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ARTICLE INFO ABSTRACT

Keywords: This study examined trustworthiness perceptions in the tone of voice of human and real-world synthesised
Trust ) voices, focusing on the impact of acoustic features, speaker and listener ethnicities, listener biases toward voice-
Speech acoustics based intelligent agents and speaker nature (human vs synthesised). Speech rate, mean pitch, harmonics-to-noise
Ethnic minority L . . s .
Voice assistants ratio, jitter, shimmer, cepstral peak prominence, and long-term average spectrum, significantly influenced
Synthesised speech trustworthiness ratings across both human and synthesised voices. Synthesised voices were rated as sounding
Intelligent agents more trustworthy than human voices with no explicit intent behind their tone of voice (i.e., neutral). However,
Accents synthesised voices were rated as sounding less trustworthy than human voices when human speakers inten-
tionally attempted to sound trustworthy. Moreover, listener biases were measured using the Negative Attitudes
toward Robots Scale (NARS), where a general scepticism toward robots lowered trustworthiness ratings overall.
White speakers were consistently rated as more trustworthy than Black or south Asian speakers across all listener
ethnic groups. The findings highlight the need to optimise acoustic properties of synthesised voices for trust-

worthiness while addressing biases related to speaker ethnicity and listener attitudes toward robots.

1. Introduction

Voice is central to social communication, enabling listeners to make
rapid judgements about others, including whether they seem trust-
worthy (Kreiman & Sidtis, 2011; Maltezou-Papastylianou et al., 2025).
While often used interchangeably, trust and trustworthiness are
conceptually distinct (Castelfranchi & Falcone, 2010; Hardin, 2002).
Trust refers to the willingness to rely on another, based on the expec-
tation that they will not act against one’s interests. This decision is
context-dependent and shaped by risk or uncertainty. In contrast,
perceived trustworthiness refers to the traits we attribute to others —
such as honesty, warmth and competence — that influence whether we
choose to trust them (Hardin, 2002; Oleszkiewicz et al., 2017; Syed
et al., 2024; Tanis & Postmes, 2005). In other words, trustworthiness is
the foundation upon which trust is built: if someone is deemed trust-
worthy, individuals are more inclined to trust them.

Beyond human interactions, individuals also instinctively attribute
social traits — including trustworthiness — to pets and artificially intel-
ligent agents (IAs), like voice assistants (Kepuska & Bohouta, 2018, pp.
99-103), humanoid robots (Kouravanas & Pavlopoulos, 2022; Radford

etal., 2015; Shigemi et al., 2018), and virtual agents (Yuan et al., 2019).
This tendency to anthropomorphise technology emphasises the poten-
tial of human-agent interactions (HAI) to simulate aspects of
human-human communication (Nass & Brave, 2005; Seaborn et al.,
2021). This tendency is highlighted in two key frameworks. The un-
canny valley theory (Mori, 1970; Mori et al., 2012) warns that when IAs
appear or sound almost — but not quite — human, subtle mismatches (e.
g., unnatural pitch, timing, or facial expressions) can evoke a sense of
uneasiness (Muralidharan et al., 2014). Meanwhile, the Computers as
Social Actors (CASA) theory (Nass et al., 1994, pp. 72-78) suggests that
humans attribute social characteristics to machines based on cues like
voice, forming impressions similar to those made in human interactions
(Asif, 2024; Aylett et al., 2017; Large et al., 2019; Nass & Brave, 2005).
Since these mechanisms are deeply rooted in human social cognition, a
meaningful exploration of trust in IAs must begin with how trust is
formed in human-to-human interactions, where biases and expectations
originate.

Building on this premise, the present study investigates how social
biases related to speaker ethnicity, listener attitudes toward robots and
vocal characteristics interact to shape trustworthiness perceptions
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across both human and synthesised (i.e., artificial) voices. The following
sections review the relevant literature that informs this approach.

1.1. Human behaviour and biases

In human-human interactions, group affiliations such as ethnicity or
profession, and broader societal norms, can further shape trustworthi-
ness judgments and trust attitudes (Greenwald & Banaji, 1995; Schild
et al., 2022; Tanis & Postmes, 2005). For instance, Geiger et al. (2023)
found that in a U.S. job-hiring simulation, native English-speaking
candidates were rated as more trustworthy than those with Mandarin
Chinese accents — regardless of rater background - particularly in terms
of perceived job-related abilities. These findings may reflect a general
tendency to associate native English speakers with positive traits such as
credibility and competence, particularly in the U.S., where English
dominates professional and academic settings (Geiger et al., 2023;
Hanzlikova & Skarnitzl, 2017; Torre et al., 2024). Alternatively, they
may reflect a similarity-attraction bias, whereby participants favour
speakers who seem linguistically or culturally similar to themselves
(Dahlback et al., 2007, pp. 1553-1556; Montoya & Horton, 2013). In a
predominantly English-speaking American sample, native speakers may
have been perceived as more culturally aligned with listeners, leading to
more favourable evaluations.

Interestingly, contradictory findings challenge this pattern. A study
conducted in Singapore revealed that Mainland Chinese speakers were
trusted more by Singaporean Chinese listeners, exhibiting out-group
favouritism — where listeners favour an ethnic group they are not affil-
iated with (Batsaikhan et al., 2021). These results were attributed to
participants’ cultural familiarity with traditional Chinese norms, such as
the expectation that “a favour given must be returned” (Batsaikhan
et al.,, 2021). The authors proposed that in the context of trust-related
tasks, Mainland Chinese speakers were perceived as more aligned with
reciprocity norms, which are highly valued in such interactions.
Together, these studies suggest that societal norms and personal biases
jointly shape how vocal trustworthiness is perceived. While such biases
are evident in human-human interactions, they also manifest in HAI,
particularly in trustworthiness evaluations of human versus synthesised
voices.

1.2. Individual differences and biases toward IAs

In HAI, individuals have shown a preference toward IAs that reflect
their own ethnicity or accent, often perceiving them as more personable,
credible, and engaging (Bilal & Barfield, 2021; Liao & He, 2020, pp.
430-442; Schild et al., 2022; Yang et al., 2025). The similarity-attraction
effect remains relevant, especially when evaluating out-group or unfa-
miliar speakers (Aylett et al., 2017; Dahlback et al., 2007, pp.
1553-1556; Zhang et al., 2025). Familiarity can mitigate such biases,
but the artificial nature of voice-based IAs may reinforce perceptions of
dissimilarity and reduce trust (Lima et al., 2019, pp. 533-538; Tanis &
Postmes, 2005). Thereupon, one could raise the question of whether
synthesised voices may be perceived as less trustworthy due to their
association with non-human entities.

Moreover, listeners’ predispositions (i.e., overall inclination to trust
others) such as trust propensity toward IAs can further affect evaluations
of trustworthiness (Nomura, Suzuki, Kanda, & Kato, 2006a, 2006b;
Torre et al., 2024). Questionnaires like the Negative Attitudes to Robots
Scale (NARS) (Nomura, Suzuki, Kanda, & Kato, 2006; Nomura et al.,
2006a, 2006b) reveal how individual differences shape perceptions of
IAs (Kiihne et al., 2020; Lim et al., 2022, pp. 538-545). NARS measures
attitudes across three subscales: interaction with robots, the social in-
fluence of robots, and emotional engagement with robots. Studies in
Japanese samples found that NARS scores negatively correlated with
measures of social acceptance of robots (Nomura et al., 2006a, 2006b).
Similarly, other studies observed that listeners with higher NARS scores
rated virtual robots with synthesised voices and physical robots lower on
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trust, reflecting a bias against robots (Krantz et al., 2022; Lim et al.,
2022, pp. 538-545). However, it was also observed that NARS may
reflect broader trust tendencies and predispositions in a robot rather
than specific capabilities of the robot (Krantz et al., 2022), and older
people may exhibit more negative attitudes toward technology than
their younger counterparts (Matthews et al., 2019).

While these studies highlight preferences for- and acceptance of-
robotic partners, few focus specifically on voice-based IAs, and even
less so on ethnically diverse voice-based IAs. This opens an opportunity
to examine how listeners’ predispositions toward IAs shape trustwor-
thiness evaluations of human versus synthesised voices, and whether
vocal cues alone can offset biases linked to a voice’s non-human origin.

1.3. Acoustic and contextual influences on trustworthiness perceptions

Past research has shown that listeners infer trustworthiness judge-
ments from vocal cues such as pitch, intonation and speech rate (Belin
etal., 2019; Ko etal., 2020, pp. 174-193; Lim et al., 2022, pp. 538-545).
For example, in public communication and emergency scenarios, faster
speech rates, higher pitch or varied intonation have been perceived as
credible and engaging, leading to increased trustworthiness ratings in
human and synthesised voices alike (Chan & Liberman, 2021; Kim et al.,
2023, pp. 343-347; Rodero et al., 2014; Smith & Shaffer, 1995;
Yokoyama & Daibo, 2012). Conversely, slower speech rates and lower
pitch seem to be favoured in healthcare settings for their empathetic and
calming tone (Maxim et al., 2023, pp. 1-8). Deliberate voice modulation
with the intent of sounding trustworthy — such as using variable into-
nation patterns or sounding emotionally positive — has been suggested to
further enhance perceptions of trustworthiness, rapport and learning
(Belin et al., 2019; Cambre & Kulkarni, 2019; Torre et al., 2020; Zhang
et al., 2025).

Voice quality features like harmonics-to-noise ratio (HNR), which
can reflect a speaker’s age and health condition, can be indicative of
youthfulness and vocal smoothness with higher values, and aging with
lower values (Ferrand, 2002). Some studies suggest older-sounding
voices may be trusted more in certain contexts, due to perceived expe-
rience or wisdom (McAleer et al., 2014; Montepare et al., 2014).
Higher-pitched voices are argued to increase perceptions of trustwor-
thiness potentially due to increased association with a sense of friend-
liness and approachability (Ohala, 1983, 1995, pp. 325-347).
Analogously, a halo effect (i.e., a person’s overall positive impression
influencing judgments about specific traits) extends to perceived trust-
worthiness of machines (Gabrieli et al., 2021; Huang et al., 2024); re-
searchers found that displaying images of trustworthy-looking human
faces on automated teller machines (ATMs) increased the perceived
trustworthiness of the ATMs compared to those with less
trustworthy-looking faces (Gabrieli et al., 2021). Overall, these findings
highlight the multifaceted nature of trustworthiness perceptions, shaped
by both vocal features and situational demands (Bachorowski & Owren,
1995).

Building on past work, this study explores how voice quality and
acoustic features interact with speaker nature, ethnicity and intent in
shaping trustworthiness perceptions. Prior work
(Maltezou-Papastylianou et al., 2023, 2025) has begun to address the
role of ethnicity in voice evaluation, particularly in human speech;
however, less is known about how these features unfold in synthesised
voices and cross-ethnic speaker-listener pairings.

1.4. Research motivation and aims

Given the centrality of trust to societal well-being and technology
acceptance, it is crucial to examine how voice-based IAs are perceived
across diverse demographics (Ghorayeb et al., 2021; Jessup et al., 2019).
With real-world applications of voice-based IAs becoming more ubig-
uitous and human-like, understanding how voice, ethnicity, and listener
bias intersect is essential for building trustworthy, inclusive
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technologies (Bilal & Barfield, 2021; Gluszek & Dovidio, 2010; Visser &
El Fakiri, 2016).

To address these factors, the present study focuses on three key di-
mensions: speaker nature (human vs synthesised), speaker-listener
ethnicity (White, Black, south Asian), intentional vocal modulation
(neutral vs trustworthy) and listener attitudes toward robots, measured
using the Negative Attitudes toward Robots Scale (NARS) (Nomura,
Suzuki, Kanda, & Kato, 2006; Nomura et al., 2006a, 2006b). Firstly, we
hypothesised that listeners with more negative attitudes toward robots
(higher NARS scores) would rate synthesised voices as less trustworthy
than human voices, regardless of speaker intent or demographics (H1).
We further hypothesised that synthesised voices will differ in trust-
worthiness ratings compared to human voices with a neutral (non--
trust-building) intent (H2). This non-directional hypothesis serves as a
baseline in our study, to identify fundamental differences in trustwor-
thiness perceptions between human and real-world, commercially
available synthesised voices, in the absence of any deliberate
trust-enhancing cues. Building on H2, we expected that human voices
intentionally modulated to sound trustworthy would be rated as more
trustworthy than synthesised voices (H3), reflecting the effectiveness of
deliberate vocal strategies when conveyed by humans.

Beyond these confirmatory analyses, we also conduct an exploratory
analysis to investigate how specific acoustic features — fundamental
frequency (fo), speech rate, HNR, jitter, shimmer, CPP and LTAS - relate
to trustworthiness ratings. This analysis seeks to identify consistent
acoustic patterns across speaker nature that may serve as perceptual
cues of trustworthiness and offer practical guidance for future syn-
thesised voice design. By integrating both confirmatory and exploratory
approaches, this study aims to offer a comprehensive perspective on the
relationship between social biases and vocal attributes in trust-related
judgements — contributing evidence for more inclusive and psycholog-
ically grounded voice-based IAs.

This study has been pre-registered on the Open Science Framework
(OSF) platform (https://osf.io/v7fam). Although speaker-listener sex
were initially intended as variables alongside ethnicity, these were
excluded to reduce analytical complexity and sharpen our study’s focus.
By narrowing the scope, we aimed to ensure clearer and better moti-
vated hypotheses. The role of speaker-listener sex can be explored
separately in future work.

2. Methods
2.1. Ethics declaration

All procedures performed in this study were approved by the Ethics
Subcommittee 2 of the University of Essex (ETH2324-1869) and were
carried out in accordance with the Declaration of Helsinki. All partici-
pants provided informed consent prior to participation, where they were
also briefed that their anonymised data could be (1) shared in publicly
accessible archives and (2) used in future research studies.

2.2, Stimuli

12 speakers from three ethnicities (White, Black and south Asian)
spoke three sentences each (“Hi, the shops are still open.*; “You may
bring a friend with you.; “I will direct you on this.“). The sentences
were constructed to minimise bias towards any particular emotional
interpretation, and they were standardised in length, each consisting of
seven syllables. Six speakers were human (recruited in the UK; White
female = 36 years old; White male = 25 years old; Black female = 26
years old; Black male = 36 years old; south Asian female = 22 years old;
south Asian male = 31 years old) and six were IAs, balanced between
ethnicities and sex.

Speakers were recorded in a quiet room, from the comfort of their
own home. They used their personal computers and microphones to
access a project-specific, online recording website, which records files in
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wav format. Human speakers were asked to speak the materials once
with no specific social intent (i.e. neutral — using their natural tone of
voice) and a second time while aiming to sound trustworthy. To mitigate
experimenter bias, no examples were provided on how they should
sound. A researcher was present during each recording to answer any
queries, observe whether the instructions had been followed appropri-
ately and assess the quality of the recordings to mark completion.

All audio recordings were processed using Audacity (version 2.3.3),
where they were standardised to a mono channel with a sampling rate of
48.0 kHz, 16-bit depth, and a bit rate of 768 kb/s, and then normalised
to 67 dB using Praat software (version 6.2.16) (Boersma, 2001). The
final files were saved in an uncompressed wav format. For more infor-
mation on the human stimuli and recording procedure see
(Maltezou-Papastylianou et al., 2024, 2025).

The IA voices were generated using Narakeet text-to-speech web tool
(https://www.narakeet.com/) from their pre-existing list of accented
voices, and exported the audio files in wav format (British White male —
Edward; British White female — Helen; Nigerian accent, Black male —
Obinna; Nigerian accent, Black female — Thandiwe; Indian accent, south
Asian male - Dilip; Indian accent, south Asian female — Pooja); Nar-
akeet’s default configuration was used (standard volume, normal speed,
single audio file), and no particular intent was specified. Narakeet was
selected for this study because, at the time of stimulus creation, it was
the only text-to-speech tool the authors could identify that offered
English-language voices representing speakers from all three ethnic
groups and both sexes.

Acoustic and spectral features were extracted using the VoiceLab
software (Feinberg & Cook, 2020; Feinberg D. , 2022). The features
included mean fy, standard deviation of fy to assess pitch variability, and
voice duration as an indicator of speech rate. Several voice quality
features were also extracted — HNR, jitter, shimmer, CPP, mean LTAS,
LTAS standard deviation, and LTAS slope, which as noted in Table 1,
they are commonly associated with signal clarity and noise levels, and
are often linked to perceptions of vocal breathiness, roughness, or
hoarseness. Following past research (Baus et al., 2019; McAleer et al.,
2014), jitter was measured using the relative average perturbation
(RAP) approach, which measures how much the duration of each vocal
cycle (i.e., glottal periods) varies compared to the average length of its
neighbouring cycles. Shimmer was measured using the amplitude
perturbation quotient 3 (APQ3) method, which assesses how much the
loudness of each vocal cycle fluctuates relative to surrounding cycles.
fo was measured using VoiceLab’s autocorrelation approach. For further
description of each acoustic feature see Table 1. Summary descriptives
of each feature per demographic group can be found in Tables 2 and 3
for human voices, and Table 4 for synthesised voices.

3. Participants/listeners

180 English-speaking adults (60 participants x 3 ethnicities) from the
UK were recruited through Prolific (Prolific, 2014) to rate the audio
stimuli. See Table 5 for more details on listener demographics. We fol-
lowed guidance from past research that has indicated that a sample size
of at least 28 participants per condition for trustworthiness research
tends to yield a high Cronbach’s alpha (McAleer et al., 2014).
Throughout this paper, the terms participants/listeners may be used
interchangeably.

3.1. Rating procedure

During the study, which took place online on a PHP-based, project-
specific website, participants were required to firstly answer the 14-item
NARS questionnaire, which is concerned with three themes classified
under three subscales: negative attitudes toward situations of interac-
tion with robots (S1), negative attitudes toward the social influence of
robots (S2) and negative attitudes toward emotions in interaction with
robots (S3) (Nomura et al., 2006a, 2006b). Higher score on the NARS or
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Table 1
Summary characteristics of speech acoustics examined.

Acoustic signal Unit of Key characteristics
measurement
Fundamental Hertz (Hz) fo refers to the base rate at which the

vocal folds vibrate, and it is perceived as
pitch. Variations in f0 across an
utterance reflect changes in vocal
intonation.

Amplitude refers to the magnitude of air
pressure variations in a sound wave and
is perceived by listeners as loudness.
Fluctuations in amplitude across an
utterance contribute to the perceived
intensity and emphasis of speech.

Noise in a voice signal refers to any
factor that interferes with the clarity or
quality of speech and is typically
independent of the voice’s fundamental
frequency. It can arise from various
sources such as changes in vocal fold
function, muscle strain, breathing
patterns, background noise, or technical
distortions (Ferrand, 2002). A lower
HNR reflects a higher level of noise
present in the signal (Fernandes et al.,
2018; Ferrand, 2002).

Jitter measures tiny, rapid variations in
pitch that occur due to uneven vocal fold
vibrations. A lower jitter percentage
reflects more stable pitch and smoother
vocal production (Baus et al., 2019;
Felippe et al., 2006; Schweinberger

et al., 2014).

Shimmer reflects small, rapid changes in
amplitude, providing an indication of
variability in the loudness or intensity of
the voice. Jitter and shimmer are often
examined together because they both
reflect micro-instabilities in the voice (
Baus et al., 2019; Felippe et al., 2006;
Schweinberger et al., 2014).

CPP measures the amplitude difference
between the cepstral peak (harmonic
structure) and the background noise in
the cepstrum. A lower CPP indicates a
breathy or dysphonic voice, while
higher CPP values, are indicative of
clearer, more resonant voices with
stronger harmonic structure (Chan &
Liberman, 2021; Hammarberg et al.,
1980; Jalali-najafabadi et al., 2021).
LTAS measures the average energy
distribution of a sound signal across
different frequencies over time,
providing a spectral profile of a sound. A
lower LTAS often reflects longer vocal
tracts (Da Silva et al., 2011; Linville,
2002; Lofqvist, 1986), and it’s
associated with deeper, more resonant
voices linked to dominance, particularly
in males (Gussenhoven, 2002; Puts

et al., 2007).

frequency (fo)

Amplitude Decibels (dB)

Harmonics-to-noise dB
ratio (HNR)

Jitter %

Shimmer dB

Cepstral peak dB
prominence (CPP)

Long-term average dB
spectrum (LTAS)

its subscales suggests a less favourable evaluation of the interaction.
Subsequently, using their own computers in a quiet room, each partic-
ipant listened to all speakers, where the audio stimuli were randomised
using the Fisher-Yates Shuffle algorithm (Eberl, 2016). After each audio
recording, they were asked to respond to the statement “This speaker
sounds trustworthy” on a Likert scale ranging from 1 (strongly disagree)
- 7 (strongly agree).

4. Results

All statistical analyses were conducted using JASP (version 0.19) for
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ANOVA and post-hoc tests, and Python (version 3.11.0) for linear
mixed-effects models (via the statsmodels and pingouin libraries). In
terms of reporting the ANOVA results, omega-squared (o?) was used as
an indicator of effect sizes. Even though effect sizes are context-
dependent, an »? = 0.01 (i.e. 1 % of variance explained) is typically
considered a small effect in the literature, an @® = 0.06 a medium effect,
and > =0.14 a large effect (Field, 2018; Kirk, 1996). When sphericity
assumptions were violated, p-values for within-subjects comparisons
were adjusted using the Greenhouse-Geisser correction. For significant
main effects and interactions in ANOVAs, post-hoc comparisons were
performed using Holm-Bonferroni corrected t-tests to control for Type I
error inflation due to multiple comparisons (Abdi, 2010). For more in-
formation on the mean trustworthiness ratings per listener-speaker
ethnicity, and speaker intent and nature, see Fig. 1.

4.1. Exploring acoustic features in classifying trustworthy human and
synthesised voices

The exploratory analysis sought to investigate the role of acoustic
features in terms of classifying trustworthy human and synthesised
voices. Specifically, a mixed-effects model was used to determine which
acoustic features are common across the two speaker natures (i.e. IA vs
human speakers) in terms of listeners’ perceived trustworthiness. The
acoustic features acted as the fixed effects, trustworthiness ratings as the
target and listeners as the random effect. Results revealed that while
voice duration (measuring speech rate here), HNR, jitter, shimmer and
CPP had a significant negative relationship with trustworthiness ratings,
mean fo and mean LTAS exhibited a significant positive relationship
with trustworthiness ratings. See Table 6 for further details.

H1. Higher NARS scores predict lower trust ratings for synthesised
voices than human voices, regardless of intent or demographics.

A mixed-effects model was employed to examine H1 as to how NARS
scores on each NARS subscale (S1, S2 and S3) have influenced trust-
worthiness ratings (dependent variable) of synthesised voices (i.e., IAs)
compared to human voices. The model included fixed effects for NARS
scores, speaker nature (human vs IA), speaker intent and ethnicity, and
participant ethnicity, while accounting for interrater reliability with
random intercepts by participant ID (grouping variable).

Results revealed that trustworthiness ratings were higher for
speakers with a trustworthy intent and for speakers of White ethnicity
compared to other groups. Conversely, participant ethnicity (south
Asian and White) was associated with lower trustworthiness ratings.
Significant interaction effects between speaker nature (IA) and NARS S3
scores suggest that participants’ attitudes toward robots influenced their
trustworthiness ratings of synthesised voices differently compared to
human voices. The grouping variable, 6* = 0.24, reflects the amount of
inter-individual variability in trustworthiness ratings attributable to
differences between participants’ baseline trustworthiness ratings (i.e.,
some participants consistently gave higher or lower ratings than others),
independent of the fixed effects. Full results are presented in Table 7 and
Fig. 1.

H2. Trustworthiness ratings differ between synthesised and human
voices, influenced by speaker ethnicity.

To answer H2, data relating to human voices with trustworthy intent
were excluded from the analysis. The goal was to ascertain whether
synthesised voices would significantly differ in trustworthiness ratings
compared to human voices that are not intentionally expressed to sound
trustworthy (i.e. neutral), and that these ratings would be influenced by
the speaker’s ethnicity and sex. A 2 (Speaker Nature: Synthesised,
Human) x 3 (Speaker Ethnicity: White, Black, south Asian) x 3 (Listener
Ethnicity: White, Black, south Asian) mixed ANOVA was employed.

The main effect of speaker nature was significant, F(1, 177) =
158.07, p < .001, o® = 0.27, showing higher trustworthiness ratings for
synthesised voices compared to human voices. The main effect of
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Table 2

Human speakers with trustworthy intent: Descriptive statistics of acoustic features per demographic.
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Acoustic features Mean acoustic values [Standard deviation]

White Black South Asian
Male Female Male Female Male Female
Duration (s) 1.35 [0.20] 1.64 [0.34] 1.46 [0.22] 1.93 [0.26] 1.49 [0.25] 1.43 [0.14]
fo, mean pitch (Hz) 153.46 [41.17] 240.53 [16.30] 171.29 [7.69] 191.01 [21.12] 115.99 [6.48] 226.23 [13.86]
fo, SD pitch (Hz) 63.32 [39.63] 73.22 [1.89] 52.39 [20.11] 33.68 [10.97] 21.29 [8.37] 44.29 [7.59]
HNR (dB) 1.74 [1.27] 8.9 [1.70] 8.71 [0.85] 9.12 [1.32] 4.31 [1.62] 11.98 [2.84]
Jitter (RAP) 0.02 [0.005] 0.01 [0.003] 0.01 [0.001] 0.01 [0.001] 0.01 [0.004] 0.02 [0.01]
Shimmer (APQ3) 0.06 [0.01] 0.02 [0.01] 0.04 [0.01] 0.02 [0.002] 0.06 [0.02] 0.03 [0.01]
CPP (dB) 26.9 [2.26] 30.31 [0.18] 27 [2.81] 26.16 [1.93] 24.09 [2.61] 28.68 [3.11]
LTAS, mean (dB) —5.83 [3.98] 4.84 [3.67] —23.21 [1.52] 5.82 [2.44] —0.97 [3.59] 2.97 [3.87]
LTAS, SD (dB) 18.78 [0.87] 16.3 [0.60] 21.7 [0.78] 16.55 17 [0.47] 18.09 [0.92]
[1.05]
LTAS slope, (dB/octave) —6.27 [2.55] —8.66 [1.70] —15.73 [0.79] —10.49 [1.71] —12.67 [1.92] —14.41 [1.04]
Table 3
Human speakers with neutral intent: Descriptive statistics of acoustic features per demographic.
Acoustic features Mean acoustic values [Standard deviation]
White Black South Asian
Male Female Male Female Male Female
Duration (s) 1.47 [0.17] 1.44 [0.07] 2.68 [0.35] 1.98 [0.42] 1.59 [0.01] 1.63 [0.22]
fo, mean pitch (Hz) 98.53 [5.65] 195.51 [2.77] 152.46 [1.26] 175.38 [4.90] 102.89 [2.37] 156.39 [22.63]
fo, SD pitch (Hz) 35.63 [19.63] 58.48 [11.14] 26.62 [3.11] 18 [1.20] 8.22 [1.93] 38.18 [20.01]
HNR (dB) 2.25 [0.54] 9.99 [1.86] 8.47 [2.00] 12.02 [1.94] 5.08 [2.50] 9.94 [2.59]
Jitter (RAP) 0.01 [0.001] 0.01 [0.00] 0.01 [0.002] 0.01 [0.00] 0.01 [0.001] 0.01 [0.005]
Shimmer (APQ3) 0.05 [0.01] 0.03 [0.001] 0.03 [0.002] 0.02 [0.004] 0.05 [0.002] 0.04 [0.01]
CPP (dB) 26.16 [0.99] 27.55 [1.89] 25.55 [0.62] 28.62 [2.25] 26.09 [3.08] 26.09 [0.92]
LTAS, mean (dB) —6.84 [4.80] 3.65 [3.22] —21.79 [0.63] 1.61 [4.16] —0.66 [2.40] 4.03 [3.26]
LTAS, SD (dB) 18.69 [1.12] 16.6 [0.47] 21.51 [1.06] 16.64 [1.98] 15.83 [1.12] 18.56 [1.21]
LTAS slope, (dB/octave) —8.72 [0.76] —7.87 [2.70] —14.68 [0.79] —13.42 [2.27] —14.31 [2.36] —14.99 [2.88]
Table 4
IA speakers: Descriptive statistics of acoustic features per demographic.
Acoustic features Mean acoustic values [Standard deviation]
White Black South Asian
Male Female Male Female Male Female
Duration (s) 1.41 [0.17] 1.46 [0.20] 1.49 [0.26] 1.58 [0.33] 1.5 [0.14] 1.62 [0.23]
fo, mean pitch (Hz) 119.61 [13.69] 180.75 [2.74] 115.25 [7.85] 189 [5.92] 160.28 [6.38] 238.95 [4.25]
fo, SD pitch (Hz) 37.41 [8.22] 44.1 [5.45] 20.04 [4.16] 24.51 [7.40] 39.3 [5.09] 43.05 [1.48]
HNR (dB) 3.95 [2.11] 10.72 [1.76] 4.23 [1.92] 9.86 [1.75] 6.18 [1.94] 15.06 [1.97]
Jitter (RAP) 0.01 [0.00] 0.01 [0.002] 0.01 [0.002] 0.01 [0.002] 0.01 [0.002] 0.01 [0.00]
Shimmer (APQ3) 0.03 [0.003] 0.02 [0.01] 0.03 [0.01] 0.03 [0.01] 0.02 [0.002] 0.02 [0.002]
CPP (dB) 23.9 [1.21] 24.45 [0.94] 25.72 [1.46] 25.4 [1.47] 22.37 [2.58] 26.27 [1.70]
LTAS, mean (dB) 0.25 [2.65] —18.05 [1.98] 1.79 [2.21] 3.6 [3.65] —16.63 [1.62] —17.04 [3.76]
LTAS, SD (dB) 15.28 [0.91] 26.92 [1.39] 15.63 [1.22] 15.24 [1.30] 27.38 [1.33] 25.13 [2.57]
LTAS slope, (dB/octave) —16.38 [1.28] —11.4 [1.09] —14.13 [1.67] —12.73 [1.65] —14.82 [0.91] —18.05 [1.66]
Table 5 .001). Trustworthiness ratings for south Asian speakers were also
a e, X L . . significantly higher than for Black speakers (Mg = 0.11, SE = 0.05, p =
Descriptive statistics of participant demographics. . . L .
.03). Post-hoc comparisons for listener ethnicity showed higher trust-
Ethnicity Sex N Mean age (years) Age range SD worthiness ratings from Black listeners over White (Mg = 0.46, SE =
White Female 30 34.57 19-45 7.41 0.11, p < .001) and south Asian (Mg = 0.39, SE = 0.11, p < .001), but
Male 30 31.20 18-43 6.84 no significant difference between White and south Asian listeners (p =
Black Female 30 27.77 18-42 6.38 54)
Male 30 30.40 20-44 6.02 ’ i K Kk hnici h lv sienifi .
South Asian Female 30 26.20 18-42 6.74 . Speaker nature x speaker ethnicity Waszt e only significant interac-
Male 30 28.83 1943 7.47 tion, F(1.68, 296.59) = 31.85, p < .001, »* = 0.05. See Tables 8 and 9

speaker ethnicity was also significant, F(1.94, 342.50) = 25.89, p <
.001, w? = 0.05, and so was listener ethnicity, F(2, 177) = 11.003, p <
.001, &? = 0.04. Post-hoc comparisons for speaker ethnicity showed
higher trustworthiness ratings for White speakers over Black (Mg =
0.37, SE = 0.06, p < .001) and south Asian (Mg = 0.27, SE = 0.06, p <

for all results of the ANOVA. Post-hoc comparisons showed that White
human speakers were rated as significantly more trustworthy than both
Black (Mgiff = 0.77, SE = 0.06, p < .001) and south Asian (Mg = 0.53,
SE = 0.06, p < .001) human speakers, but significantly less trustworthy
than IA speakers across all ethnicities (p < .001). Black human speakers
were rated lower than south Asian human speakers (Mg = -0.24, SE =
0.07, p = .002), and Black (Myjr = -1.27, SE = 0.09, p < .001) and south
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Fig. 1.

Listeners’ mean trustworthiness ratings (1-strongly disagree to 7-strongly agree) per speaker nature, intent and demographic group.

Table 6
Exploratory mixed-effects model results summary table.
CI95 %
Coefficient Std.Err. z p-value [0.025 0.975]

Intercept 6.23 0.23 27.62 0.00 5.79 6.67
Voice duration —0.59 0.04 —15.60 0.00 —0.66 —0.52
fo, mean 0.02 0.001 20.88 0.00 0.02 0.02
fo, SD 0.001 0.001 -1.05 0.30 0.003 0.001
HNR —0.15 0.01 —21.00 0.00 —0.16 —0.14
Jitter, RAP —17.49 3.75 —4.67 0.00 —24.83 —10.15
Shimmer, apq3 —8.16 1.43 —-5.70 0.00 —10.97 —5.35
CPP —0.06 0.01 —9.38 0.00 —0.07 —0.05
LTAS, mean 0.01 0.002 3.13 0.002 0.003 0.01
LTAS, SD —0.01 0.01 -1.91 0.056 —0.02 0.00
LTAS, slope —0.01 0.01 -0.99 0.33 —0.02 0.01
Grouping variable 0.28 0.03

Table 7

Mixed-effects model results summary table.

CI95 %
Coefficient Std.Err. A p-value [0.025 0.975]

Intercept 3.69 0.36 10.15 0.00 2.98 4.40
Speaker nature [IA] 0.30 0.27 1.10 0.27 —0.23 0.82
Speaker intent [Trustworthy] 0.97 0.03 28.31 0.00 0.91 1.04
Speaker ethnicity [South Asian] 0.03 0.03 0.94 0.35 —0.04 0.10
Speaker ethnicity [White] 0.42 0.03 12.06 0.00 0.35 0.48
Participant ethnicity [South Asian] —0.31 0.10 —3.14 0.002 —0.50 —0.12
Participant ethnicity [White] —0.34 0.10 —3.51 0.00 —0.53 —0.15
NARS S1 total score —0.03 0.01 —-2.19 0.03 —0.05 —0.003
Speaker nature [IA] x NARS S1 total score 0.004 0.008 0.44 0.66 —0.01 0.02
NARS S2 total score 0.02 0.01 1.59 0.11 —-0.01 0.05
Speaker nature [IA] x NARS S2 total score 0.02 0.01 1.70 0.09 —0.003 0.04
NARS S3 total score 0.03 0.02 1.79 0.07 —0.003 0.07
Speaker nature [IA] x NARS S3 total score 0.03 0.01 1.97 0.049 0 0.06
Grouping variable 0.24 0.02

Asian (Mg = -1.25, SE = 0.10, p < .001) IA speakers. South Asian
human speakers were rated lower than south Asian IA speakers (M =
-1.01, SE = 0.09, p < .001).

White IA speakers were rated as significantly more trustworthy than
Black (Myfy = 1.25, SE = 0.10, p < .001) and south Asian (Mg = 1.01,
SE = 0.10, p < .001) human speakers but no significance found with

Black and south Asian IA speakers (p = 1.00). Black IA speakers were
perceived as more trustworthy than south Asian, human speakers (Mg
= 1.04, SE = 0.08, p < .001), albeit no significance found with south
Asian IA speakers (p = 1.00).

To summarise, H2 results revealed that synthesised voices were rated
significantly higher on perceived trustworthiness than human voices
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Table 8
Repeated measures ANOVA results of H2 for within subjects effects.
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Table 10
Repeated measures ANOVA results of H3 for within subjects effects.

Sum of df Mean F p-value o Sum of df Mean F pvalue  o?
squares square squares square
Speaker nature 228.41 1 228.41 158.07 <0.001 0.27 Speaker nature 0.79 1 0.79 0.88 0.35 0
Speaker nature x 3.09 2 1.54 1.07 0.35 0 Speaker nature x 3.12 2 1.56 1.74 0.18 0
Participant Participant
ethnicity ethnicity
Residuals 255.77 177 1.45 Residuals 159.15 177 0.90
Speaker ethnicity 26.43 1.94 13.66 25.89 <0.001 0.05 Speaker ethnicity 18.74 1.92 9.78 19.56 <0.001 0.03
Speaker ethnicity 1.78 3.87 0.46 0.87 0.48 0 Speaker ethnicity x 0.63 3.83 0.17 0.33 0.85 0
x Participant Participant
ethnicity ethnicity
Residuals 180.67 342.50 0.53 Residuals 169.54 338.95 0.50
Speaker nature x 29.53 1.68 17.62 31.85 <0.001 0.05 Speaker nature x 19.86 1.73 11.46 21.93 <0.001 0.04
Speaker Speaker ethnicity
ethnicity Speaker nature x 1.67 3.47 0.48 0.92 0.44 0
Speaker nature x 1.20 3.35 0.36 0.65 0.60 0 Speaker ethnicity
Speaker x Participant
ethnicity x ethnicity
Participant Residuals 160.28 306.65 0.52
ethnicity
Residuals 164.10 296.59 0.55
Table 11
Repeated measures ANOVA results of H3 for between subjects effects.
Table 9 3
Repeated measures ANOVA results of H2 for between subjects effects. Sum of df Mean F P ©
squares square value
Sum of df Mean F p-value 2 .
squares square ParthIPa'nt 24.88 2 12.44 6.29 0.002 0.02
ethnicity
Participant 44.45 2 2222 11.003  <0.001  0.04 Residuals 350.32 177 1.98
ethnicity
Residuals 357.50 177 2.02

with a neutral intent. Trustworthiness ratings were also influenced by
speaker and listener ethnicity, with White speakers rated higher than
Black and south Asian speakers, and Black listeners providing higher
ratings than other groups. A significant interaction showed that syn-
thesised voices were consistently rated more trustworthy than human
voices across all ethnicities, with White human speakers rated higher
than Black and south Asian human speakers.

H3. Synthesised voices receive lower trust ratings than human voices
with trustworthy intent, influenced by speaker ethnicity.

The same factorial ANOVA as in H2 was employed to answer H3,
except that this time the data relating to human voices with neutral
intent were replaced with those with trustworthy intent. The goal with
H3 was to ascertain whether synthesised voices would receive lower
trustworthiness ratings compared to human voices with a trustworthy
intent, influenced by speaker ethnicity and sex. Thus, a 2 (Speaker Na-
ture: Synthesised, Human) x 3 (Speaker Ethnicity: White, Black, south
Asian) x 3 (Listener Ethnicity: White, Black, south Asian) mixed ANOVA
was employed.

The main effect of speaker ethnicity was significant, F(1.92, 338.95)
=19.56,p < .001, @? = 0.03, and similarly listener ethnicity, F(2, 177)
=6.29, p =.002, w® = 0.02. Post-hoc comparisons for speaker ethnicity
showed higher trustworthiness ratings for White speakers over Black
(Mgys = 0.24, SE = 0.05, p < .001) and south Asian (Mg = 0.31, SE =
0.06, p < .001). No significant difference was found between Black and
south Asian speakers (p = .13). Post-hoc comparisons for listener
ethnicity revealed significantly higher trustworthiness ratings from
Black listeners than White (Mgyy = 0.37, SE = 0.11, p = .002) and south
Asian speakers (Mgff = 0.24, SE = 0.11, p = .04). No significant differ-
ence was found between White and south Asian listeners (p = .25).

Only the speaker nature x speaker ethnicity interaction was signifi-
cant, F(1.73, 306.65) =21.93,p < .001, @? =0.04.See Tables 10 and 11
for all results of the ANOVA. Post-hoc comparisons showed that White
human speakers were rated as significantly more trustworthy than both
Black (Mg;fr = 0.50, SE = 0.06, p < .001) and south Asian (Mg = 0.62,

SE = 0.06, p < .001) human speakers, and significantly more trust-
worthy than IA speakers too, across all ethnicities (p < .001). There
were no significant findings when comparing ratings for Black human
speakers with ratings in response to south Asian human speakers (p =
.57), nor with Black and south Asian IA speakers (p = 1.00). No signif-
icant difference was found between south Asian human speakers and
south Asian IA speakers either (p = .088).

Trustworthiness ratings did not differ significantly when comparing
White IA speakers with Black and south Asian IA and human speakers (p
= 1.00), nor between Black IA speakers and south Asian IA speakers (p
= 1.00). However, Black IA speakers were rated as significantly more
trustworthy than south Asian human speakers (Mg = 0.21, SE = 0.07, p
=.02).

To summarise, H3 results revealed significant effects of speaker and
listener ethnicity on trustworthiness ratings, with White speakers rated
higher than Black and south Asian speakers, and Black listeners
providing higher ratings than White and south Asian listeners. A sig-
nificant interaction showed that White human speakers with trust-
worthy intent were rated more trustworthy than all other groups,
including synthesised voices, while no significant differences were
observed among synthesised voices of different ethnicities.

5. Discussion

The present research investigated how listener biases toward robots,
speaker-listener ethnicity, and acoustic features influence trustworthi-
ness ratings for human and synthesised voices. The findings provide
insights into the perception of voice trustworthiness and highlight the
complex interaction of ethnicity, vocal intent and social biases toward
robots.

5.1. Acoustic features and trustworthiness

Our exploratory analysis identified key acoustic features that influ-
enced trustworthiness ratings across both human and synthesised voices
from White, Black, and south Asian speakers. Specifically, speech rate,



C. Maltezou-Papastylianou et al.

mean fundamental frequency (perceived as pitch), and the voice quality
features of HNR, jitter, shimmer, CPP, and LTAS emerged as significant
predictors of trustworthiness perceptions.

Faster speech rates were associated with higher trustworthiness
ratings. This aligns with research showing that faster speech can convey
engagement, credibility and persuasiveness (Rodero et al., 2014; Smith
& Shaffer, 1995; Yokoyama & Daibo, 2012). When listeners hear
faster-paced delivery, they may interpret it as a sign of effort and
eagerness to help or invested in a conversation (Chan & Liberman, 2021;
Gussenhoven, 2002; Kim et al., 2023, pp. 343-347). In contexts
involving social first impressions, such as ours, these impressions may be
well regarded in social settings (Maltezou-Papastylianou et al., 2025),
which emphasises the effect of situational context.

Higher mean pitch was also associated with greater trustworthiness,
supporting prior work that links higher pitch to emotional warmth and
friendliness (Ohala, 1983; Torre et al., 2020). This association highlights
the role of pitch in conveying warmth and approachability, traits closely
tied to perceived trustworthiness (Belin et al., 2019; Hardin, 2002;
McAleer et al.,, 2014; Ohala, 1995, pp. 325-347; Tanis & Postmes,
2005). The joint effect of faster speech rate with higher pitch may have
consequently spilt over into a halo effect which boosted an overall sense
of perceived benevolence and warmth in those speakers (Gabrieli et al.,
2021; Huang et al., 2024; McAleer et al., 2014).

Conversely, measures of shimmer, jitter, and HNR, which tend to
reflect vocal instability and aging, were negatively associated with
trustworthiness (Ferrand, 2002; Schweinberger et al., 2014). However,
it is worth noting that not all vocal “imperfections” are necessarily un-
desirable: some irregularity, when paired with warmth might convey
vulnerability or emotional sincerity (Bachorowski & Owren, 1995).
Future work might examine how these vocal markers are interpreted in
different emotional or relational contexts. In contrast, features such as
pitch variability, LTAS slope, and LTAS variability did not significantly
predict trustworthiness. This may reflect the context-dependence of such
cues: lower LTAS values, for instance, have been linked to deeper, more
resonant voices associated with dominance and authority (Linville,
2002; Puts et al., 2007). While such traits may enhance perceived
competence in knowledge-based or task-oriented interactions, they may
be less aligned with social trustworthiness, which often hinges on
warmth, empathy, and perceived likability (Maxim et al., 2023, pp. 1-8;
Oleszkiewicz et al., 2017). In short, not all acoustic cues are equally
salient in all situational contexts — a finding that future research should
explore more systematically by varying situational contexts but keeping
acoustics constant across contexts.

These results offer valuable guidance for synthesised voice design.
While not all vocal parameters need to be optimised simultaneously, our
findings suggest that targeting a specific cluster of traits — moderately
fast speech, elevated pitch, and reduced vocal irregularities — may be
most effective for enhancing perceived trustworthiness in everyday
voice-based interactions. Rather than replicating the full complexity of
human vocal dynamics, designers of voice-based IAs might focus on
prominent acoustic markers that consistently shape positive impres-
sions, adapting these to different usage scenarios (e.g., healthcare vs
customer service).

5.2. Listener trust attitudes toward robots and trustworthiness perceptions

The current study partially supported the prediction that individuals
with higher negative attitudes toward robots — as measured by the NARS
scale — would rate synthesised voices lower than human voices. How-
ever, the pattern was not consistent across all subscales, suggesting a
more differentiated relationship between listener predispositions and
trustworthiness evaluations.

Negative attitudes toward interaction scenarios, as measured by
NARS Subscale 1, were associated with lower trustworthiness ratings
overall. This suggests that individuals who are generally sceptical about
engaging with robots may extend this discomfort to social interactions
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more broadly within HAI contexts. Rather than responding to specific
vocal cues, their judgments may reflect a more global reluctance to
engage with artificial agents as social partners. This interpretation is
supported by previous findings linking higher NARS scores to reduced
trust in robots (Krantz et al., 2022; Lim et al., 2022, pp. 538-545;
Nomura et al., 2006a, 2006b). These effects also align with CASA and
uncanny valley frameworks, which propose that people automatically
apply social characteristics to IAs, and may withdraw trust when the
interaction within HAI contexts feels unnatural or dissonant (Matthews
et al., 2019; Mori et al., 2012; Nass & Brave, 2005; Nass et al., 1994, pp.
72-78).

Unlike prior studies reporting broader effects of NARS scores (Krantz
et al,, 2022; Lim et al., 2022, pp. 538-545; Nomura et al., 2006a,
2006Db), this study found no significant impact between negative atti-
tudes toward social influence — as measured with NARS subscale 2 — and
trustworthiness ratings. While there was a marginal trend indicating
that individuals with greater negativity toward robots’ societal influence
rated synthesised voices more favourably, this result was not robust.
This lack of influence suggests that concerns about robots’ societal
roles—like job displacement or loss of autonomy—may not directly
shape how people evaluate trustworthiness in individual voices
(Matthews et al., 2019; Seaborn et al., 2021). Such concerns may be
more relevant in high-stakes, professional contexts where robots are
seen as competitors or decision-makers. In contrast, our study involved
socially casual, everyday impressions, where voice-based IAs were likely
perceived as familiar, benign tools — especially in domestic settings like
those involving Alexa or Google Assistant (Kepuska & Bohouta, 2018,
pp. 99-103). Whether these perceptions shift in more consequential
scenarios remains an open question for future work.

Surprisingly, NARS Subscale 3 (negative attitudes toward emotional
interactions with robots) showed a marginal trend in the opposite di-
rection of our initial prediction: listeners with higher scepticism toward
emotional interactions rated synthesised voices as more trustworthy
than human voices. A potential interpretation could be that synthesised
voices, which lack the emotional unpredictability and richness of human
voices, might offer a sense of predictability or impartiality. As such, the
current findings and interpretation seem to align with CASA and un-
canny valley theories (Mori et al., 2012; Nass & Brave, 2005; Nass et al.,
1994, pp. 72-78), alongside findings by Krantz et al. (2022), who argue
that NARS may reflect broader psychological orientations, such as
discomfort with affective ambiguity, rather than specific robot
capabilities.

Collectively, these findings demonstrate that listener biases toward
robots do not exert a uniform influence on trustworthiness evaluations.
Instead, each NARS subscale captures distinct dimensions of robot-
related attitudes, which appear to interact differently with voice-based
trust judgments. For instance, while general discomfort with robot in-
teractions (Subscale 1) may suppress trust across the board, attitudes
toward robots’ emotional or social influence (Subscales 2 and 3) seem
more context-sensitive. These findings may also align with the
similarity-attraction bias noted in the introduction (Dahlback et al.,
2007, pp. 1553-1556; Yang et al., 2025; Zhang et al., 2025), suggesting
that listeners may gravitate toward voices that align with their own
preferences for neutrality or expressiveness.

By focusing on the relationship between listener predispositions and
speaker characteristics, these findings deepen our understanding of how
synthesised voices can be designed for different user demographics,
preferences, and contexts. For practitioners, these findings emphasise
the need to create synthesised voices tailored to diverse listener atti-
tudes. For example, features that emphasise emotional neutrality while
maintaining warmth and clarity may appeal to users who are sceptical of
emotional expressiveness in voice-based IAs. Additionally, addressing
general scepticism about robot interactions — more common among
older populations and individuals with higher NARS scores (Ghorayeb
et al., 2021; Jessup et al., 2019) - could enhance the inclusivity and
acceptance of voice-based IAs in trust-dependent applications such as
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legal consultations or threat detection applications.

5.3. Real-world synthesised voices outperform human voices with a
neutral intent

Interestingly, the real-world synthesised voices we used as our
stimuli were rated as more trustworthy than our stimuli of human
speakers with a neutral intent. This could be revealing the unique
positioning of the real-world synthesised voices used in this study, which
may potentially possess acoustic properties engineered to achieve a
balance between naturalness and consistency. As discussed in the
introduction, deviations from natural human-like speech patterns, such
as lower pitch ranges or increased speech time delays, tend to make
voices sound more machine-like and less trustworthy (Muralidharan
et al., 2014).

Hence, a possible explanation for this preference may lie in the
acoustic characteristics of the synthesised voices. Interestingly, the
present analysis revealed that the synthesised voices of this study occupy
a middle ground between neutral human voices and those intentionally
modulated to sound trustworthy for certain acoustic cues (see
Tables 2-4). For example, synthesised voices from a White ethnic
background had speech rate and mean pitch values between human
neutral and human trustworthy intent voices from the same ethnic
group, albeit with slightly higher HNR for synthesised voices. We
characterise this pattern as occupying a “perceptual middle ground”, a
term introduced here to describe this balance point in vocal trustwor-
thiness design. Unlike neutral human voices, which may lack distinct
acoustic cues that signal trustworthiness, the synthesised voices seem to
have been designed with features that balance with listener preferences,
fostering positive trustworthiness perceptions. This interpretation builds
on the “uncanny valley” phenomenon (Kiihne et al., 2020; Mori et al.,
2012), suggesting that synthesised voices perceived as clear, natural,
and consistent can reduce unease and enhance trustworthiness evalua-
tions. The slower speech rate, higher mean f( and range of voice quality
features of the synthesised voices may have made them sound less
machine-like, avoiding the discomfort and scepticism often associated
with artificial agents (Muralidharan et al., 2014; Torre et al., 2018; Yuan
et al., 2019). By avoiding the extremes of overly robotic or overly
human-like qualities, these synthesised voices may achieve an optimal
blend that mitigates negative listener reactions and promotes trust-
worthiness, strengthening the case that HAI is informed by
human-to-human communication (Asif, 2024; Kiihne et al., 2020; Lee &
Nass, 2010; Nass et al., 1994, pp. 72-78). Future work could explore
whether this balance is replicable across diverse synthesised voice de-
signs or remains specific to the voice stimuli used in this study.

5.4. Human voices with a trustworthy intent outperform real-world
synthesised voices

In contrast to neutral human voices, when human speakers modu-
lated their voice with the intent to sound trustworthy, they out-
performed synthesised voices in trustworthiness ratings. This finding
shows the unique expressive advantage of human speakers, who can
adjust vocal traits and convey emotional nuances that remain chal-
lenging for current voice-based IA systems to replicate (Nass & Brave,
2005).

One way to interpret this result is based on the previous discussion
section where the real-world synthesised voices used in this study
appear to have been engineered with middle-ground values in features
such as speech rate and mean pitch when compared to human neutral
and human trustworthy intent voices from this study. Another likely
interpretation though, could lie in listeners’ sensitivity to deliberate
manipulations of vocal cues in human speakers, potentially due to
increased familiarity with human voices rather than synthesised voices.
Intentional adjustments in pitch, intonation, emotional tone and speech
rate appear to enhance perceptions of positive qualities and emotions

Computers in Human Behavior Reports 19 (2025) 100762

linked to trustworthiness (Belin et al., 2019; Torre et al., 2020; Torre
et al., 2018; Yokoyama & Daibo, 2012; Zhang et al., 2025). By contrast,
synthesised voices, while consistent, may lack the emotional depth
required to evoke similar responses. These findings emphasise the need
for voice synthesis technologies to move beyond consistency and explore
methods for imbuing voices with greater emotional and contextual
adaptability, particularly in applications requiring high levels of trust,
such as healthcare or counselling services.

5.5. The role of speaker and listener ethnicity

Speaker and listener ethnicities emerged as critical factors shaping
trustworthiness ratings, reinforcing the significant role of biases and
social dynamics in voice perception. The finding that White speakers
were consistently rated as more trustworthy than Black and south Asian
speakers —regardless of speaker nature and intent — highlights how vocal
trust evaluations may be shaped by both acoustic profiles and ingrained
social biases. While our earlier analysis identified certain acoustic cues —
such as faster speech rate, higher mean pitch and lower HNR - as pre-
dictive of trustworthiness, these features also tended to cluster in White
speakers within our dataset (see Tables 2 and 3). On the surface, this
could suggest that acoustic properties alone explain trustworthiness
ratings. However, such a view risks overlooking how listeners may map
socially learned associations onto voice characteristics.

For instance, faster and clearer speech has been linked to competence
in past research (Rodero et al., 2014; Yokoyama & Daibo, 2012), but
these traits may also be more readily recognised and rewarded when
they align with dominant cultural norms - such as standardised, native
English speech patterns — particularly in native English countries like the
UK and U.S. (Geiger et al., 2023; Hanzlikova & Skarnitzl, 2017). Simi-
larly, the presence of lower pitch variability in Black or south Asian
speakers may have activated subtle stereotypes about warmth, compe-
tence, or credibility, regardless of their actual vocal performance (Bilal
& Barfield, 2021; Gluszek & Dovidio, 2010; Yang et al., 2025). Inter-
estingly, Black listeners gave higher trustworthiness ratings overall,
potentially suggesting greater cultural flexibility or broader inclusivity
in trustworthiness heuristics. This aligns with literature on familiarity
and intergroup trust, which suggests that exposure to diverse voices can
mitigate stereotyping in social evaluations (Batsaikhan et al., 2021;
Belin et al., 2019; Dahlback et al., 2007, pp. 1553-1556; Montoya &
Horton, 2013; Zhang et al., 2025). In this way, what appears to be an
“acoustic” effect may, in practice, reflect a bias in what counts as
trustworthy sounding speech (Lima et al., 2019, pp. 533-538).

Our findings that White, native English speakers were rated as more
trustworthy overall, are reinforced by past work showing that non-
native or accented speakers are often rated less favourably on social
impressions, compared to native speakers, even when content is
controlled (Cambre & Kulkarni, 2019; Dahlback et al., 2007, pp.
1553-1556; Geiger et al., 2023; Torre et al., 2024). Such judgments are
not only culturally constructed but also deeply entangled with racialised
and linguistic differences in society (Bilal & Barfield, 2021; Gluszek &
Dovidio, 2010; Visser & El Fakiri, 2016). That these biases persist even
in relatively controlled experimental conditions signals the need for
caution in how voice is operationalised in voice-based IA design.

Taken together, these findings suggest that while acoustic features
contribute meaningfully to trustworthiness evaluations, they likely
interact with social identity cues and listener expectations. This inter-
twined relationship draws attention to the importance of considering
both vocal and sociocultural factors when designing voice-based IAs
(Aylett et al., 2017; Greenwald & Banaji, 1995). Rather than viewing
acoustic optimisation in isolation, developers may benefit from a more
holistic approach - one that also reflects on how voice design can
accommodate diverse listener backgrounds and reduce potential bias in
trust-related judgments. Our current and past research, such as
(Maltezou-Papastylianou et al., 2023, 2024, 2025a,b), have led us to
create a set of guidelines (see Table 12), aiming to help researchers and
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Table 12

Evidence-based design recommendations for enhancing vocal trustworthiness in

human and synthesised voice applications.

Guidelines

Design insights

G1. Consider the situational relevance
of warmth and competence

G2. Expressiveness can enhance trust -
but must fit the context and user

G3. Calibrate human-likeness in
synthetic voice design

G4. Anticipate and accommodate user
predispositions

G5. Be aware of voice-based social bias —
and do not neutralise by default

G6. Time and pitch are powerful cues —
but require restraint

G7. Intentional trust-building works —
but never rely on it alone

Trustworthiness aligned more closely
with warmth than competence in
socially-framed, low-stakes settings.
However, competence may dominate in
intellectual, task-based or evaluative
situational contexts (e.g., legal or
academic advice). Vocal tone should
reflect contextual priorities.

Intentional modulation increases trust
ratings, especially for human voices.
However, expressiveness may backfire
for sceptical users (e.g., high-NARS
individuals) or where emotional
neutrality may be expected (e.g., security
alerts).

The synthesised voices in the current
study exhibited acoustic values in-
between those of neutral and
intentionally trustworthy human speech.
This may have helped them avoid
sounding too robotic or too human —
balancing familiarity with predictability.
Overly human-like voices risk triggering
the “uncanny valley” or inflating user
expectations. For example, a highly
realistic voice in a basic customer service
assistant may signal higher competence
and inflate users’ social expectations,
which, if unmet, may lead to frustration
or mistrust. Designers should not only
calibrate vocal realism, but also
proactively manage user expectations
through onboarding, disclosure of
capabilities, and situational framing.
Listener biases influenced trust outcomes
in the current study. High generalised
trust improved ratings across the board,
while robot-related scepticism (NARS)
reduced ratings for synthetic voices.
Tailoring delivery styles to audience
characteristics may improve engagement,
e.g., more emotionally neutral tones for
high-NARS users.

White voices were consistently rated as
more trustworthy than Black or south
Asian voices. Attempts to “neutralise”
voice identity may obscure rather than
correct bias. Instead, evaluation
processes should be inclusive and bias-
aware, especially in high-impact settings.
Faster speech rate and higher pitch were
associated with more favourable ratings
across traits. These features can convey
energy, sociability, credibility and
engagement. However, excessive
modulation may sound unnatural or
inappropriate depending on the context.
Optimisation must balance clarity, tone,
and task demands.

Expressing vocal intent can boost
trustworthiness impressions, especially in
early-stage or low-stakes interactions. But
its effect depends on situational context,
listener expectations, and how strongly
the speaker’s identity is perceptually
categorised. Combine vocal modulation
with personalised content, credibility or
warmth cues, and expectation
management for best results. Design
should avoid assuming universal cue
interpretation in intentional vocal
modulation.
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Table 12 (continued)

Guidelines Design insights

G8. Cultural norms and familiarity
shape how vocal cues are interpreted

Features such as pitch variability were
expressed and received differently across
ethnic groups in our studies — perceived
positively among White speakers, but less
so or negatively for south Asian voices.
These patterns highlight the importance
of culturally adaptive voice design,
especially in multi-ethnic or global
deployments.

In the current study, trustworthy
perceptions of synthesised voices tended
to occupy acoustic values between
neutral and trustworthy-intended human
speech. This “perceptual middle ground”
as we call it here, may serve as a practical
design default when demands on
situational context are unclear, or when
the product team has yet to determine the
appropriate tone of voice. It offers a
balance between sounding engaging and
avoiding inflated user expectations —
particularly useful in early-stage system
development or broad public
deployment.

Strong trait impressions were formed
from brief utterances with a duration of
approximately 2 s. For both humans and
voice-based IAs, early speech cues (e.g.,
pitch, pacing) significantly shaped
perceived trustworthiness. This is
especially relevant in onboarding
scenarios, help requests, or cold calls.

G9. When in doubt, design for a
“perceptual middle ground” in
acoustic expressiveness

G10. First impressions are rapid — design
accordingly

industry professionals design more trustworthy, appealing and user
friendly voice-based systems. Table 12 encapsulates all our research to
show that designing for vocal trustworthiness requires more than
replicating human-like features or optimising for clarity. It demands an
adaptive, context-sensitive approach that accounts for who is speaking,
who is listening, and the social function of the interaction. Whether in
public speaking, healthcare communication, or voice interface design,
the evidence presented here advocates for a shift away from universal
design rules toward a more modular, data-driven understanding of what
builds (or breaks) trust in vocal communication. Our guidelines are
intended not as fixed prescriptions, but as a flexible framework to sup-
port inclusive, informed, and psychologically grounded voice design for
human speakers and voice-based IAs.

6. Limitations and future directions

This study focused on English-speaking voices across three ethnic
groups, offering insights into vocal trustworthiness across speaker-
listener pairings. However, future research should extend this work by
incorporating greater linguistic diversity — including multilingual and
accented voices — to assess how cultural familiarity and linguistic vari-
ation interact with trust judgments, particularly in non-Western pop-
ulations. Although our synthesised voice stimuli reflected real-world
text-to-speech (TTS) technology, they were limited to pre-existing
commercial systems with fixed prosodic styles. As voice synthesis con-
tinues to evolve, future studies should examine how more expressive or
emotionally adaptive systems affect listener trust, especially in sensitive
or high-stakes contexts like healthcare, finance and education.

In addition to quantitative analysis, future studies should consider
incorporating mixed methods — such as follow-up interviews or trust
calibration tasks — to help uncover the reasoning behind participants’
ratings. This may clarify the role of implicit biases, expectations, or
perceived speaker intent that underlie observed behaviours. Finally,
trust is context-sensitive. Our controlled, perception-based design
cannot fully capture the dynamics of real-time interaction. Testing voice
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trustworthiness in applied settings — e.g., virtual customer service, Al
tutoring, or medical triage simulations — will help validate whether the
effects observed here generalise to practical use cases.

Lastly, while our study did not measure human speaker effort or
vocal strain, some research suggests that faster speech may reflect
increased cognitive or muscular load on the speaker (Anikin, 2023;
Nudelman et al., 2024). Future work might explore whether such
physiological features of vocal production influence listener perceptions
of trustworthiness, particularly in more interactive or longer duration
speech contexts.

7. Conclusion

This study advances our understanding of how trustworthiness is
evaluated in ethnically diverse human and synthesised voices by high-
lighting the joint influence of acoustic features (speech rate, mean
fundamental frequency, HNR, jitter, shimmer, CPP, and LTAS), speaker
intent, and listener attitudes toward robots. Real-world synthesised
voices — demonstrated balanced acoustic properties that were positioned
between perceived neutral and trustworthy human voices, a term that
we call here as a “perceptual middle ground” — and were rated as more
trustworthy than human voices with neutral intent (see Tables 2-4 for
the acoustic values). However, modulated human voices intended to
convey trustworthiness still outperformed voice-based IAs, reaffirming
the enduring advantage of expressive control and emotional nuance in
human communication.

Trust-related impressions were not purely acoustic-based. Listener
attitudes, particularly scepticism toward interacting with robots, also
influenced ratings, drawing attention to the role of cognitive pre-
dispositions in HAL Moreover, consistent patterns of higher ratings for
White speakers across listener groups point to the influence of broader
sociocultural expectations, highlighting the importance of further
investigating how implicit biases may shape voice evaluations in both
human and voice-based IA contexts.

These findings highlight a key implication: optimising trust in voice-
based IAs requires more than refining acoustic signal properties — it
requires culturally sensitive, psychologically informed design choices
that reflect the diversity of real-world users (see Table 12 for our
research-informed guidelines). As voice technologies become increas-
ingly embedded in education, healthcare, finance and public services,
their ability to inspire trust across social groups will be central to their
success. Future work should continue to examine how contextual fac-
tors, user expectations, and social dynamics converge to shape trust in
both human and artificial speakers.
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