images containing cats and puppies, wherein an anchor image depicts a

cat; in the single-label paradigm, positive and negative instances can be unambiguously

delineated based on their corresponding taxonomic annotations. Conversely, MSCL intro-

duces inherent classification ambiguity when determining whether an image containing

both cats and puppies should be designated as a positive or negative sample in relation

to the anchor.

A critical question arises: Should a sample be considered positive when its label set

partially overlaps with or exactly matches that of the anchor? Currently, three principal

strategies exist for identifying positive samples in multi-label scenarios [114]: (i) ALL

considers only samples with an exactly matching label set as positive; (ii) ANY identifies

samples with any overlapping class with the anchor as positive, and (iii) MulSupCon

[114] conceptually aligns with the ANY approach but treats each label independently,

thereby generating multiple distinct positive sets for individual anchor samples.

However, these methods have inherent limitations, since previous research has over-

looked the complicated multi-label relations among samples in MSCL. As illustrated in

Figure 2.1, we introduce five distinct set relations among samples to facilitate a more

comprehensive identification of positive sets. The ALL strategy exclusively considers re-

lation R2 while disregarding the potential contributions of R3, R4 and R5. Furthermore,

long-tailed distributions, when tail samples serve as anchors, the ALL strategy’s require-

ment for exact label matches significantly impedes these tail anchors from identifying ad-
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Anchor i

Sample p

Sample pAnchor i

Anchor i Sample p

Sample pAnchor i

Anchor i Sample p

Relation 3
Anchor: [ 1 0 1 1 0 0 ]
Sample: [ 1 0 0 0 1 1 ]

Relation 2
Anchor: [ 1 0 1 1 0 0 ]
Sample: [ 1 0 1 1 0 0 ]

Relation 1
Anchor: [ 1 0 1 1 0 0 ]
Sample: [ 0 1 0 0 1 1 ]

Relation 4
Anchor: [ 1 0 1 1 0 0 ]
Sample: [ 1 0 1 0 0 0 ]

Relation 5
Anchor: [ 1 0 1 1 0 0 ]
Sample: [ 1 0 1 1 1 1 ]

𝜴

𝜴

𝜴

𝜴

𝜴

Figure 2.1: Five distinct multi-label relations between samples and a given anchor. Ω
denotes a universe that contains all label entities. Here is an example with five different
relations between sample p and anchor i, where the labels are represented as one-hot
vectors.

equate positive samples within a limited batch size, potentially degenerating the method

to unsupervised contrastive learning in extreme scenarios [26, 115, 111]. Conversely,

both ANY and MulSupCon approaches treat relations R2, R3, R4, and R5 identically with

equivalent weights in contrastive loss functions, which constitutes a suboptimal approach

given the inherent differences among these relations. A detailed mathematical analysis

of these three methods is presented in Section 2.3.

To address these issues, we define multi-label relations and introduce a novel con-

trastive loss function. Our contributions are summarized as follows:
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1. To the best of our knowledge, we are the first to define multi-label relations in

MSCL, which facilitates the identification of complex relations in multi-label scen-

arios.

2. We introduce similarity and dissimilarity concepts in multi-label scenarios and pro-

pose a novel contrastive loss function, termed Similarity-Dissimilarity Loss, which

dynamically re-weights based on the computed similarity and dissimilarity factors

between positive samples and anchors, guided by multi-label relations.

3. We establish the theoretical foundations of our approach through rigorous math-

ematical analysis, demonstrating both the formal derivation, and the upper and

lower bounds of the weighting factor.

4. We conduct the experiments across both image and text modalities, and extend the

evaluation to medical domain. The results demonstrate that our method consist-

ently outperforms baselines in a comprehensive evaluation, confirming its effect-

iveness and robustness.

2.2 Related Work

2.2.1 Multi-label Supervised Contrastive Learning

Contrastive learning aims to learn a representation of data such that similar instances are

close together in the representation space, while dissimilar instances are far apart. Com-
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pared to self-supervised contrastive learning, such as SimCLR [26] and MoCo [115],

Khosla et al. [113] proposed supervised contrastive learning, which fully leverages

class annotation information to enhance representations within the contrastive learning

framework. Recent studies have extended supervised contrastive learning from single-

label to multi-label scenarios by exploiting the additional information inherent in multi-

label tasks. Zhang et al. [116] proposed a hierarchical multi-label representation learn-

ing framework specifically designed to utilize comprehensive label information while

preserving hierarchical inter-class relationships.

In subsequent research, Zhang and Wu [114] developed Multi-Label Supervised Con-

trastive Learning (MulSupCon), featuring a novel contrastive objective function that ex-

pands the positive sample set based on label overlap proportions. Similarly, the Jaccard

Similarity Probability Contrastive Loss (JSPCL) [117] employed the Jaccard coefficient

[118] to calculate label similarity between instances, sharing conceptual foundations

with MulSupCon [114] and MSC loss [119] that those approaches primarily focus on

similarity only, but ignoring dissimilarity.

Despite these advancements, the intricate relationships and dependencies between

multi-label samples have yet to be fully elucidated. To address this gap, we introduce

multi-label relations and formalize the concepts of similarity and dissimilarity. Inspired

by the idea of re-weighting of logit adjustment [120], focal loss [121] and class-balanced

loss [122], we leverage the similarity and dissimilarity factors to re-weight the contrast-

ive loss, thereby enhancing discriminative power in multi-label scenarios.
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2.2.2 Automated Medical Coding

Medical coding refers to the process of translating free-text medical documents into pre-

defined codes based on standardized coding systems, such as the International Clas-

sification of Diseases (ICD), which is the most widely adopted medical coding system

globally [106]. The ICD system employs a tree-like hierarchical structure, also known

as a medical ontology, to maintain the functional and structural integrity of the classi-

fication scheme. This standardization process enhances the accuracy and consistency of

medical information, facilitating its use across various medical services and insurance

claims processing [104].

However, medical coding remains a costly manual process that is prone to errors

[105]. Several primary challenges hinder effective medical text processing and auto-

mated coding [104, 106, 105]: (i) the presence of noisy and lengthy clinical notes, (ii)

the high dimensionality of medical codes, and (iii) the imbalanced distribution of medical

codes in Electronic Health Record (EHR) systems, commonly referred to as the long-tail

phenomenon.

AMC is predominantly conceptualized as a multi-label classification problem [123].

Mullenbach et al. [124] introduced the CAML model for explainable prediction of med-

ical codes from clinical text, which has become a benchmark for ICD coding on the MIMIC

datasets [100, 101]. Building on this foundation, numerous researchers [125, 126]

have investigated more sophisticated methodologies that incorporate external know-

ledge. Yuan et al. [127] extended this approach with their MSMN, which integrates
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synonym descriptions of ICD codes. Furthermore, several studies have focused on enhan-

cing code representations through ICD relation data. Notably, Vu et al. [128] proposed

the Label Attention Model (LAAT) and Nguyen et al. [129] developed the TwoStage

framework, both of which predict codes hierarchically to optimize final classification

outcomes.

The emergence of pre-trained language models (PLMs) has catalyzed research ef-

forts to leverage these advanced architectures for improving ICD coding performance

[125, 130]. These approaches enhance coding accuracy through the implementation

of contextual prompt-based prediction techniques and hierarchical encoding methodolo-

gies. Nevertheless, despite their promising results, these PLM-based approaches continue

to face significant challenges regarding computational efficiency and resource require-

ments.

2.3 Methods

In this section, we establish the preliminary notation and adhere to the conventions es-

tablished in [113] to maintain consistency throughout our analysis. Subsequently, we

examine the limitations of the ALL, ANY, and MulSupCon strategies and their corres-

ponding loss functions. We then introduce our formulation of multi-label relations and

present the Similarity-Dissimilarity Loss for MSCL. Furthermore, we provide a rigorous

mathematical analysis to establish the theoretical foundations of the proposed methodo-

logy.
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2.3.1 Preliminaries

Given a batch of N randomly sample/label pairs, {(xi,yi)}i=1,...,N , where xi denotes the

i-th sample and yi its corresponding labels. Here, yi = {y(l)i }l=1,...,L represents the multi-

labels of sample i, where y
(l)
i denotes the l-th label of sample i and L is the total number

of labels for sample i. After data augmentation, the training batch consists of 2N pairs,

{x̃j, ỹj}j=1,...,2N , where x̃2i and x̃2i−1 are two random augmentations of xi (i = 1, . . . , N)

and ỹ2i−1 = ỹ2i = yi. For brevity, we refer to this collection of 2N augmented samples as

a "batch" [113].

2.3.2 Multi-label Supervised Contrastive Loss

In MSCL, the formulation of supervised contrastive loss varies depending on the strategies

employed for determining positive samples relative to a given anchor. Let i ∈ I =

{1, . . . , 2N} denote the index of an arbitrary augmented sample. For the ALL strategy,

the positive set is defined as follows:

P(i) = {p ∈ A(i)|∀p, ỹp = ỹi} (2.1)

where A(i) ≡ I \ {i} 1.

Subsequently, the positive set for the ANY strategy is defined as follows:

P(i) = {p ∈ A(i)|∀p, ỹp ∩ ỹi ̸= ∅} (2.2)

1In contrastive learning, sample i is the anchor and is supposed to be excluded out of positive sets.
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In MSCL, the form of contrastive loss function for ALL and ANY is identical. For each

anchor i, the loss function is formulated as follows:

Li =
−1

|P(i)|
∑

p∈P(i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
(2.3)

Here, τ ∈ R+ represents a positive scalar temperature parameter [26], while zk =

Proj(Enc(x̃k)) ∈ RDP denotes the projected encoded representation [113].

For a given batch of samples, the loss function is formulated as:

L =
∑
i∈I

Li (2.4)

Zhang et la [114] propose an approach that considers each label ỹ(l)i independently,

forming multiple positive sets for a given anchor sample i. For each label ỹ(l)i ∈ ỹi, the

positive set for the MulSupCon is defined as:

P(i) = {p ∈ A(i)|∀p, ỹ(l)p ∈ ỹi} (2.5)

For each anchor i, the multi-label supervised contrastive loss for MulSupCon is rep-

resented as follows [114]:

Lmul
i =

∑
ỹ
(l)
p ∈ỹi

−1

|P(i)|
∑

p∈P(i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
(2.6)

For a given batch of samples, the loss function is formulated as:
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Lmul =
1∑
i |ỹi|

∑
i∈I

Lmul
i (2.7)

2.3.3 Multi-label Relations

As illustrated in Figure 2.1, we denote each Relation as R, where, e.g., R1 stands for

Relation 1. The subscripted notation pj signifies that sample p corresponds to the j-th

relation.

Let Ω denote a universal set containing all possible label entities. For any anchor i

and sample p, let S and T represent their respective label sets. The five fundamental

multi-label relations are defined as follows:

R1 : S ∩ T = ∅ (2.8)

R2 : S = T (2.9)

R3 : S ∩ T ̸= ∅,S ⊈ T , T ⊈ S (2.10)

R4 : S ⊋ T (2.11)

R5 : S ⊊ T (2.12)

Based on these relational definitions, we present a theoretical analysis of the limita-

tions inherent in the ALL, ANY, and MulSupCon methods, illustrated via an example in

Figure 2.1.
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In the ALL method, the optimization process aims to align with the mean represent-

ation of samples sharing identical label sets [114]. As the example that is demonstrated

in Figure 2.1, for a given anchor i, the positive set of ALL is:

P(i) = {p2}

In the ALL method, the sample pj in R2 is designated as positive sample, while those

in relations R3, R4 and R5 are excluded from consideration. Specifically, despite their

semantic similarity to anchor i that those overlap labels, the feature representations of

samples pj where j ∈ 3, 4, 5 are forced away from the anchor in the embedding space,

as they are treated as negative examples in the contrastive learning paradigm. Con-

sequently, the restricted size of the positive set |P(i)| results in a mean representation

susceptible to statistical variance. Furthermore, the ALL method may inadvertently treat

semantically related samples as negative instances in certain scenarios.

Lemma 1. (Vector Similarity Under Label Equivalence). Let i be an anchor and p be any

sample in the feature space, where ỹi, ỹp ∈ Rd denote their respective label vectors. If

ỹp = ỹi, then under the contrastive learning framework [26], their corresponding projected

representations zi, zp ∈ Rm satisfy zi ≃ zp.

As per ANY ’s definition, the positive set of the example in Figure 2.1 is:

P(i) = {p2, p3, p4, p5}



40 CHAPTER 2. SIM-DISSIM LOSS

By applying Lemma 1, the corresponding loss terms in Eq. (2.3) for samples in dif-

ferent relations exhibit approximate equality:

L(R2) ≈ L(R3) ≈ L(R4) ≈ L(R5)2

It is evident that R2, R3, R4 and R5 represent fundamentally distinct relations, each

characterized by different labels and semantic information. However, the ANY method

fails to differentiate these subtle label hierarchies, introducing substantial semantic am-

biguity. Moreover, in scenarios where samples predominantly share common classes, the

averaging mechanism disproportionately emphasizes these shared classes while dimin-

ishing the significance of distinctive features [114].

The MulSupCon method employs a positive sample identification mechanism analog-

ous to ANY, samples pj, where j ∈ 3, 4, 5 are designated as positive instances. However,

MulSupCon distinguishes itself by evaluating each label individually and forming mul-

tiple positive sets for a single anchor sample. This approach aggregates positive samples

based on the number of overlapping labels between the positive samples and the anchor,

thereby expanding the space of positive sets:

P(i) = {p2, p2, p2, p3, p4, p4, p5, p5, p5}

2The approximation notation is used instead of equality due to vector similarity in Lemma 1 and the
inherent uncertainty in deep learning’s non-linear transformations.
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Subsequently, the loss for pj in Eq. (2.6) are as follows by Lemma 1:

L(R2) ≈ L(R5) ̸= L(R3) ̸= L(R4)

For this example (see Figure 2.1), the MulSupCon successfully discriminates R3 and

R4 from R2 and R5; however, it fails to establish a distinction between R2 and R5.

This limitation arises primarily because MulSupCon exclusively considers the overlapping

regions (Similarity 3) between anchor i and sample p (i.e., The intersection of sets S and

T ), while disregarding the complementary non-intersecting domains (Dissimilarity 4).

That is to say, the similarity between positive samples and anchors is considers, but not

yet dissimilarity, which is one of critical information for representation learning in MSCL.

Leveraging the proposed multi-label relations, our theoretical analysis systematically

elucidates the limitations of existing methods and establishes a rigorous foundation for

investigating the profound exploration of concepts of similarity and dissimilarity, and the

design of contrastive loss function.

2.3.4 Similarity-Dissimilarity Loss

To address the aforementioned challenges, we introduce the concepts of similarity and

dissimilarity based on set-theoretic relations: (i) As depicted in Figure 2.1, Similarity

represents the intersection of sets (i.e., S ∩ T ), and (ii) we define Dissimilarity as the set

difference between T and the intersection S∩T with respect to sample p (i.e., T −S∩T ).
3The definition of Similarity is introduced in Section 2.3.4
4The definition of Dissimilarity is introduced in Section 2.3.4
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For each anchor i, we formulate the Similarity-Dissimilarity Loss as:

Lour
i =

−1

|P(i)|
∑

p∈P(i)

log
Ks

i,pKd
i,p exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
(2.13)

Here, we define Ks
i,p and Kd

i,p that quantify the Similarity and Dissimilarity factors for

a given anchor i and a positive sample p, respectively. These factors are formally defined

as follows:

Ks
i,p =

|ỹs
p|

|ỹi|
=

|S ∩ T |
|S|

(2.14)

and

Kd
i,p =

1

1 + |ỹd
p|

=
1

1 + |T \ (S ∩ T )|
(2.15)

where we define the following set-theoretic quantities:

• |ỹi| = |S| denotes the cardinality of the label space ỹi.

• |ỹs
p| = |S ∩ T | measures the cardinality of the intersection of sets S and T .

• |ỹd
p| = |T \ (S ∩ T )| represents the cardinality of the relative complement with

respect to sample p.

The product of Ks
i,p and Kd

i,p is termed as similarity-dissimilarity factor. Moreover, the

following relation holds:
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|ỹd
p| = |ỹp| − |ỹs

p| ≥ 0 (2.16)

where |ỹp| represents the cardinality of the label space associated with sample p.

Specifically, the Similarity-Dissimilarity Loss Loss reduces to Eq. (2.3), when the

following conditions are simultaneously satisfied:


|ỹi| = |ỹs

p|

|ỹd
p| = 0

(2.17)

Accordingly, our proposed loss function constitutes a generalized form of the basic

supervised contrastive loss (see Eq. (2.3)). In particular, Eq. (2.3) represents a particu-

lar case of the Similarity-Dissimilarity Loss. Moreover, our contrastive loss unifies both

single-label and multi-label supervised contrastive loss functions within a comprehensive

form and paradigm.

2.3.5 Case Analysis

Let us examine the behavior of our loss function through a detailed analysis of five dis-

tinct relational cases illustrated in Figure 2.1. Consider the following sequences of car-

dinalities:


|ỹs

pj
| = {0, 3, 1, 2, 3}j=1,2,3,4,5

|ỹd
pj
| = {3, 0, 2, 0, 2}j=1,2,3,4,5
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Applying these values to Eq. (2.14) and (2.15), we obtain:


Ks

i,p = {0, 1, 1
3
,
2

3
, 1}

Kd
i,p = {1

4
, 1,

1

3
, 1,

1

3
}

Consequently, the product of these measures yields:

Ks
i,pKd

i,p = {0, 1, 1
9
,
2

3
,
1

3
}

When evaluating Eq. (2.13), these distinct relations (R2 through R5) generate unique

loss values, establishing the following inequalities:

L(R2) ̸= L(R3) ̸= L(R4) ̸= L(R5)

The proposed loss function effectively discriminates among the five distinct relations

through a principled re-weighting mechanism, as formulated in Eq. (2.13), (2.14), and

(2.15), comparing to existing methods in MSCL.

Furthermore, in contrast to MulSupCon, the Similarity-Dissimilarity Loss preserves

the cardinality of positive sets while maintaining computational efficiency, as it requires

no additional computational overhead.
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2.3.6 Theoretical Analysis

The proposed loss function incorporates a weighting mechanism through the product of

factors Ks
i,p and Kd

i,p. By construction, the similarity-dissimilarity factor Ks
i,pKd

i,p is con-

strained to the closed interval [0, 1] across all possible relational configurations. Hence,

it is written as:

Ks
i,pKd

i,p ∈ [0, 1] (2.18)

For notational conciseness, let us denote the product of Similarity and Dissimilarity

factors across the five relations as {Ks
mKd

m}m=1,2,3,4,5.

Theorem 1. Let Ks
m and Kd

m be the Similarity and Dissimilarity operators, respectively, as

defined in Eq. (2.14) and (2.15). For the case m = 1, their product vanishes:

Ks
mKd

m = 0, when m = 1 (2.19)

Proof. Consider the case where m = 1. By definition, we have S ∩ T = ∅. This implies:

|ỹs
p| = |S ∩ T | = |∅| = 0

∴ Ks
1 =

|ỹs
p|

|ỹi|
=

0

|ỹi|
= 0
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Since Ks
1 = 0 and Kd

1 is finite by construction, we conclude:

Ks
1Kd

1 = 0 · Kd
1 = 0 (2.20)

Theorem 2. Consider the Similarity operator Ks
m and Dissimilarity operator Kd

m as defined

in Eq. (2.14) and (2.15). For the case m = 2, their product equals unity:

Ks
mKd

m = 1, when m = 2 (2.21)

Proof. Consider the case where m = 2. By hypothesis, we have S = T . This equality

implies:

Ks
2 =

|S ∩ T |
|S|

=
|S|
|S|

= 1

Kd
2 =

1

1 + |T \ (S ∩ T )|
=

1

1 + |∅|
= 1

where we have used the fact that T \ (S ∩ T ) = ∅ when S = T . Thus, we conclude:

Ks
2Kd

2 = 1 · 1 = 1 (2.22)

Theorem 3. Let Ks
m and Kd

m be the Similarity and Dissimilarity operators as defined in Eq.



2.3. METHODS 47

(2.14) and (2.15), respectively. For m ∈ {3, 4, 5}, their product is strictly bounded between

0 and 1:

0 < Ks
mKd

m < 1 (2.23)

Proof. Consider m ∈ {3, 4, 5}. Under these cases, we have:

S ∩ T ̸= ∅ (2.24)

S ≠ T (2.25)

We first establish the strict positivity. Given |S| > 0 and conditions (2.24)-(2.25), we

have:

Ks
m =

|S ∩ T |
|S|

> 0

Kd
m =

1

1 + |T \ (S ∩ T )|
> 0

For the upper bound, we consider three cases:

Case 1 (m = 3): By Eq. (2.10), we have three conditions: S ∩ T ̸= ∅, S ⊈ T , and

T ⊈ S. These conditions lead to:

|S ∩ T | < |S| =⇒ Ks
3 < 1

|T \ (S ∩ T )| > 0 =⇒ Kd
3 < 1

Therefore, Ks
3Kd

3 < 1.
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Case 2 (m = 4): When m = 4, by Eq. (2.11), we have S ⊇ T . This subset relation

implies:

Ks
4 =

|S ∩ T |
|S|

=
|T |
|S|

< 1

Kd
4 =

1

1 + |T \ (S ∩ T )|
=

1

1 + |∅|
= 1

where the strict inequality Ks
4 < 1 follows from |T | < |S| (since S ⊋ T ), and Kd

4 = 1 is a

consequence of T \ (S ∩ T ) = ∅ when S ⊋ T . Therefore:

Ks
4Kd

4 = Ks
4 · 1 = Ks

4 < 1

Case 3 (m = 5): When m = 5, by Eq. (2.12), we have S ⊊ T . This subset relation

implies:

Ks
5 =

|S ∩ T |
|S|

=
|S|
|S|

= 1

Kd
5 =

1

1 + |T \ (S ∩ T )|
=

1

1 + |T \ S|
< 1

where Ks
5 = 1 follows from the fact that S ∩ T = S when S ⊊ T . The strict inequality
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Kd
5 < 1 holds because:

S ⊊ T =⇒ |T \ S| > 0

=⇒ 1 + |T \ S| > 1

=⇒ 1

1 + |T \ S|
< 1

Therefore, we can conclude:

Ks
5Kd

5 = 1 · Kd
5 = Kd

5 < 1

Combining the results with Propositions 1 and 2, we obtain complete ordering for all

m ∈ {1, 2, 3, 4, 5}. The products Ks
mKd

m satisfy:

0 = Ks
1Kd

1 < Ks
mKd

m < Ks
2Kd

2 = 1, m ∈ {3, 4, 5} (2.26)

Based on Theorem 1, 2, and 3, the product of weighting factors Ks
i,p and Kd

i,p is

bounded within the interval [0, 1], which aligns with fundamental principles of loss func-

tions and set-theoretic relations. The non-negative lower bound adheres to the essen-

tial property of loss functions being strictly positive [1]. Given that our proposed loss

function generalizes the supervised contrastive loss [113] and incorporates multi-label

relation definitions, the upper bound naturally equals 1. Furthermore, this mathematical
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framework demonstrates that our proposed contrastive loss can dynamically adjust the

weighting factor within [0, 1], effectively differentiating sample features with rigorous

mathematical justification for both the formulation and efficacy of the loss function.

Theorem 4. Let i ∈ I be a fixed anchor sample, and let p3, p4 ∈ P(i) be positive samples

corresponding to relations R3 and R4, respectively. Suppose their label spaces satisfy the

cardinality constraint:

|ỹp3| = |ỹp4 | (2.27)

Then, the product of similarity and dissimilarity operators satisfies the strict inequality:

Ks
4Kd

4 > Ks
3Kd

3 (2.28)

Proof. Let us establish the strict inequality Ks
4Kd

4 > Ks
3Kd

3 through direct comparison.

From definitions (2.14) and (2.15), we have:

Ks
4Kd

4 =
|ỹp4|
|ỹi|

> Ks
3Kd

3 =
|ỹp3 − ỹd

p3
|

|ỹi|
· 1

1 + |ỹd
p3
|

⇒
|ỹp4|(1 + |ỹd

p3
|)

|ỹi|(1 + |ỹd
p3
|)

>
|ỹp4 − ỹd

p3
|

|ỹi|(1 + |ỹd
p3
|)

⇒

|ỹp4|(1 + |ỹd
p3
|) > |ỹp3 − ỹd

p3
|
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By the cardinality constraint (2.27) in the theorem:

|ỹp3|(1 + |ỹd
p3
|) > |ỹp3 − ỹd

p3
|

where the strict inequality follows from the fact that for any positive real numbers a, b >

0:

a(1 + b) > a− b

This inequality holds trivially, thereby establishing the original claim Ks
4Kd

4 > Ks
3Kd

3.

Theorem 5. Let i ∈ I be a fixed anchor sample, and let p3, p5 ∈ P(i) be positive samples

corresponding to relations R3 and R5, respectively. Suppose:

|ỹd
p5
| ≤ |ỹd

p3
| (2.29)

Then, the product of Similarity and Dissimilarity operators satisfies the strict inequality:

Ks
5Kd

5 > Ks
3Kd

3 (2.30)

Proof. From definitions (2.14) and (2.15), we have:

Ks
3Kd

3 =
|ỹp3 − ỹd

p3
|

|ỹi|
· 1

1 + |ỹd
p3
|

Ks
5Kd

5 =
1

1 + |ỹd
p5
|
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Taking the ratio:

Ks
5Kd

5

Ks
3Kd

3

=
|ỹi|(1 + |ỹd

p3
|)

|ỹp3 − ỹd
p3
|(1 + |ỹd

p5
|)

By the properties of cardinality and set difference:

|ỹp3 − ỹd
p3
| ≤ |ỹi|

Given the constraint (2.29), |ỹd
p5
| ≤ |ỹd

p3
|, we have:

|ỹi|(1 + |ỹd
p3
|)

|ỹp3 − ỹd
p3
|(1 + |ỹd

p5
|)

> 1

Therefore, Ks
5Kd

5 > Ks
3Kd

3.

Theorem 4 and 5 establish strict dominance relations between relation types R3,

R4, and R5, demonstrating that Ks
4Kd

4 > Ks
3Kd

3 when |ỹp3| = |ỹp4| and Ks
5Kd

5 > Ks
3Kd

3

when |ỹd
p5
| ≤ |ỹd

p3
|. These inequalities, proved through careful mathematical derivation

using set cardinality properties and fundamental principles of real analysis, reveal a well-

defined hierarchical structure in the weighting factors. This hierarchical relations ensures

that our loss function appropriately modulates the contribution of different relation types

during the learning process, providing theoretical guarantees for the effectiveness of our

proposed approach in capturing complex relations within the data.

Our theoretical analysis establishes a comprehensive mathematical foundation for the

proposed loss function through five key theorems. These theoretical guarantees, derived

through rigorous set-theoretic analysis, demonstrate that our loss function effectively
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modulates the contribution of different relation types while maintaining proper math-

ematical bounds, thereby providing a solid theoretical foundation for its application in

multi-label contrastive learning.

2.4 Experiments

The previous theoretical analysis establishes a rigorous mathematical foundation for our

method, validating both the formulation and efficacy of the proposed loss function. In

our experimental evaluation, we focus on assessing the effectiveness and robustness

of Similarity-Dissimilarity Loss in the MSCL framework. Rather than comparing with

other multi-label classification approaches, we emphasize that Similarity-Dissimilarity

Loss primarily aims to enable models to learn generalizable and transferable features

that enhance performance across diverse downstream tasks (classification, detection,

and clustering) instead of optimizing for any specific task. We conduct the experiments to

compare Similarity-Dissimilarity Loss with current contrastive loss functions (ALL, ANY,

and MulSupCon) in a comprehensive evaluation, considering: (i) Data modality: im-

age and text data; (ii) Domain-specific: general text data (AAPD) and medical domain

(MIMIC III and IV); (iii) Data distribution: full setting (extreme long-tailed distribution)

and top-50 frequent labels setting; (iv) ICD code versions: ICD-9 and ICD-10, and (v)

Models: ResNet-50, RoBERTa-based, Llama-3.1-8B, and PLM-ICD.



54 CHAPTER 2. SIM-DISSIM LOSS

Dataset Train Val Test Total # labels Avg # labels

MS-COCO 82.0k 20.2k 20.2k 80 2.9
PASCAL 5.0k 2.5k 2.5k 20 1.5
NUS-WIDE 125.4k 41.9k 41.9k 81 2.4

AAPD 37.8k 6.7k 11.3k 54 2.4

MIMIC-III-Full 47,723 1,631 3,372 8,692 15.7
MIMIC-III-50 8,066 1,573 1,729 50 5.7
MIMIC-IV-ICD9-Full 188,533 7,110 13,709 11,145 13.4
MIMIC-IV-ICD9-50 170,664 6,406 12,405 50 4.7
MIMIC-IV-ICD10-Full 110,442 4,017 7,851 25,230 16.1
MIMIC-IV-ICD10-50 104,077 3,805 7,368 50 5.4

Table 2.1: Statistics of datasets.

2.4.1 Datasets and Metrics

To rigorously evaluate the efficacy of our proposed loss function, we conducted compre-

hensive experiments across three distinct data modalities: visual data, textual data, and

specialized medical corpus data (MIMIC datasets). The MIMIC datasets are particularly

noteworthy for their exceptionally large label space and pronounced long-tailed distri-

butions [75]. This long-tailed characteristic, which is especially prevalent in multi-label

classification scenarios, facilitates a robust assessment of the performance of our loss

function across heterogeneous data distributions. Comprehensive statistical analyses of

all experimental datasets are presented in Table 2.1.

• MS-COCO (Microsoft Common Objects in Context) [131] consists of over 330,000

images annotated across 80 object categories, providing rich semantic information

for object detection, segmentation, and captioning tasks that has significantly ad-
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vanced computer vision research since its introduction by Microsoft.

• PASCAL VOC [132] contains 9,963 natural images with standardized annotations

spanning 20 object categories, enabling rigorous evaluation of classification, detec-

tion, and segmentation algorithms in computer vision.

• NUS-WIDE [133] is a large-scale web image collection comprising approximately

269,000 Flickr images annotated with 81 concept categories and user tags, widely

used as a benchmark for multi-label image classification.

• AAPD (Arxiv Academic Paper Dataset) [134] is a text corpus containing 55,840

scientific paper abstracts from arXiv with multi-label annotations across various

subject categories, designed specifically for benchmarking multi-label text classific-

ation and document categorization algorithms.

• MIMIC-III 5 [100] includes records labeled with expert-annotated ICD-9 codes,

which identify diagnoses and procedures. We adhere to the same splits as in previ-

ous works [124], employing two settings: MIMIC-III-Full, which includes all ICD-9

codes, and MIMIC-III-50, which includes only the 50 most frequent codes.

• MIMIC-IV 6 [101] contains records annotated with both ICD-9 and ICD-10 codes,

where each code is subdivided into sub-codes that often capture specific circum-

stantial details. we follow prior studies [99] and utilize four settings: MIMIC-IV-

ICD9-Full, MIMIC-IV-ICD9-50, MIMIC-IV-ICD10-Full, and MIMIC-IV-ICD10-50.

5We have been granted access to MIMIC-III Clinical Database (v1.4)
6We have been granted access to MIMIC-IV (v2.2)
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Metrics. Consistent with prior research [124, 99], we report macro/micro-AUC,

macro/micro-F1, and precision at K (P@K) metrics on MIMIC datasets, where K = {5, 8}

for different settings. Moreover, micro/macro-F1 and mAP are used for image datasets

following [115, 114, 119].

2.4.2 Baseline Loss Functions and Encoders

This study evaluates the proposed Similarity-Dissimilarity Loss in comparison with three

established baseline loss functions: (i) ALL, (ii) ANY, and (iii) MulSupCon [114], all

implemented within the MSCL framework.

For experimental evaluation, we employ modality-specific encoder architectures tailored

to each data type. For image data, ResNet-50 [7] serves as the encoder architecture,

consistent with established methodologies [115, 26, 114]. For textual data, we utilize

pre-trained large language models (LLMs), specifically RoBERTa-base [135] and Llama-

3.1-8B [136] with Low-Rank Adaptation (LoRA) [30]. Additionally, for the specialized

task of ICD coding on MIMIC datasets, we implement PLM-ICD [137], a model specific-

ally designed for ICD coding using LLMs.

2.4.3 Implementation Details

Within the MSCL framework, we implement a two-phase training method as established

by Khosla [113]: (i) encoder training, wherein the model learns to generate vector rep-

resentations that maximize similarity between instances of the same class while distin-
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guishing them from other classes; and (ii) classifier training, which utilizes the trained

encoder and freeze it to train the classifier.

In the representation training, we use a standard cosine learning rate scheduler with

a 0.05 warm-up period and set the temperature τ = 0.07. The projection head comprises

two MLP layers with ReLU activation function and employs contrastive loss function for

the training, where the projected representation zk = Proj(Enc(x̃k)) ∈ RDP . Here

h = Enc(x̃k) denotes the encoded feature vectors and the projection dimension DP =

256. For subsequent classifier training, the projection head is removed, a linear layer

is appended to the frozen encoder, and binary cross-entropy (BCE) loss is utilized for

optimization.

For image data, we employ ResNet-50 using stochastic gradient descent (SGD) with

momentum. The input images are set up at a resolution of 224×224 pixels. For text data,

RoBERTa-base and Llama-3.1-8B serve as backbone encoders implemented via Hugging-

face platform [138]. RoBERTa configures with a dropout rate of 0.1 and AdamW op-

timizer with a weight decay of 0.01, exempting bias and LayerNorm from weight decay.

Compared with full-parameter fine-tuning, we employ LoRA [30] to efficiently fine-tune

large model Llama. LoRA configures with the low-rank dimension r = 16, scaling factor

α = 32 and dropout as 0.1. There is no KV cache to save memory during training. To

enhance computational efficiency, BFloat16 precision is used for the training. The hyper-

parameters and detailed configuration are shown our code 7.

7https://github.com/guangminghuang/similarity-dissimilarity-loss

https://github.com/guangminghuang/similarity-dissimilarity-loss
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Figure 2.2: Comparison of performance improvements between Similarity-Dissimilarity
Loss and MulSupCon.

2.5 Results and Analysis

2.5.1 Evaluation on Image

The experimental results in Table 2.2 demonstrate that our proposed loss function out-

performs baselines across all metrics, including micro-F1, macro-F1, and mAP, on all im-

age datasets (MS-COCO, PASCAL, and NUS-WIDE). Compared to MulSulCon, Similarity-

Dissimilarity Loss achieves significant improvements of 2.07/3.78/1.51 in Micro-F1, Macro-

F1, and mAP on MS-COCO and 1.47/3.13/4.27 on NUS-WIDE.

Figure 2.2 illustrates the comparison between Similarity-Dissimilarity Loss and MulSup-
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Figure 2.3: Comparison standard deviation of image datasets on micro-F1, macro-F1 and
mAP metrics.

Con as measured by micro- and macro-F1 metrics. The results indicate that our method

yields substantially greater improvements in macro-F1 compared to micro-F1 across all

image datasets. Specifically, macro-F1 increases by 5.7% on MS-COCO and 5.8% on

NUS-WIDE, whereas micro-F1 exhibits more modest improvements of 2.9% and 2.0%,

respectively. Macro-F1 assigns equal importance to each class regardless of its frequency,

rendering it particularly appropriate for evaluating performance on imbalanced data-

sets where minority class prediction accuracy is critical [1, 111]. In contrast, micro-F1

places more considerable weight on classes with more samples, making it more appro-

priate when larger classes should have a more potent influence on the overall score
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[1, 121]. Multi-label classification inherently faces more pronounced challenges with

long-tailed distributions than single-label classification due to exponential output space

complexity, intricate label co-occurrence patterns, and high annotation costs [111]. The

observed superior improvement in macro-F1 metrics provides compelling evidence that

our method demonstrates exceptional efficacy in addressing long-tailed distribution chal-

lenges, a capability particularly crucial in multi-label scenarios.

However, on the PASCAL dataset, our method demonstrates mere marginal improve-

ments, with gains of 0.88/0.84/0.17 in micro/macro-F1/mAP, respectively. This limited

enhancement can be attributed to the structural characteristics of PASCAL, wherein the

average number of labels per instance is approximately 1.5 (as detailed in Table 2.1),

causing the task to approximate single-label classification, particularly when the batch

size is limited [113]. Consequently, loss functions specifically designed for multi-label

scenarios exert minimal influence on model performance under these conditions. As

Audibert et al. [119] have demonstrated, the cardinality of the label space constitutes a

significant determinant of model efficacy within MSCL .

Furthermore, Figure 2.3 reveals that the standard deviation across four methods for

PASCAL equals 0.58/0.64/0.27 in micro/macro-F1/mAP, which are considerably lower

than the corresponding standard deviations observed for the MS-COCO and NUS-WIDE.

This statistical finding suggests that the efficacy of specialized multi-label loss functions

diminishes significantly when the average label cardinality per instance approaches 1 in

MSCL. This finding further corroborates our theoretical analysis and hypothesis in the

Section 2.3, wherein Similarity-Dissimilarity Loss degenerates to single-label scenarios
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(see Eq. (2.17)).

2.5.2 Evaluation on Text

We further evaluate our method on general text data, and the results demonstrate that

our proposed loss function consistently surpasses baseline methods for both RoBERTa

and Llama models across all metrics on the AAPD dataset (See Table 2.3). In contrast to

the significant performance gains observed on image data, Similarity-Dissimilarity Loss

achieves more modest enhancements of 0.90/1.79 in micro/macro-F1 scores on RoBERTa,

and 0.89/1.84 on Llama. This attenuated performance differential can be attributed to

the extensive knowledge already encoded within LLMs through their comprehensive pre-

training paradigms [139].

Moreover, as illustrated in Figure 2.4, performance variations of contrastive loss func-

tions for MSCL on both RoBERTa and Llama models are relatively minimal. Specific-

ally, the standard deviations in micro-F1 are 0.80 and 0.79 on RoBERTa and Llama, re-

spectively, while the corresponding standard deviations for macro-F1 metrics are 1.41

and 1.42. Unlike image classification in MSCL paradigm, performance improvements in

text classification are predominantly attributable to the intrinsic representational cap-

abilities of model architecture of LLMs. Consequently, while fine-tuning the pre-trained

weights of LLMs during the contrastive learning phase can yield marginal performance

improvements, this methodological approach demonstrates substantially greater efficacy

for visual classification tasks compared to textual classification.
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Method
RoBERTa Llama

Micro-F1 Macro-F1 Micro-F1 Macro-F1

ALL 73.23 59.41 74.32 60.47
ANY 72.31 58.55 73.41 59.63
MulSupCon 73.64 60.52 74.72 61.58
Ours 74.54 62.31 75.61 63.42

Table 2.3: Results on AAPD Dataset. We compare our proposed Similarity-Dissimilarity
Loss with baselines on general text data using RoBERTa-based and Llama-3.1-8B models.
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Figure 2.4: Comparison of RoBERTa and Llama across micro-F1 and macro-F1 on AAPD
Dataset.

2.5.3 Evaluation on Medical Domain

We extend and evaluate our method on the medical domain, specifically for ICD coding.

The results in Tables 2.4 and 2.4 demonstrate that our proposed loss function consist-

ently surpasses baselines across all metrics in a comprehensive evaluation, considering:

(i) Diverse data distribution: full setting (long-tailed distribution) and top-50 frequent

labels setting; (ii) Model architectures: RoBERTa, LLaMA, and domain-specialized PLM-
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ICD; and (iii) ICD code versions: ICD-9 and ICD-10. The consistent performance im-

provements observed across these multidimensional evaluation criteria provide substan-

tial empirical evidence for the efficacy and generalizability of our proposed approach.

In the full setting, macro-F1 performance exhibits considerably lower compared to

micro-F1, whereas the top-50 setting achieves approximately equal macro and micro-F1

scores. This disparity indicates that extreme long-tailed distributions remain challenging

for both the MSCL framework and our method, despite the improvements achieved.

Table 2.4 reports that our method achieves superior results on MIMIC-IV-ICD9-Full

compared to MIMIC-III-Full, despite both datasets employing identical ICD-9 coding

standards. This marked performance differential can be attributed primarily to the

more extensive training corpus available in MIMIC-IV-ICD9-Full (see in Table 2.1). While

MIMIC-IV-ICD10-Full similarly comprises a substantial volume of clinical data, its con-

siderably expanded label taxonomy introduces increased representational sparsity and

presents additional computational and methodological challenges [99]. Moreover, the

MIMIC-IV-ICD10-50 dataset demonstrates consistent performance metrics in this restric-

ted setting, providing empirical evidence that label space dimensionality constitutes a

critical determinant of model training efficacy.

Comparative analysis of model performance reveals that Llama significantly out-

performs RoBERTa across evaluation metrics, a finding attributable to scaling laws of

LLMs and the extensive knowledge and training corpus during the pre-training phase

[40, 140]. Although LLMs demonstrate considerable efficacy in domain-specific ap-

plications [44], our results indicate that PLM-ICD consistently surpasses both RoBERTa
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and Llama across all experimental configurations. This hierarchical performance pattern

aligns with theoretical expectations, as PLM-ICD incorporates architecture and training

paradigms specifically optimized for automated ICD coding tasks [137]. Despite the

increasing generalization capabilities of foundation models in diverse applications, signi-

ficant questions persist regarding their capacity to achieve state-of-the-art performance

on highly specialized tasks, particularly within the medical domain, without substantial

domain-specific training or parameter-efficient adaptation techniques [141]. Contem-

porary research on foundation model applications in biomedical domain has predomin-

antly relied on specialized adaptation methods tailored to specific domain requirements.

The comparative advantages of domain-specific pre-training becomes particularly evid-

ent following the development of initial foundation model architectures, as exemplified

by widely implemented medical models such as Med-PaLM [53] and Med-Gemini[141].

Therefore, compared with the enhancements via the contrastive training phase, the

intrinsic knowledge within LLMs contributes substantially more to ICD coding efficacy. In

particular, domain-specific knowledge representations emerge as critical factors of LLMs

performance in medical applications.

2.6 Conclusion

Multi-label classification poses a compelling challenge in applying contrastive learning

due to the diverse ways of defining relations between multi-label samples. In this chapter,

we introduce multi-label relations and formalize the concepts of similarity and dissim-
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ilarity. Then, we propose a Similarity-Dissimilarity Loss for MSCL, which dynamically

re-weights the loss by the combination of similarity and dissimilarity factors. We provide

theoretical grounded proof for our method through rigorous mathematical analysis that

supports the formulation and effectiveness of the proposed loss function. Then, We

conduct a comprehensive experiments, considering data modality, domain-specific, data

distribution and backbone models to further evaluation our method. The results show

that our proposed loss outperforms the baselines (ALL, ANY and MulSupCon) across all

the configurations and confirm the effectiveness and robustness of our method in image,

text and medical domain.



Chapter 3

Prompting Explicit and Implicit

Knowledge for Multi-hop QA

Language models (LMs) utilize chain-of-thought (CoT) to imitate human reasoning and

inference processes, achieving notable success in multi-hop question answering (QA).

Despite this, a disparity remains between the reasoning capabilities of LMs and humans

when addressing complex challenges. Psychological research highlights the crucial in-

terplay between explicit content in texts and prior human knowledge during reading.

However, current studies have inadequately addressed the relationship between input

texts and the pre-training-derived knowledge of LMs from the standpoint of human cog-

nition. In this chapter, we propose a Prompting Explicit and Implicit knowledge (PEI)

framework, which employs CoT prompt-based learning to bridge explicit and implicit

knowledge, aligning with human reading comprehension for multi-hop QA. PEI lever-

ages CoT prompts to elicit implicit knowledge from LMs within the input context, while

69
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integrating question type information to boost model performance. Moreover, we pro-

pose two training paradigms to PEI, and extend our framework on biomedical domain

QA to further explore the fusion and relation of explicit and implicit biomedical know-

ledge via employing biomedical LMs in the Knowledge Prompter to invoke biomedical

implicit knowledge and analyze the consistency of the domain knowledge fusion. The

experimental results indicate that our proposed PEI performs comparably to the state-

of-the-art on HotpotQA, and surpasses baselines on 2WikiMultihopQA and MuSiQue.

Additionally, our method achieves significant improvement compared to baselines on

MEDHOP. Ablation studies further validate the efficacy of PEI framework in bridging

and integrating explicit and implicit knowledge.

3.1 Introduction

Multi-hop question answering (QA) poses a significant challenge, requiring sophisticated

reasoning and inference across multiple sources to derive a coherent and accurate an-

swer [142]. Chain-of-thought (CoT) mimics human reasoning by generating a series of

intermediate natural language steps that guide the model toward the final answer for

complex reasoning tasks. Recent studies utilizing CoT prompt-based learning on lan-

guage models (LMs) have shown considerable effectiveness in tackling multi-hop QA

[143, 144, 145].

Despite the advancements in LMs, there remains a significant gap between their reas-

oning abilities and human cognitive processes in addressing intricate problems. Current
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research has yet to adequately investigate the interplay between input texts and the pre-

training-derived knowledge of LMs, particularly through the lens of cognitive science.

In studies of human reading comprehension, Smith [146] suggests that information

is often reiterated during reading, resulting in redundancies at various linguistic levels,

including letter-to-letter, word-to-word, sentence-to-sentence, and text-to-text. As a res-

ult, readers are able to reduce their dependence on explicit information details within

the text by integrating external sources of information, such as world knowledge [147].

According to the findings of Clarke and Silberstein [148], readers engage in reading

comprehension and question-answering process while reading, drawing upon both the

explicit information conveyed in the text and their pre-existing language knowledge,

background knowledge, and world knowledge derived from that explicit information.

Certain studies have pointed out that a critical factor in reading ability is what the reader

brings to the text, or what is generally referred to as prior knowledge [149, 150, 151].

Related experimental findings further reveal a significant positive correlation between

human reading comprehension and prior knowledge [151].

For instance, as depicted in Figure 3.1, consider the question "Was Morris Lee born

in the capital of the Democratic Republic of the Congo?". A human reader would retrieve

relevant information from the provided passages and, based on the auxiliary verb "was"

in the yes-no question, infer the answer "yes" or "no" drawing upon linguistic knowledge

(as part of implicit knowledge), even in the absence of information regarding the capital

of Congo.

Therefore, an inherent and inseparable connection prevails between the explicit in-
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Implicit 
Knowledge

Was Morris Lee born in the capital of Democratic 
Republic of the Congo ? 

Question: 

Advanced Prediction: YES/NO

Morris Lee was born in Kinshasa 

Kinshasa is the capital of 
Democratic Republic of the Congo

Passage 1:

Passage 2:

YES

Kinshasa

Correct prediction

Incorrect predictionRetrieve in the passages

Figure 3.1: An example of the significance of implicit knowledge in reading comprehen-
sion.

formation within text context and pre-existing prior knowledge of human being. The

prior knowledge lessens the dependence on explicit details, thus reducing the necessities

for redundant information during inference and reasoning. In addition, the harmonious

fusion of explicit information and prior knowledge improve the effectiveness of reading

process, contributing to enhanced comprehension and deeper engagement.

Building on insights from the theories of human cognition mention above, we in-

troduce a novel framework, referred to as Prompting Explicit and Implicit knowledge

(PEI), to address the challenges multi-hop QA. In this framework, readers are analogized

to LMs, where their prior knowledge represents implicit knowledge gained through pre-

training, and the explicit information within passages serves as the input context con-

veying explicit knowledge. While acknowledging the inherent differences between LMs

and and human beings, and recognizing the limitations in directly considering readers
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as LMs, Jin and Rinard [152] argue that LMs surpass beyond mere "stochastic parrots"

[153], as they possess the capacity to acquire meaningful semantic information during

pre-training. Complex question answering encompasses high-complexity, non-factoid in-

quiries that require multi-step decomposition and integration of multiple information

sources. The decomposition process is fundamental to this problem-solving paradigm, as

it transforms initially intractable complex questions into manageable subproblems. Fur-

thermore, as evidenced in recent chain-of-thought approaches and prompt-based meth-

odologies for LLMs, these explicit reasoning steps not only enhance the models’ problem-

solving capabilities but also render the solutions auditable, verifiable, and interpretable

when errors occur [154, 155].

To make use of these knowledge sources, we utilize CoT prompting to capture explicit

knowledge and activate implicit knowledge. Intuitively, this approach effectively bridges

these knowledge types, thereby enhancing the reasoning performance of PEI framework

for multi-hop QA. Additionally, PEI reduces dependency on the explicit information de-

tails contained within input passages by enabling the selective removal of irrelevant or

"redundant" information unrelated to the questions, aligning with Smith [146]’s theory.

To further demonstrate the significant role of implicit knowledge in boosting the pro-

posed framework’s performance, we conduct ablation studies, which corroborates our

hypothesis (refer to Section 3.5.4).

As illustrated in Figure 3.2, our proposed PEI framework consists of three main com-

ponents: (i) The Type Prompter is designed to identify and learn the weights of reas-

oning types for given questions; (ii) The Knowledge Prompter acquires implicit know-
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Figure 3.2: The overview of our proposed PEI framework for multi-hop QA. The right
green dashed block is the Type Prompter; the top blue dashed block refers to the Know-
ledge Prompter; and the bottom orange dashed block is the Unified Prompter.

ledge by leveraging explicit knowledge, which employs an encoder-decoder foundation

language module, mirroring human reading comprehension based on psychological cog-

nition theories; (iii) The Unified Prompter fuses explicit, implicit knowledge and ques-

tion types for multi-hop QA, which uses the same foundation model as Type Prompter.

Moreover, our proposed framework offers flexibly replace the foundation models to adapt

to different requirements, such as those specific to the biomedical domain or constraints

related to computational cost. Hence, We propose two training paradigms to PEI frame-

work, which employs various sizes of foundation LMs (i.e., Llama 3.1-8B and ELECTRA).

Tackling questions in the biomedical field frequently requires multi-step reasoning.



3.1. INTRODUCTION 75

For example, a clinician might inquire, "Which tests are required for patients exhibiting

[specific symptoms]?" To answer, models must: (i) deduce the possible diseases involved

and (ii) determine the appropriate tests for differential diagnosis. To address these chal-

lenges, we extend our proposed PEI framework to biomedical domain for further ex-

ploring the fusion and connection of explicit and implicit biomedical knowledge in ad-

dition to general domain. Biomedical QA significantly deviates from general QA in con-

tent, scope, and methodology because of the complex nature of biomedical information

[156, 75]. Zweigenbaum [157] was the first to highlight the distinctive characteristics of

Biomedical QA compared to general domain QA. Biomedical QA deals with specific tech-

nical terms (e.g., "pharmacokinetics," "tyrosine kinase inhibitors" and "monoclonal an-

tibodies") and entails the comprehension of detailed, evidence-based information, such

as the interpretation of clinical trials and understanding action mechanisms. Addition-

ally, biomedical information is frequently incomplete, ambiguous, or subject to constant

change. Therefore, it is essential to comprehensively evaluate our proposed framework

within the biomedical domain to ensure its effectiveness and reliability. We utilize a bio-

medical encoder-decoder foundation model within the Knowledge Prompter to harness

specialized implicit knowledge, which is then integrated into the Unified Prompter with

explicit knowledge derived from the provided texts. Moreover, we examine the consist-

ency of the domain knowledge integration.

Our contributions are summarized as follows:

• We introduce the PEI framework that offers a proficient method for multi-hop QA,
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based on the human reading process, by modeling the input passages or context

as explicit knowledge and invoking the pre-trained knowledge of LMs as implicit

knowledge that mirroring with human prior knowledge.

• We propose two training paradigms to PEI framework, which employs various sizes

of foundation LMs (i.e., Llama 3.1-8B and ELECTRA). The experiment results show

that the performance of Llama-based PEI with prompt tuning is slightly lower that

of the standard PEI, but significantly reduces the number of trainable parameters

while maintaining comparable reasoning performance.

• Our PEI framework demonstrates performance on par with state-of-the-art baseline

evaluating on the benchmark HotpotQA dataset. Furthermore, PEI shows consist-

ent effectiveness and robustness on single-hop sub-questions and additional multi-

hop datasets (2WikiMultiHopQA and MuSiQue).

• We further evaluate PEI framework on biomedical domain to comprehensive ex-

plore the explicit and implicit knowledge fusion in specify domain. The experi-

mental results shows that the proposed PEI framework significantly outperforms

the baselines on MEDHOP dataset.

• The ablation studies corroborate that implicit knowledge improves the reasoning

abilities of PEI framework, thereby supporting our hypothesis regarding PEI, which

grounded in the human cognition theories for reading comprehension.
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3.2 Related Work

3.2.1 Chain-of-Thought Prompting

Prompt tuning 1 has been acknowledged as a potent method to tune LMs to harness

pertinent knowledge for targeted downstream tasks [158]. CoT prompting, which is a

prompt-driven strategy, has surfaced as a technique to extract implicit knowledge from

large language models (LLMs) for intricate reasoning tasks. It mirrors the sequential

and coherent thought processes of humans by creating intermediate reasoning steps in

natural language that culminate in the final result [32, 159]. Manual-CoT [32] aimed to

extract CoT reasoning capability via manual demonstrations. Subsequently, Kojima et al.

[160] showed that LLMs can effectively act as zero-shot reasoners, producing rationales

that inherently contain CoT reasoning by using the phrase "Let’s think step by step" to en-

courage a detailed thought process before deriving answers. AutoCoT, an automatic CoT

prompting approach [159], employed various question sampling and reasoning chain

construction to form demonstrations, thereby reducing the need for human input. Recent

research have delved into CoT prompt learning for multi-hop QA [161, 144]. Building

on aforementioned studies, our study investigates the application of CoT prompting to

extract implicit knowledge from LMs. Unlike CoT, which produces intermediate steps in

natural language, our approach produces continuous embeddings to represent implicit

knowledge.

1The term “prompt tuning” refers to a broad array of methods rather than a specific approach.
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3.2.2 Prompt-based Learning for Multi-hop QA

Significant advancements in recent research have been made by incorporating prompts

for multi-hop QA [162, 163, 41]. For instance, PromptRank [164] developed an instruction-

based prompt, integrating a candidate document pathway to calculate the relevance

between a given question and the documented path. This relevance is evaluated via

the conditional likelihood of the question in relation to the path prompt, as assessed

by a language model. In contrast, IRCoT [144] implemented a system that alternated

between CoT generation and knowledge retrieval steps, leveraging CoT prompting to

direct the retrieval process. Wang et al. [161] proposed an iterative CoT prompting

method that progressively extracts knowledge from LMs using a sequence-to-sequence

BART-large model, thereby recalling natural language sequences for multi-hop QA. Each

triplet in the evidence path is transformed into a natural language statement through

a straightforward template, cumulatively generating the final statement. Building on

this concept, our method employs a similar encoder-decoder foundation LM (i.e., BART-

large) for recalling implicit knowledge by an approach of iterative prompting.

Comparing to the aforementioned studies, our proposed method distinguishes in the

following three aspects: (i) PEI eliminates the need to transform triple evidence paths

into natural language statements; (ii) we utilizes input passages to explicitly draw upon

implicit knowledge from LMs, which previous methods have yet explored; (iii) PEI rep-

resents the recalled implicit knowledge as continuous embeddings, as opposed to using

natural language statements or lexical knowledge [110]. Consequently, our framework
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is not dependent on natural language statements originating from evidence paths.

3.2.3 Biomedical Multi-hop QA

Biomedical multi-hop QA is a specialized domain of multi-hop QA that involves reasoning

over multiple interconnected biomedical facts to answer complex queries [156]. Recent

studies utilize a combination of LMs and structured knowledge representations such as

biomedical knowledge graphs [165, 166], or external medical knowledge [167]. Du et

al. [166] proposed Adversarial Entity Graph Convolutional Networks (AEGCN), con-

structing an enriched entity graph with innovative edge relationships derived from sup-

porting text while leveraging adversarial entities during training to enhance the model’s

resistance to interference. MedKGQA [167] addressed drug-drug interaction (DDI) pre-

diction and medical reasoning by combining external medical knowledge bases with

“drug-protein” triplets and graph neural networks (GNNs) to navigate and extract an-

swers from biomedical pathways effectively.

Comparing with the previous methods introduced in related works, our proposed PEI

framework employs CoT prompting to elicit implicit biomedical knowledge from LMs,

reducing the cost of constructing of knowledge bases. Meanwhile, PEI framework is

flexible to utilize various foundation LMs to adapt specialty knowledge requirements.
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3.3 Methodology

3.3.1 Problem Statement

Multi-hop QA represents a challenging natural language processing task wherein a sys-

tem must generate responses by retrieving and reasoning across multiple evidence frag-

ments from disparate textual sources. In contrast to single-hop QA, which extracts an-

swers from individual passages, multi-hop QA necessitates complex inferential reasoning

to synthesize information across disconnected documents. Formally, given a complex

query Q and a collection of supporting sentences Sn = [s1, s2, ..., si, ..., sn], the objective

is to derive the correct answer A through sequential inferential processes that traverse

the relevant textual evidence, and the corresponding supporting sentences Sk, where

Sk ⊆ Sn.

3.3.2 Framework Overview

As illustrated in Figure 3.2, our proposed PEI framework comprises three primary com-

ponents: (i) Type Prompter identifies reasoning types for given questions and learns their

respective weights; (ii) Knowledge Prompter acquires implicit knowledge by leveraging

explicit knowledge through an encoder-decoder foundation language model, reflecting

the human reading process as informed by psychological cognition theories; and (iii)

Unified Prompter, which integrates explicit knowledge, implicit knowledge, and question

types for multi-hop QA using the identical foundation backbone model as Type Prompter.
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PEI framework facilitates flexible substitution of foundation models to accommodate di-

verse requirements, such as domain-specific adaptation for biomedical applications or

optimization of computational resource allocation.

Pre-training on single-hop QA. To analyze the capabilities of QA models throughout

each step of reasoning processes for multi-hop QA, our study utilizes a foundational LM,

namely ELECTRA 2 [168], trained on the single-hop QA dataset SQuAD [169]. Following

this, we employ the pre-trained ELECTRA model as the foundation LM for our Type

Prompter component. By deploying the ELECTRA model trained on single-hop tasks,

we endeavor to investigate the interplay between the model’s behavior and reasoning

processes across multi-hop reasoning stages.

Note that the LLMs (i.e. Llama 3.1 [170]) also be employed as the foundation model,

however, we do not fine-tune Llama on SQuAD since the computational cost of full para-

meter fine-tuning for LLMs is costly. Additionally, SQuAD dataset is a sub-task of the LLM

benchmark.

3.3.3 Type Prompter

The Type Prompter is designed to enhance the training of acquired weights for soft

prompts, allowing them to adeptly learn the unique features of different question types.

As illustrated in Figure 3.2, the yellow blocks Pt denote trainable prompt embeddings,

whereas the blue blocks represent the input embeddings and frozen foundation LM.

2The foundational LMs could be displace with more advanced models. Consistent with previous studies
[143] on prompt-based learning, we selected ELECTRA.
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The P-tuning v2 approach [171] is utilized to trainable soft prompts Pt, learning

the weights and capturing specific-type information of the given queries. Initially, the

foundation LM remains frozen while the trainable soft prompt Pt is optimized. Upon

training, the updated Pt is linked to the Unified Prompter module, while preserving

its fixed nature throughout subsequent operations. The input sequence for the model

includes both the trainable prompt embeddings and the token embeddings of the given

question Q:

Hin = [e(Pt); e([CLS]); e(Q)] (3.1)

where e(Pt) is the trainable prefix embeddings (prompt tokens added before the input

text), e(Q) denotes the token embeddings of the input question Q, and the specific token

[CLS] is used as classification.

The extended input Hin is passed through the LM to compute hidden representations:

Hout = Model(Hin) (3.2)

here, Hout ∈ R(d+l)×m, where We denote d as the embedding dimension of the foundation

LM, l denotes the length of trainable prompt Pt and m is the hidden dimension of the

LM.

In this module, the total number of trainable parameters can be calculated as Θ(d·h·l),

where h as the number of layers within the LM.

Comparing to full-parameter fine-tuning, Type Prompter module that employing p-
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tuning v2 decreases the number of training parameters while effectively capturing type-

specific information. Additionally, it allows for the transfer updated weights of Pt, en-

compassing type-specific information, to the Unified Prompter module. Furthermore, by

utilizing p-tuning v2, a broader feature spectrum can be efficiently captured and learned

compared to the prompt-tuning [31].

3.3.4 Knowledge Prompter

The Knowledge Prompter leverages textual input to activate and integrate LMs’ innate

prior knowledge, thereby enhancing the fusion of explicit and implicit information for

effective reading comprehension.

Figure 3.2 illustrates how the Knowledge Prompter employs an iterative encoder-

decoder LM to retrieve implicit knowledge through prefix tuning 3 [29]. Trainable

prompt embeddings, labeled as PE
k for the encoder and PD

k for the decoder, are integ-

rated within each LM layer. This method facilitates the efficient retrieval and application

of explicit knowledge during the iterative phases of encoding and decoding.

Given a multi-hop query Q and a serious of supporting sentences Sn = [s1, s2, ..., si, ..., sn],

we aim to retrieve and extract a sequence of knowledge Kn = [k1, k2, .., ki, ..., kn] that

provides sufficient information for determining the response to both Q and Sn, where

n represents the number of supporting sentences. Our focus lies in the development of

prompt-based learning method, where we intend to construct trainble prompts PE
k and

3We employ prefix tuning method for the Knowledge Prompter inspired by the context-aware prompter
design [161].
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PD
k to lead the encoder-decoder LM in recalling the desired knowledge Kn. Notably, we

maintain fixed parameters for the encoder-decoder LM, thereby allowing us to direct its

retrieval process via trainable prompts.

Motivated by the sequential nature observed in multi-step reasoning tasks [161], we

adopt an iterative approach as below:

P (kj|Q,Sj, Kj−1) =
n∏

j=1

P (kj|Q, s1, ...,sj, k1, ..., kj−1) (3.3)

decoder(kj) = encoder(Q,Sj, Kj−1) (3.4)

where at each step j, LM recalls the next piece of knowledge kj conditioned on the query

Q and supporting sentences s1, ..., sj and gathered knowledge k1, ..., kj−1.

More specially, when j = 1, it is written as following based on Equation (3.3) and

(3.4):

decoder(k1) = encoder(Q, s1) (3.5)

3.3.5 Unified Prompter

As illustrated in Figure 3.2, we suture the Unified Prompter module with Pt, integrating

weights tailored for specific reasoning types. Additionally, the implicit knowledge Kn de-

rived from the Knowledge Prompter module serves as supplementary input. This fusion
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of information intuitively boost reasoning capabilities of PEI framework based on human

reading process.

In Unified Prompter module, the trainable prompt embeddings are denoted as Pu,

where the updated prompt embeddings Pt are frozen. To preserve the learned weights of

Pt derived from the Type Prompter, we adopt the identical architecture of the foundation

LM, allowing for seamless concatenation of Pt with the Unified Prompter.

The input sequence for the Unified Prompter includes the trainable prompt embed-

dings Pu and the frozen prompt embeddings Pt:

H = [e(Pu); e(Q,Sn, Kn); e(Pt)] (3.6)

Subsequently, we perform two training settings depending on various foundation LM.

For ELECTRA, we employ joint p-tuning and full parameter fine-tuning to this module.

For Llama, we use p-tuning to optimize the trainable Pu and freeze the foundation LM.

Prediction Module4. After encoding in Unified Prompter, we design a prediction

module to jointly perform answer and supporting evidence prediction, followed by [172,

143]. To determine the answer span, two linear layers are utilized on the context rep-

resentation to ascertain the start and end positions of the response. Meanwhile, a binary

linear layer is deployed for predicting supporting evidence by assigning a binary relev-

ance label at the beginning of each supporting sentence [SE].

4https://github.com/Tswings/PCL

https://github.com/Tswings/PCL
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3.4 Experiments

3.4.1 Dataset and Metrics

HotpotQA [142] comprises a dataset of 113,000 question-answer pairs sourced from

Wikipedia. Furthermore, HotpotQA includes sentence-level supporting facts critical for

reasoning, thereby enabling QA systems to carry out inference with strong supervision

and articulate their predictions.

2WikiMultiHopQA [173], comprises more than 192,000 entries, distributed across

167,000 for training, 12,500 for evaluation, and 12,500 for testing. While its structure is

largely aligned with HotpotQA [142], this dataset introduces improvements by offering

a wider spectrum of reasoning categories for questions and detailed annotations of the

evidence trajectories linked to each question.

MuSiQue [174] consists of 25,000 examples featuring questions that require 2 to

4 reasoning steps. This collection is curated through a structured method of selecting

compatible single-hop question pairs that manifest logical links, thereby crafting a com-

prehensive set of multi-hop inquiries.

Sub-question QA dataset [175] was developed to support the examination of multi-

hop QA models’ reasoning abilities at each phase of the reasoning process. To assess the

models’ effectiveness, the authors assembled a dedicated dataset composed of single-

hop sub-questions. This collection encompasses 1k samples, manually validated from

the HotpotQA development set, thereby providing a high-quality evaluation resource for
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the research.

To achieve uniformity and comparability among the datasets employed in our exper-

imental analyses, we classify the question types from the three datasets being examined

into the overarching categories of comparison and bridge. This classification aids in es-

tablishing a standardized methodology for managing various question structures across

the datasets subjected to our evaluation.

MEDHOP[176] is a benchmark resource designed for multi-hop reasoning in the bio-

medical domain. It belongs to the QAngaroo collection5, which emphasizes the integra-

tion of data from multiple documents or textual units to resolve intricate queries. The

dataset comprises 1,620 training instances, 342 validation instances, and 546 test in-

stances, culminating in a total of 2,508 instances. However, to the best of our knowledge,

only MEDHOP evaluates multi-hop reasoning abilities, while almost all other Biomedical

QA datasets focus on single-hop reasoning[156].

Metrics. Consistent with prior research [142], We report Exact Match (EM) and

Partial Match (F1) to evaluate the efficacy and performance of our proposed framework

concerning both answer and supporting facts prediction. Furthermore, the joint EM and

F1 are used to assess the overall performance. Specially, we use accuracy to evaluate the

performance of our PEI and baselines on MEDHOP following by Welbl et al. [176].

5http://qangaroo.cs.ucl.ac.uk
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3.4.2 Selected Baselines

To comprehensive assess the performance of PEI, we compare with a series of selected

and state-of-art baselines, including 1) general domain methods on HotpotQA, 2WikiM-

ultiHopQA, MuSiQue and Sub-question QA, and 2) biomedical domain methods that is

conducted on MEDHOP dataset.

These baselines for general multi-hop QA as follows:

• Baseline Model [142] serves as the initial baseline for HotpotQA.

• DecompRC [177] transforms complex queries into easier sub-questions, enabling

resolution via existing single-hop reading comprehension frameworks.

• OUNS [178] represents an algorithm designed for One-to-N Unsupervised Sequence

transduction. It converts intricate, multi-step queries into a range of straightfor-

ward, single-step questions to enhance the QA process by decomposing complexit-

ies.

• QFE [179] model incrementally identifies evidence sentences through an RNN with

attention focused on the query, drawing inspiration from models used in extractive

summarization.

• Longformer [180] employs an attention mechanism that increases linearly with the

sequence length, facilitating the examination of extended texts in a multi-hop QA

context.
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• Beam Retrieval [145] integrates the retrieval operation in an end-to-end manner

by synchronously optimizing an encoder and two classification outputs throughout

all steps.

The following baselines apply GNN-based methods for general multi-hop QA:

• DFGN [181] dynamically constructs an entity graph from the text and increment-

ally identifies supporting entities relevant to the query within the provided docu-

ments.

• SAE-large [182] utilizes a GNN where contextual sentence embeddings serve as

nodes, bypassing the use of entities as nodes, thereby directly predicting supporting

sentences alongside the answer.

• C2F Reader [183] integrates task-specific prior knowledge via graph structures and

adjacency matrices, employing graph attention as a variant of self-attention.

• HGN [172] introduces a hierarchical graph with nodes representing varying gran-

ularities, such as questions, paragraphs, sentences, and entities, leveraging pre-

trained contextual encoders for initialization.

• AMGN [184] incorporates GNN-based methodologies to asynchronously update

multi-grained nodes by modeling relationships across different levels, reflecting

the logical progression of multi-hop reasoning.

• S2G [185] implements a select-to-guide (S2G) strategy to retrieve evidence para-

graphs in a coarse-to-fine manner, augmented by two novel attention mechanisms,
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which effectively align with the inherent nature of multi-hop reasoning.

These baselines utilize CoT prompting methods for general multi-hop QA as follows:

• iCAP [161] adopts an iterative prompting framework designed to incrementally

extract pertinent knowledge from pre-trained language models (PLMs), enabling

step-by-step inference.

• PCL [143] introduces a Prompt-based Conservation Learning (PCL) framework,

wherein soft prompts are optimized to guide sub-networks in executing type-specific

reasoning tasks.

The biomedical domain baselines are as follows:

• FastQA [186] employs a single bi-directional recurrent neural network followed by

an answer prediction layer that independently identifies the start and end points of

the answer span.

• BiDAF [187] adopts a hierarchical approach, representing contextual information

at varying levels of granularity and leveraging a bidirectional attention flow mech-

anism to construct a query-aware context representation without premature sum-

marization.

• Document-cue [176] emphasizes the model’s ability to leverage document-answer

co-occurrence patterns to identify relevant information.
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• BAG [188] introduces a bidirectional attention entity graph convolutional network

that captures relationships between graph nodes and employs attention mechan-

isms to link the query with the entity graph.

• EPAr [189] (Explore-Propose-Assemble reader) mimics human-like reading strategies

by adopting a coarse-to-fine approach for reasoning and answering QA tasks.

• NLProlog [190] integrates symbolic reasoning and rule learning with distributed

representations of sentences and entities to perform rule-based multi-hop reason-

ing over natural language inputs.

• DrKIT [191] simulates traversals in a knowledge base (KB) constructed over a text

corpus, providing ability to follow relations in the “virtual” KB over text for multi-

hop questions.

• DILR-BERT [192] combines transformer-based model with inductive logic reason-

ing, first extracting query-relevant data and then applying rule induction to conduct

logical reasoning across the filtered information.

• ClueReader [165] employs a heterogeneous graph attention network inspired by

the grandmother cell concept, aggregating semantic features at multiple levels and

dynamically focusing or suppressing information for reasoning.

• MedKGQA [167] integrates external biomedical knowledge bases, including “drug-

protein” triplets, with graph neural networks (GNNs) to facilitate effective navig-

ation and answer retrieval within biomedical pathways, particularly for drug-drug
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interaction (DDI) prediction and medical reasoning.

• AEGCN [166] enhances entity graph representations with enriched edge relation-

ships derived from supporting texts, employing adversarial training to improve res-

istance and interference.

3.4.3 Implementation Details

ELECTRA-large [168] and Llama 3.1 8B [170] serve as the foundation LM for both Type

Prompter and Unified Prompter modules. In Type Prompter, p-tuning v2 [171] is used

for the prompt tuning to acquiring the weights of specific-type information of the given

questions. In Unified Prompter, we conduct two training settings depends on various

foundation LM: 1) for ELECTRA, we employ joint p-tuning and full parameter fine-tuning

to the whole module, and 2) for Llama, we use p-tuning to optimize the trainable Pu and

freeze the Llama. Inspired by the studies of Wang et al. [161], we adopt BART-large

[193] as the foundation LM in the Knowledge Prompter module. Specially, BioELECTRA

[194] and BioBART [195] are employed as the foundation LMs for biomedical domain

extension.

Our implementation is built upon the Huggingface platform [138]. For model op-

timization, we employ the AdamW optimizer [196] along with a linear learning rate

scheduler with a warmup ratio of 0.05.

In terms of hyperparameters, we conduct a search for the optimal batch size. We

explored batch sizes of {4, 8, 12, 16, 32} respectively. Additionally, we performed a tuning
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process for the learning rate, considering values from {2e− 5, 4e− 5, 8e− 5, 2e− 4, 4e−

4, 8e − 4, 2e − 3, 4e − 3, 8e − 3, 2e − 2, 4e − 2, 8e − 2}. Moreover, we conducted tuning

experiments for the length of the encoder/decoder prompts Pk type prompts Pt and the

unified prompt Pu, exploring values from {20, 40, 60, 80, 100, 120, 150}.

3.5 Results and Analysis

3.5.1 Evaluation on HotpotQA

Initially, we evaluate PEI framework on the test set of HotpotQA in the distractor set-

ting comparing with peer-reviewed baselines, including the baseline model of HotpotQA

[142], Beam Retrieval [145] that is the state-of-art model on the leaderboard, iCAP

[161] and PCL [143] which we inspired by, and other baselines. For a reminder, we will

refer to the PEI(ELECTRAPT+FT ) framework that employs ELECTRA with full parameter

fine-tuning and prompt tuning as PEI to be more brief.

As depicted in Table 3.1, PEI framework outperforms all baseline models across the

evaluated metrics, with the sole exception of Beam Retrieval. Notably, PEI achieves

performance comparable to that of Beam Retrieval [145] on the HotpotQA, demontrating

the substantial advancements facilitated by PEI in addressing multi-hop QA.

More specifically, comparing with Beam Retrieval, PEI achieves an improvement of

0.20/0.28/0.30 in answer EM, answer F1 score and join F1 score, respectively. In contrast,

Beam Retrieval exhibits superior results with an improvement of 1.22 in supporting EM,
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Models
Ans Sup Joint

EM F1 EM F1 EM F1

Baseline Model [142] 45.60 59.02 20.32 64.49 10.83 40.16
DecompRC [177] 55.20 69.63 - - - -
OUNS [178] 66.33 79.34 - - - -
QFE [179] 53.86 68.06 57.75 84.49 34.63 59.61
DFGN [181] 56.31 69.69 51.50 81.62 33.62 59.82
SAE-large [182] 66.92 66.92 61.53 86.86 45.36 71.45
C2F Reader [183] 67.98 81.24 60.81 87.63 44.67 72.73
Longformer [180] 68.00 81.25 63.09 88.34 45.91 73.16
HGN [172] 69.22 82.19 62.76 88.47 47.11 74.21
AMGN [184] 70.53 83.37 63.57 88.83 47.77 75.24
S2G [185] 70.72 83.53 64.30 88.72 48.60 75.45
iCAP † [161] 68.61 81.82 62.80 88.51 47.02 74.11
PCL [143] 71.76 84.39 64.61 89.20 49.27 76.56
Beam Retrieval [145] 72.69 85.04 66.25 90.09 50.53 77.54

PEI(ELECTRAPT+FT ) 72.89 85.32 65.03 89.81 49.91 77.84
PEI(LlamaPT ) 71.45 85.05 64.00 88.97 48.89 76.41

Table 3.1: Results on the blind test set of HotpotQA in the distractor setting. "-" denotes
the case where no results are available. † denotes that we implement the code. "Ans"
represents the metrics for answer; "Sup" denotes the metrics for supporting facts; "Joint"
is the joint metrics that combine the evaluation of answer spans and supporting facts.
"FT" refers to full fine-tuning and "PT" represents prompt tuning.

0.28 in supporting F1 score, and 0.62 in joint EM compared to PEI.

The difference in performance between PEI and Beam Retrieval in answer prediction

versus supporting prediction could be attributed to the distinct methodologies employed

by the two approaches. Beam Retrieval preserves multiple partial hypotheses of relevant

passages at each step, expanding the search space (albeit at the expense of an expo-

nentially complex retrieval process) and reducing the risk of missing relevant passages.
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Consequently, it excels in supporting prediction. On the other hand, PEI draws inspira-

tion from human reading processes by integrating implicit knowledge and type-specific

information, which enhances its accuracy in answer prediction. However, this design

may limit its efficacy in supporting prediction compared to Beam Retrieval, owing to the

differences in their retrieval strategies.

Though PCL and PEI adopts the same backbone LM (i.e., ELECTRA) and prediction

module, PEI framework demonstrates a significant improvement of 0.64/1.28 in the Joint

EM/F1 score compare to PCL. Compare with the question classification that PCL trains

a PLM to acquired the reasoning type, PEI leverages the prompt tuning to learn the

type-specific knowledge and transfers the trained weight to the Unifier Prompter, which

effectively reduces computational cost.

Moreover, the proposed PEI framework demonstrates a notable improvement over

iCAP, achieving a 2.89/3.73 increase in joint EM/F1 scores, despite both models utilizing

the same encoder-decoder architecture (BART) as their foundational LMs. When com-

pared to the graph-based AMGN model, PEI achieves even greater gains, with a 2.14/2.6

enhancement in joint EM/F1 scores.

Comparison on LM Architecture and Training Paradigms

In Table 3.1, the performance of PEI(LlamaPT ) framework based on Llama with prompt

tuning is slightly lower that that of the standard PEI in both answer and supporting

facts prediction. Because Unified Prompter actually acts as a context encoder, the per-

formance of PEI depends on the architecture of foundation LMs and training paradigms.
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Extractive multi-hop QA (e.g., HotpotQA) often requires token-level attention over the

input representation to have an edge in span-based extraction, which is a native strength

of encoder-only architectures such as ELECTRA [197]. In contrast, decoder-only models

(such as Llama) are not inherently designed to output spans of text, instead, they excel at

generative QA tasks, where their ability to synthesize and produce text is advantageous

[198].

Compared to standard PEI, which employs full parameter fine-tuning, the Llama-

based PEI utilizing prompt tuning significantly reduces the number of trainable paramet-

ers while maintaining comparable reasoning performance. However, it still incurs higher

computational cost and longer inference time due to the large-scale parameters of Llama

and the associated memory requirements.

Comparison with LLMs under Zero-Shot

Table 3.2 presents the performance of open-source LLMs in a zero-shot setting for multi-

hop QA. The results clearly indicate that zero-shot LLMs perform significantly inferior

than PEI and other baseline models (see Tables 3.1 and 3.3) across the HotpotQA,

2WikiMultihopQA, and MuSiQue datasets. This demonstrates that extractive multi-hop

QA still remains a challenge to LLMs in zero-shot setting. Notably, Llama-based PEI

surpass all LLM baselines, including Llama 3.1-8B, across diverse datasets. Compare to

zero-shot Llama 3.1-8B, the PEI (Llama 3.1-8BPT ) attains a notable performance boost

with EM and F1 improvements of 32.0/39.1 on HotpotQA and 12.8/36.0 on 2WikiMulti-

hopQA, respectively. On MuSiQue, while the performance gains are less pronounced (an
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Models
HoptpotQA 2WikiMultihopQA MuSiQue

EM F1 EM F1 EM F1

Mistral-7B 30.6 37.2 27.4 29.8 25.2 28.9
Qwen 2-7B 36.2 43.5 31.7 35.8 28.2 31.2
Llama 2-7B 34.5 41.3 30.6 34.7 31.7 35.6
Llama 3.1-8B † 39.4 45.9 33.1 37.5 32.9 36.5

PEI (Llama 3.1-8BPT ) 71.4 85.0 45.9 73.5 40.5 67.2

Table 3.2: Performance of Llama-based PEI compared to open source LLMs with zero-
shot settings on HotpotQA, 2WikiMultihopQA and MuSiQue. † denotes that is our imple-
mentation.

improvement of 7.6/30.7 in EM/F1 compared to Llama 3.1-8B), PEI still leads with an EM

of 40.5 and F1 of 67.2, demonstrating consistent performance across diverse datasets.

These findings demonstrate the effectiveness of leveraging task-specific prompt tuning to

enhance the reasoning capabilities of LLMs. By enabling task-specific fine-tuning, PEI en-

hances the model’s ability to fuse explicit and implicit knowledge effectively for complex

reasoning tasks.

3.5.2 Evaluation of Robustness

To further evaluate the robustness of proposed PEI framework, we conduct three aspects

experiments: (i) assessing PEI on other multi-hop QA datasets; (ii) evaluation on sub-

question dataset in composing answers from solved sub-questions; and (iii) effect of

foundation LMs in the same training paradigm.
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Models
2WikiMultihopQA MuSiQue

EM F1 EM F1

iCAP 42.80 47.90 - -
HGN 38.74 68.69 39.42 65.12
PCL 46.03 73.42 41.28 67.34

PEI (Ours) 47.32 74.56 41.97 67.85

Table 3.3: Results of our proposed PEI compared to PCL, HGN and iCAP on 2WikiMul-
tihopQA and MuSiQue multi-hop QA test set. “-” denotes the case where no results are
available. PEI refers to version of PEI(ELECTRAPT+FT ).

Evaluation on Other Multi-hop Datasets

To evaluate generalization, we validate the PEI framework on the 2WikiMultihopQA and

MuSiQue datasets. As presented in Table 3.3, PEI consistently outperforms all baseline

models across both EM and F1 metrics. Notably, although both PEI and iCAP utilize the

same encoder-decoder architecture (BART), PEI achieves a significant improvement of

4.52/26.66 in answer EM/F1 scores on the 2WikiMultihopQA dataset. Additionally, PEI

demonstrates superior performance over PCL, with gains of 1.29/1.14 and 0.69/0.51 in

answer EM/F1 scores on the 2WikiMultihopQA and MuSiQue, respectively.

Evaluation on Sub-question Dataset

To assess the efficacy of the PEI model in multi-hop reasoning, particularly in synthesiz-

ing answers from resolved sub-questions, we conduct an evaluation on the sub-question

QA dataset [175]. Each parent question, denoted as q, is associated with two correspond-

ing sub-questions, qsub1 and qsub2. As presented in Table 3.4, the PEI model achieves a
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Figure 3.3: The success rate (%) of five multi-hop QA models. sub1 denotes the first
sub-question and sub2 is the second sub-question of corresponding question q.

success rate of 97.62% in correctly answering the parent multi-hop question q while both

sub-questions qsub1 and qsub2 are answered correctly 6. This highlights the proficiency

of PEI in retaining acquired knowledge through the integration of explicit and implicit

knowledge, surpassing other baseline models. Interestingly, PEI also demonstrates a not-

able success rate of 36.55% in correctly answering the parent multi-hop question even

when only one of the sub-questions is answered correctly 7. Figure 3.3 further illustrates

the sub-question-dependent success rates for various multi-hop QA models, showing that

6The calculation process: 49.2/(49.2 + 1.2) = 97.62%
7The calculation process: (7.1 + 22.1)/(49.2 + 7.1 + 22.1 + 1.5) = 36.55%
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q qsub1 qsub2 DFGN DecompRC HGN PCL PEI(Ours)

c c c 23.0 31.3 39.5 43.6 49.2
c c w 9.7 7.2 5.1 6.8 7.1
c w c 17.9 19.1 19.6 21.3 22.1
c w w 7.5 5.5 3.8 2.1 1.5

w c c 4.9 3.0 2.8 1.7 1.2
w c w 17.0 18.6 16.7 16.3 13.4
w w c 3.5 3.4 2.6 1.1 1.0
w w w 16.5 11.9 9.9 7.1 4.5

Table 3.4: Results on sub-question dataset. The notation c/w indicates that a question
has been answered correctly or wrongly, respectively. For each primary question q, we
denote its constituent components as sub1 and sub2, representing the first and second
sub-questions, respectively.

these models frequently predict the correct parent question answer even when only one

sub-question is answered correctly. This observation highlights a persistent challenge in

multi-hop QA: models often exploit unreliable reasoning shortcuts for answer prediction,

a phenomenon that deviates from the expected logical reasoning process [143].

Effect of Foundation LMs

To evaluate the effects of foundation LMs, we conduct a comparative analysis of PEI

against PCL and HGN under identical experimental conditions, including the same data-

sets and foundation models. As shown in Table 3.5, PEI consistently exceeds both

PCL and HGN across all evaluation metrics, demonstrating its effectiveness and robust-

ness across various foundation LMs. Furthermore, PEI that implemented with ALBERT

achieves an improvement of 0.62/0.23 in Answer/Support F1 scores compared to its

implementation with RoBERTa. This aligns with prior findings that ALBERT surpasses
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Model Ans F1 Sup F1 Joint F1

HGN (RoBERTa) 82.22 88.58 74.37
HGN (ELECTRA) 82.24 88.63 74.51
HGN (ALBERT) 83.46 89.20 75.79

PCL (RoBERTa) 84.33 90.75 77.12
PCL (ELECTRA) 84.42 91.15 77.76
PCL (ALBERT) 85.47 91.28 78.76

PEI (RoBERTa) 85.61 92.02 78.95
PEI (ELECTRA) 85.68 92.11 79.02
PEI (ALBERT) 86.23 92.25 79.11
PEI (LlamaPT ) 85.05 88.97 76.41

Table 3.5: Results with different LMs on the development set of HotpotQA.

RoBERTa on the GLUE benchmark under a single-model configuration 8. These results

affirm that incorporating a more advanced foundation LM can significantly enhance the

performance of the PEI framework.

3.5.3 Evaluation on Biomedical Inference

Results and Discussion

To comprehensively evaluate PEI framework on biomedical domain, we compare PEI

with diverse baselines including biomedical knowledge-based and non-biomedical knowledge-

based models. As shown in Table 3.6, the vanilla PEI, which employs BART and ELEC-

TRA foundation models without biomedical pretraining, exceeds all the baselines on

MEDHOP dataset and outperforms the state-of-art model, AEGCN [166] with 0.75% in

8https://github.com/google-research/albert

https://github.com/google-research/albert
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Model Accuracy

FastQA [186] 23.10
BiDAF [187] 47.80
Document-cue [176] 44.90
BAG [188] 64.50
EPAr [189] 64.90
NLProlog [190] 65.78
DrKIT [191] 67.25
DILR-BERT [192] 71.35
ClueReader [165] 46.00
MedKGQA [167] 64.80
AEGCN [166] 72.28

PEI (Vanilla) 73.03 ↑0.75
PEI (Biomedical) 75.62 ↑3.34

Table 3.6: Results on test set of MEDHOP. PEI (vanilla) denotes that PEI model employs
BART and ELECTRA as foundation models without biomedical pre-trained knowledge.
PEI (biomedical) denotes that bioBART and bioELECTRA serve as foundation models for
PEI, which integrate pre-trained biomedical knowledge

accuracy. This shows that even without using a biomedical LMs, the PEI framework

exhibits significant reasoning ability in biomedical multi-hop QA.

Although general capabilities of foundation models have become increasingly ap-

parent, there remain open questions regarding whether exceptional performance can

be achieved on specialized tasks, such as those in the medical field, without extens-

ive domain-specific training or fine-tuning of these general models [44, 107]. Much of

the research on the application of foundation models in biomedicine has been heavily

reliant on fine-tuning tailored to specific domains and tasks. With the advent of first-

generation foundation models, the benefits of domain-specific pretraining became evid-
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ent, as demonstrated by widely used models in the biomedical domain, such as PubMed-

BERT [48] and BioGPT [55]. In Table 3.6, the experimental results show that the bio-

medical PEI, which employs both BioBART and BioELECTRA as fundamental models to

make fully use of pretrained biomedical domain knowledge, achieve a significant 3.34%

improvement in accuracy compared with AEGCN. Compared with the 0.75% accuracy

improvement of vanilla PEI, it is obvious that biomedical PEI has better performance and

stronger reasoning ability in the biomedical domain.

Effect of Biomedical Knowledge

To further analyze the effect of specialty knowledge of PEI framework for biomedical

domain, we explore the various settings of foundation models (see Table 3.7). As il-

lustrated in Table 3.7, the experimental results show that biomedical knowledge boost

performance of PEI. The PEI with bioBART shows an improvement of 0.96% in accur-

acy compared with the vanilla PEI, demonstrating the Knowledge Prompter module is

able to elicit the implicit specialty knowledge via CoT prompting. Moreover, the Unified

Prompter makes fully use of the implicit knowledge Kn = [k1, k2, .., ki, ..., kn] and fuse

with explicit knowledge Sn = [s1, s2, ..., si, ..., sn] to enhance the inference ability. These

results provide evidence that implicit knowledge plays a crucial role in improving the

model’s reasoning capabilities, thereby comfirming the hypothesis that underpins our

proposed PEI framework, which is inspired by human reading process.

Additionally, the PEI with BioELECTRA outperforms the vanilla PEI with an improve-

ment of 1.27% in accuracy, further emphasizing the reliance of most investigations into
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Components
Accuracy

BioBART BioELECTRA

% % 73.03
! % 73.99 ↑0.96
% ! 74.30 ↑1.27
! ! 75.62 ↑2.59

Table 3.7: Ablation study of comparison on vanilla PEI and biomedical PEI with different
components.

the efficacy of foundation models in biomedical tasks on extensive domain- and task-

specific fine-tuning.

3.5.4 Ablation Studies

To investigate the contributions of each components within PEI framework, we perform

a series of ablation studies on the validation set of HotpotQA.

Effect of Implicit Knowledge

To validate the hypothesis that implicit knowledge enhances reasoning capabilities in

multi-hop QA, we conduct an ablation study comparing the ELECTRA model with and

without implicit knowledge integration (specifically referring to the implicit knowledge

Kn derived from the Knowledge Prompter). Table 3.8 demonstrates that incorporat-

ing implicit knowledge yielded significant improvements of 3.10/2.05/2.30 in Answer

F1, Supporting F1, and Joint F1 scores, respectively, compared to the baseline model

without implicit knowledge. These findings empirically confirm that implicit knowledge
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substantially augments models’ reasoning abilities, aligning with the cognitive theories

underpinning the PEI framework, which draws inspiration from the human reading pro-

cess.

Effect of Type Prompts

To assess the influence of type-specific prompts and the model’s capacity for type-driven

reasoning in multi-hop question answering, we perform a comparative analysis of the

ELECTRA language model, both with and without the Type Prompter module. As presen-

ted in Table 3.8, integrating the Type Prompter with the language model results in signi-

ficant improvements of 3.02/1.17/2.18 in Answer F1, Supporting F1, and Joint F1 scores,

respectively, over the model without Type Prompter. These results highlight the effective-

ness of incorporating question type information through the Type Prompter in enhancing

the model’s overall performance and facilitating type-specific reasoning. Furthermore,

the findings support the alignment of PEI framework architecture with cognitive process

observed in human reasoning, as type information can be regarded as a form of implicit

knowledge.

Effect of Pre-training on Single-hop

We initially trained an ELECTRA-based QA model on the single-hop QA dataset, SQuAD

[169], and subsequently fine-tuned it on the HotpotQA dataset. While conservation

learning [143] is not utilized in our approach, we assess the model’s performance both

with and without pre-training to evaluate its impact on single-hop QA. As indicated in
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Model Ans F1 Sup F1 Joint F1

ELECTRA 78.12 88.20 73.50
- Type Prompter 81.14 ↑3.02 89.37 ↑1.17 75.68 ↑2.18
- Pre-trained 78.82 ↑0.70 88.82 ↑0.62 74.54 ↑1.04
- Implicit knowledge 81.22 ↑3.10 90.25 ↑2.05 75.80 ↑2.30

PEI 85.68 ↑7.56 92.11 ↑3.91 79.02 ↑5.52

Table 3.8: Ablation Study of PEI on the development set of HotpotQA. Ans F1 stands for
answer F1; Sup F1 is supporting F1.

Table 3.8, incorporating pre-training resulted in improvements of 0.70/0.62/1.04 in An-

swer F1, Supporting F1, and Joint F1 scores, respectively, compared to the model without

pre-training. These results suggest that pre-training in the single-hop QA task helps the

model capture valuable information, thereby boosting its performance. However, it is

important to note that the observed improvements are relatively modest in the absence

of conservation learning.

3.6 Conclusion

In this chapter, we present a novel framework inspired by human cognitive theories,

which utilizes prompts to connect explicit and implicit knowledge. Our approach in-

corporates chain-of-thought prompts to extract implicit knowledge from LMs within the

given input context, while also integrating question type information to improve the

overall performance of the model. Moreover, we propose two training paradigms to PEI

framework, and extend PEI on biomedical domain QA to further explore the fusion and

relation of explicit and implicit biomedical knowledge and analyze the consistency of the
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domain knowledge fusion. Experimental results show that PEI performs comparably to

the state-of-the-art on HotpotQA, and excels all baselines on MEDHOP.

Additionally, ablation studies affirm the efficacy and resilience of PEI framework in

mirroring human reading comprehension. Moving forward, we intend to expand and

apply cognitive theories of human reading to a wider range of reasoning tasks, with the

goal of fostering more advanced and intricate reasoning capabilities.



Chapter 4

Lexical-based Imbalanced Data

Augmentation for Mental Healthcare

Moderation

Data augmentation (DA) has garnered significant attention as an alternative method for

expanding datasets without requiring additional human annotation efforts, particularly

in low-resource, sensitive, and class-imbalanced tasks. However, the majority of contem-

porary approaches are designed for general domains with relatively balanced data dis-

tributions, whereas specific applications such as content moderation frequently exhibit

highly skewed distributions. This challenge is further exacerbated by data sensitivity

concerns, which render additional human annotations either prohibitively expensive or

infeasible. To address this research gap, we introduce a lexical-based imbalanced data

108
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augmentation (LIDA) for content moderation, which an easy-to-implement and inter-

pretable DA method that strategically leverages sensitive lexicons by incorporating them

into negative samples to transform these instances into positive examples. Through this

mechanism, LIDA facilitates the creation of balanced datasets, thus mitigating skewed

distribution challenges. We evaluate our approach on Wiki-TOX and Wiki-ATT, demon-

strating the superior performance of our proposed algorithm compared to rule-based

baselines, with statistical significance confirmed through comprehensive p-value ana-

lyses. Furthermore, we extend the application of our method to the mental healthcare

domain, validating its efficacy on the Kooth Mental Health dataset. The results substan-

tiate that LIDA is effectively transferable to the mental healthcare domain.

4.1 Introduction

The proliferation of cyberbullying and harassment constitutes a significant societal con-

cern due to their deleterious effects on users exposed to inappropriate user-generated

content, including violent, disturbing, depressive, or fraudulent materials. Such expos-

ure frequently results in adverse mental health outcomes [199, 200]. Consequently, con-

tent moderation represents a domain of substantial business and research significance

for online mental health and social communities [201].

Online moderation conducted by service providers or community members repres-

ents a human-centered process that enhances the safety, engagement, and efficacy of

online mental health community (OHMC) conversations [102]. Moderation strategies
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can be classified as either preventive or interventive based on their temporal relationship

to user behavior [202]. While the moderation industry has established extensive human-

reliant systems, implementing these systems exclusively presents several significant chal-

lenges. First, content moderators frequently encounter disturbing images, videos, and

text during their work, which may compromise their psychological wellbeing and poten-

tially lead to post-traumatic stress disorder (PTSD). For instance, Facebook-contracted

moderators in Arizona have developed mental health conditions attributed to persistent

exposure to violent content 1. Second, the escalating volume of community participants

and comment traffic renders the moderation of user-generated content increasingly de-

manding and resource-intensive. Prolonged periods of continuous moderation activity

demonstrably reduce moderator accuracy and effectiveness. Third, extended response

times during peak usage periods negatively impact user satisfaction and community en-

gagement. To address these limitations, automated content moderation systems leverage

machine learning models trained on extensive textual corpora [203].

As online content continues to expand exponentially, automated moderation tech-

niques have emerged as viable solutions [204], which can be considered as special-

ized text classification task. However, the domain-specific nature of content modera-

tion presents notable challenges in developing comprehensive gold-standard datasets,

which typically require extensive domain expertise and considerable resources. To ad-

dress these limitations, data augmentation (DA) has been explored to enhance training

1https://www.theverge.com/2019/2/25/18229714/cognizant-facebook-content-moderator-
interviewstrauma-working-conditions-arizona
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data diversity and quantity without necessitating additional data collection or human

annotation. This approach demonstrates significant potential for improving the perform-

ance and generalizability of content moderation systems [205].

However, current DA methods predominantly focus on general text classification do-

main [206, 207, 208, 209], while research in content moderation remains notably de-

ficient, particularly regarding the moderation of toxic and abusive information [210].

Unlike general domain, content moderation typically presents challenges of imbalanced

data distribution. For example, previous research demonstrates that across seven Twitter

dataset samples, the proportion of negative samples (content adherent to Twitter com-

munity guidelines, without hate speech, racist, or gender-discriminatory information)

exceeds 80% on average [211].

To address these issues, in this chapter, we propose a lexical-based imbalanced DA

(LIDA) method, which is an easy-to-implement yet effective DA methods for automatic

content moderation. Compared with prior approaches that heavily depend on extensive

required sensitive lexicons [212], LIDA randomly selects sensitive words from a 104-

word lexicon collected from Wiktionary 2 and Hatebase 3, and then strategically inserts

the sensitive words into negative samples to convert them into positives. Through the

utilization of structured lexical knowledge and linguistic features, we generate a more

balanced dataset without relying on probabilistic soft labeling techniques [213, 214].

For example, as illustrated in Figure 4.1, we randomly select two sensitive words,

2https://en.wiktionary.org/wiki/Category:English_swear_words
3https://hatebase.org/

https://en.wiktionary.org/wiki/Category:English_swear_words
https://hatebase.org/
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You have crossed a line here .

You have crossed a line here .WTF baster

Negative

Positive

WTF baster

Figure 4.1: Example of the LIDA Method. Sensitive words, WTF and baster (highlighted
as orange blocks), are inserted into a negative sample to transform it into a positive
sample. Here, negative samples refer to those that pass content moderation, whereas
positive samples denote those that fail moderation.

WTF and baster, from our wordlist, and subsequently insert them into a negative sample

"You have crossed a line here". This lexical augmentation transforms the previously be-

nign utterance into positive (content classified as inappropriate). Notably, the positional

placement of these sensitive terms within the original text is inconsequential; any result-

ing augmented text containing such sensitive words would necessarily be categorized as

a positive sample warranting moderation due to the inherent inappropriateness of the

inserted lexical elements.

Furthermore, we extend the application of our method to mental healthcare modera-

tion contexts. Research indicates that in England, approximately two-thirds of individu-

als requiring mental health support neither access nor seek assistance through traditional

face-to-face services [215]. Young people, who simultaneously exhibit the highest risk

for mental health disorders [199] and demonstrate the greatest internet usage rates, rep-

resent a critical demographic for intervention. Connecting these young individuals with

peer-supervised internet communities, which are facilitated by those with lived experi-
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ence, offers potential solutions to the escalating public health challenge of increasing de-

mand. E-mental health services, designed specifically to address treatment barriers, have

proliferated globally. OHMC constitute a particularly significant digital health platform

category. While these forums demonstrate promising outcomes in supporting youth pop-

ulations, they may concurrently expose vulnerable users to inappropriate user-generated

content, including violent, disturbing, depressing, or fraudulent materials, potentially

compromising their psychological wellbeing [216]. Effective mental health promotion,

similar to physical health initiatives, necessitates balancing regulatory oversight with en-

gaging user experiences that encourage sustained participation.

Our contributions are summarized as follows:

• We introduce a lexical-based imbalanced data augmentation (LIDA) for content

moderation, which an easy-to-implement and interpretable DA method that stra-

tegically leverages sensitive lexicons by incorporating them into negative samples

to transform these instances into positive examples. Through this mechanism, LIDA

facilitates the creation of balanced datasets, thus mitigating skewed distribution

challenges.

• We evaluate our approach on Wiki-TOX and Wiki-ATT, demonstrating the superior

performance of our proposed algorithm compared to rule-based baselines, with

statistical significance confirmed through comprehensive p-value analyses.

• Furthermore, we extend the application of our method to the mental healthcare

domain, validating its efficacy on the Kooth Mental Health dataset. The results
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substantiate that LIDA is effectively transferable to the mental healthcare domain.

Content Warning. This article contains examples of hateful and abusive language.

All examples are taken from Wikitionary 2 and Hatebase 3 to illustrate its composition.

4.2 Related Work

Current DA methods could be roughly classified into two categories: rule-based data

augmentation, and generative model-based data augmentation.

4.2.1 Rule-Based DA

Rule-based DA approaches typically manipulate words, phrases, or sequences in original

textual data through various operations, including swapping, deletion, insertion, and re-

placement. Wei and Zou [217] introduced the Easy Data Augmentation (EDA) method,

which implements four operations on a given sentence: (i) randomly selecting n words

to be replaced by their synonyms; (ii) inserting synonyms of random words at random

positions; (iii) swapping positions of two words; and (iv) randomly deleting words with

probability p. While EDA employs word-level operations that potentially alter the se-

mantic class of augmented data, Karimi et al. [206] proposed An Easier Data Aug-

mentation (AEDA), which solely inserts punctuation marks into the original text, thereby

preserving class label invariance. Furthermore, researchers have developed learnable

compositional paradigms for DA, exemplified by Text AutoAugment (TAA) [207], which

represents another significant rule-based mixed DA technique. Moreover, Xiang et al.
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[208] developed a part-of-speech (POS) focused lexical substitution approach for DA

(PLSDA). This method leverages POS information to identify candidate words for re-

placement and implements various augmentation strategies to generate semantically re-

lated substitutions based on WordNet synonyms.

However, the aforementioned rule-based DA methods demonstrate significant lim-

itations when handling imbalanced datasets, as they fail to rectify skewed distribu-

tions post-augmentation. To address this critical limitation, our proposed LIDA method

achieves balanced data distribution by strategically incorporating lexical features into

negative instances, thereby transforming them into positive instances. Additionally, un-

like alternative approaches, our method operates independently of soft label predictions.

4.2.2 Generative-Based DA

Generative-based DA approaches predominantly utilize large language models (LLMs) to

synthesize novel augmented samples derived from original textual data [218, 209, 219,

220, 221]. Anaby-Tavor et al. [218] developed a DA pipeline leveraging generative pre-

training (GPT) [33] with limited labeled data, subsequently filtering the augmented cor-

pus using a classifier trained on the original dataset. Similarly, Yoo et al. [209] employed

a GPT-based model to synthesize realistic text samples through GPT-3 [21], while integ-

rating textual perturbations and knowledge distillation from pre-trained transformer-

based language models for soft-label prediction. Building upon the enhanced language

comprehension capabilities demonstrated by ChatGPT, Dai et al. [219] introduced Aug-
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GPT, a text DA approach that reformulates each training sentence into multiple variants

that maintain conceptual similarity while exhibiting semantic diversity. These augmen-

ted samples subsequently facilitate improved performance in downstream model training

tasks.

Despite their capacity to generate linguistically diverse and fluent augmented samples,

generative DA methods encounter significant computational constraints related to pre-

training and inference processes. Furthermore, these approaches predominantly depend

on predicted soft labels for effective data augmentation, introducing additional method-

ological complexities.

DA strategies range from rule-based manipulations to generative models, with an

optimal strategy balancing implementation simplicity against performance enhancement

capabilities. This balance is critical given that DA’s primary function is to serve as an

efficient alternative to collecting additional training data. Extant literature indicates

that researchers frequently navigate trade-offs between implementation complexity and

performance gains when developing augmentation methods [205].

4.2.3 Mental Health Moderation

The effective utilization of online platforms to facilitate connection among individuals

with mental health conditions represents one of the ten principal unresolved issues in

digital mental health [222]. Research indicates a potential dichotomy in outcomes for

OHMC users [223, 224]. The pursuit of social connection constitutes a critical juncture in
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the recovery process for clinically isolated and vulnerable individuals [225]. Significant

concerns exist among mental health professionals, researchers, and platform adminis-

trators regarding potential harm resulting from deliberate provocative communications

or unintended adverse effects [226]. While community moderators frequently utilize

content removal as an intervention strategy [227], such actions within OHMCs may be

perceived as censorship that inhibits the therapeutic self-disclosure these platforms aim

to support [228, 224].

The "protective cloak" of anonymity [229] and disinhibition of online communica-

tion [230] promote self disclosure; however, content deemed acceptable on mainstream

social media platforms [231] may be misinterpreted within OHMCs due to heightened

sensitivity to rejection [232] and stigmatizing attitudes [233]. Furthermore, even in the

absence of intentional provocation, self-centered communications can negatively impact

users, particularly those experiencing elevated depressive symptoms [234]. Emotionally

vulnerable individuals attempting interpersonal engagement may develop maladaptive

comparative processes and experience vicarious psychological distress [235].

Moderators fulfill diverse functions within OHMCs [236], including providing quasi-

therapeutic guidance [102] and maintaining constructive, relevant discourse. Harding

and Chung [237] assert that moderation approach and intensity serve as primary distin-

guishing characteristics between online communities, a finding substantiated in research

across various mental health conditions [238].
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4.3 Methodology

4.3.1 Lexical Features

We systematically collect English profanity terms from Wikitionary 2 and hate words

from Hatebase 3, the latter being a collaborative and regionalized repository of multi-

lingual hate speech developed through a partnership between the Dark Data Project 4

and The Sentinel Project 5. This preliminary corpus consisted of 140 lexical items. Sub-

sequently, the compilation underwent critical evaluation and refinement by two doctoral

candidates who are native English speakers, as lexical ambiguity in sensitive terms has

been identified as a potential confounding factor for model performance (e.g., northern

monkey). We further comprehensively discuss and analyze the lexical ambiguity and

insertion strategy in Section 4.5.5. The final refined corpus comprises 104 sensitive items

(the complete wordlist in Appendix A.2).

4.3.2 LIDA Algorithm

We present LIDA algorithm in Algorithm 1. Let a training sentence be denoted as

s = [w1, w2, ..., wi, ..., wl], where wi represents the ith token and l denotes the sentence

length. Given a batch of M training samples Dorig, comprising N negative sample DN

and P positive samples DP , we introduce an augmentation ratio t as a hyperparameter

to control the ratio of data augmentation since excessive perturbations may compromise

4https://darkdataproject.org/
5https://thesentinelproject.org/

https://darkdataproject.org/
https://thesentinelproject.org/
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Algorithm 1: LIDA Algorithm
Input: Given a batch of M training samples Dorig, comprising N negative sample

DN and P positive samples DP

Output: augmented positive sample s′. Dcombined = Daug ∪ Dorig, where N
negative samples and P + ⌊N × t⌋ positive samples

Initialize: Augmentation ratio t ∈ [0, 1]

for i = 1 to ⌊N × t⌋ do
Select augmentation depth d ∈ {1, 2, 3} ; /* number of lexical
features */

Select lexical feature(s) [LF]d based on depth d ;
Generate augmented sample s′i = Insert([LF]d, si), where si is randomly
selected from negative samples;

Add s′i to the augmented dataset Daug;
end

return Dcombined with N negative samples and P + ⌊N × t⌋ positive samples

model performance. While data noise can be effective for DA, operations like insertion

may disrupt the sentence structure, potentially leading to information loss, noise intro-

duction, and even label changes [239]. For example, Karimi et al. [206] propose a

method that involved either replacing words selected from the unigram frequency dis-

tribution or inserting underscore characters as placeholders for DA. However, excessive

noise can mislead the model and degrade performance. Therefore, the augmentation

ratio t serves as a crucial hyperparameter in our proposed LIDA algorithm.

For each iteration, we randomly set d = {1, 2, 3} as the number of lexical features

[LF ] to be selected from the lexicon. This operation is written as:

[LF ]d = select(d), where d ∈ 1, 2, 3. (4.1)
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Parameter d plays a significant role in LIDA (as d in Section 4.5.5), mitigating word

ambiguities. Subsequently, we insert [LF ]d into a negative sentence to convert it to be

positive instance s′:

s′ = insert([LF ]d, s), where d ∈ 1, 2, 3. (4.2)

The augmented instance s′ is combined with the original s to form our new training

batch. Since the lexical features consist of sensitive words that violate content mod-

eration policies, intuitively, it is reasonable to assume that negative samples would be

converted to positive ones after adding these features.

4.3.3 Content Moderation Pipeline

Following the data augmentation procedure, we acquire a balanced corpus with equal-

ized class distributions, thus addressing the inherent imbalance in content moderation

datasets. Subsequently, both the augmented dataset Daug and the original dataset Dorig

can be utilized for downstream model training purposes, with the combined dataset

Dcombined = Daug ∪ Dorig serving as the foundation for robust model development.

In this section, we delineate the comprehensive pipeline for content moderation util-

izing BERT in conjunction with our proposed LIDA framework. The pipeline consists of

several sequential phases, each critical to the overall efficacy of the system. Initially, we

leverage LIDA for data augmentation to obtain a balanced training corpus, where negat-

ive samples DN are transformed into positive samples D′
P through the strategic insertion

of lexical features, as previously formalized. This augmentation process is governed by
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the hyperparameter t, which controls the ratio of negative samples subjected to trans-

formation.

The content moderation procedure employing BERT encompasses multiple stages of

data processing and model development. First, the textual data undergoes preprocessing,

where each input text si is tokenized using BERT’s WordPiece tokenizer, resulting in

a token sequence T (si) = [t1, t2, . . . , tk], where k ≤ 512 due to BERT’s architectural

constraints. Special tokens, namely [CLS] and [SEP], are inserted at the beginning and

end of each sequence, respectively. The tokenized sequences are subsequently converted

into numerical representations through token embeddings, positional embeddings, and

segment embeddings, which are additively combined to form the input representation

matrix X ∈ Rk×d, where d = 768 for BERTBASE and d = 1024 for BERTLARGE.

The architecture of our model is constructed by augmenting the pre-trained BERT

model with task-specific layers. Specifically, we extract the contextualized representation

h[CLS] ∈ Rd from the final hidden layer corresponding to the [CLS] token, which captures

the holistic semantic content of the input text. This representation is then processed

through a pooling layer to obtain a fixed-dimensional feature vector. Subsequently, we

implement a series of fully connected layers with decreasing dimensionality:

z1 = σ(W1h[CLS] + b1) (4.3)

z2 = σ(W2z1 + b2) (4.4)

ŷ = softmax(W3z2 + b3) (4.5)
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where Wi and bi represent the weight matrices and bias vectors, respectively, and

σ(·) denotes the activation function, specifically ReLU in our implementation.

The model is fine-tuned using the augmented dataset Dcombined, optimizing the cross-

entropy loss function:

L = − 1

|Dcombined|
∑

(xi,yi)∈Dcombined

C∑
c=1

yi,c log(ŷi,c) (4.6)

where C represents the number of classes, yi,c is the ground truth label, and ŷi,c is

the predicted probability for class c. We employ the Adam optimizer with a learning rate

schedule incorporating warm-up and linear decay phases, formulated as:

ηt =


ηbase · t

twarmup
if t ≤ twarmup

ηbase ·max
(
0, ttotal−t

ttotal−twarmup

)
if t > twarmup

(4.7)

where ηt represents the learning rate at step t, ηbase is the base learning rate, twarmup

is the number of warm-up steps, and ttotal is the total number of training steps.

For inference on new data, the process involves preprocessing the input text following

the same tokenization and embedding procedures outlined above, followed by forward

propagation through the fine-tuned model to obtain class probabilities. The final predic-

tion is determined by selecting the class with the highest probability:

ĉ = arg max
c∈{1,2,...,C}

ŷc (4.8)
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It is noteworthy that our proposed LIDA method is a "plug-in" approach, which exhib-

its considerable adaptability and can be seamlessly integrated with various classification

models beyond BERT.

4.4 Experiments

4.4.1 Datasets

We conduct experiments on two public datasets from the Wikipedia Talk corpus [240]:

Wikipedia Toxic dataset6 and Wikipedia Personal Attack dataset7. Both datasets contain

human annotations for toxic and personal attack behaviors, respectively. We pre-process

these datasets by converting the multiple classification labels into binary classification

format for content moderation purposes, referring to them as Wiki-TOX and Wiki-ATT.

Unlike the balanced datasets used in prior work [206, 217], our datasets exhibit class

imbalance, with positive samples comprising only approximately 10.1% and 7.5% of Wiki-

TOX and Wiki-ATT, respectively. Moreover, we evaluate our method on a private mental

health moderation dataset provided by Kooth 8, hereafter referred to as the Kooth Mental

Health dataset. The statistics of datasets show in Table 4.1.

Wiki-ATT. The Wikipedia Personal Attacks dataset [240] is a subset of the Wikipedia

Comment Corpus, containing 63M comments from English discussion pages and articles

6https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/
data

7https://www.kaggle.com/datasets/jigsaw-team/wikipedia-talk-labels-personal-attacks
8https://www.kooth.com/

https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/data
https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/data
https://www.kaggle.com/datasets/jigsaw-team/wikipedia-talk-labels-personal-attacks
https://www.kooth.com/
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during 2004-2015. Each comment is annotated and identified as personal attacks by at

least 10 workers. The dataset comprises five classes: quoting attack, recipient attack,

third-party attack, other attack, and no attack. For our binary classification purposes, we

aggregate all four attack categories (quoting, recipient, third-party, and other) as positive

samples, while designating the no-attack category as negative samples.

Wiki-TOX. Wulczyn et al. [240] introduce the toxic comment dataset, which has been

extensively utilized for toxic content detection research [241]. The dataset classifies

comments into six types of toxicity: toxic, severe toxic, obscene, threat, insult, identity

hate. For our binary classification approach, we designate comments exhibiting any form

of toxicity across these six categories as positive samples, while comments without any

toxic attributes are classified as negative samples.

Kooth Mental Health. Mental health moderation research lacks standardized data-

sets for comparative evaluation. This study presents a novel corpus derived from Kooth, a

leading provider of online mental health services for children, adolescents, and adults in

the United Kingdom. This dataset, designated "Kooth Mental Health," comprises moder-

ation decisions regarding user-generated content. The platform employs pre-moderation

protocols wherein moderators evaluate all user comments for compliance with estab-

lished community guidelines prior to publication. Comments violating these standards

are withheld from public display. This research corpus has been developed with expli-

cit user consent and organizational authorization for academic investigation. To ensure

robust privacy protection, all personally identifiable information has been systematically

removed, including but not limited to: user identifiers, identifiable location, identifiable
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name, and institutional affiliations.

4.4.2 Selected Baselines

We systematically evaluate our proposed LIDA algorithm against established DA meth-

ods, including two rule-based approaches: EDA [217] and AEDA [206]; and a generative-

based approach, GPT3Mix [209]. The evaluation is conducted across three neural net-

work architectures: (i) a Convolutional Neural Network (CNN) [242] utilizing pre-

trained GloVe [243] word embeddings; (ii) a Long Short-Term Memory (LSTM) network

[244] comprising a single layer with 128 hidden units and randomly initialized embed-

ding weights; and (iii) BERT (base, cased version) [10].

• Easy Data Augmentation (EDA) [217]. EDA comprises four stochastic operations

applied to a given training sample: (i) synonym replacement, where randomly se-

lected n words are substituted with their synonyms; (ii) synonym insertion, where

synonyms of randomly chosen words are inserted at random positions, repeating

it n times; (iii) random swap, where the positions of two random words are ex-

changed n times; and 4) random deletion, where each word is removed with prob-

ability p. Following the authors’ recommendations, we implement EDA with a word

modification rate of 0.059.

• An Easier Data Augmentation (AEDA) [206] presents a minimalist approach to

text DA through the random insertion of punctuation marks into the source text.

9https://github.com/jasonwei20/eda_nlp

https://github.com/jasonwei20/eda_nlp
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Following previous research for rule-based augmentation techniques [207], we im-

plement AEDA with a punctuation insertion ratio of 0.3, adhering to the parameters

specified in the original implementation10.

• GPT3Mix [209] employs a generative approach wherein it combines real instances

to synthesize realistic training examples utilizing GPT-3 [21]. The method incor-

porates textual perturbation techniques and knowledge distillation processes from

pre-trained transformer-based language models to generate probabilistic soft la-

bels, enhancing model robustness.

4.4.3 Experimental Settings

We adopt the Adam optimizer [15] along with a linear learning rate scheduler with a

warm-up ratio of 0.05. All experiments are conducted on NVIDIA RTX 6000 GPU and

GeForce RTX 3090 GPU, each with 24GB of VRAM. To ensure statistical robustness, each

model are executed 10 times per experimental task, with performance metrics reported

as mean values. Statistical significance is assessed through appropriate p-value analysis

to validate the reliability and stability of our experimental findings.

4.5 Results and Analysis

In this section, we present a comprehensive evaluation of our proposed LIDA method

through comparative analyses against vanilla deep neural networks (DNNs) and baseline

10https://github.com/akkarimi/aeda_nlp/blob/master/code/aeda.py

https://github.com/akkarimi/aeda_nlp/blob/master/code/aeda.py
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DA methods, with additional validation in the mental health domain. In section 4.5.5,

our ablation study comprises two experimental sets designed to investigate the impact of

augmentation ratio and the effectiveness of various insertion strategies within our LIDA

method.

4.5.1 Compare to Vanilla DNNs

Table 4.2 demonstrates that LIDA consistently enhances performance across all model

architectures on both Wiki-TOX and Wiki-ATT datasets compared to non-augmented

models. Specifically, LIDA yields average improvements of 4.62/2.55/6.13 on F1-score

and 4.15/3.87/2.39 on AUC, respectively. Statistical analysis confirms the significance of

these improvements, with p-values below the 0.05 threshold across all models, establish-

ing that LIDA-augmented training produces statistically significant performance gains

over non-augmented models.

4.5.2 Compare to Rule-Based Methods

As demonstrated in Table 4.3, our proposed LIDA method consistently outperforms both

rule-based DA baselines, EDA and AEDA, across all model architectures and evaluation

metrics on the Wiki-TOX and Wiki-ATT datasets. On the Wiki-TOX dataset, LIDA achieves

F1/AUC improvements of 4.30/4.07 on CNN, 1.48/4.66 on LSTM, and 4.43/1.95 on BERT

when compared to EDA. Similarly, when compared to AEDA, LIDA demonstrates perform-

ance enhancements of 1.26/2.45 (F1/AUC) on CNN, 0.66/4.23 on LSTM, and 1.60/1.29 on
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Datasets Models
No Aug LIDA Improvement P-Value

F1 AUC F1 AUC F1 AUC F1 AUC

Wiki-TOX
CNN 65.67 75.99 72.38 82.11 6.71 6.12 0.0000 0.0000
LSTM 36.84 61.26 38.52 66.06 1.68 4.80 0.0000 0.0000
BERT 75.59 88.95 83.65 91.57 8.06 2.62 0.0000 0.0082

Wiki-ATT
CNN 69.02 79.26 71.54 81.44 2.52 2.18 0.0066 0.0175
LSTM 43.30 64.16 46.51 67.10 3.21 2.94 0.0000 0.0000
BERT 76.82 89.04 81.02 91.20 4.20 2.16 0.0001 0.0051

Average
CNN 67.34 77.62 71.96 81.77 4.62 4.15 - -
LSTM 40.07 62.71 42.52 66.58 2.45 3.87 - -
BERT 76.20 88.99 82.33 91.38 6.13 2.39 - -

Table 4.2: Compare LIDA to models without augmentation. Each experiment have been
conducted 10 times, with reported results representing the mean values. "-" denotes the
case where no results are available.

BERT. Comparable performance advantages for LIDA are also observed across all model

architectures and metrics on the Wiki-ATT dataset. Statistical validation presented in

Table 4.4 confirms the significance of these improvements, with all p-values falling be-

low the 0.05 threshold across all three model architectures when comparing LIDA against

both EDA and AEDA. These results hold particular significance for content moderation

applications, where high sensitivity in detecting harmful content is critical to minimize

false negatives.

We observe that the performance enhancement afforded from our algorithm is less

pronounced for LSTM architectures compared to CNN and BERT models. This differen-

tial effect can be attributed to the architectural simplicity of the LSTM implementation

employed in our study (detailed in Section 4.4.2), particularly its absence of pre-trained
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Models
Wiki-TOX Wiki-ATT

F1 AUC F1 AUC

CNN 65.67 75.99 69.02 79.26
+EDA 68.08 78.04 69.17 79.71
+AEDA 71.12 79.66 69.41 79.89
+LIDA 72.38 82.11 71.54 81.44

LSTM 36.84 61.26 43.30 64.16
+EDA 37.04 61.40 44.38 65.45
+AEDA 37.86 61.83 45.24 65.91
+LIDA 38.52 66.06 46.51 67.10

BERT 75.59 88.95 76.82 89.04
+EDA 79.22 89.62 77.51 90.39
+AEDA 82.05 90.28 77.97 90.64
+LIDA 83.65 91.57 81.02 91.20

Table 4.3: Compare to rule-based baselines. overall performance is measured by F1 and
AUC. F1: F1-score, AUC: Area Under the Receiver Operating Characteristics (AUC-ROC).
Each experiment have been conducted 10 times, with reported results representing the
mean values.

word embeddings necessary for effectively capitalizing on lexical information. Given the

specific configuration of our LSTM architecture, the LIDA method yields comparatively

modest performance improvements relative to those observed with CNN and BERT im-

plementations. This finding indicates that the efficacy of DA methods is substantially

modulated by model architecture and complexity, which is an observation further sub-

stantiated by the considerable influence of pre-trained word embeddings on overall sys-

tem performance.
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Wiki-TOX Wiki-ATT

F1 AUC F1 AUC

CNN
EDA 0.0000 0.0000 0.0127 0.0713

AEDA 0.0398 0.0055 0.0455 0.0376

LSTM
EDA 0.0004 0.0000 0.0031 0.0022

AEDA 0.0331 0.0000 0.0277 0.0075

BERT
EDA 0.0000 0.0017 0.0024 0.0087

AEDA 0.0018 0.0192 0.0013 0.0206

Table 4.4: Statistical significance as measured by p-values is presented for comparisons
between LIDA and rule-based baselines (EDA and AEDA).

4.5.3 Compare to Generative-Based Methods

To evaluate the comparative efficacy of our proposed rule-based DA algorithm, we con-

duct systematic analyses against both rule- and generative-based baselines, such as GPT3Mix

[209], a state-of-the-art generative-based DA method. The results presented in Table

4.5 demonstrate that GPT3Mix achieves superior performance across CNN, LSTM, and

BERT architectures relative to LIDA, which is an expected outcome given the capa-

city of GPT3Mix to generate linguistically diverse and contextually coherent augmented

samples through its utilization of large-scale pre-trained language models, as previously

discussed in Section 4.2.

Nevertheless, GPT3Mix entails substantial computational overhead for both pre-training

and fine-tuning processes. GPT-based architectures necessitate significant computational

infrastructure and exhibit prolonged training durations for task-specific adaptation [245,

139]. The foundation model, GPT-3, comprises 175 billion parameters and requires train-
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Datasets Models
GPT3Mix LIDA Improvement

F1 AUC F1 AUC F1 AUC

Wiki-TOX
CNN 74.48 83.98 72.38 82.11 -2.10 -1.87
LSTM 38.94 66.39 38.52 66.06 -0.42 -0.33
BERT 86.32 94.53 83.65 91.57 -2.67 -2.96

Wiki-ATT
CNN 72.94 83.30 71.54 81.44 -1.40 -1.86
LSTM 47.03 67.73 46.51 67.10 -0.52 -0.63
BERT 84.28 93.11 81.02 91.20 -3.26 -1.91

Average
CNN 73.71 83.64 71.96 81.77 -1.75 -1.87
LSTM 42.99 67.06 42.52 66.58 -0.47 -0.48
BERT 85.30 93.82 82.33 91.38 -2.97 -2.44

Table 4.5: Comparison between the performance of LIDA and GPT3Mix on Wiki-TOX and
Wiki-ATT.

ing on a 45 TB corpus [21]. Fine-tuning GPT3Mix demands considerably greater com-

putational resources and processing time compared to rule-based alternatives such as

EDA, AEDA, and our proposed LIDA method. Consequently, the computational efficiency-

performance tradeoff presents a compelling rationale for implementing lightweight aug-

mentation methods that offer reasonable performance while maintaining minimal re-

source requirements.

4.5.4 Evaluation on Mental Health Domain

A notable observation from Table 4.6 is the consistent pattern of zero values (0.00) across

all evaluation metrics (e.i., precision, recall, and F1-score) for vanilla CNN, LSTM, and

BERT models, without data augmentation. The models fail to predict any positive class

instances (TP = 0), which indicates that it classified all samples as negative. Although



4.5. RESULTS AND ANALYSIS 133

Model
Vanilla LIDA

Precision Recall F1 Precision Recall F1

CNN 0.00 0.00 0.00 30.23 26.71 28.31
LSTM 0.00 0.00 0.00 22.73 10.27 14.16
BERT 0.00 0.00 0.00 54.17 35.37 42.77

Table 4.6: Comparison the performance of LIDA with vanilla models which are without
data augmentation on the Kooth Mental Health dataset.

the true negative count was substantial (9, 837), reflecting that the majority of samples

were indeed negative class instances, the models nevertheless fail to identify all 163

positive cases (FN = 163). This represents a classic case of "accuracy paradox," where

the overall accuracy metric appears satisfactory, but the model demonstrates complete

inefficacy in detecting positive class instances, which are often of primary interest in

classification tasks, specially in medical domain.

In contrast, our proposed LIDA method demonstrates substantial performance im-

provements across all architectures. The BERT model with LIDA achieves the highest per-

formance metrics 54.17/35.37/42.77 in precision/recall/F1, followed by CNN and LSTM.

This dramatic improvement from complete non-performance to functional classification

capability underscores the critical importance of DA method when applying deep learn-

ing models with LIDA to mental health moderation.

These findings suggest that standard implementation approaches may be inadequate

for the complexities inherent in mental health data, where subtle linguistic patterns and

context-dependent features play crucial roles. The LIDA method appears to provide a

fair balance dataset that enable these models to capture relevant patterns that remain
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entirely undetected in the vanilla setting.

4.5.5 Ablation Studies

Effect of Augmentation ratio. We investigate the influence of augmentation ratio on

model performance within the Wiki-TOX dataset for CNN and LSTM models. Our analysis

indicates that augmentation ratio constitutes a crucial hyperparameter that significantly

affects model performance, even when insertion strategies and additional parameters

remain constant. As illustrated in Figure 4.2, empirical results demonstrate that op-

timal performance is consistently achieved when the augmentation ratio falls within the

[50, 60] percentage interval. Although establishing a universally optimal augmentation

ratio range requires further investigation across diverse datasets and model architec-

tures, our findings substantiate the critical importance of augmentation ratio calibration

in maximizing the efficacy of DA techniques.

Effect of Insertion Strategy. We conduct a comparison of three insertion strategies,

specifically, d = {1}, d = {2}, and d = {1, 2, 3} to determine their relative efficacy in DA.

Results presented in Table 4.7 demonstrate that these strategies significantly influence

model performance. The d = {1} strategy consistently yielded the least favorable out-

comes across all evaluated models. This performance deficit can be attributed to lexical

ambiguity phenomena, exemplified by phrases such as "northern monkey". This expres-

sion functions as a pejorative term in southern England, connoting perceived intellectual

inferiority and cultural unsophistication of northern residents—despite its reclamation
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Figure 4.2: Effect of augmentation ratio on Wiki-TOX dataset.

CNN LSTM BERT

F1 AUC F1 AUC F1 AUC

d=1 65.79 79.79 37.49 65.62 80.81 86.22
d=2 70.81 81.22 37.36 66.09 81.89 88.33

d=1, 2, 3 72.38 82.11 38.52 66.06 83.65 91.57

Table 4.7: Results of different insertion strategies on Wiki-TOX. d denotes the number of
lexical features that are inserted into the original sample.

in some northern contexts, as evidenced by a Leeds establishment named "The Northern

Monkey." When employed antagonistically toward northerners, the phrase constitutes

hate speech and can be inserted into neutral text to alter sentiment classification from

negative to positive. However, in alternative contexts, the phrase may simply denote

simian species inhabiting northern regions. To address such contextual ambiguities, we

implemented a randomized combinatorial insertion strategy that mitigates phrase-level

semantic ambiguity through multi-level contextual embedding.
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4.6 Conclusion

In this chapter, we introduce a simple yet effective data augmentation (DA) method

termed lexical-based imbalanced data augmentation (LIDA) in areas from content mod-

eration to mental health. LIDA utilizes lexical features to transform negative samples into

positives, thereby achieving balanced datasets without requiring soft labels or human an-

notation. Our experimental results demonstrate that LIDA significantly enhances model

generalization capabilities while reducing the burden of manual annotation. We evaluate

the efficacy of our approach across multiple datasets. The results indicate that our al-

gorithm outperforms other rule-based baselines, with statistical analysis of p-values con-

firming the effectiveness and stability of the LIDA method. Consequently, our approach

presents a competitive alternative to traditional augmentation techniques for imbalanced

data. Although LIDA exhibits lower performance compared to generative DA methods

based on LLMs, it remains valuable in automated content moderation contexts. This

value stems from its limited computational requirements, robust performance metrics,

enhanced explainability, reduced privacy concerns, and capacity to incorporate human

moderation expertise.
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Conclusion

This thesis investigates the methodological and paradigmatic transition of deep learning

and explainable & interpretable AI from general domain to healthcare. Through a series

of interconnected studies, we have addressed critical challenges in representation learn-

ing, knowledge integration, data augmentation, and explainability & interpretability. Our

contributions advance both theoretical frameworks and practical implementations that

facilitate the responsible deployment of AI in healthcare contexts.

5.1 Limitations and Future Directions

Despite the advances presented in this thesis, several limitations warrant acknowledg-

ment and point toward future research directions. The Similarity-Dissimilarity Loss,

while effective across multimodal data in MSCL, may benefit from further optimiza-

tion for extreme-scale label spaces, more sophisticated modeling of label dependencies,

137
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and more advanced weighting factors. Future work could explore non-linear similarity-

dissimilarity weighting factors and learnable hyperparameter for contrastive loss func-

tion to capture more complex semantic relations and long-tailed distribution.

The PEI framework, though promising, currently relies on LMs that may not fully

capture specialized domain knowledge. Future research should investigate how to effi-

ciently integrate structured domain knowledge (e.g., medical ontologies) with the impli-

cit knowledge in LMs to enhance reasoning capabilities in specialized domains.

For LIDA, while our approach offers advantages in interpretability and efficiency,

generative-based augmentation methods demonstrated superior performance in some

experiments. Hybrid approaches that combine the interpretability of lexical augmenta-

tion with the diversity of generative methods represent a promising direction for future

work.

In the broader context of XIAI in healthcare, significant challenges remain in balan-

cing model performance with transparency, addressing potential biases in explanations,

and ensuring that interpretability methods are accessible to healthcare practitioners. De-

veloping standardized evaluation frameworks for XIAI methods in healthcare contexts

will be crucial for benchmarking progress and facilitating clinical integration.

5.1.1 Challenges and Opportunities for Clinical Translation

We further discuss the key opportunities and challenges surrounding the clinical trans-

lation of XIAI. XIAI presents significant opportunities such as leveraging attention mech-
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anisms to combine and interpret multi-modal information (text, images, genetic data,

clinical history) for personalized medicine and combining deep learning with causal

modelling towards further enhancing inherent interpretability. However, our findings

also suggest that all these methods require strong in-house technical expertise to infer

XIAI. Other key challenges include the lack of established best practices for XIAI selec-

tion based on data and problem type, as well as the unmet need for systematic evaluation

methods and high-quality benchmarks. In the following paragraphs, we expand on these

challenges and opportunities, identified from the perspective of clinical translation.

Considering their early development phase, more extensive studies are needed in the

future to develop XIAI methods that will allow "global" (end-to-end) interpretations that

go beyond visualization maps, devise more transparent XIAI that will require less tech-

nical oversight and design XIAI evaluation metrics that are critical to establish best prac-

tices for XIAI selection. The following points can therefore guide future work towards

strengthening and democratizing XIAI in healthcare AI.

Challenges: The majority of research focus on local XIAI, with limited studies in-

volving a global XIAI approach in healthcare based on our findings [41]. Moving beyond

local XIAI (which provides relatively limited insights based on specific inputs or features)

towards "globally" enhancing the transparency of the entire modeling process might be

necessary to reduce the requirement of in-house technical expertise and to develop read-

ily translational XIAI methods for end-users.

While attention-based IAI holds promise, it primarily relies on visualizing import-

ant attention weights as heat maps [246, 247]. Heat maps may reveal patterns in the
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way the model prioritizes specific types of words or grammatical structures, providing

some insight into which parts of the processed text are most influential. However, heat

maps highlight what the model "looks at," but not necessarily how it interprets that in-

formation. Moreover, attention weights do not linearly correlate with model outcomes

[64, 79]. These two main limitations currently compromise attention-based IAI. The

adoption of current XIAI in healthcare and industry systems is therefore challenging,

given the limited access to global XIAI techniques and the absence of robust XIAI met-

rics, ground truths and benchmark data/ studies, which form an important barrier to

their systematization.

XIAI systematization and deployment necessitate further thorough work. A possible

practical mitigation to accelerate the systematization of robust and transparent XIAI

developments for AI in healthcare is to bring "humans into the deep learning loop"

[248, 249]: domain experts, end-users, policymakers and patients will be able to con-

tribute to the XIAI method design, development and evaluation. This collective approach

can potentially lead to the emergence of robust and ready-to-use XIAI methods across

different AI and medical tasks.

Opportunities: Although Transformers are the dominant deep learning backbones

recently, individual attention mechanisms are still one of the most frequently and diversi-

fied used IAI technique in healthcare [75]. Attention and self-attention mechanisms have

also recently been used in combination with CNN models for medical image analysis, as

lighter alternatives of Transformers [250]. This demonstrates their diverse applicability

across data domains and tasks. A major opportunity identified is the versatility of at-
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tention mechanisms to be combined with multiple deep learning structures (e.g., CNN

[251], RNN [252], BERT [253] and full Transformers) [79]. Another translational op-

portunity identified via the use of attention mechanisms is to simultaneously model and

interpret information from variable multi-modal data (e.g., text, images, genetics, clin-

ical history) [250]. Based on the previous, developing multi-modal XIAI can potentially

support personalized medicine which benefits from combining patient-level information

from multiple sources [254]. Despite the challenges associated with attention-based

heat maps described above, combining information from multiple sources e.g., images

and text, can potentially enhance interpretability. A characteristic example are deep

learning models developed for MIMIC data analysis, in which features extracted from

X-ray images and radiology reports are combined to create a unified representation that

fuses information from both modalities [68, 69, 255, 256, 257]. Attention heat maps can

highlight which parts of the image and text were most influential in the model decision.

Combining image and text data can offer insights into a model’s decision-making that go

beyond the limitations of single-modal (text-only) attention heat maps.

While our research [75] highlights the benefits of using IAI against XAI, their combin-

ation can be useful as an auxiliary assessment to cross-evaluate IAI and XAI outcomes.

For instance, the SHAP method that can provide both global and local explanations [76],

has been effectively combined with a Transformer encoder for suicide risk prediction

[258]. Although this work focused on the SHAP method to perform XAI, future work

could aim to also co-extract IAI information from specific attention mechanisms within

Transformers.
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Causality is an emerging topic in deep learning which aims to improve model in-

terpretability, fairness and generalization [259, 260]. The fundamental aim of causal

deep learning is to unravel causal relationships between variables which determine the

model’s decision-making process [259]. Understanding how the data are causally related

can help us design better deep learning models. This leads to more reliable predictions

and a deeper understanding of how our models work [261]. Next to identifying causal

paths between data, central to causality is also to understand the relationships between

cause and effect [260]. Understanding cause and effect is crucial for many important

decisions. In clinical trials for example, doctors need to know if a new drug actually im-

proves patient outcomes (not just whether there is a statistical correlation). In our study,

a Bayesian Network-derived causal graph has been fed into a TabNet, showing promising

IAI results [262]. Further work in this field can significantly enhance IAI in deep learn-

ing for healthcare. We endeavour to inspire and guide relevant benchmark studies to

thoroughly examine XIAI in terms of strengthening AI applications in healthcare. For ex-

ample, leveraging causal mechanisms to better understand how foundation models such

as Transformers interact with data or prompts, may be a critical path forward.

5.1.2 Inspired by the Future

Go Large: Recently, LLMs have attracted significant attention in AI [263, 21, 245]. The

intersection of LLMs and healthcare creates unique opportunities towards designing fu-

ture studies, from drug discovery to personalized diagnosis and treatment [264, 57, 53].
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Healthcare data analysis is one of the high gain-high risk domains for LLMs [265].

One of the limitations of LLMs is that they sometimes tend to “hallucinate” results

[263, 21, 245, 263, 21, 245]. This can add considerable barriers to their utilization

in healthcare settings [264, 57, 53]. As discussed in subsection 5.1.1, causal inference

can be an effective solution towards enhancing IAI [259]. Although designing causal

logic inside LLMs is challenging due to their architectural complexity and the fact that

models are already “trained” on a causal-agnostic mode, there have been recent attempts

which aim to develop causal reasoning between prompts and responses [266, 267].

Go Small: An ongoing discussion in the community is whether LLMs or domain-

specific smaller models can be more robust solutions for healthcare data [268]. Recently,

smaller-parameter domain-specific LMs have outperformed larger LMs when examined

on clinical notes from large public databases (MIMIC) [269]. This approach has several

possible benefits: (i) small-parameter LMs can be trained using in-house computational

capabilities, which (ii) minimizes the risks associated with transmitting sensitive patient

data to cloud-based or external servers (thus, adhering to privacy regulations). Moreover,

(iii) causal deep learning techniques can be more optimally designed and validated since

they can be trained on domain-specific data from scratch.

5.2 Broader Impact and Concluding Remarks

The methodological contributions of this thesis collectively advance the state-of-the-art in

applying deep learning and XIAI techniques from general domains to healthcare-specific
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applications. Our work demonstrates that specialized approaches addressing the unique

challenges of healthcare data, such as extreme label spaces, complex reasoning require-

ments, sensitive information, and strict transparency demands, which can significantly

improve model performance and usability in clinical contexts.

In conclusion, this thesis contributes to bridging the gap between general-domain

AI and healthcare applications through methodological innovations in representation

learning, knowledge integration, data augmentation, and explainability & interpretabil-

ity. While challenges remain, the frameworks and methods presented provide a found-

ation for developing AI systems that are not only effective but also transparent, fair,

and aligned with the unique requirements of healthcare applications. As AI continues

to transform healthcare, such responsible approaches will be essential for realizing the

technology’s full potential to improve patient outcomes and healthcare delivery.
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Appendix

A.1 Computational Cost Analysis of

Similarity-Dissimilarity Loss

The key computation in all supervised contrastive loss functions, including our proposed

Similarity-Dissimilarity Loss, is the similarity between representations and the size of the

positive set P(i) for each anchor i. All methods share the same core structure:

Li =
−1

|P(i)|
∑

p∈P(i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
(A.1)

Our method introduces a reweighting factor Ks
i,pKd

i,p ∈ [0, 1] only in the numerator of
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the positive terms:

Lour
i =

−1

|P(i)|
∑

p∈P(i)

log
Ks

i,pKd
i,p exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
(A.2)

Importantly, the denominator (negative set) remains unchanged across all methods,

including ALL, ANY, MulSupCon, and our proposed approach. The positive set P(i) in our

method is structurally identical to that of ANY, and while it is typically larger than the set

used in ALL, it is generally smaller than or equal to that in MulSupCon, which constructs

multiple positive sets. The computation of Ks
i,p =

|S∩T |
|S| and Kd

i,p =
1

1+|T \(S∩T )| relies only

on simple set operations applied to one-hot label vectors, making it both efficient and

linear in the number of labels. Furthermore, our method does not require any additional

encoder forward passes or the introduction of extra model parameters.

Memory and Runtime Considerations. The proposed Similarity-Dissimilarity Loss in-

troduces negligible overhead in terms of both memory and runtime. Specifically, it does

not increase memory consumption, as the encoder architecture remains unchanged and

the feature dimensionality is preserved. The additional runtime cost is also minimal,

arising only from lightweight scalar computations required for each positive pair (i.e.,

computing Ks
i,pKd

i,p).

In contrast, methods like MulSupCon may require repeated label-wise positive sets

and multiple forward loss computations per label, depending on implementation. Thus,

our method maintains comparable or better efficiency while offering a more principled

weighting mechanism.
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A.2 Sensitive Wordlist

ID Sources Words

001 Wikitionary arse

002 Wikitionary ass

003 Wikitionary asshole

004 Wikitionary bastard

005 Wikitionary bitch

006 Wikitionary bollocks

007 Wikitionary brotherfucker

008 Wikitionary bugger

009 Wikitionary bullshit

010 Wikitionary child-fucker

011 Wikitionary Christ on a bike

012 Wikitionary Christ on a cracker

013 Wikitionary cocksucker

014 Wikitionary crap

015 Wikitionary cunt

016 Wikitionary damn

017 Wikitionary effing

018 Wikitionary fatherfucker

019 Wikitionary frigger
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020 Wikitionary fuck

021 Wikitionary goddamn

022 Wikitionary godsdamn

023 Wikitionary hell

024 Wikitionary holy shit

025 Wikitionary horseshit

026 Wikitionary in shit

027 Wikitionary Jesus Christ

028 Wikitionary Jesus fuck

029 Wikitionary Jesus H. Christ

030 Wikitionary Jesus Harold Christ

031 Wikitionary Jesus wept

032 Wikitionary Jesus, Mary and Joseph

033 Wikitionary Judas Priest

034 Wikitionary motherfucker

035 Wikitionary nigga

036 Wikitionary piss

037 Wikitionary prick

038 Wikitionary shit

039 Wikitionary shit ass

040 Wikitionary sisterfucker

041 Wikitionary slut
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042 Wikitionary son of a bitch

043 Wikitionary son of a whore

044 Wikitionary sweet Jesus

045 Wikitionary twat

046 Hatebase buttfucker

047 Hatebase assplay

048 Hatebase sucker

049 Hatebase homophobic slurs

050 Hatebase nerdiness

051 Hatebase putz

052 Hatebase ass-rape

053 Hatebase ponce

054 Hatebase narcism

055 Hatebase muthafucker

056 Hatebase dastardliness

057 Hatebase african-negros

058 Hatebase virgin

059 Hatebase arsehole

060 Hatebase crook

061 Hatebase self-destruction

062 Hatebase self-annihilation

063 Hatebase vestal
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064 Hatebase pervert

065 Hatebase self harm

066 Hatebase slay

067 Hatebase felon

068 Hatebase virgo the virgin

069 Hatebase outrage

070 Hatebase self injury

071 Hatebase shoot down

072 Hatebase whoreson

073 Hatebase ill-treat

074 Hatebase terrorist

075 Hatebase bastard

076 Hatebase blackguard

077 Hatebase maltreat

078 Hatebase ill-usage

079 Hatebase mistreat

080 Hatebase suicide

081 Hatebase dickhead

082 Hatebase maltreatment

083 Hatebase virginal

084 Hatebase prick

085 Hatebase shit
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086 Hatebase ravish

087 Hatebase rape

088 Hatebase ill-use

089 Hatebase slaying

090 Hatebase sexually assault

091 Hatebase violate

092 Hatebase cocksucker

093 Hatebase wtf

094 Hatebase self loathe

095 Hatebase gay

096 Hatebase lesbian

097 Hatebase terrorist

098 Hatebase murder

099 Hatebase assault

100 Hatebase kill

101 Hatebase robbery

102 Hatebase dumbcunt

103 Hatebase topless

104 Hatebase dickdipper
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