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A B S T R A C T

This study examined trustworthiness perceptions in the tone of voice of human and real-world synthesised 
voices, focusing on the impact of acoustic features, speaker and listener ethnicities, listener biases toward voice- 
based intelligent agents and speaker nature (human vs synthesised). Speech rate, mean pitch, harmonics-to-noise 
ratio, jitter, shimmer, cepstral peak prominence, and long-term average spectrum, significantly influenced 
trustworthiness ratings across both human and synthesised voices. Synthesised voices were rated as sounding 
more trustworthy than human voices with no explicit intent behind their tone of voice (i.e., neutral). However, 
synthesised voices were rated as sounding less trustworthy than human voices when human speakers inten
tionally attempted to sound trustworthy. Moreover, listener biases were measured using the Negative Attitudes 
toward Robots Scale (NARS), where a general scepticism toward robots lowered trustworthiness ratings overall. 
White speakers were consistently rated as more trustworthy than Black or south Asian speakers across all listener 
ethnic groups. The findings highlight the need to optimise acoustic properties of synthesised voices for trust
worthiness while addressing biases related to speaker ethnicity and listener attitudes toward robots.

1. Introduction

Voice is central to social communication, enabling listeners to make 
rapid judgements about others, including whether they seem trust
worthy (Kreiman & Sidtis, 2011; Maltezou-Papastylianou et al., 2025). 
While often used interchangeably, trust and trustworthiness are 
conceptually distinct (Castelfranchi & Falcone, 2010; Hardin, 2002). 
Trust refers to the willingness to rely on another, based on the expec
tation that they will not act against one’s interests. This decision is 
context-dependent and shaped by risk or uncertainty. In contrast, 
perceived trustworthiness refers to the traits we attribute to others – 
such as honesty, warmth and competence – that influence whether we 
choose to trust them (Hardin, 2002; Oleszkiewicz et al., 2017; Syed 
et al., 2024; Tanis & Postmes, 2005). In other words, trustworthiness is 
the foundation upon which trust is built: if someone is deemed trust
worthy, individuals are more inclined to trust them.

Beyond human interactions, individuals also instinctively attribute 
social traits – including trustworthiness – to pets and artificially intel
ligent agents (IAs), like voice assistants (Kepuska & Bohouta, 2018, pp. 
99–103), humanoid robots (Kouravanas & Pavlopoulos, 2022; Radford 

et al., 2015; Shigemi et al., 2018), and virtual agents (Yuan et al., 2019). 
This tendency to anthropomorphise technology emphasises the poten
tial of human-agent interactions (HAI) to simulate aspects of 
human-human communication (Nass & Brave, 2005; Seaborn et al., 
2021). This tendency is highlighted in two key frameworks. The un
canny valley theory (Mori, 1970; Mori et al., 2012) warns that when IAs 
appear or sound almost – but not quite – human, subtle mismatches (e. 
g., unnatural pitch, timing, or facial expressions) can evoke a sense of 
uneasiness (Muralidharan et al., 2014). Meanwhile, the Computers as 
Social Actors (CASA) theory (Nass et al., 1994, pp. 72–78) suggests that 
humans attribute social characteristics to machines based on cues like 
voice, forming impressions similar to those made in human interactions 
(Asif, 2024; Aylett et al., 2017; Large et al., 2019; Nass & Brave, 2005). 
Since these mechanisms are deeply rooted in human social cognition, a 
meaningful exploration of trust in IAs must begin with how trust is 
formed in human-to-human interactions, where biases and expectations 
originate.

Building on this premise, the present study investigates how social 
biases related to speaker ethnicity, listener attitudes toward robots and 
vocal characteristics interact to shape trustworthiness perceptions 
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across both human and synthesised (i.e., artificial) voices. The following 
sections review the relevant literature that informs this approach.

1.1. Human behaviour and biases

In human-human interactions, group affiliations such as ethnicity or 
profession, and broader societal norms, can further shape trustworthi
ness judgments and trust attitudes (Greenwald & Banaji, 1995; Schild 
et al., 2022; Tanis & Postmes, 2005). For instance, Geiger et al. (2023)
found that in a U.S. job-hiring simulation, native English-speaking 
candidates were rated as more trustworthy than those with Mandarin 
Chinese accents – regardless of rater background – particularly in terms 
of perceived job-related abilities. These findings may reflect a general 
tendency to associate native English speakers with positive traits such as 
credibility and competence, particularly in the U.S., where English 
dominates professional and academic settings (Geiger et al., 2023; 
Hanzlíková & Skarnitzl, 2017; Torre et al., 2024). Alternatively, they 
may reflect a similarity-attraction bias, whereby participants favour 
speakers who seem linguistically or culturally similar to themselves 
(Dahlbäck et al., 2007, pp. 1553–1556; Montoya & Horton, 2013). In a 
predominantly English-speaking American sample, native speakers may 
have been perceived as more culturally aligned with listeners, leading to 
more favourable evaluations.

Interestingly, contradictory findings challenge this pattern. A study 
conducted in Singapore revealed that Mainland Chinese speakers were 
trusted more by Singaporean Chinese listeners, exhibiting out-group 
favouritism – where listeners favour an ethnic group they are not affil
iated with (Batsaikhan et al., 2021). These results were attributed to 
participants’ cultural familiarity with traditional Chinese norms, such as 
the expectation that “a favour given must be returned” (Batsaikhan 
et al., 2021). The authors proposed that in the context of trust-related 
tasks, Mainland Chinese speakers were perceived as more aligned with 
reciprocity norms, which are highly valued in such interactions. 
Together, these studies suggest that societal norms and personal biases 
jointly shape how vocal trustworthiness is perceived. While such biases 
are evident in human-human interactions, they also manifest in HAI, 
particularly in trustworthiness evaluations of human versus synthesised 
voices.

1.2. Individual differences and biases toward IAs

In HAI, individuals have shown a preference toward IAs that reflect 
their own ethnicity or accent, often perceiving them as more personable, 
credible, and engaging (Bilal & Barfield, 2021; Liao & He, 2020, pp. 
430–442; Schild et al., 2022; Yang et al., 2025). The similarity-attraction 
effect remains relevant, especially when evaluating out-group or unfa
miliar speakers (Aylett et al., 2017; Dahlbäck et al., 2007, pp. 
1553–1556; Zhang et al., 2025). Familiarity can mitigate such biases, 
but the artificial nature of voice-based IAs may reinforce perceptions of 
dissimilarity and reduce trust (Lima et al., 2019, pp. 533–538; Tanis & 
Postmes, 2005). Thereupon, one could raise the question of whether 
synthesised voices may be perceived as less trustworthy due to their 
association with non-human entities.

Moreover, listeners’ predispositions (i.e., overall inclination to trust 
others) such as trust propensity toward IAs can further affect evaluations 
of trustworthiness (Nomura, Suzuki, Kanda, & Kato, 2006a, 2006b; 
Torre et al., 2024). Questionnaires like the Negative Attitudes to Robots 
Scale (NARS) (Nomura, Suzuki, Kanda, & Kato, 2006; Nomura et al., 
2006a, 2006b) reveal how individual differences shape perceptions of 
IAs (Kühne et al., 2020; Lim et al., 2022, pp. 538–545). NARS measures 
attitudes across three subscales: interaction with robots, the social in
fluence of robots, and emotional engagement with robots. Studies in 
Japanese samples found that NARS scores negatively correlated with 
measures of social acceptance of robots (Nomura et al., 2006a, 2006b). 
Similarly, other studies observed that listeners with higher NARS scores 
rated virtual robots with synthesised voices and physical robots lower on 

trust, reflecting a bias against robots (Krantz et al., 2022; Lim et al., 
2022, pp. 538–545). However, it was also observed that NARS may 
reflect broader trust tendencies and predispositions in a robot rather 
than specific capabilities of the robot (Krantz et al., 2022), and older 
people may exhibit more negative attitudes toward technology than 
their younger counterparts (Matthews et al., 2019).

While these studies highlight preferences for- and acceptance of- 
robotic partners, few focus specifically on voice-based IAs, and even 
less so on ethnically diverse voice-based IAs. This opens an opportunity 
to examine how listeners’ predispositions toward IAs shape trustwor
thiness evaluations of human versus synthesised voices, and whether 
vocal cues alone can offset biases linked to a voice’s non-human origin.

1.3. Acoustic and contextual influences on trustworthiness perceptions

Past research has shown that listeners infer trustworthiness judge
ments from vocal cues such as pitch, intonation and speech rate (Belin 
et al., 2019; Ko et al., 2020, pp. 174–193; Lim et al., 2022, pp. 538–545). 
For example, in public communication and emergency scenarios, faster 
speech rates, higher pitch or varied intonation have been perceived as 
credible and engaging, leading to increased trustworthiness ratings in 
human and synthesised voices alike (Chan & Liberman, 2021; Kim et al., 
2023, pp. 343–347; Rodero et al., 2014; Smith & Shaffer, 1995; 
Yokoyama & Daibo, 2012). Conversely, slower speech rates and lower 
pitch seem to be favoured in healthcare settings for their empathetic and 
calming tone (Maxim et al., 2023, pp. 1–8). Deliberate voice modulation 
with the intent of sounding trustworthy – such as using variable into
nation patterns or sounding emotionally positive – has been suggested to 
further enhance perceptions of trustworthiness, rapport and learning 
(Belin et al., 2019; Cambre & Kulkarni, 2019; Torre et al., 2020; Zhang 
et al., 2025).

Voice quality features like harmonics-to-noise ratio (HNR), which 
can reflect a speaker’s age and health condition, can be indicative of 
youthfulness and vocal smoothness with higher values, and aging with 
lower values (Ferrand, 2002). Some studies suggest older-sounding 
voices may be trusted more in certain contexts, due to perceived expe
rience or wisdom (McAleer et al., 2014; Montepare et al., 2014). 
Higher-pitched voices are argued to increase perceptions of trustwor
thiness potentially due to increased association with a sense of friend
liness and approachability (Ohala, 1983, 1995, pp. 325–347). 
Analogously, a halo effect (i.e., a person’s overall positive impression 
influencing judgments about specific traits) extends to perceived trust
worthiness of machines (Gabrieli et al., 2021; Huang et al., 2024); re
searchers found that displaying images of trustworthy-looking human 
faces on automated teller machines (ATMs) increased the perceived 
trustworthiness of the ATMs compared to those with less 
trustworthy-looking faces (Gabrieli et al., 2021). Overall, these findings 
highlight the multifaceted nature of trustworthiness perceptions, shaped 
by both vocal features and situational demands (Bachorowski & Owren, 
1995).

Building on past work, this study explores how voice quality and 
acoustic features interact with speaker nature, ethnicity and intent in 
shaping trustworthiness perceptions. Prior work 
(Maltezou-Papastylianou et al., 2023, 2025) has begun to address the 
role of ethnicity in voice evaluation, particularly in human speech; 
however, less is known about how these features unfold in synthesised 
voices and cross-ethnic speaker–listener pairings.

1.4. Research motivation and aims

Given the centrality of trust to societal well-being and technology 
acceptance, it is crucial to examine how voice-based IAs are perceived 
across diverse demographics (Ghorayeb et al., 2021; Jessup et al., 2019). 
With real-world applications of voice-based IAs becoming more ubiq
uitous and human-like, understanding how voice, ethnicity, and listener 
bias intersect is essential for building trustworthy, inclusive 
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technologies (Bilal & Barfield, 2021; Gluszek & Dovidio, 2010; Visser & 
El Fakiri, 2016).

To address these factors, the present study focuses on three key di
mensions: speaker nature (human vs synthesised), speaker-listener 
ethnicity (White, Black, south Asian), intentional vocal modulation 
(neutral vs trustworthy) and listener attitudes toward robots, measured 
using the Negative Attitudes toward Robots Scale (NARS) (Nomura, 
Suzuki, Kanda, & Kato, 2006; Nomura et al., 2006a, 2006b). Firstly, we 
hypothesised that listeners with more negative attitudes toward robots 
(higher NARS scores) would rate synthesised voices as less trustworthy 
than human voices, regardless of speaker intent or demographics (H1). 
We further hypothesised that synthesised voices will differ in trust
worthiness ratings compared to human voices with a neutral (non-
trust-building) intent (H2). This non-directional hypothesis serves as a 
baseline in our study, to identify fundamental differences in trustwor
thiness perceptions between human and real-world, commercially 
available synthesised voices, in the absence of any deliberate 
trust-enhancing cues. Building on H2, we expected that human voices 
intentionally modulated to sound trustworthy would be rated as more 
trustworthy than synthesised voices (H3), reflecting the effectiveness of 
deliberate vocal strategies when conveyed by humans.

Beyond these confirmatory analyses, we also conduct an exploratory 
analysis to investigate how specific acoustic features – fundamental 
frequency (ƒ0), speech rate, HNR, jitter, shimmer, CPP and LTAS – relate 
to trustworthiness ratings. This analysis seeks to identify consistent 
acoustic patterns across speaker nature that may serve as perceptual 
cues of trustworthiness and offer practical guidance for future syn
thesised voice design. By integrating both confirmatory and exploratory 
approaches, this study aims to offer a comprehensive perspective on the 
relationship between social biases and vocal attributes in trust-related 
judgements – contributing evidence for more inclusive and psycholog
ically grounded voice-based IAs.

This study has been pre-registered on the Open Science Framework 
(OSF) platform (https://osf.io/v7fam). Although speaker-listener sex 
were initially intended as variables alongside ethnicity, these were 
excluded to reduce analytical complexity and sharpen our study’s focus. 
By narrowing the scope, we aimed to ensure clearer and better moti
vated hypotheses. The role of speaker-listener sex can be explored 
separately in future work.

2. Methods

2.1. Ethics declaration

All procedures performed in this study were approved by the Ethics 
Subcommittee 2 of the University of Essex (ETH2324-1869) and were 
carried out in accordance with the Declaration of Helsinki. All partici
pants provided informed consent prior to participation, where they were 
also briefed that their anonymised data could be (1) shared in publicly 
accessible archives and (2) used in future research studies.

2.2. Stimuli

12 speakers from three ethnicities (White, Black and south Asian) 
spoke three sentences each (“Hi, the shops are still open.“; “You may 
bring a friend with you.“; “I will direct you on this.“). The sentences 
were constructed to minimise bias towards any particular emotional 
interpretation, and they were standardised in length, each consisting of 
seven syllables. Six speakers were human (recruited in the UK; White 
female = 36 years old; White male = 25 years old; Black female = 26 
years old; Black male = 36 years old; south Asian female = 22 years old; 
south Asian male = 31 years old) and six were IAs, balanced between 
ethnicities and sex.

Speakers were recorded in a quiet room, from the comfort of their 
own home. They used their personal computers and microphones to 
access a project-specific, online recording website, which records files in 

wav format. Human speakers were asked to speak the materials once 
with no specific social intent (i.e. neutral – using their natural tone of 
voice) and a second time while aiming to sound trustworthy. To mitigate 
experimenter bias, no examples were provided on how they should 
sound. A researcher was present during each recording to answer any 
queries, observe whether the instructions had been followed appropri
ately and assess the quality of the recordings to mark completion.

All audio recordings were processed using Audacity (version 2.3.3), 
where they were standardised to a mono channel with a sampling rate of 
48.0 kHz, 16-bit depth, and a bit rate of 768 kb/s, and then normalised 
to 67 dB using Praat software (version 6.2.16) (Boersma, 2001). The 
final files were saved in an uncompressed wav format. For more infor
mation on the human stimuli and recording procedure see 
(Maltezou-Papastylianou et al., 2024, 2025).

The IA voices were generated using Narakeet text-to-speech web tool 
(https://www.narakeet.com/) from their pre-existing list of accented 
voices, and exported the audio files in wav format (British White male – 
Edward; British White female – Helen; Nigerian accent, Black male – 
Obinna; Nigerian accent, Black female – Thandiwe; Indian accent, south 
Asian male – Dilip; Indian accent, south Asian female – Pooja); Nar
akeet’s default configuration was used (standard volume, normal speed, 
single audio file), and no particular intent was specified. Narakeet was 
selected for this study because, at the time of stimulus creation, it was 
the only text-to-speech tool the authors could identify that offered 
English-language voices representing speakers from all three ethnic 
groups and both sexes.

Acoustic and spectral features were extracted using the VoiceLab 
software (Feinberg & Cook, 2020; Feinberg D. , 2022). The features 
included mean ƒ0, standard deviation of ƒ0 to assess pitch variability, and 
voice duration as an indicator of speech rate. Several voice quality 
features were also extracted – HNR, jitter, shimmer, CPP, mean LTAS, 
LTAS standard deviation, and LTAS slope, which as noted in Table 1, 
they are commonly associated with signal clarity and noise levels, and 
are often linked to perceptions of vocal breathiness, roughness, or 
hoarseness. Following past research (Baus et al., 2019; McAleer et al., 
2014), jitter was measured using the relative average perturbation 
(RAP) approach, which measures how much the duration of each vocal 
cycle (i.e., glottal periods) varies compared to the average length of its 
neighbouring cycles. Shimmer was measured using the amplitude 
perturbation quotient 3 (APQ3) method, which assesses how much the 
loudness of each vocal cycle fluctuates relative to surrounding cycles. 
ƒ0 was measured using VoiceLab’s autocorrelation approach. For further 
description of each acoustic feature see Table 1. Summary descriptives 
of each feature per demographic group can be found in Tables 2 and 3
for human voices, and Table 4 for synthesised voices.

3. Participants/listeners

180 English-speaking adults (60 participants x 3 ethnicities) from the 
UK were recruited through Prolific (Prolific, 2014) to rate the audio 
stimuli. See Table 5 for more details on listener demographics. We fol
lowed guidance from past research that has indicated that a sample size 
of at least 28 participants per condition for trustworthiness research 
tends to yield a high Cronbach’s alpha (McAleer et al., 2014). 
Throughout this paper, the terms participants/listeners may be used 
interchangeably.

3.1. Rating procedure

During the study, which took place online on a PHP-based, project- 
specific website, participants were required to firstly answer the 14-item 
NARS questionnaire, which is concerned with three themes classified 
under three subscales: negative attitudes toward situations of interac
tion with robots (S1), negative attitudes toward the social influence of 
robots (S2) and negative attitudes toward emotions in interaction with 
robots (S3) (Nomura et al., 2006a, 2006b). Higher score on the NARS or 
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its subscales suggests a less favourable evaluation of the interaction. 
Subsequently, using their own computers in a quiet room, each partic
ipant listened to all speakers, where the audio stimuli were randomised 
using the Fisher-Yates Shuffle algorithm (Eberl, 2016). After each audio 
recording, they were asked to respond to the statement “This speaker 
sounds trustworthy” on a Likert scale ranging from 1 (strongly disagree) 
– 7 (strongly agree).

4. Results

All statistical analyses were conducted using JASP (version 0.19) for 

ANOVA and post-hoc tests, and Python (version 3.11.0) for linear 
mixed-effects models (via the statsmodels and pingouin libraries). In 
terms of reporting the ANOVA results, omega-squared (ω2) was used as 
an indicator of effect sizes. Even though effect sizes are context- 
dependent, an ω2 = 0.01 (i.e. 1 % of variance explained) is typically 
considered a small effect in the literature, an ω2 = 0.06 a medium effect, 
and ω2 = 0.14 a large effect (Field, 2018; Kirk, 1996). When sphericity 
assumptions were violated, p-values for within-subjects comparisons 
were adjusted using the Greenhouse-Geisser correction. For significant 
main effects and interactions in ANOVAs, post-hoc comparisons were 
performed using Holm–Bonferroni corrected t-tests to control for Type I 
error inflation due to multiple comparisons (Abdi, 2010). For more in
formation on the mean trustworthiness ratings per listener-speaker 
ethnicity, and speaker intent and nature, see Fig. 1.

4.1. Exploring acoustic features in classifying trustworthy human and 
synthesised voices

The exploratory analysis sought to investigate the role of acoustic 
features in terms of classifying trustworthy human and synthesised 
voices. Specifically, a mixed-effects model was used to determine which 
acoustic features are common across the two speaker natures (i.e. IA vs 
human speakers) in terms of listeners’ perceived trustworthiness. The 
acoustic features acted as the fixed effects, trustworthiness ratings as the 
target and listeners as the random effect. Results revealed that while 
voice duration (measuring speech rate here), HNR, jitter, shimmer and 
CPP had a significant negative relationship with trustworthiness ratings, 
mean ƒ0 and mean LTAS exhibited a significant positive relationship 
with trustworthiness ratings. See Table 6 for further details. 

H1. Higher NARS scores predict lower trust ratings for synthesised 
voices than human voices, regardless of intent or demographics.

A mixed-effects model was employed to examine H1 as to how NARS 
scores on each NARS subscale (S1, S2 and S3) have influenced trust
worthiness ratings (dependent variable) of synthesised voices (i.e., IAs) 
compared to human voices. The model included fixed effects for NARS 
scores, speaker nature (human vs IA), speaker intent and ethnicity, and 
participant ethnicity, while accounting for interrater reliability with 
random intercepts by participant ID (grouping variable).

Results revealed that trustworthiness ratings were higher for 
speakers with a trustworthy intent and for speakers of White ethnicity 
compared to other groups. Conversely, participant ethnicity (south 
Asian and White) was associated with lower trustworthiness ratings. 
Significant interaction effects between speaker nature (IA) and NARS S3 
scores suggest that participants’ attitudes toward robots influenced their 
trustworthiness ratings of synthesised voices differently compared to 
human voices. The grouping variable, σ2 = 0.24, reflects the amount of 
inter-individual variability in trustworthiness ratings attributable to 
differences between participants’ baseline trustworthiness ratings (i.e., 
some participants consistently gave higher or lower ratings than others), 
independent of the fixed effects. Full results are presented in Table 7 and 
Fig. 1. 

H2. Trustworthiness ratings differ between synthesised and human 
voices, influenced by speaker ethnicity.

To answer H2, data relating to human voices with trustworthy intent 
were excluded from the analysis. The goal was to ascertain whether 
synthesised voices would significantly differ in trustworthiness ratings 
compared to human voices that are not intentionally expressed to sound 
trustworthy (i.e. neutral), and that these ratings would be influenced by 
the speaker’s ethnicity and sex. A 2 (Speaker Nature: Synthesised, 
Human) x 3 (Speaker Ethnicity: White, Black, south Asian) x 3 (Listener 
Ethnicity: White, Black, south Asian) mixed ANOVA was employed.

The main effect of speaker nature was significant, F(1, 177) =
158.07, p < .001, ω2 = 0.27, showing higher trustworthiness ratings for 
synthesised voices compared to human voices. The main effect of 

Table 1 
Summary characteristics of speech acoustics examined.

Acoustic signal Unit of 
measurement

Key characteristics

Fundamental 
frequency (ƒ0)

Hertz (Hz) ƒ0 refers to the base rate at which the 
vocal folds vibrate, and it is perceived as 
pitch. Variations in ƒ0 across an 
utterance reflect changes in vocal 
intonation.

Amplitude Decibels (dB) Amplitude refers to the magnitude of air 
pressure variations in a sound wave and 
is perceived by listeners as loudness. 
Fluctuations in amplitude across an 
utterance contribute to the perceived 
intensity and emphasis of speech.

Harmonics-to-noise 
ratio (HNR)

dB Noise in a voice signal refers to any 
factor that interferes with the clarity or 
quality of speech and is typically 
independent of the voice’s fundamental 
frequency. It can arise from various 
sources such as changes in vocal fold 
function, muscle strain, breathing 
patterns, background noise, or technical 
distortions (Ferrand, 2002). A lower 
HNR reflects a higher level of noise 
present in the signal (Fernandes et al., 
2018; Ferrand, 2002).

Jitter % Jitter measures tiny, rapid variations in 
pitch that occur due to uneven vocal fold 
vibrations. A lower jitter percentage 
reflects more stable pitch and smoother 
vocal production (Baus et al., 2019; 
Felippe et al., 2006; Schweinberger 
et al., 2014).

Shimmer dB Shimmer reflects small, rapid changes in 
amplitude, providing an indication of 
variability in the loudness or intensity of 
the voice. Jitter and shimmer are often 
examined together because they both 
reflect micro-instabilities in the voice (
Baus et al., 2019; Felippe et al., 2006; 
Schweinberger et al., 2014).

Cepstral peak 
prominence (CPP)

dB CPP measures the amplitude difference 
between the cepstral peak (harmonic 
structure) and the background noise in 
the cepstrum. A lower CPP indicates a 
breathy or dysphonic voice, while 
higher CPP values, are indicative of 
clearer, more resonant voices with 
stronger harmonic structure (Chan & 
Liberman, 2021; Hammarberg et al., 
1980; Jalali-najafabadi et al., 2021).

Long-term average 
spectrum (LTAS)

dB LTAS measures the average energy 
distribution of a sound signal across 
different frequencies over time, 
providing a spectral profile of a sound. A 
lower LTAS often reflects longer vocal 
tracts (Da Silva et al., 2011; Linville, 
2002; Löfqvist, 1986), and it’s 
associated with deeper, more resonant 
voices linked to dominance, particularly 
in males (Gussenhoven, 2002; Puts 
et al., 2007).
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speaker ethnicity was also significant, F(1.94, 342.50) = 25.89, p < 
.001, ω2 = 0.05, and so was listener ethnicity, F(2, 177) = 11.003, p < 
.001, ω2 = 0.04. Post-hoc comparisons for speaker ethnicity showed 
higher trustworthiness ratings for White speakers over Black (Mdiff =

0.37, SE = 0.06, p < .001) and south Asian (Mdiff = 0.27, SE = 0.06, p < 

.001). Trustworthiness ratings for south Asian speakers were also 
significantly higher than for Black speakers (Mdiff = 0.11, SE = 0.05, p =
.03). Post-hoc comparisons for listener ethnicity showed higher trust
worthiness ratings from Black listeners over White (Mdiff = 0.46, SE =
0.11, p < .001) and south Asian (Mdiff = 0.39, SE = 0.11, p < .001), but 
no significant difference between White and south Asian listeners (p =
.54).

Speaker nature x speaker ethnicity was the only significant interac
tion, F(1.68, 296.59) = 31.85, p < .001, ω2 = 0.05. See Tables 8 and 9
for all results of the ANOVA. Post-hoc comparisons showed that White 
human speakers were rated as significantly more trustworthy than both 
Black (Mdiff = 0.77, SE = 0.06, p < .001) and south Asian (Mdiff = 0.53, 
SE = 0.06, p < .001) human speakers, but significantly less trustworthy 
than IA speakers across all ethnicities (p < .001). Black human speakers 
were rated lower than south Asian human speakers (Mdiff = -0.24, SE =
0.07, p = .002), and Black (Mdiff = -1.27, SE = 0.09, p < .001) and south 

Table 2 
Human speakers with trustworthy intent: Descriptive statistics of acoustic features per demographic.

Acoustic features Mean acoustic values [Standard deviation]

White Black South Asian

Male Female Male Female Male Female

Duration (s) 1.35 [0.20] 1.64 [0.34] 1.46 [0.22] 1.93 [0.26] 1.49 [0.25] 1.43 [0.14]
ƒ0, mean pitch (Hz) 153.46 [41.17] 240.53 [16.30] 171.29 [7.69] 191.01 [21.12] 115.99 [6.48] 226.23 [13.86]
ƒ0, SD pitch (Hz) 63.32 [39.63] 73.22 [1.89] 52.39 [20.11] 33.68 [10.97] 21.29 [8.37] 44.29 [7.59]
HNR (dB) 1.74 [1.27] 8.9 [1.70] 8.71 [0.85] 9.12 [1.32] 4.31 [1.62] 11.98 [2.84]
Jitter (RAP) 0.02 [0.005] 0.01 [0.003] 0.01 [0.001] 0.01 [0.001] 0.01 [0.004] 0.02 [0.01]
Shimmer (APQ3) 0.06 [0.01] 0.02 [0.01] 0.04 [0.01] 0.02 [0.002] 0.06 [0.02] 0.03 [0.01]
CPP (dB) 26.9 [2.26] 30.31 [0.18] 27 [2.81] 26.16 [1.93] 24.09 [2.61] 28.68 [3.11]
LTAS, mean (dB) ¡5.83 [3.98] 4.84 [3.67] ¡23.21 [1.52] 5.82 [2.44] ¡0.97 [3.59] 2.97 [3.87]
LTAS, SD (dB) 18.78 [0.87] 16.3 [0.60] 21.7 [0.78] 16.55 

[1.05]
17 [0.47] 18.09 [0.92]

LTAS slope, (dB/octave) ¡6.27 [2.55] ¡8.66 [1.70] ¡15.73 [0.79] ¡10.49 [1.71] ¡12.67 [1.92] ¡14.41 [1.04]

Table 3 
Human speakers with neutral intent: Descriptive statistics of acoustic features per demographic.

Acoustic features Mean acoustic values [Standard deviation]

White Black South Asian

Male Female Male Female Male Female

Duration (s) 1.47 [0.17] 1.44 [0.07] 2.68 [0.35] 1.98 [0.42] 1.59 [0.01] 1.63 [0.22]
ƒ0, mean pitch (Hz) 98.53 [5.65] 195.51 [2.77] 152.46 [1.26] 175.38 [4.90] 102.89 [2.37] 156.39 [22.63]
ƒ0, SD pitch (Hz) 35.63 [19.63] 58.48 [11.14] 26.62 [3.11] 18 [1.20] 8.22 [1.93] 38.18 [20.01]
HNR (dB) 2.25 [0.54] 9.99 [1.86] 8.47 [2.00] 12.02 [1.94] 5.08 [2.50] 9.94 [2.59]
Jitter (RAP) 0.01 [0.001] 0.01 [0.00] 0.01 [0.002] 0.01 [0.00] 0.01 [0.001] 0.01 [0.005]
Shimmer (APQ3) 0.05 [0.01] 0.03 [0.001] 0.03 [0.002] 0.02 [0.004] 0.05 [0.002] 0.04 [0.01]
CPP (dB) 26.16 [0.99] 27.55 [1.89] 25.55 [0.62] 28.62 [2.25] 26.09 [3.08] 26.09 [0.92]
LTAS, mean (dB) ¡6.84 [4.80] 3.65 [3.22] ¡21.79 [0.63] 1.61 [4.16] ¡0.66 [2.40] 4.03 [3.26]
LTAS, SD (dB) 18.69 [1.12] 16.6 [0.47] 21.51 [1.06] 16.64 [1.98] 15.83 [1.12] 18.56 [1.21]
LTAS slope, (dB/octave) ¡8.72 [0.76] ¡7.87 [2.70] ¡14.68 [0.79] ¡13.42 [2.27] ¡14.31 [2.36] ¡14.99 [2.88]

Table 4 
IA speakers: Descriptive statistics of acoustic features per demographic.

Acoustic features Mean acoustic values [Standard deviation]

White Black South Asian

Male Female Male Female Male Female

Duration (s) 1.41 [0.17] 1.46 [0.20] 1.49 [0.26] 1.58 [0.33] 1.5 [0.14] 1.62 [0.23]
ƒ0, mean pitch (Hz) 119.61 [13.69] 180.75 [2.74] 115.25 [7.85] 189 [5.92] 160.28 [6.38] 238.95 [4.25]
ƒ0, SD pitch (Hz) 37.41 [8.22] 44.1 [5.45] 20.04 [4.16] 24.51 [7.40] 39.3 [5.09] 43.05 [1.48]
HNR (dB) 3.95 [2.11] 10.72 [1.76] 4.23 [1.92] 9.86 [1.75] 6.18 [1.94] 15.06 [1.97]
Jitter (RAP) 0.01 [0.00] 0.01 [0.002] 0.01 [0.002] 0.01 [0.002] 0.01 [0.002] 0.01 [0.00]
Shimmer (APQ3) 0.03 [0.003] 0.02 [0.01] 0.03 [0.01] 0.03 [0.01] 0.02 [0.002] 0.02 [0.002]
CPP (dB) 23.9 [1.21] 24.45 [0.94] 25.72 [1.46] 25.4 [1.47] 22.37 [2.58] 26.27 [1.70]
LTAS, mean (dB) 0.25 [2.65] ¡18.05 [1.98] 1.79 [2.21] 3.6 [3.65] ¡16.63 [1.62] ¡17.04 [3.76]
LTAS, SD (dB) 15.28 [0.91] 26.92 [1.39] 15.63 [1.22] 15.24 [1.30] 27.38 [1.33] 25.13 [2.57]
LTAS slope, (dB/octave) ¡16.38 [1.28] ¡11.4 [1.09] ¡14.13 [1.67] ¡12.73 [1.65] ¡14.82 [0.91] ¡18.05 [1.66]

Table 5 
Descriptive statistics of participant demographics.

Ethnicity Sex N Mean age (years) Age range SD

White Female 30 34.57 19–45 7.41
​ Male 30 31.20 18–43 6.84
Black Female 30 27.77 18–42 6.38
​ Male 30 30.40 20–44 6.02
South Asian Female 30 26.20 18–42 6.74
​ Male 30 28.83 19–43 7.47
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Asian (Mdiff = -1.25, SE = 0.10, p < .001) IA speakers. South Asian 
human speakers were rated lower than south Asian IA speakers (Mdiff =

-1.01, SE = 0.09, p < .001).
White IA speakers were rated as significantly more trustworthy than 

Black (Mdiff = 1.25, SE = 0.10, p < .001) and south Asian (Mdiff = 1.01, 
SE = 0.10, p < .001) human speakers but no significance found with 

Black and south Asian IA speakers (p = 1.00). Black IA speakers were 
perceived as more trustworthy than south Asian, human speakers (Mdiff 
= 1.04, SE = 0.08, p < .001), albeit no significance found with south 
Asian IA speakers (p = 1.00).

To summarise, H2 results revealed that synthesised voices were rated 
significantly higher on perceived trustworthiness than human voices 

Fig. 1. Listeners’ mean trustworthiness ratings (1-strongly disagree to 7-strongly agree) per speaker nature, intent and demographic group.

Table 6 
Exploratory mixed-effects model results summary table.

CI 95 %

Coefficient Std.Err. z p-value [0.025 0.975]

Intercept 6.23 0.23 27.62 0.00 5.79 6.67
Voice duration ¡0.59 0.04 ¡15.60 0.00 ¡0.66 ¡0.52
ƒ0, mean 0.02 0.001 20.88 0.00 0.02 0.02
ƒ0, SD 0.001 0.001 − 1.05 0.30 0.003 0.001
HNR ¡0.15 0.01 ¡21.00 0.00 ¡0.16 ¡0.14
Jitter, RAP ¡17.49 3.75 ¡4.67 0.00 ¡24.83 ¡10.15
Shimmer, apq3 ¡8.16 1.43 ¡5.70 0.00 ¡10.97 ¡5.35
CPP ¡0.06 0.01 ¡9.38 0.00 ¡0.07 ¡0.05
LTAS, mean 0.01 0.002 3.13 0.002 0.003 0.01
LTAS, SD − 0.01 0.01 − 1.91 0.056 − 0.02 0.00
LTAS, slope − 0.01 0.01 − 0.99 0.33 − 0.02 0.01
Grouping variable 0.28 0.03 ​ ​ ​ ​

Table 7 
Mixed-effects model results summary table.

CI 95 %

Coefficient Std.Err. z p-value [0.025 0.975]

Intercept 3.69 0.36 10.15 0.00 2.98 4.40
Speaker nature [IA] 0.30 0.27 1.10 0.27 − 0.23 0.82
Speaker intent [Trustworthy] 0.97 0.03 28.31 0.00 0.91 1.04
Speaker ethnicity [South Asian] 0.03 0.03 0.94 0.35 − 0.04 0.10
Speaker ethnicity [White] 0.42 0.03 12.06 0.00 0.35 0.48
Participant ethnicity [South Asian] ¡0.31 0.10 ¡3.14 0.002 ¡0.50 ¡0.12
Participant ethnicity [White] ¡0.34 0.10 ¡3.51 0.00 ¡0.53 ¡0.15
NARS S1 total score ¡0.03 0.01 ¡2.19 0.03 ¡0.05 ¡0.003
Speaker nature [IA] x NARS S1 total score 0.004 0.008 0.44 0.66 − 0.01 0.02
NARS S2 total score 0.02 0.01 1.59 0.11 − 0.01 0.05
Speaker nature [IA] x NARS S2 total score 0.02 0.01 1.70 0.09 − 0.003 0.04
NARS S3 total score 0.03 0.02 1.79 0.07 − 0.003 0.07
Speaker nature [IA] x NARS S3 total score 0.03 0.01 1.97 0.049 0 0.06
Grouping variable 0.24 0.02 ​ ​ ​ ​

C. Maltezou-Papastylianou et al.                                                                                                                                                                                                            Computers in Human Behavior Reports 19 (2025) 100762 

6 



with a neutral intent. Trustworthiness ratings were also influenced by 
speaker and listener ethnicity, with White speakers rated higher than 
Black and south Asian speakers, and Black listeners providing higher 
ratings than other groups. A significant interaction showed that syn
thesised voices were consistently rated more trustworthy than human 
voices across all ethnicities, with White human speakers rated higher 
than Black and south Asian human speakers. 

H3. Synthesised voices receive lower trust ratings than human voices 
with trustworthy intent, influenced by speaker ethnicity.

The same factorial ANOVA as in H2 was employed to answer H3, 
except that this time the data relating to human voices with neutral 
intent were replaced with those with trustworthy intent. The goal with 
H3 was to ascertain whether synthesised voices would receive lower 
trustworthiness ratings compared to human voices with a trustworthy 
intent, influenced by speaker ethnicity and sex. Thus, a 2 (Speaker Na
ture: Synthesised, Human) x 3 (Speaker Ethnicity: White, Black, south 
Asian) x 3 (Listener Ethnicity: White, Black, south Asian) mixed ANOVA 
was employed.

The main effect of speaker ethnicity was significant, F(1.92, 338.95) 
= 19.56, p < .001, ω2 = 0.03, and similarly listener ethnicity, F(2, 177) 
= 6.29, p = .002, ω2 = 0.02. Post-hoc comparisons for speaker ethnicity 
showed higher trustworthiness ratings for White speakers over Black 
(Mdiff = 0.24, SE = 0.05, p < .001) and south Asian (Mdiff = 0.31, SE =
0.06, p < .001). No significant difference was found between Black and 
south Asian speakers (p = .13). Post-hoc comparisons for listener 
ethnicity revealed significantly higher trustworthiness ratings from 
Black listeners than White (Mdiff = 0.37, SE = 0.11, p = .002) and south 
Asian speakers (Mdiff = 0.24, SE = 0.11, p = .04). No significant differ
ence was found between White and south Asian listeners (p = .25).

Only the speaker nature x speaker ethnicity interaction was signifi
cant, F(1.73, 306.65) = 21.93, p < .001, ω2 = 0.04. See Tables 10 and 11
for all results of the ANOVA. Post-hoc comparisons showed that White 
human speakers were rated as significantly more trustworthy than both 
Black (Mdiff = 0.50, SE = 0.06, p < .001) and south Asian (Mdiff = 0.62, 

SE = 0.06, p < .001) human speakers, and significantly more trust
worthy than IA speakers too, across all ethnicities (p < .001). There 
were no significant findings when comparing ratings for Black human 
speakers with ratings in response to south Asian human speakers (p =
.57), nor with Black and south Asian IA speakers (p = 1.00). No signif
icant difference was found between south Asian human speakers and 
south Asian IA speakers either (p = .088).

Trustworthiness ratings did not differ significantly when comparing 
White IA speakers with Black and south Asian IA and human speakers (p 
= 1.00), nor between Black IA speakers and south Asian IA speakers (p 
= 1.00). However, Black IA speakers were rated as significantly more 
trustworthy than south Asian human speakers (Mdiff = 0.21, SE = 0.07, p 
= .02).

To summarise, H3 results revealed significant effects of speaker and 
listener ethnicity on trustworthiness ratings, with White speakers rated 
higher than Black and south Asian speakers, and Black listeners 
providing higher ratings than White and south Asian listeners. A sig
nificant interaction showed that White human speakers with trust
worthy intent were rated more trustworthy than all other groups, 
including synthesised voices, while no significant differences were 
observed among synthesised voices of different ethnicities.

5. Discussion

The present research investigated how listener biases toward robots, 
speaker-listener ethnicity, and acoustic features influence trustworthi
ness ratings for human and synthesised voices. The findings provide 
insights into the perception of voice trustworthiness and highlight the 
complex interaction of ethnicity, vocal intent and social biases toward 
robots.

5.1. Acoustic features and trustworthiness

Our exploratory analysis identified key acoustic features that influ
enced trustworthiness ratings across both human and synthesised voices 
from White, Black, and south Asian speakers. Specifically, speech rate, 

Table 8 
Repeated measures ANOVA results of H2 for within subjects effects.

Sum of 
squares

df Mean 
square

F p-value ω2

Speaker nature 228.41 1 228.41 158.07 <0.001 0.27
Speaker nature x 

Participant 
ethnicity

3.09 2 1.54 1.07 0.35 0

Residuals 255.77 177 1.45 ​ ​ ​
Speaker ethnicity 26.43 1.94 13.66 25.89 <0.001 0.05
Speaker ethnicity 

x Participant 
ethnicity

1.78 3.87 0.46 0.87 0.48 0

Residuals 180.67 342.50 0.53 ​ ​ ​
Speaker nature x 

Speaker 
ethnicity

29.53 1.68 17.62 31.85 <0.001 0.05

Speaker nature x 
Speaker 
ethnicity x 
Participant 
ethnicity

1.20 3.35 0.36 0.65 0.60 0

Residuals 164.10 296.59 0.55 ​ ​ ​

Table 9 
Repeated measures ANOVA results of H2 for between subjects effects.

Sum of 
squares

df Mean 
square

F p-value ω2

Participant 
ethnicity

44.45 2 22.22 11.003 <0.001 0.04

Residuals 357.50 177 2.02 ​ ​ ​

Table 10 
Repeated measures ANOVA results of H3 for within subjects effects.

Sum of 
squares

df Mean 
square

F p-value ω2

Speaker nature 0.79 1 0.79 0.88 0.35 0
Speaker nature x 

Participant 
ethnicity

3.12 2 1.56 1.74 0.18 0

Residuals 159.15 177 0.90 ​ ​ ​
Speaker ethnicity 18.74 1.92 9.78 19.56 <0.001 0.03
Speaker ethnicity x 

Participant 
ethnicity

0.63 3.83 0.17 0.33 0.85 0

Residuals 169.54 338.95 0.50 ​ ​ ​
Speaker nature x 

Speaker ethnicity
19.86 1.73 11.46 21.93 <0.001 0.04

Speaker nature x 
Speaker ethnicity 
x Participant 
ethnicity

1.67 3.47 0.48 0.92 0.44 0

Residuals 160.28 306.65 0.52 ​ ​ ​

Table 11 
Repeated measures ANOVA results of H3 for between subjects effects.

Sum of 
squares

df Mean 
square

F p- 
value

ω2

Participant 
ethnicity

24.88 2 12.44 6.29 0.002 0.02

Residuals 350.32 177 1.98 ​ ​ ​
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mean fundamental frequency (perceived as pitch), and the voice quality 
features of HNR, jitter, shimmer, CPP, and LTAS emerged as significant 
predictors of trustworthiness perceptions.

Faster speech rates were associated with higher trustworthiness 
ratings. This aligns with research showing that faster speech can convey 
engagement, credibility and persuasiveness (Rodero et al., 2014; Smith 
& Shaffer, 1995; Yokoyama & Daibo, 2012). When listeners hear 
faster-paced delivery, they may interpret it as a sign of effort and 
eagerness to help or invested in a conversation (Chan & Liberman, 2021; 
Gussenhoven, 2002; Kim et al., 2023, pp. 343–347). In contexts 
involving social first impressions, such as ours, these impressions may be 
well regarded in social settings (Maltezou-Papastylianou et al., 2025), 
which emphasises the effect of situational context.

Higher mean pitch was also associated with greater trustworthiness, 
supporting prior work that links higher pitch to emotional warmth and 
friendliness (Ohala, 1983; Torre et al., 2020). This association highlights 
the role of pitch in conveying warmth and approachability, traits closely 
tied to perceived trustworthiness (Belin et al., 2019; Hardin, 2002; 
McAleer et al., 2014; Ohala, 1995, pp. 325–347; Tanis & Postmes, 
2005). The joint effect of faster speech rate with higher pitch may have 
consequently spilt over into a halo effect which boosted an overall sense 
of perceived benevolence and warmth in those speakers (Gabrieli et al., 
2021; Huang et al., 2024; McAleer et al., 2014).

Conversely, measures of shimmer, jitter, and HNR, which tend to 
reflect vocal instability and aging, were negatively associated with 
trustworthiness (Ferrand, 2002; Schweinberger et al., 2014). However, 
it is worth noting that not all vocal “imperfections” are necessarily un
desirable: some irregularity, when paired with warmth might convey 
vulnerability or emotional sincerity (Bachorowski & Owren, 1995). 
Future work might examine how these vocal markers are interpreted in 
different emotional or relational contexts. In contrast, features such as 
pitch variability, LTAS slope, and LTAS variability did not significantly 
predict trustworthiness. This may reflect the context-dependence of such 
cues: lower LTAS values, for instance, have been linked to deeper, more 
resonant voices associated with dominance and authority (Linville, 
2002; Puts et al., 2007). While such traits may enhance perceived 
competence in knowledge-based or task-oriented interactions, they may 
be less aligned with social trustworthiness, which often hinges on 
warmth, empathy, and perceived likability (Maxim et al., 2023, pp. 1–8; 
Oleszkiewicz et al., 2017). In short, not all acoustic cues are equally 
salient in all situational contexts – a finding that future research should 
explore more systematically by varying situational contexts but keeping 
acoustics constant across contexts.

These results offer valuable guidance for synthesised voice design. 
While not all vocal parameters need to be optimised simultaneously, our 
findings suggest that targeting a specific cluster of traits – moderately 
fast speech, elevated pitch, and reduced vocal irregularities – may be 
most effective for enhancing perceived trustworthiness in everyday 
voice-based interactions. Rather than replicating the full complexity of 
human vocal dynamics, designers of voice-based IAs might focus on 
prominent acoustic markers that consistently shape positive impres
sions, adapting these to different usage scenarios (e.g., healthcare vs 
customer service).

5.2. Listener trust attitudes toward robots and trustworthiness perceptions

The current study partially supported the prediction that individuals 
with higher negative attitudes toward robots – as measured by the NARS 
scale – would rate synthesised voices lower than human voices. How
ever, the pattern was not consistent across all subscales, suggesting a 
more differentiated relationship between listener predispositions and 
trustworthiness evaluations.

Negative attitudes toward interaction scenarios, as measured by 
NARS Subscale 1, were associated with lower trustworthiness ratings 
overall. This suggests that individuals who are generally sceptical about 
engaging with robots may extend this discomfort to social interactions 

more broadly within HAI contexts. Rather than responding to specific 
vocal cues, their judgments may reflect a more global reluctance to 
engage with artificial agents as social partners. This interpretation is 
supported by previous findings linking higher NARS scores to reduced 
trust in robots (Krantz et al., 2022; Lim et al., 2022, pp. 538–545; 
Nomura et al., 2006a, 2006b). These effects also align with CASA and 
uncanny valley frameworks, which propose that people automatically 
apply social characteristics to IAs, and may withdraw trust when the 
interaction within HAI contexts feels unnatural or dissonant (Matthews 
et al., 2019; Mori et al., 2012; Nass & Brave, 2005; Nass et al., 1994, pp. 
72–78).

Unlike prior studies reporting broader effects of NARS scores (Krantz 
et al., 2022; Lim et al., 2022, pp. 538–545; Nomura et al., 2006a, 
2006b), this study found no significant impact between negative atti
tudes toward social influence – as measured with NARS subscale 2 – and 
trustworthiness ratings. While there was a marginal trend indicating 
that individuals with greater negativity toward robots’ societal influence 
rated synthesised voices more favourably, this result was not robust. 
This lack of influence suggests that concerns about robots’ societal 
roles—like job displacement or loss of autonomy—may not directly 
shape how people evaluate trustworthiness in individual voices 
(Matthews et al., 2019; Seaborn et al., 2021). Such concerns may be 
more relevant in high-stakes, professional contexts where robots are 
seen as competitors or decision-makers. In contrast, our study involved 
socially casual, everyday impressions, where voice-based IAs were likely 
perceived as familiar, benign tools – especially in domestic settings like 
those involving Alexa or Google Assistant (Kepuska & Bohouta, 2018, 
pp. 99–103). Whether these perceptions shift in more consequential 
scenarios remains an open question for future work.

Surprisingly, NARS Subscale 3 (negative attitudes toward emotional 
interactions with robots) showed a marginal trend in the opposite di
rection of our initial prediction: listeners with higher scepticism toward 
emotional interactions rated synthesised voices as more trustworthy 
than human voices. A potential interpretation could be that synthesised 
voices, which lack the emotional unpredictability and richness of human 
voices, might offer a sense of predictability or impartiality. As such, the 
current findings and interpretation seem to align with CASA and un
canny valley theories (Mori et al., 2012; Nass & Brave, 2005; Nass et al., 
1994, pp. 72–78), alongside findings by Krantz et al. (2022), who argue 
that NARS may reflect broader psychological orientations, such as 
discomfort with affective ambiguity, rather than specific robot 
capabilities.

Collectively, these findings demonstrate that listener biases toward 
robots do not exert a uniform influence on trustworthiness evaluations. 
Instead, each NARS subscale captures distinct dimensions of robot- 
related attitudes, which appear to interact differently with voice-based 
trust judgments. For instance, while general discomfort with robot in
teractions (Subscale 1) may suppress trust across the board, attitudes 
toward robots’ emotional or social influence (Subscales 2 and 3) seem 
more context-sensitive. These findings may also align with the 
similarity-attraction bias noted in the introduction (Dahlbäck et al., 
2007, pp. 1553–1556; Yang et al., 2025; Zhang et al., 2025), suggesting 
that listeners may gravitate toward voices that align with their own 
preferences for neutrality or expressiveness.

By focusing on the relationship between listener predispositions and 
speaker characteristics, these findings deepen our understanding of how 
synthesised voices can be designed for different user demographics, 
preferences, and contexts. For practitioners, these findings emphasise 
the need to create synthesised voices tailored to diverse listener atti
tudes. For example, features that emphasise emotional neutrality while 
maintaining warmth and clarity may appeal to users who are sceptical of 
emotional expressiveness in voice-based IAs. Additionally, addressing 
general scepticism about robot interactions – more common among 
older populations and individuals with higher NARS scores (Ghorayeb 
et al., 2021; Jessup et al., 2019) – could enhance the inclusivity and 
acceptance of voice-based IAs in trust-dependent applications such as 
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legal consultations or threat detection applications.

5.3. Real-world synthesised voices outperform human voices with a 
neutral intent

Interestingly, the real-world synthesised voices we used as our 
stimuli were rated as more trustworthy than our stimuli of human 
speakers with a neutral intent. This could be revealing the unique 
positioning of the real-world synthesised voices used in this study, which 
may potentially possess acoustic properties engineered to achieve a 
balance between naturalness and consistency. As discussed in the 
introduction, deviations from natural human-like speech patterns, such 
as lower pitch ranges or increased speech time delays, tend to make 
voices sound more machine-like and less trustworthy (Muralidharan 
et al., 2014).

Hence, a possible explanation for this preference may lie in the 
acoustic characteristics of the synthesised voices. Interestingly, the 
present analysis revealed that the synthesised voices of this study occupy 
a middle ground between neutral human voices and those intentionally 
modulated to sound trustworthy for certain acoustic cues (see 
Tables 2–4). For example, synthesised voices from a White ethnic 
background had speech rate and mean pitch values between human 
neutral and human trustworthy intent voices from the same ethnic 
group, albeit with slightly higher HNR for synthesised voices. We 
characterise this pattern as occupying a “perceptual middle ground”, a 
term introduced here to describe this balance point in vocal trustwor
thiness design. Unlike neutral human voices, which may lack distinct 
acoustic cues that signal trustworthiness, the synthesised voices seem to 
have been designed with features that balance with listener preferences, 
fostering positive trustworthiness perceptions. This interpretation builds 
on the “uncanny valley” phenomenon (Kühne et al., 2020; Mori et al., 
2012), suggesting that synthesised voices perceived as clear, natural, 
and consistent can reduce unease and enhance trustworthiness evalua
tions. The slower speech rate, higher mean ƒ0 and range of voice quality 
features of the synthesised voices may have made them sound less 
machine-like, avoiding the discomfort and scepticism often associated 
with artificial agents (Muralidharan et al., 2014; Torre et al., 2018; Yuan 
et al., 2019). By avoiding the extremes of overly robotic or overly 
human-like qualities, these synthesised voices may achieve an optimal 
blend that mitigates negative listener reactions and promotes trust
worthiness, strengthening the case that HAI is informed by 
human-to-human communication (Asif, 2024; Kühne et al., 2020; Lee & 
Nass, 2010; Nass et al., 1994, pp. 72–78). Future work could explore 
whether this balance is replicable across diverse synthesised voice de
signs or remains specific to the voice stimuli used in this study.

5.4. Human voices with a trustworthy intent outperform real-world 
synthesised voices

In contrast to neutral human voices, when human speakers modu
lated their voice with the intent to sound trustworthy, they out
performed synthesised voices in trustworthiness ratings. This finding 
shows the unique expressive advantage of human speakers, who can 
adjust vocal traits and convey emotional nuances that remain chal
lenging for current voice-based IA systems to replicate (Nass & Brave, 
2005).

One way to interpret this result is based on the previous discussion 
section where the real-world synthesised voices used in this study 
appear to have been engineered with middle-ground values in features 
such as speech rate and mean pitch when compared to human neutral 
and human trustworthy intent voices from this study. Another likely 
interpretation though, could lie in listeners’ sensitivity to deliberate 
manipulations of vocal cues in human speakers, potentially due to 
increased familiarity with human voices rather than synthesised voices. 
Intentional adjustments in pitch, intonation, emotional tone and speech 
rate appear to enhance perceptions of positive qualities and emotions 

linked to trustworthiness (Belin et al., 2019; Torre et al., 2020; Torre 
et al., 2018; Yokoyama & Daibo, 2012; Zhang et al., 2025). By contrast, 
synthesised voices, while consistent, may lack the emotional depth 
required to evoke similar responses. These findings emphasise the need 
for voice synthesis technologies to move beyond consistency and explore 
methods for imbuing voices with greater emotional and contextual 
adaptability, particularly in applications requiring high levels of trust, 
such as healthcare or counselling services.

5.5. The role of speaker and listener ethnicity

Speaker and listener ethnicities emerged as critical factors shaping 
trustworthiness ratings, reinforcing the significant role of biases and 
social dynamics in voice perception. The finding that White speakers 
were consistently rated as more trustworthy than Black and south Asian 
speakers – regardless of speaker nature and intent – highlights how vocal 
trust evaluations may be shaped by both acoustic profiles and ingrained 
social biases. While our earlier analysis identified certain acoustic cues – 
such as faster speech rate, higher mean pitch and lower HNR – as pre
dictive of trustworthiness, these features also tended to cluster in White 
speakers within our dataset (see Tables 2 and 3). On the surface, this 
could suggest that acoustic properties alone explain trustworthiness 
ratings. However, such a view risks overlooking how listeners may map 
socially learned associations onto voice characteristics.

For instance, faster and clearer speech has been linked to competence 
in past research (Rodero et al., 2014; Yokoyama & Daibo, 2012), but 
these traits may also be more readily recognised and rewarded when 
they align with dominant cultural norms – such as standardised, native 
English speech patterns – particularly in native English countries like the 
UK and U.S. (Geiger et al., 2023; Hanzlíková & Skarnitzl, 2017). Simi
larly, the presence of lower pitch variability in Black or south Asian 
speakers may have activated subtle stereotypes about warmth, compe
tence, or credibility, regardless of their actual vocal performance (Bilal 
& Barfield, 2021; Gluszek & Dovidio, 2010; Yang et al., 2025). Inter
estingly, Black listeners gave higher trustworthiness ratings overall, 
potentially suggesting greater cultural flexibility or broader inclusivity 
in trustworthiness heuristics. This aligns with literature on familiarity 
and intergroup trust, which suggests that exposure to diverse voices can 
mitigate stereotyping in social evaluations (Batsaikhan et al., 2021; 
Belin et al., 2019; Dahlbäck et al., 2007, pp. 1553–1556; Montoya & 
Horton, 2013; Zhang et al., 2025). In this way, what appears to be an 
“acoustic” effect may, in practice, reflect a bias in what counts as 
trustworthy sounding speech (Lima et al., 2019, pp. 533–538).

Our findings that White, native English speakers were rated as more 
trustworthy overall, are reinforced by past work showing that non- 
native or accented speakers are often rated less favourably on social 
impressions, compared to native speakers, even when content is 
controlled (Cambre & Kulkarni, 2019; Dahlbäck et al., 2007, pp. 
1553–1556; Geiger et al., 2023; Torre et al., 2024). Such judgments are 
not only culturally constructed but also deeply entangled with racialised 
and linguistic differences in society (Bilal & Barfield, 2021; Gluszek & 
Dovidio, 2010; Visser & El Fakiri, 2016). That these biases persist even 
in relatively controlled experimental conditions signals the need for 
caution in how voice is operationalised in voice-based IA design.

Taken together, these findings suggest that while acoustic features 
contribute meaningfully to trustworthiness evaluations, they likely 
interact with social identity cues and listener expectations. This inter
twined relationship draws attention to the importance of considering 
both vocal and sociocultural factors when designing voice-based IAs 
(Aylett et al., 2017; Greenwald & Banaji, 1995). Rather than viewing 
acoustic optimisation in isolation, developers may benefit from a more 
holistic approach – one that also reflects on how voice design can 
accommodate diverse listener backgrounds and reduce potential bias in 
trust-related judgments. Our current and past research, such as 
(Maltezou-Papastylianou et al., 2023, 2024, 2025a,b), have led us to 
create a set of guidelines (see Table 12), aiming to help researchers and 
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industry professionals design more trustworthy, appealing and user 
friendly voice-based systems. Table 12 encapsulates all our research to 
show that designing for vocal trustworthiness requires more than 
replicating human-like features or optimising for clarity. It demands an 
adaptive, context-sensitive approach that accounts for who is speaking, 
who is listening, and the social function of the interaction. Whether in 
public speaking, healthcare communication, or voice interface design, 
the evidence presented here advocates for a shift away from universal 
design rules toward a more modular, data-driven understanding of what 
builds (or breaks) trust in vocal communication. Our guidelines are 
intended not as fixed prescriptions, but as a flexible framework to sup
port inclusive, informed, and psychologically grounded voice design for 
human speakers and voice-based IAs.

6. Limitations and future directions

This study focused on English-speaking voices across three ethnic 
groups, offering insights into vocal trustworthiness across speaker- 
listener pairings. However, future research should extend this work by 
incorporating greater linguistic diversity – including multilingual and 
accented voices – to assess how cultural familiarity and linguistic vari
ation interact with trust judgments, particularly in non-Western pop
ulations. Although our synthesised voice stimuli reflected real-world 
text-to-speech (TTS) technology, they were limited to pre-existing 
commercial systems with fixed prosodic styles. As voice synthesis con
tinues to evolve, future studies should examine how more expressive or 
emotionally adaptive systems affect listener trust, especially in sensitive 
or high-stakes contexts like healthcare, finance and education.

In addition to quantitative analysis, future studies should consider 
incorporating mixed methods – such as follow-up interviews or trust 
calibration tasks – to help uncover the reasoning behind participants’ 
ratings. This may clarify the role of implicit biases, expectations, or 
perceived speaker intent that underlie observed behaviours. Finally, 
trust is context-sensitive. Our controlled, perception-based design 
cannot fully capture the dynamics of real-time interaction. Testing voice 

Table 12 
Evidence-based design recommendations for enhancing vocal trustworthiness in 
human and synthesised voice applications.

Guidelines Design insights

G1. Consider the situational relevance 
of warmth and competence

Trustworthiness aligned more closely 
with warmth than competence in 
socially-framed, low-stakes settings. 
However, competence may dominate in 
intellectual, task-based or evaluative 
situational contexts (e.g., legal or 
academic advice). Vocal tone should 
reflect contextual priorities.

G2. Expressiveness can enhance trust - 
but must fit the context and user

Intentional modulation increases trust 
ratings, especially for human voices. 
However, expressiveness may backfire 
for sceptical users (e.g., high-NARS 
individuals) or where emotional 
neutrality may be expected (e.g., security 
alerts).

G3. Calibrate human-likeness in 
synthetic voice design

The synthesised voices in the current 
study exhibited acoustic values in- 
between those of neutral and 
intentionally trustworthy human speech. 
This may have helped them avoid 
sounding too robotic or too human – 
balancing familiarity with predictability. 
Overly human-like voices risk triggering 
the “uncanny valley” or inflating user 
expectations. For example, a highly 
realistic voice in a basic customer service 
assistant may signal higher competence 
and inflate users’ social expectations, 
which, if unmet, may lead to frustration 
or mistrust. Designers should not only 
calibrate vocal realism, but also 
proactively manage user expectations 
through onboarding, disclosure of 
capabilities, and situational framing.

G4. Anticipate and accommodate user 
predispositions

Listener biases influenced trust outcomes 
in the current study. High generalised 
trust improved ratings across the board, 
while robot-related scepticism (NARS) 
reduced ratings for synthetic voices. 
Tailoring delivery styles to audience 
characteristics may improve engagement, 
e.g., more emotionally neutral tones for 
high-NARS users.

G5. Be aware of voice-based social bias – 
and do not neutralise by default

White voices were consistently rated as 
more trustworthy than Black or south 
Asian voices. Attempts to “neutralise” 
voice identity may obscure rather than 
correct bias. Instead, evaluation 
processes should be inclusive and bias- 
aware, especially in high-impact settings.

G6. Time and pitch are powerful cues – 
but require restraint

Faster speech rate and higher pitch were 
associated with more favourable ratings 
across traits. These features can convey 
energy, sociability, credibility and 
engagement. However, excessive 
modulation may sound unnatural or 
inappropriate depending on the context. 
Optimisation must balance clarity, tone, 
and task demands.

G7. Intentional trust-building works – 
but never rely on it alone

Expressing vocal intent can boost 
trustworthiness impressions, especially in 
early-stage or low-stakes interactions. But 
its effect depends on situational context, 
listener expectations, and how strongly 
the speaker’s identity is perceptually 
categorised. Combine vocal modulation 
with personalised content, credibility or 
warmth cues, and expectation 
management for best results. Design 
should avoid assuming universal cue 
interpretation in intentional vocal 
modulation.

Table 12 (continued )

Guidelines Design insights

G8. Cultural norms and familiarity 
shape how vocal cues are interpreted

Features such as pitch variability were 
expressed and received differently across 
ethnic groups in our studies – perceived 
positively among White speakers, but less 
so or negatively for south Asian voices. 
These patterns highlight the importance 
of culturally adaptive voice design, 
especially in multi-ethnic or global 
deployments.

G9. When in doubt, design for a 
“perceptual middle ground” in 
acoustic expressiveness

In the current study, trustworthy 
perceptions of synthesised voices tended 
to occupy acoustic values between 
neutral and trustworthy-intended human 
speech. This “perceptual middle ground” 
as we call it here, may serve as a practical 
design default when demands on 
situational context are unclear, or when 
the product team has yet to determine the 
appropriate tone of voice. It offers a 
balance between sounding engaging and 
avoiding inflated user expectations – 
particularly useful in early-stage system 
development or broad public 
deployment.

G10. First impressions are rapid – design 
accordingly

Strong trait impressions were formed 
from brief utterances with a duration of 
approximately 2 s. For both humans and 
voice-based IAs, early speech cues (e.g., 
pitch, pacing) significantly shaped 
perceived trustworthiness. This is 
especially relevant in onboarding 
scenarios, help requests, or cold calls.
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trustworthiness in applied settings – e.g., virtual customer service, AI 
tutoring, or medical triage simulations – will help validate whether the 
effects observed here generalise to practical use cases.

Lastly, while our study did not measure human speaker effort or 
vocal strain, some research suggests that faster speech may reflect 
increased cognitive or muscular load on the speaker (Anikin, 2023; 
Nudelman et al., 2024). Future work might explore whether such 
physiological features of vocal production influence listener perceptions 
of trustworthiness, particularly in more interactive or longer duration 
speech contexts.

7. Conclusion

This study advances our understanding of how trustworthiness is 
evaluated in ethnically diverse human and synthesised voices by high
lighting the joint influence of acoustic features (speech rate, mean 
fundamental frequency, HNR, jitter, shimmer, CPP, and LTAS), speaker 
intent, and listener attitudes toward robots. Real-world synthesised 
voices – demonstrated balanced acoustic properties that were positioned 
between perceived neutral and trustworthy human voices, a term that 
we call here as a “perceptual middle ground” – and were rated as more 
trustworthy than human voices with neutral intent (see Tables 2–4 for 
the acoustic values). However, modulated human voices intended to 
convey trustworthiness still outperformed voice-based IAs, reaffirming 
the enduring advantage of expressive control and emotional nuance in 
human communication.

Trust-related impressions were not purely acoustic-based. Listener 
attitudes, particularly scepticism toward interacting with robots, also 
influenced ratings, drawing attention to the role of cognitive pre
dispositions in HAI. Moreover, consistent patterns of higher ratings for 
White speakers across listener groups point to the influence of broader 
sociocultural expectations, highlighting the importance of further 
investigating how implicit biases may shape voice evaluations in both 
human and voice-based IA contexts.

These findings highlight a key implication: optimising trust in voice- 
based IAs requires more than refining acoustic signal properties – it 
requires culturally sensitive, psychologically informed design choices 
that reflect the diversity of real-world users (see Table 12 for our 
research-informed guidelines). As voice technologies become increas
ingly embedded in education, healthcare, finance and public services, 
their ability to inspire trust across social groups will be central to their 
success. Future work should continue to examine how contextual fac
tors, user expectations, and social dynamics converge to shape trust in 
both human and artificial speakers.
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