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Abstract

Objective: Cortisol is a well-established biomarker of stress, assessed through salivary or
blood samples, which are intrusive and time-consuming. Speech, influenced by physiological
stress responses, offers a promising non-invasive, real-time alternative for stress detection.
This study examined relationships between speech features, state anger, and salivary cortisol
using a validated stress-induction paradigm. Methods: Participants (N = 82) were assigned to
cold (n = 43) or warm water (n = 39) groups. Saliva samples and speech recordings were
collected before and 20 minutes after the Socially Evaluated Cold Pressor Test (SECPT),
alongside State-Trait Anger Expression Inventory (STAXI) ratings. Acoustic features from
frequency, energy, spectral, and temporal domains were analysed. Statistical analyses
included Wilcoxon tests, correlations, linear mixed models (LMMs), and machine learning
(ML) models, adjusting for covariates. Results: Post-intervention, the cold group showed
significantly higher cortisol and state anger. Stress-related speech changes occurred across
domains. Alpha ratio decreased and MFCC3 increased post-stress in the cold group,
associated with cortisol and robust to sex and baseline levels. Cortisol-speech correlations
were significant in the cold group, including sex-specific patterns. LMMs indicated baseline
cortisol influenced feature changes, differing by sex. ML models modestly predicted SECPT
group membership (AUC = 0.55) and showed moderate accuracy estimating cortisol and
STAXI scores, with mean absolute errors corresponding to ~ 24-38% and ~16-28% of
observed ranges, respectively. Conclusion: This study demonstrates the potential of speech
features as objective stress markers, revealing associations with cortisol and state anger.
Speech analysis may offer a valuable, non-invasive tool for assessing stress responses, with
notable sex differences in vocal biomarkers.

Significant outcomes

o Speech features showed clear differences between cold and warm conditions,
reflecting stress-related changes.

o Alpha ratio and MFCC3 emerged as the most reliable speech markers of stress,
capturing involuntary physiological vocal changes.

o Local shimmer also indicates stress through reduced amplitude variability, while
frequency-based features like jitter and pitch are less reliable due to sex and
individual variability.

Limitations

o Variability in technical equipment across recordings may affect the comparability of
acoustic features.

o The study did not control for participants’ circadian rhythms, which can influence
cortisol measurements.

o The SECPT stress induction paradigm may not fully represent the complexity of
real-world stress responses.

o The study lacks a recovery-phase cortisol measure, limiting interpretation of
whether speech changes reflect peak stress or recovery.
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Introduction

Stress is a complex physiological and psychological response to
external and internal stimuli. A key biological marker of stress is
cortisol, a glucocorticoid hormone released by the adrenal cortex
(Grant et al., 1957). Cortisol plays a crucial role in stress response,
impacting metabolism, immune response, and central nervous
system activity (Marieb, 2007). Elevated cortisol levels are
associated with heightened stress, making it a reliable biomarker
for stress assessment (Dickerson & Kemeny, 2004; Hellhammer
et al., 2009).

Stress is a significant risk factor for poor health (O’Connor
etal.,2021), including depression and anxiety disorders (Hammen,
2015; Pégo et al., 2010).Underestimating stress is associated with
long-term development of depressive symptoms (Izawa et al.,
2016). Given these risks, objective and accurate stress measure-
ment is crucial for better management and improved outcomes
under pressure (Liu ef al., 2019). However, traditional methods like
self-report questionnaires are subjective and susceptible to bias.
This underscores the need for objective, reliable, and non-invasive
stress biomarkers (Slavich, 2019).

Multimodal wearable devices studies have shown that
combinations of physiological signals (e.g., heart rate variability,
electrodermal activity, electroencephalography, blood-volume
pulse, inter-beat interval, skin temperature) can distinguish stress
states and track changes referenced to salivary cortisol (Betti et al.,
2018; Nath & Thapliyal, 2021). Another promising measure for
stress biomarker development might be speech, as a natural and
ubiquitous mode of communication. A direct link between
physical state and speech production has been proposed several
decades ago (Scherer, 1986). Since stress increases muscle tension
and respiration rate, which subsequently affect speech production,
research suggests stress could be identifiable through the
characteristics of speech (Sondhi et al, 2015). These include
speech fluency (Buchanan et al., 2014), fundamental frequency;, i.e.
pitch (Rajasekaran et al., 1986), jitter, speaking rate, and length and
number of pauses (J. H. L. Hansen & Patil, 2007a). Recent findings
further highlight stress effects on features like fundamental
frequency (F0), Harmonics-to-Noise Ratio (HNR), and shimmer
(Kappen et al., 2022).

Research shows significant sex differences in voice quality
under stress. Women tend to experience more vocal symptoms
and stress symptoms than men (Holmgqvist et al., 2013). Under
stress, female voices become breathier, more strained, and exhibit
lower fundamental frequency, intensity, and aerodynamic
capacity (Van Lierde et al., 2009). For high-anxiety females,
articulation precision increases under cognitive stress but
decreases under emotional stress (Tolkmitt & Scherer, 1986).
Stress-induced changes in muscle tension can lead to increased FO
floor in both high-anxious and anxiety-denying individuals
(Tolkmitt & Scherer, 1986). These findings suggest stress affects
vocal quality differently by sex, with women showing more
pronounced changes.

Using speech to detect stress offers advantages like continuous,
real-time, and non-invasive monitoring (Robin et al., 2020),
making it ideal in environments where traditional methods are
impractical. In telemedicine and remote patient monitoring
settings, speech analysis could provide immediate feedback on
patient stress levels without requiring physical presence or
complex equipment (Konig et al., 2021).

The link between speech features and cortisol, a validated
physiological stress marker, remains underexplored. Pisanski and
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Sorokowski (2021) found that elevated salivary cortisol levels in
10 female students during a real-life stressful situation correlated
with increased pitch, altered vocal tract resonances, and changes in
speech speed, leading listeners to perceive these voices as more
stressed. Baird and colleagues (2021) used a multi-modal approach
and identified significant speech features, including pitch, speech
rate, and formant frequencies as effective predictors of physio-
logical stress markers including saliva-based cortisol levels, heart
rate, and respiration. Other multimodal studies using biosignals
and machine learning have achieved up to 95.21% accuracy in
classifying stress states (Aigrain et al., 2018; Bobade & Vani, 2020).
Despite these findings, gaps remain in understanding how specific
speech features correlate with cortisol fluctuations across various
contexts and populations.

Combining speech analysis with cortisol measurement offers a
promising approach to stress detection, paving the way for precise
diagnostic tools. Validating speech-based biomarkers against
objective stress indicators like cortisol is essential to ensure their
reliability and utility, particularly for early diagnosis of stress-
related disorders or real-time monitoring in high-pressure
professions. This study investigates the associations between
speech features and cortisol levels to evaluate the potential of
speech as an objective stress biomarker. Based on existing
literature, we posit that features such as increased voice pitch,
altered vocal tract resonances, voice quality features, and changes
in speech speed will correlate with elevated cortisol levels following
the stress-inducing paradigm. Due to inconsistent findings, the
direction of these effects remains uncertain.

Our primary aim was to test whether acute stress induced by the
Socially Evaluated Cold Pressor Test (SECPT) produces vocal
changes that covary with hypothalamic-pituitary-adrenal activa-
tion indexed by salivary cortisol reactivity measured 20 minutes
after stressor onset. We examined whether a set of vocal features
reflects acute stress when anchored to a physiological marker of
HPA activation. Specifically, we tested whether changes in selected
acoustic parameters from pre- to post-SECPT relate to salivary
cortisol reactivity and whether these relationships differ
between sexes.

Material & methods
Participants

Healthy participants were recruited for this study over a 15-
month period at the Department of Psychiatry, University of
Frankfurt, Germany. The data reported here stem from two
separate experiments within the larger project ‘Identifying
Mediators of Stress-Aggression and Experimental Manipulation
by tDCS’, approved by the Ethics Committee of the Goethe
University Frankfurt Medical Faculty (Ref: 20-1035). The study
adhered to the Declaration of Helsinki. All participants provided
written informed consent and received €10 per hour for their
participation.

Inclusion criteria required participants to be right-handed, aged
18-55, German language proficiency at Cl level, with no
confirmed psychiatric, neurological, or cardiovascular conditions.
To exclude cognitive impairments and low IQ (<70), we
administered the Trail-Making Test (Reitan, 1955) and the
Mehrfachwahl-Wortschatz-Intelligenztest ~(MWT-B,  Lehrl,
2005). Additional exclusion criteria included smoking (more than
10 cigarettes/day), caffeine intake above 400 mg/day, adipositas,
and any medication with potential effects on the HPA axis activity,
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Figure 1. Graphical overview depicting the study timeline.

e.g., current use of cortisone nasal spray. Participants were
instructed to abstain from alcohol and other drugs for 48 hours
prior to testing. If any participant showed signs of a clinically
significant psychiatric or somatic condition during the assessment,
they were advised to seek appropriate clinical care.

Study overview

This study employed a randomised 2 X 2 factorial design with time
point (pre-stressor vs. post-stressor) as the within-subject factor
and group (cold water vs. warm water) as the between-subject
factor. All procedures were conducted at the Department of
Psychiatry, Psychosomatics, and Psychotherapy, Goethe
University Hospital Frankfurt, Germany. To control for cortisol’s
diurnal variation, all experimental sessions were scheduled
between 2:00 PM and 6:00 PM (Lee et al., 2015). Fig. 1 provides
an overview of the study timeline.

Upon arrival, participants received detailed study informa-
tion. Subsequently, the experimenter documented recent behav-
iours affecting cortisol levels, including food intake, smoking,
caffeine consumption, gum chewing, tooth brushing, and
physical activity (Fukuda & Morimoto, 2001; Pritchard et al,
2017) and verified compliance with pre-experimental restric-
tions. To minimise confounders, subjects were not allowed to eat
or drink anything other than water for one hour before the testing
session started..

Baseline stress assessments included the first salivary cortisol
sample (see cortisol assessment), completion of the State-Trait
Anger Expression Inventory (STAXI), and a speech recording (see
Psychological assessment and speech recording). Afterwards stress
induction was achieved using the Socially Evaluated Cold Pressor
Test (SECPT, see Stress test procedure), followed by a second
STAXI and speech recording. The second cortisol sample was
obtained 20 minutes after SECPT onset. For half the participants,
the same procedure was followed with an added EEG recording,
not included in this analysis..

Stress test procedure

To induce stress, we used the Socially Evaluated Cold Pressor Test
(SECPT), a well-established paradigm combining physical dis-
comfort and social evaluation to elicit psychosocial stress (Schwabe
& Schichinger, 2018). The cold water triggers a physiological stress
response by activating nociceptors, sending signals to the
hypothalamus, the primary stress regulator. Simultaneous intro-
duces a psychosocial stressor, further amplifying the response. This
combination is particularly effective in activating the
Hypothalamic-Pituitary-Adrenal (HPA) axis, as shown by elevated
salivary cortisol levels.

Participants were randomly assigned to a cold or warm water
group. In the cold water group (N = 43), participants immersed
their right hand up to the wrist in 3-5°C water. They were
informed that the session would be video-recorded to study their
reactions (Schwabe et al., 2008) asked to look into a camera, and
instructed to keep their hand submerged for as long as possible, up
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to 3 minutes. A researcher observed them throughout. No actual
filming took place, which was disclosed during debriefing.
Participants in the warm water group (N = 39) immersed their
hands in 35-37°C warm water for 3 minutes without video-
recording.

Psychological assessment and speech recording

To evaluate psychological stress, participants self-reported anger
symptoms before and after the intervention using the State-Trait
Anger Expression Inventory (STAXI, Spielberger et al., 1999).
Participants also completed a speech task, reading 20 short
sentences (e.g., ‘The rag is on the freezer’. “They just carried it
upstairs and now they’re going down again’.) both pre- and post-
intervention. A full sentence list is provided in the supplementary
material. Responses were recorded using different mobile phones
and stored in .wav-Format.

Cortisol assessment

Two saliva samples were collected from all participants in each
session: the first after completing the initial questionnaires, and the
second 20 minutes after SECPT onset. Saliva was collected using
the ‘Salivette” (Sarstedt AG & Co., Niimbrecht, Germany) which
includes a cotton swab suspended in a centrifuge vessel.
Participants gently chewed the cotton swab for one minute, then
returned it to the insert without touching. Salivary samples were
stored at —30°C until the biochemical analysis, which was
performed by the Group of Translational Psychiatry, University
Hospital Frankfurt, Germany. Samples were stored for a maximum
of 47 days until analyses. The concentration of free salivary cortisol
was analysed using a luminescence immunoassay (IBL, Hamburg,
Germany) with intra- and inter-assay precision of 4.5% and 4.3%,
respectively.

Speech feature processing

Automatised acoustic feature extraction was conducted with our
own speech processing library ‘Sigma‘ using Python 3.9. Scripts are
available upon reasonable request from the corresponding author.

We investigated several categories of acoustic speech features
previously associated with stress symptoms (Buchanan et al., 2014;
J. Hansen & Patil, 2007a; Sondhi et al., 2015). Attributes were
categorised into groups (refer to Supplementary Table 1 for
groupings and corresponding attributes), including frequency,
energy, spectral and temporal features. Frequency features consist
of variables associated with the formants FO to F3. FO is perceived
as voice pitch (Ladefoged, 1996), while formants F1-F3 contribute
to vowel sound articulation (Ladefoged & Johnson, 2011). Energy
features included jitter(voice instability), shimmer (variability in
loudness or intensity), and the harmonics-to-noise ratio (HNR
(Teixeira et al, 2013)). Spectral features describe frequency
characteristics, such as the mel frequency cepstral coefficient
(MFCCQC), often used in speaker identification (Nakagawa et al.,
2007). Additionally, we employed features defined by our research
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Table 1. Demographics, STAXI scores and cortisol data
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Cold All 43 23.67(5.36) 15.84(1.49) 17.28(3.13) <0.001 4.18(3.28) 8.76(7.35) <0.001
Female 23 24.30(6.72) 15.78(1.65) 17.61(3.81) <0.001 3.53(2.88) 6.88(3.70) <0.001
Male 20 22.95(3.19) 15.90(1.33) 16.90(2.13) <0.001 4.92(3.61) 10.92(9.71) <0.001
Warm All 39 23.95(5.47) 15.82(1.35) 15.33(0.90) <0.001 4.74(4.49) 3.48(2.80) <0.001
Female 18 22.72(3.43) 15.56(0.92) 15.22(0.94) <0.001 3.74(2.29) 2.93(1.81) <0.001
Male 21 25.00(6.66) 16.05(1.63) 15.43(0.87) <0.001 5.60(5.67) 3.95(3.41) <0.001

team concerning the temporal dimensions of speech (K6nig et al.,
2019), capturing timing aspects of speech, such as duration,
rhythm, and temporal patterns (Zellner, 1994). In total 65 features
were extracted; 10 energy-related features, 23 frequency-related
features, 22 spectral features, and 10 temporal features.

Statistical analysis

Power analysis

The required sample size was determined using G*Power(Faul
et al., 2007) with a = 0.05 (one-tailed), # =.80. A small (.25) effect
size with two groups (cold/warm water) and two measurements
(pre/post measurement) in a repeated measure ANOVA with
within and between factor interaction was used in order to
calculate the sample size. A correlation of 0.57 between repeated
measures, based on the internal consistency of the STAXI-II
subscales (Schamborg et al., 2016) informed the calculation. To
allow for separate analysis by sex, a total of N = 60 participants was
required.

Descriptive statistics

Statistical analyses were conducted with the Python package
scipy.stats (v1.11.4, Linux v5.10.0). Descriptive statistics were
computed for demographic variables, cortisol, and STAXI values.

Speech features

Within-group differences in speech features pre- and post-
intervention were assessed using the paired Wilcoxon test, a
non-parametric method suitable for small samples or non-normal
data (Wilcoxon, 1945).

Each of the twenty sentences was analysed independently.
Sentence order effects were controlled by including sentence ID as
a covariate. P values were adjusted for multiple hypothesis testing
using the Benjamini-Hochberg procedure (Benjamini &
Hochberg, 1995) clustered in categories (see Supplementary
Table 1).

To assess associations between speech features and cortisol/
STAXI values while accounting for baseline differences, we
computed changes scores (post-pre) for each measure.
Spearman correlations were then calculated between these differ-
ence scores. Sex-based differences in correlation strength were
assessed using Fisher’s Z transformation to compare correlation
coefficients between male and female participants.

Linear models (LMM) were applied to examine the relationship
between cortisol changes and speech feature changes, accounting
for potential moderating effects of group, sex, and baseline cortisol
levels. The model used was: Cortisol_Change ~ Group *
Feature_Change + Sex + Cortisol_Before. LMMs accounted
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for repeated measures by including random effects for participant-
specific intercepts and slopes, while fixed effects modelled
relationships between speech features and cortisol change.
Outliers were removed using the interquartile range (IQR) method
(Vinutha et al, 2018), applied independently by sex and
experimental group for each speech feature. All change scores
were calculated as post-intervention minus pre-intervention
values.

To evaluate the predictive value of speech features, machine
learning models were trained to (1) classify group membership
(cold vs. warm) and (2) predict cortisol levels and STAXI scores. To
control sex-related variability, each acoustic feature was regressed
on sex, and the residuals were used as sex-normalised inputs. All
features were Z-score standardised. Models were trained on the
difference scores (after - before) to capture intervention effects.
Five classifier algorithms were evaluated: support vector machines
(SVM), extra trees (XT), random forests (RF), linear models (LM),
and decision trees (DT). Model performance was assessed using
10-fold group cross-validations, with folds stratified by participant
ID to prevent data leakage. Stepwise feature selection was applied:
models were iteratively trained using an increasing number of top-
ranked features to determine the optimal set. Classification
performance was assessed using the area under the ROC curve
(AUC), while regression performance was evaluated using mean
absolute error (MAE).

Results

A total of 82 participants were included, each undergoing repeated
measures at two time points: before and after exposure to the
experimental conditions (cold/warm water). Table 1 demonstrates
STAXI scores and cortisol levels for both groups (cold/warm)
and sexes.

There were no statistically significant differences in STAXI
scores between sexes at either time point, based on Wilcoxon
rank-sum test (fp: W = 730, p = 0.247; to: W = 802, p = 0.693).
Similarly, Cortisol levels did not differ significantly between sexes
(tg W =693, p = 0.174; t: W = 738, p = 0.346).

Age also did not differ significantly between cold and warm
water groups (W = 851, p = 0.911), suggesting that demographic
and baseline characteristics were comparable across the conditions
and sexes.

Cortisol and STAXI state of anger levels changed significantly
pre- to post intervention. In the cold water condition, participants
exhibited a significant increase in cortisol (W = 58,100, p < 0.001)
and STAXI scores (W = 23,390, p < 0.001) after SECPT.
Conversely, participants in the warm water condition showed a
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significant decrease in cortisol (W = 26,680, p < 0.001) and STAXI
scores (W = 7,580, p < 0.001).

When analysed by sex, similar patterns emerged. Among
females, cortisol (W = 6,630, p < 0.001) and STAXI scores (W =
1,590, p < 0.001) significantly decreased after warm water
exposure, whereas both cortisol (W = 1,787, p < 0.001) and
STAXI scores (W = 5,430, p < 0.001) significantly increased after
cold water exposure. Among males, cortisol (W = 6,630, p < 0.001)
and STAXI scores (W = 107.8, p < 0.001) significantly decreased
after exposure to the warm water condition. In contrast, cortisol
(W=11,850, p < 0.001) and STAXI scores (W = 6,390, p < 0.001)
significantly increased after cold water exposure.

Differences in Speech Features before and after Intervention

A Wilcoxon test was conducted to compare pre- and post SECPT
timepoints for both conditions (cold and warm, see Table 2).
Reported p values reflect these comparisons..

Energy features revealed distinct patterns between groups.
Loudness rate increased in both groups. However, while mean
loudness decreased in the warm group (n.s.), it exhibited a significant
increase in the cold group. The mean harmonic-to-noise ratio
(HNR) showed a significant increase in the warm group,
accompanied by a decrease in HNR standard deviation. The cold
group showed similar trends, though not statistically significant.

Frequency features revealed opposing trends. In the warm
group, both the mean and standard deviation (SD) of F1 bandwidth
significantly increased, while both decreased in the cold group (n.s.).
The mean F2 frequency significantly increased in the warm group
and decreased (n.s.) in the cold group. Conversely, the SD of F2
frequency significantly decreased in the cold group, and increased
(n.s.) in the warm group. The mean F3 frequency increased in the
warm group, and F3 bandwidth increased in the cold group. Mean
pitch significantly decreased in the warm group, whereas the cold
group exhibited a non-significant opposite trend. Pitch minimum
decreased and pitch SD increased in the warm group, with the same
pattern observed in the cold group but without statistical
significance. Overall, formant features displayed opposing trends,
but were rarely significant in both groups for the same features.

The analysis of spectral features further supported group-
specific trends. Mel-frequency cepstral coefficients (MFCC) 1,
significantly decreased in the warm group but showed an non-
significant increase in the cold group. MFCC2 significantly
decreased in both groups. MFCC3 exhibited significant opposing
patterns, increasing in the warm group and decreasing in the cold
group. MFCC4 significantly decreased in the cold group, with the
same pattern observed in the warm group but without statistical
significance. Regarding relative mean energy, F1 relative mean
energy significantly decreased in the warm group and showed a
non-significant decrease in the cold group. F3 relative mean energy
significantly decreased in the cold group, whereas the warm group
displayed an opposite but non-significant trend. The mean H1_a3
difference significantly increased in the warm group but
significantly decreased in the cold group. Additionally, the
H1_a3 difference SD and the mean H1_H2 difference significantly
decreased in the cold group, with the same non-significant patterns
observed in the warm group. The harmonic difference H1_H2 SD
significantly decreased in both groups. The Hammarberg index
significantly decreased in the warm group, whereas the cold group
exhibited a non-significant increase. The spectral slope within the
0-500 Hz and 500-1500 Hz ranges decreased in both the warm and
cold groups.
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Finally, the analysis of temporal features indicated significant
changes after exposure across several measures. Duration, pause
duration, and the total utterance time significantly decreased
following exposure. Notably, all but one (mean utterance duration)
of the temporal features exhibited the same pattern in both the
warm and cold groups.

Speech feature correlations with cortisol levels and STAXI
scores

Cortisol levels

Spearman correlations between each feature and cortisol levels
(Table 3) and STAXI scores (Supplementary Table 4) were
calculated using the after-before difference. Only significant results
are presented in Fig. 2 and Table 3, with full results in
Supplementary Table 3.

For energy features, mean loudness was significantly correlated
with cortisol levels in the cold condition (r = —0.18, p <0.001),
while the warm condition showed a weaker and non-significant
correlation (r =—0.01, p = 0.91).

Within frequency features, all jitter measures (DDP jitter
(r = —0.10, p = 0.03), local absolute jitter (r = —0.10, p = 0.02),
PPQ5 jitter (r = —0.10, p = 0.02), and RAP jitter (r = —0.10,
p = 0.03) were significantly negatively correlated with cortisol
levels in the cold condition. These relationships were weaker and
non-significant in the warm group (p >0.08).

For spectral features, the mean alpha ratio showed a small but
significant negative correlation with cortisol levels in the cold
condition (r = —0.12, p = 0.01), while no notable association was
found in the warm condition (r = —0.03, p = 0.77). MFCC1 was
negatively correlated with cortisol in the cold condition (r = —0.16,
p<0.001) but not significantly associated with the warm condition
(r = 0.10, p = 0.09). In contrast, MFCC2 exhibited a significant
negative correlation in the warm condition (r = —0.16, p <0.001)
but not in the cold condition (r = 0.03, p = 0.57). MFCC4 displayed
opposite patterns across conditions, with a weak positive
correlation in the cold condition (r = 0.09, p = 0.03) and a weak
negative correlation in the warm condition (r = —0.07, p = 0.3),
with a significant sex difference (Z = —2.68, p = 0.01).

Regarding formant energy measures, F1 relative energy SD
showed a significant negative correlation with cortisol in the cold
condition (r = —0.10, p = 0.02), but not in the warm group (r =
—0.06, p = 0.3). Mean F3 relative energy was positively correlated
with cortisol in the cold condition (r=0.11, p = 0.01) but not in the
warm condition (r = 0.0, p = 1.0).

The Hammarberg index demonstrated a significant negative
correlation with cortisol levels in the cold condition (r=—0.12, p =
0.01), with a strong sex effect (Z = 2.89, p <0.001). In the warm
condition, this relationship was weak and not significant (r = 0.02,
p=0.9).

STAXI scores

The relationship between acoustic features and STAXI scores
varied across the cold and warm stress conditions. Only significant
results are presented in Fig. 3, full results are displayed in
Supplementary Table 4.

For energy features, HNR was negatively but not significantly
correlated with STAXI scores in the cold condition (r = —0.09, p =
0.08), while in the warm condition, it was significantly positively
correlated (r = 0.14, p < 0.001). No significant sex differences were
observed in either condition.
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Table 2. Difference in speech features before and after intervention. Features that remained significant after correction are highlighted in bold. Before and after
arrows indicate if the feature value increased or decreased in value after exposure to cold/warm water. Features are organised by feature type and then alphabetically.
Only features that were significant in the warm and/or cold group are summarised in Table 2. All results are listed in Supplementary Table 2

Feature Type Feature WARM COLD
Effect Size Before v. After p(adj) Effect Size Before v. After p(adj)
Energy hnr_mean —0.229 < <0.001 —0.067 < 0.102
hnr_sd —0.244 > <0.001 —0.07 > 0.091
loudness_mean —0.077 > 0.071 —0.128 < 0.001
loudness_sd —0.131 > 0.001 —0.057 < 0.17
rate_loudness_peaks —-0.112 < 0.009 —0.159 < <0.001
Frequency f1_bandwidth_mean —0.167 < <0.001 —0.009 > 0.957
f1_bandwidth_sd —0.118 < 0.003 —0.06 > 0.158
f2_frequency_mean —0.225 < 0.00 —0.07 > 0.091
f2_frequency_sd —0.041 < 0.36 —0.085 > 0.047
f3_bandwidth_mean —0.048 > 0.275 —0.218 < <0.001
f3_frequency_mean —0.169 < <0.001 —0.081 < 0.059
pitch_mean —0.115 > 0.004 —0.033 < 0.477
pitch_min —0.083 > 0.05 —0.017 > 0.796
pitch_std —0.16 < <0.001 —0.069 < 0.094
Spectral average_mfccs_1 —0.254 > <0.001 —0.001 < 0.986
average_mfccs_2 —0.136 < 0.001 —0.088 < 0.038
average_mfccs_3 —0.096 < 0.018 -0.229 > <0.001
average_mfccs_4 —0.063 > 0.159 —0.131 > 0.001
f1_relative_energy_mean —0.129 > 0.001 —0.004 > 0.986
f3_relative_energy_mean —0.058 < 0.193 -0.17 > <0.001
h1_a3_harmonic_difference_mean —0.13 < 0.001 —0.162 > <0.001
h1_a3_harmonic_difference_sd —0.001 > 0.967 -0.117 > 0.003
h1_h2_harmonic_difference_mean —0.02 > 0.661 —0.09 > 0.035
h1_h2_harmonic_difference_sd —0.135 > 0.001 —0.145 > <0.001
hammarberg_index_mean —0.187 > <0.001 —0.073 < 0.083
spectral_slope_0_500_mean —0.122 > 0.003 —0.007 > 0.957
spectral_slope_0_500_sd —0.059 > 0.19 —0.125 > 0.001
spectral_slope_500_1500_mean —0.102 > 0.012 —0.054 > 0.18
Temporal duration —0.414 > <0.001 —0.383 > <0.001
number_of_pauses -0.33 > 0.106 —0.428 > <0.001
pause_durations_mean -0.12 > 0.003 —0.063 > 0.165
pause_durations_sd —0.106 > 0.009 —0.119 > 0.002
pause_durations_sum —0.189 > <0.001 -0.193 > <0.001
speech_ratio —0.097 < 0.017 —0.002 < 0.986
utterance_durations_mean —0.125 > 0.003 —0.078 < 0.083
utterance_durations_sum —-0.241 > <0.001 —-0.26 > <0.001

Regarding frequency features, PPQ5 jitter was not significantly
correlated with STAXI scores in the cold condition (r = —0.04, p =
0.48). However, in the warm condition, it showed a significant
positive correlation (r = 0.14, p < 0.001). No significant sex
differences were found.
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For spectral features, the SD of the H1-H2 harmonic difference
was significantly positively correlated with STAXI scores in the
cold condition (r = 0.10, p = 0.05), but not in the warm condition
(r = 0.02, p = 0.81), with no significant sex differences. The
Hammarberg index was significantly negatively correlated with
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Table 3. Associations of acoustic features with cortisol levels across conditions. The table presents correlation coefficients (corr), effect sizes (ES), and adjusted p-values (p-adj) for the overall population. Sex-specific
correlations are indicated separately for males (M) and females (F), with positive (+) or negative (—) directions. Fisher’s Z-test results, including Z-values and corresponding p-values, are reported under the ‘Sex
Comparison’ header to assess differences between sexes. Results are shown for both cold and warm conditions. For brevity reasons, only significant results are reported here. The full results are displayed in Supplementary
Table 3

Overall Sex Comparison Overall Sex Comparison
Feature Type Feature Corr ES p-adj M F 4 p Corr ES p-adj M F V4 P
Energy loudness_mean —0.18 0.36 <0.001 = = —0.18 0.86 —0.01 0.02 0.91 = aF —0.18 0.86
Frequency ddp_jitter —0.1 0.2 0.03 - - —0.19 0.85 0.06 0.13 0.3 =F A —0.19 0.85
local_absolute_jitter —-0.1 0.21 0.02 - - —0.97 0.33 0.08 0.15 0.3 4 = —0.97 0.33
ppyg5_jitter —-0.1 0.2 0.02 = = —0.46 0.65 0.1 0.2 0.08 4+ 4+ —0.46 0.65
rap_jitter —-0.1 0.2 0.03 - - —-0.19 0.85 0.06 0.13 0.3 4 4 —-0.19 0.85
Spectral alpha_ratio_mean —0.12 0.24 0.01 - - 0.3 0.77 —0.03 0.06 0.77 = a4 0.3 0.77
average_mfccs_1 —0.16 0.31 <0.001 = = 1 0.32 0.1 0.2 0.09 + + il 0.32
average_mfccs_2 0.03 0.07 0.57 A Sis 0.39 0.69 —-0.16 0.32 <0.001 - 0.39 0.69
average_mfccs_4 0.09 0.19 0.03 = aF —2.68 0.01 —0.07 0.13 0.3 = - —2.68 0.01
f1_relative_energy_sd -0.1 0.2 0.02 = = 0.63 0.53 —0.06 0.13 0.3 = = 0.63 0.53
f3_relative_energy_mean 0.11 0.23 0.01 + + —-1.22 0.22 0 0 1 + - —-1.22 0.22
hammarberg_index_mean —0.12 0.24 0.01 = = 2.89 <0.001 0.02 0.03 0.9 = 4 2.89 <0.001
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Figure 3. Delta in correlations of speech fea-
tures and STAXI scores (after-before) for cold
and warm groups for the whole sample and
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stratified by sex. For brevity reasons, only
significant results are displayed here, the full
results are displayed in Supplementary Table 4.

STAXI scores in the cold condition (r = —0.13, p < 0.001), with a
significant sex difference (Z = 4.62, p<0.001). In the warm
condition, the correlation was positive but not significant (r = 0.09,
p = 0.12), with no significant sex effect.

Linear mixed model analyses

Linear mixed model analyses examining the relationships between
cortisol changes, baseline cortisol levels, sex, and changes in speech
features revealed several significant findings. Higher baseline cortisol
levels were linked to changes in average mfccs_3 (f=—0.61, p =
0.014) and local_shimmer (f = —0.20, p = 0.003). Changes in cortisol
(after - before) were negatively associated with changes in mean alpha
ratio (f = —0.05, p = 0.02), indicating that larger cortisol changes were
linked to smaller changes in this feature.

Sex differences were also observed: male participants exhibited
consistently negative associations with changes in multiple speech
features, including features mirroring shimmer, jitter, and pitch.
Supplementary Table 5 displays the detailed results.
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Correlation of Cortisol Difference for Warm Group

Machine learning model performance

The highest AUC was achieved by the SVM classifier using
difference-based features (AUC = 0.55, k = 15), followed closely by
XT (AUC = 0.54) and RF (AUC = 0.53). For regression tasks,
SVMs also yielded the best performance in predicting both cortisol
and state anger scores across difference-based input. MAEs for
cortisol prediction ranged from approximately 3.8 to 6.0 nmol/L,
while those for STAXI scores ranged from ~ 1.3 to 2.2. Full model
metrics, including performance across all time points and model
types, are presented in Supplementary Table 6. The most
frequently selected features across tasks were related to spectral
shape and shimmer variability, particularly MFCC 2 and 3s, and
voice quality metrics (e.g., apq5_shimmer, f1_bandwidth_mean).
Supplementary Table 7 presents the ten most frequently selected
features across models.

To support interpretation, a summary table was created
(Table 4), consolidating key findings across different analyses. It
highlights features significantly affected by sex, linked to stress
responses, and robust to potential confounders.
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Table 4. Summary of speech feature associations with sex, stress, and robustness to confounding factors. The table categorises key speech features based on their sensitivity to sex differences (v = significant, X = not
significant), their link to stress responses (as measured by cortisol levels), and whether these associations are robust to confounding factors such as baseline cortisol and sex. The significant Before v. After column indicates
whether a feature showed significant differences before and after exposure to the stress condition and if so, in which condition. Cortisol correlation direction shows whether the feature has a positive ( + ) or negative (—)
correlation with cortisol levels. Direction (before-after stress) indicates whether the feature difference increased (1) or decreased (|) after exposure to the stress condition

Energy apqg3_shimmer, v X X Linear Warm Negative |
dda_shimmer Model

hnr_mean X X X Correlation None Negative )

local_shimmer v v X Linear Warm Negative 1
Model

loudness_mean X X X Correlation Cold Negative T

frequency ddp_jitter, v X X Linear Cold Negative )
local_jitter, Model

rap_jitter v 4 X Linear Cold Negative |
Model

pitch_std v X X Linear Warm Negative T
Model

pitch_min X X X Correlation None Negative T

pitch_mean X X X Correlation Warm Negative 1

Spectral alpha_ratio_mean X v v Linear Cold Negative 1
Model

average_mfccs_1, X X X Linear Both Negative T
average_mfccs_2 Model

average_mfccs_3 X v v Linear Both Negative 1
Model

spectral_slope_0_500, X X X Correlation Warm Negative 1

spectral_slope_500_1500
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Discussion

This study explored whether acoustic speech changes could serve
as objective stress markers by linking them to cortisol levels and
self-reported anger under induced stress. The SECPT effectively
elicited a stress response, evidenced by significant increases in
cortisol levels and STAXI state anger scores in the cold water
condition. In contrast, the warm water condition produced
significant decreases in both measures. These findings align with
previous research (Schwabe & Schichinger, 2018; Hellhammer
et al., 2009) demonstrating the sensitivity of cortisol and anger
ratings to acute stressors. Speech features varied distinctly between
cold and warm conditions, with spectral features demonstrating
the greatest potential as stress markers due to their robustness
against confounding variables. This suggests that HPA axis
reactivity may influence vocal spectral properties. These findings
support existing evidence that stress affects speech production
through e autonomic nervous system activation, increasing
laryngeal muscle tension and altering respiratory patterns, which,
in turn, alter speech energy, frequency, and spectral characteristics
(Giddens et al., 2013).

Voice changes under stress stem from a combination of
physical and physiological mechanisms, both voluntary and
involuntary. However, not all speech features respond uniformly.
Individual variability, such as sex and baseline cortisol, complicates
interpretation, emphasising the need for robust, stable acoustic
indicators. (Hansen & Patil, 2007a).

Dahl & Stepp (2023) identified spectral and energy-based
measures as more reliable than frequency-based features due to
greater consistency across sexes. We identified alpha ratio and
MEFCCS3 as especially reliable stress features, capturing involuntary
physiological changes linked to laryngeal tension and vocal tract
resonance, which are less subject to individual variability. Local
shimmer, an energy-based feature, serves as a secondary stress
marker, reflecting stress-induced reductions in amplitude vari-
ability. In contrast, frequency-based features such as jitter and
pitch were more affected by sex and individual differences, limiting
their reliability for universal stress detection.

Influence of baseline cortisol and sex on speech changes

Baseline speech features provide a crucial reference for evaluating
stress-induced vocal changes. Notably, baseline cortisol levels
significantly influenced changes in MFCC3 (f = —0.606, p =0.014)
and local shimmer (§ = —0.201, p = 0.003), suggesting that
individuals with higher baseline cortisol exhibited greater
reductions in these features under stress, a pattern previously
reported (Carrillo-Gonzalez et al., 2025). This may reflect reduced
vocal flexibility under acute stress, consistent with evidence that
elevated baseline cortisol is linked to blunted HPA axis reactivity
due to possible desensitisation.

Sex differences also influenced vocal response to stress. Males
exhibited lower changes in jitter, shimmer, and pitch-related
metrics compared to females, likely due to sex-related differences
in neuromuscular control and vocal fold mass. Females generally
exhibit more pronounced changes (Konig et al., 2021), possibly due
to more dynamic neuromuscular control over vocal functions and
smaller vocal folds, which may lead to greater laryngeal tension and
pitch variability. In contrast, males’ thicker vocal folds (Zhang,
2021) may provide greater vocal stability under stress.
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State of anger and speech-based stress analysis

Anger affects speech in ways that overlap with, but also differ from,
stress-induced vocal changes. In this study, state anger increased
significantly in the cold condition but not in the warm condition,
suggesting a context-dependent emotional response. Anger was
associated with a spectral shift toward lower frequencies, potentially
as a compensatory mechanism to enhance vocal dominance. The
Hammarberg Index showed a significant negative correlation with
STAXI scores in the cold condition, with males exhibiting more
pronounced changes than females. These results highlight the need
to differentiate anger from stress in speech analysis, as anger
uniquely influences vocal intensity and modulation, potentially
confounding models designed to detect stress.

Spectral features

Spectral features, which describe how vocal energy is distributed
across frequency bands, appear to be the most stable and effective
indicators of stress. Alpha ratio and MFCC3 emerged as the most
reliable stress biomarkers. Alpha ratio reflects reduced spectral tilt
under stress, indicating increased laryngeal tension and reduced
high-frequency harmonics, while MFCC3 captures mid-frequency
spectral shifts related to stress-induced muscle tension and breath
control (Zhang, 2024). These features are particularly robust due to
their resistance to voluntary modulation and individual
differences, making them suitable for objective stress detection.

A negative correlation between the Hammarberg index and
both cortisol levels and STAXI scores in the cold condition suggests
stress is associated with a spectral shift toward lower frequencies.
This supports prior findings indicating that stress reduces higher
frequency energy, possibly due to increased laryngeal tension or
altered vocal fold vibration (Bachorowski & Owren, 1995;
Laukkanen et al., 2008). The observed sex effects align with
research showing males and females exhibit distinct phonatory
adjustments under stress, likely due to laryngeal anatomy and
hormone-mediated vocal control (Bouhuys et al., 1995; Fitch &
Giedd, 1999). Although anger has been linked to increased vocal
intensity and pitch modulation (Scherer, 1986; Banse & Scherer,
1996), our findings indicate that in stress conditions, anger may
coincide with a downward spectral energy shift, possibly reflecting
a compensatory mechanism or an adaptive response aimed at
enhancing vocal dominance (Briefer, 2012).

Energy features: amplitude stability as a robust stress
marker

Energy features, which capture variations in speech loudness,
amplitude stability, and harmonic content, also provide useful stress
indicators. Local shimmer showed a significant decrease under stress
(= —0.201, p = 0.003), indicating that increased laryngeal stiffness
stabilises vocal fold vibrations, reducing amplitude variability
(Bodaghi et al., 2025; Carrillo-Gonzélez et al., 2025; Giddens et al.,
2013; Zhang, 2024). The observed increase of mean loudness under
stress exposure in part contrasts with previous findings. Dietrich and
Verdolini Abbott (2012) reported lower vocal intensity during stress,
while Huttunen et al. (2011) and Mattei et al. (2019) found that
cognitive load and vocal constraints increased both fundamental
frequency and vocal intensity. This discrepancy may arise from the
differing study setups. Notably, Dietrich and Verdolini Abbott
(2012) only included female participants in their study.
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Frequency features: less reliable due to sex and individual
variability

Frequency-based measures such as pitch variability and jitter are
commonly associated with stress but were found to be less reliable
due to significant sex effects and speaker variability. Among them,
rap jitter showed some association with stress, but results were
inconsistent across individuals. Additionally, pitch mean and pitch
min/max were not significantly correlated with cortisol, suggesting
these measures are more influenced by voluntary vocal modulation
than physiological stress. Our findings align with previous research
demonstrating that jitter and other frequency-based measures are
influenced by sex (Brockmann et al, 2011). The same study
suggests voice sound pressure level (SPL) as a key driver of jitter
and shimmer, indicating that the observed sex differences in our
study may be partially attributable to variations in voice SPL rather
than intrinsic sex effects alone. Additionally, we observed that F2
mean frequency significantly decreased after warm exposure,
suggesting a more relaxed vocal tone under low stress. Conversely,
F2 frequency SD increased after cold exposure, reflecting greater
vocal variability under stress (Protopapas & Lieberman, 1997).
These results support the idea that stress-related physiological
changes disrupt vocal stability.

Linear mixed model

Results from our LMM suggest that baseline cortisol and sex are
important predictors of changes in specific speech features, with
males showing consistently lower changes across jitter, shimmer,
and pitch-related metrics, and baseline cortisol levels influencing
shimmer and MFCCs. Additionally, changes in cortisol were
associated with reduced alpha ratio values, highlighting the
physiological impact of cortisol on speech characteristics.

Machine learning results

Classification performance was modest (max AUC = 0.55),
suggesting limited discriminability between SECPT groups based
on read speech. This likely reflects low expressive variability in
structured speech and subtle group-level effects. In contrast,
regression models, especially SVMs, performed better. Cortisol
MAEs between 3.8-6.0 nmol/L represented ~ 24-38% of the
observed range, STAXI MAEs between 1.3-2.2 points, accounting
for ~ 16-28% of the observed score range. While group-level
classification is challenging, acoustic features moderately captured
individual differences in stress responses. The most informative
features included spectral and temporal voice characteristics such
as MFCCs, shimmer, F1 bandwidth and frequency, duration, and
alpha ratio. These features reflect articulatory dynamics, phonatory
control, and resonance changes, mechanisms plausibly influenced
by physiological and emotional stress (Schewski et al., 2025). Their
consistent relevance across tasks highlights the potential of
acoustic voice metrics as individual-level stress indicators, even
in constrained speech contexts.

Limitations

There are limitations to our study. Recording equipment varied,
which may limit comparability of acoustic features across devices.
However, it has been demonstrated that different technical devices
and recording circumstances have negligible effect on acoustic
measures of voice (Awan et al., 2024; van der Woerd et al., 2020).
Furthermore, we did not account for participants’ circadian
rhythm when assessing cortisol levels, which can influence the
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results (Stalder et al, 2016). However, all participants were
examined in the afternoon, minimising potential confounding
effects associated with the cortisol awakening response.
Furthermore the time interval between participants™ arrival and
the onset of the stressor was not standardised but varied across
individuals in the current study, which may have affected baseline
cortisol levels at t0. Future research should aim to control and
minimise the latency between arrival and the beginning of the
experimental procedure to ensure greater comparability across
participants. Although the SECPT is a well-established stress
induction paradigm, it may not capture the full complexity of stress
responses in real-world situations. Lastly, while the 20-minute
post-SECPT sample aligns with standard protocols for capturing
peak cortisol response, it does not allow us to determine whether
speech changes reflect peak stress or early recovery. Future work
should include additional time points to better capture the
temporal relationship between speech and physiological stress
markers.

Conclusion

Our results converge with prior research identifying increased
voice pitch and altered spectral properties as markers of stress
(Paulmann et al., 2016; Kappen et al., 2022). Our study extends this
work by simultaneously accounting for both physiological and
psychological stress markers by exploring a broader range of
acoustic features. In doing so, we provide a more comprehensive
picture of how stress modulates vocal characteristics. Differences
between the cold and warm water groups confirm that stress-
induced vocal changes are not only measurable but also
systematically linked to physiological stress. Speech analysis thus
holds promise as a non-invasive, real-time tool for stress
assessment, offering advantages over self-report measures or
invasive lab-based methods. Features such as jitter, shimmer, and
spectral shifts showed sensitivity to stress-related fluctuations,
making them ideal for continuous monitoring. Importantly,
speech reflects dynamic physiological states and could aid in
detecting both acute and chronic stress, conditions closely tied to
mental health. Voice-based markers may also support early
detection and management of stress-related disorders like anxiety
and depression (Tafet & Nemeroff, 2016; Daviu et al., 2019)
(Gaikwad & Venkatesan, 2024). By correlating speech patterns
with cortisol, clinicians gain real-time insight into stress, enabling
earlier and more objective interventions. Not all acoustic features
are equally reliable for stress detection, underscoring the
importance of selecting robust and objective acoustic features
for stress detection.

Future analyses should consider replicating existing findings in
larger, more diverse populations and across different stress-
inducing contexts. Importantly, since our current approach relies
on pre/post comparisons relative to a defined baseline, future work
should explore how speech-based stress detection can be adapted
for real-world settings where baseline definitions are less
straightforward. This could involve passive data collection to
estimate individual baselines or models that operate without
requiring baseline data. Additionally, integrating speech analysis
with other physiological measures and exploring its use in clinical
practice could further refine its potential for real-time stress
monitoring.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/neu.2025.10037.
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