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Abstract—In this paper, we design an end-to-end digital
semantic communication system to transmit semantic symbols
that simultaneously facilitate image classification tasks and re-
construction tasks. By training a mutual information-assisted
joint source-channel coding (MIJSCC) framework, the learned
semantic representation can incorporate both pixel-level genera-
tive information for reconstruction and structural discriminative
information for classification, which are obtained label-free via
global and local mutual information estimation and maximiza-
tion, as well as mean square error (MSE) minimization. Then,
the high-resolution semantic representation is quantized into
finite constellation symbols to satisfy the hardware constraint
on discrete control in practical radio frequency systems. Consid-
ering dynamic channel conditions in practical communication
systems, we further design an adaptive MIJSCC framework
with attention-based semantic enhancement (A-MIJSCC), which
allows for the sequential activation of varying dimensions of
the semantic representation according to channel signal-to-noise
ratio. Compared to existing semantic communication frameworks
that are dominated by end target and labels, the MIJSCC
addresses the semi-supervised learning of intermediate semantics.
Simulation results show that the proposed MIJSCC supports
both image classification and reconstruction via task-agnostic se-
mantic extraction, whose performance surpasses the benchmark
frameworks. It is also demonstrated that the A-MIJSCC method
facilitates the adaptive semantic transmission under varying
channel conditions, which effectively reduces the transmission
overhead while preserving task performance.

Index Terms—Semantic communication, mutual informa-
tion, task-oriented communications, joint source-channel coding
(JSCC).

I. INTRODUCTION

ARTIFICIAL intelligence (AI) and machine learning (ML)
have demonstrated great potential in transforming wire-

less communications, significantly improving system perfor-
mance and enabling semantic communication systems to op-
timize data transmission [1]. The deep learning (DL) enabled
semantic communication [2] framework proposed in recent
years has provided the future communication systems with the
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ability of knowledge perception and task comprehension [3],
which can achieve prompt system reactions and dependable,
efficient information exchange in Internet of Things (IoT)
scenarios [4].

However, the preliminary semantic communication systems
are independently designed according to a single target in-
cluding reconstruction [5]–[7] and task execution [8]–[12],
which fail to support the IoT scenarios with multiple tasks
occurring simultaneously based on the same received content.
Specifically, the transmitter extracts semantics based on the
receiver’s task objectives. When these objectives change, the
semantic encoder should be retrained to match the new task,
making it inflexible and difficult to adapt to the diverse and
evolving requirements of the receiver.

Moreover, the existing task-driven semantic communica-
tion frameworks are fully-supervised, while the acquisition
of massive data labels is expensive and challenging [13],
indicating a limited scalability in practical applications. In this
context, introducing semi-supervised learning helps alleviate
the dependence on labeled data and improves the flexibility
of the system in adapting to diverse downstream tasks us-
ing shared semantic representations. However, achieving this
requires overcoming significant interdisciplinary challenges,
making it essential to integrate semantic communication with
the sixth-generation technologies by enabling more efficient,
context-aware communication systems [14].

Fortunately, mutual information neural estimation (MINE)
[15] has been proposed to explore semi-supervised or un-
supervised learning of informative representations via neu-
ral networks, which overcomes the difficulty of calculating
mutual information (MI) for high-dimensional features [16].
By incorporating MI regularization into multi-task semantic
framework design, semantically informative representations
can be extracted proactively, rather than relying solely on
end-to-end loss-driven optimization such as label-matching
or pixel recovery, thereby facilitating both generative and
discriminative tasks.

A. Related Work and Motivations

Some novel work on semantic communications surpasses
the restrictions of conventional frameworks with single end-
to-end target. The authors in [17] designed a unified multi-
modal semantic communication system to serve different tasks
by activating different neural network layers via a multi-exit
architecture. Tian et al. [18] proposed an asynchronous multi-
task semantic communication framework with contrastive-
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based encoder and task-related decoders, which can accom-
plish multiple tasks in a single transmission. In [19], a multi-
task deep JSCC framework for image recovery and classifica-
tion was derived based on coding rate reduction maximization,
which can directly perform classification in the discrimi-
nate feature space and achieve data recovery simultaneously.
[20] proposes a generative semantic communication system
that supports both image reconstruction and segmentation by
employing three Swin Transformers as the source semantic
knowledge base at the transmitter to extract the multi-level
features from the original image. At the receiver side, task-
specific knowledge is generated based on hierarchical residual
blocks. The authors in [21] proposed a data adaptation method
for semantic communications with task-unaware transmitter,
where dynamic data are transformed into a comparable form
with the empirical data, thereby supporting arbitrary tasks
predefined at the receiver. These studies promoted the practi-
cality of semantic communication systems to facilitate multi-
functional JSCC frameworks with the assistance of cutting-
edge learning methods including contrastive learning [22],
domain adaptation [23], coding rate reduction [24], and Trans-
former structures [25], which steer the field away from merely
optimizing with regard to end-to-end targets but toward the
learning of intermediate representations for universal tasks.

To achieve useful intermediate representations, recent stud-
ies analyzed from the view of information theory and at-
tempted to improve the representation’s suitability for down-
stream tasks. The authors in [26] employ an information-
theoretic approach, infomax, where the end-to-end semantic
coding procedure can exploit the statistical relations between
different semantic interpretations from a single observation of
the cooperative multi-task processing. Xie et al. [27] examined
the intrinsic trade-off between the informativeness and the
resilience to information distortion by training the semantic
representations based on information bottleneck. The authors
in [28] developed an extended rate-distortion problem for
compact semantics extraction enabling multiple tasks with
performance-transmission trade-off. In [29], the authors an-
alyzed the relationship between the semantic signal length
and the channel noise and proposed a packing sphere theory-
based method to dynamically map the semantic signal into
latent semantic codewords without noise overlap. The above
mentioned work explored the compression and informative
abilities of semantic representations from the perspective of
information theory, which aims to preserve important knowl-
edge as semantics instead of indiscriminately compressing the
source input via neural network closed box.

From the above-mentioned works on multi-functional se-
mantic communication framework design and information
theory-based semantic representation learning, it can be in-
ferred that the mutual information-based learning method can
effectively reduce the reliance on task types and labels, thereby
enhancing the adaptability and flexibility of the semantic com-
munication framework. Inspired by this, we aim to design a
multi-task semantic communication system, where informative
semantic representations are obtained by unsupervised training
and then transmitted over wireless channel to simultaneously
facilitate various types of tasks at the receiver. The semantic

representations should be competent enough to preserve the
important information for all tasks, which can be achieved
by evaluating and maximizing the MI between semantic
representations and the source input. Moreover, the semantic
representations should be transformed into feasible symbols
before transmission, where further compression should be
considered according to various channel conditions.

B. Contributions
In this paper, we consider a semi-supervised multi-

task semantic communication system enabled by a mutual
information-assisted joint source-channel coding (MIJSCC)
framework, where both image classification and reconstruction
tasks are conducted using the same semantic representation
transmitted over the wireless channel. The main contributions
are summarized as follows:
• We design a novel MIJSCC framework enabling the

learning of both semantic representations and the end-
to-end target to facilitate multi-task semantic communica-
tions, which aims to complete image classification and re-
construction tasks with the same received semantic repre-
sentation. With global and local MI maximization enabled
by Jensen-Shannon (JS)-based adversarial training, the
semantic representation can not only learn the pixel-level
information for reconstruction but also the discriminative
feature for classification. Furthermore, with the assistance
of mean square error (MSE) minimization, the MIJSCC
encoder and decoder can be jointly trained to accomplish
reconstruction-style objectives, thereby supporting image
recovery at the receiver side.

• To implement the proposed MIJSCC framework in practi-
cal communication systems with limited RF capabilities,
we integrate a standard asymmetric quantizer, which
adapts the learned semantic representation for practical
digital transmission. Specifically, we quantize the 32-bit
float-number semantic representation into integers with
fewer bits. Then the reshaped symbols can be mapped
to discrete constellation points exhibiting larger point-
distances, identifiable amplitudes and phases, thus can be
seamlessly applied to existing communication systems.

• To further reduce the semantic transmission overhead, we
design an adaptive MIJSCC framework with attention-
based semantic enhancement (A-MIJSCC), which con-
secutively deactivates different numbers of dimensions
in the semantic representation according to changing
channel conditions. Moreover, to compensate for the
potential performance loss caused by deactivation, we
introduce a semantic enhancement module to reinforce
the important dimensions in the masked semantic rep-
resentations, thereby maintaining the task performance
while reducing transmission overhead.

• To confirm the viability and superiority of our proposed
MIJSCC framework, we conduct comprehensive exper-
iments on CIFAR10 dataset. Simulation results demon-
strate that compared with uniquely designed single-task
frameworks and the conventional separate source-channel
coding (SSCC) scheme, our proposed MIJSCC frame-
work can leverage the received semantic representation
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to accomplish multiple tasks simultaneously without suf-
fering from the cliff effect. Furthermore, the effectiveness
of the A-MIJSCC method is proved, which addresses
its implementation under dynamic and resource-restricted
environments.

The rest of this paper is organized as follows. Section
II introduces the structure of the semi-supervised multi-task
semantic communication system with semantic quantization.
Section III describes the pipeline of the proposed MIJSCC
framework and derives the principle of MI maximization.
Section IV explains the implementation of the A-MIJSCC
method for adaptive semantic transmission under changing
channel conditions. Section V provides the numerical results.
Finally, Section VI concludes this work.

II. SIMULTANEOUS MULTI-TASK SEMANTIC
COMMUNICATION SYSTEM

As shown in Fig. 1, this work considers end-to-end semantic
communication at a wireless edge, where the blocklength
of transmitted symbols is finite. Since the source-channel
separation theorem is not applicable in this scenario, JSCC
is utilized at both ends to explore the full potential of this
communication [30].

A. Semantic Communication Framework

Two major tasks for semantic communications are classi-
fication and reconstruction, which are conventionally trained
separately. As these two tasks share a similar latent space
to describe different levels of visual information for the
same object, we proposed a unified framework to train them
simultaneously.

1) Transmitter Model: The source information is an image
s ∈ RL×H×C , where L,H,C denote the length, height,
and color dimensions, respectively. With the aid of the JSCC
encoder, the s is firstly convert to a high-level semantic
representation z, which is given by

z = Eα(s) ∈ R2n, (1)

where 2n is the size of the semantic representation vector and
Eα(·) represents the JSCC encoder model with parameters
α. Then, the semantic representation z is reshaped into n
complex value symbols as signals for modulating on the high-
frequency carriers1. We normalize the power of the transmitted
signal x ∈ Cn as follows

1

n
E(∥x∥2) ≤ 1. (2)

Unlike pure source information compression, it is worth not-
ing that the semantic representation contains not only the
abstraction of the original image but also the compensation
strategies for combating the randomness of wireless channels.
The detailed reason is discussed in Section III.

1The reshaping scheme can be any patterns, which will not affect the
performance.

2) Channel Model: This part presents the considered chan-
nel model with the necessary assumptions.

Assumption 1 (Noise-limited Channels): We assume each
receiver has orthogonal time-frequency resource block, so the
mutual-interference is ignored in this work.

Under Assumption 1, the received signal y can be expressed
as follows

y = hx+ n, (3)

where h denotes the channel coefficient and n represents the
independent identically distributed (IID) channel noise vector,
which follows the symmetric complex Gaussian distribution
CN (0, δ2) with zero mean and variance δ2.

As this work considers a single-antenna scenario, the ex-
isting channel estimation methods, e.g., the least squares
(LS) estimation, are capable of providing sufficient estimation
accuracy. Therefore, we performs channel equalization by
multiplying 1/h on both sides of (3) to obtain the signal used
for decoding as

ŷ =
y

h
= x+

n

h
, (4)

and the signal-to-noise ratio (SNR) is (h/δ2). Note that due
to the existing mature channel estimation techniques, the
performance in this work can be straightforwardly extended
to different channel fading models, e.g., Rayleigh and Rician
channels.

Assumption 2 (Continuous Constellation Symbols): Since
the parameters of semantic representation are all decimals, we
assume that the amplitude and phase of the modulated signal
can vary continuously. In other words, the positions of the
constellation symbols can be the entire constellation space.

Assumption 2 is important for semantic communication.
In conventional communication systems, the spacing between
constellation symbols is designed to counteract the noise
effect on the received message. Consequently, employing a
fixed modulation pattern with discrete constellation positions
enhances robustness and reduces design complexity. However,
in DL-enabled semantic communication, this spacing doesn’t
need to be excessively large to maintain the distinction among
symbols. DL has the capability to autonomously determine the
density of constellation symbols through training.

3) Receiver Model: Based on the applied reshaping
scheme, the noised signal ŷ is recovered into the noised
semantic representation vector ẑ ∈ R2n, which is the input
of the JSCC decoder for both the image classification and
reconstruction tasks.

For the image reconstruction task, this work proposes an un-
supervised JSCC decoder with the aid of MI, named MIJSCC
decoder. The noised semantic representation ẑ is transmitted
into the MIJSCC decoder Dβ(·) to generate the semantic
reconstruction ŝ ∈ RL×H×C as

ŝ = Dβ(ẑ), (5)

where β denotes the model parameters of the MIJSCC
decoder. Note that the MIJSCC decoder model is jointly
trained in an end-to-end manner with the JSCC encoder. The
performance of image reconstruction tasks is evaluated by the
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Fig. 1. The proposed simultaneous multi-task semantic communication system. The input image is encoded into semantic representation z, which is quantized
and dequantized via the asymmetric quantizer. Then, the dequantized semantic representation vector is reshaped and mapped into finite constellation points,
which is transmitted over the wireless channel as semantic symbols x. At the receiver side, channel equalization is performed, where the received symbols y
is divided by the channel gain h from perfect channel estimation and the obtained noised symbols ŷ is reshaped into noised semantic representation vector
ẑ, which serves as the input of both image reconstruction and classification tasks.

peak signal-to-noise ratio (PSNR), which measures the visual
difference between two images:

PSNR(s, ŝ) = 10 log10
MAX2

MSE(s, ŝ)

= 10 log10
MAX2

1
LHC ∥s− ŝ∥2

,

(6)

where MAX is the maximum value of the image pixels and
MSE(., .) denotes the function of calculating the mean squared
error.

For the image classification task, the noised semantic repre-
sentation ẑ is fed into a classifier, which is a given pragmatic
function ψ(·) pre-designed according to the classification task
[31] on the receiver-side. The classifier can be designed as
a deep neural network (DNN) model, a K-Nearest Neighbor
classifier or a support vector machine. The classifier is not
jointly trained with the MIJSCC encoder since the extracted
semantic representation is discriminative, which can be used
for classification tasks directly. We provide additional dis-
cussion about this feature in Sections III-B and III-C. The
accuracy of image classification tasks ACC is measured by
the proportion of correctly classified image samples Ncorrect

to all test samples Ntest:

ACC =
Ncorrect

Ntest
× 100%. (7)

In conventional single-task semantic communication frame-
works, the above two tasks can not be completed simulta-
neously. This is because the task-specific JSCC models are
trained in an end-to-end manner with loss functions tailored
to each task, which aim to bring the output closer to the
task-intended value by adjusting model parameters. Since the
objectives of different tasks require distinct optimization paths,
it becomes challenging to achieve multiple goals using a com-
bined target. Additionally, in the traditional end-to-end training
paradigm, only the output layer is actively optimized based on
the target, while the semantic representation derived from the
intermediate layer is passively learned without supervision. As
a result, the transmitted semantic representation is merely the
intermediate outcome specific to a single task, which is not
discriminative or interpretable.

To this end, the proposed MIJSCC framework aims to train
both the semantic representation and the generated output,

thereby facilitating the discriminative information extraction
while preserving the generative ability of the MIJSCC decoder.

B. Quantization Transmission Model

To implement the proposed framework in a practical wire-
less system, we need a quantization transmission model that
is compatible with the aforementioned MIJSCC. As stated in
Assumption 2, the JSCC model jointly learns the constellation
mapping of symbols from the source image and channel
characteristics, while the obtained constellation points, such as
clustered constellation [32], are disorganized in a large range
due to the fine-grained 32-bit float-point symbols derived from
the neural network. This nearly-continuous constellation de-
sign requires the ability of resolving high-resolution amplitude
shifts and phase shifts, which violates the hardware constraints
in current radio frequency systems. Therefore, the quantization
scheme is vital for practical semantic communications.

1) Asymmetric Quantization: First, each float-point number
zj ∈ z is quantized into a q-bit integer zqj using the following
quantization function:

zqj = clamp(round (ρs(zj − zmin)) ; 0, 2
q − 1), (8)

where ρs denotes the scale factor which maps the original
range of 32-bit float point numbers into a smaller range of
[0, 2q − 1]. The scale factor can be calculated as

ρs =
2q − 1

zmax − zmin
, (9)

and the clamp function is exploited to remove the quantization
outliers whose value exceeds [0, 2q − 1], which is defined as

clamp(v; 0, 2q − 1) =


0, v < 0

v, 0 ≤ v ≤ 2q − 1

2q − 1, v > 2q − 1.

(10)

In this way, each element of the semantic representation vector
is quantized into q-bit integer zqj , thereby narrowing the size
of constellation into (2q − 1) with identifiable amplitudes and
phases [33].
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2) Dequantization: Directly using the quantized values
cause significant performance degradation in the MIJSCC
framework, since the quantization leads to parameter muta-
tions in the subsequent MIJSCC decoder layers. Therefore, de-
quantization operation is required to restore the pre-quantized
value, which is formulated as

ẑj =
zqj
ρs

+ zmin. (11)

The dequantized semantic representation vector can be ex-
pressed as ẑ = {ẑj |0 ≤ j ≤ |ẑ|}. Note that ẑ is still mapped
into a finite constellation positions with size 2q − 1 but has
a similar distribution as the original semantic representation
vector z. Moreover, the number of quantization bits q can be
controlled for balancing the transmission overhead and task
performance.

III. THE PROPOSED MIJSCC FRAMEWORK

As in Fig. 2, we provide an in-depth description of the
MIJSCC framework, which is the key enabler of the simulta-
neous multi-task semantic communication system. First, we
introduce the principle of MI maximization which enables
the unsupervised semantic representation learning. Then, we
derive the global and local MI maximization method which
assists the loss function design. Finally, we elaborate the
training process of the proposed MIJSCC framework.

A. Mutual Information Maximization for Semantic Represen-
tation Learning

Unlike the conventional JSCC framework which passively
learns the intermediate semantic representations, the proposed
MIJSCC framework focuses on extracting key information
from the original input and encoding it into learned semantics
through initiative representation learning, rather than relying
solely on a basic end-to-end approach.

One way to measure the quality of the semantic representa-
tion is to calculate the MI between the extracted semantic rep-
resentation vector and the original input. Let S and Z denote
the random variables sampled from the source image space S
and the semantic representation space Z , respectively, where
the input image s and the extracted semantic representation z
are viewed as different realizations of a random variable pair
(S,Z). Then, the MI between S and Z can be formulated as

I(S;Z) = Ep(s,z)

[
log

p(s, z)

p(s)p(z)

]
= DKL (p(s, z)∥p(s)p(z)) ,

(12)

where p(s, z) represents the joint probability density func-
tion of S and Z, and the associated marginal proba-
bility density functions are indicated by p(s) and p(z).
DKL (p(s, z)∥p(s)p(z)) denotes the Kullback-Leibler (KL)
divergence between the joint and marginal probability distri-
butions, which is equivalent to I(S;Z).

However, our goal is to maximize the MI, in this pursuit,
we do not necessarily require its exact value. Moreover, the
KL divergence is theoretically unbounded, which leads to
infinite results during maximization. Therefore, following the

method in DIM, we maximize the MI through maximizing the
estimated Jensen-Shannon (JS) divergence, which is a bounded
measurement defined as follows [34]

Î(JS)(S;Z) := Ep(s,z)

[
− log

(
1 + e−Tθ(s,z)

)]
−Ep(s)p(z)

[
log

(
1 + eTθ(s

′,z)
)]
,

(13)

where Tθ(·) is a discriminator modeled by a neural network
with parameters θ and s′ denotes a fake image sample.
Specifically, the JS divergence is maximized in an adversarial
manner, where the discriminator aims to maximize the score
Tθ(s, z) while minimizing the score Tθ(s′, z). This process
enables the discriminator to effectively distinguish whether
the semantic representation originates from true source image,
thereby maximizing the MI between the semantic represen-
tation and the source image (via the joint distribution term),
while simultaneously reducing the dependency between the se-
mantic representation and irrelevant samples (via the marginal
distribution term).

Note that although the JS divergence cannot estimate the
precise value of the MI, maximizing the JS divergence is
equivalent to maximizing the MI (see Appendix A). Therefore,
the MI maximization problem can be formulated as

max
α,θ

Î(JS)(S;Z). (14)

Hence, by jointly optimizing the MIJSCC encoder Eα(·) and
the discriminator Tθ(·), the learned semantic representation
summarizes the important information from the input image.

B. Global and Local Mutual Information Maximization

By focusing on different parts of the image (global or local),
the learned semantic representations can be adjusted to contain
information specific to different tasks. In Section III-A, we
derive the MI between the original input and the semantic
representation, which summarizes the feature of the whole
image. Thus, (13) is also defined as the global MI

Ωglobal
α,θg

= Î(JS)(S;Eα(S)), (15)

where θg denotes the global discriminator model parameters.
The global MI involves the entire image as the receptive field,
thus facilitating the reconstruction tasks.

In contrast, for classification tasks, patches rather than
the whole image can enhance the performance since they
contain the spatial information of the local structure. Thus,
we maximize the MI between each local patch of the original
image and the semantic representation to learn the structural
information for classification. As shown in Fig. 2, at the
proposed MIJSCC encoder, the input image is first encoded
into a feature map f ∈ RN×N×C′

of N ×N feature vectors,
where C ′ denotes the depth of each feature vector,

f = Eω(s), (16)

where ω represents the parameters of the first part of the MI-
JSCC encoder. As shown in Fig. 2, the MIJSCC encoder con-
sists of two parts. The first part Eω(·) extracts the feature map,
where the N×N feature vectors correspondingly describe the
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Fig. 2. The proposed MIJSCC framework. During the training process, the source image s is first encoded into feature map f and then encoded into semantic
representation z. At the same time, a fake sample is generated by permutation and encoded into a fake feature map. On one hand, both the real and fake
samples are input into the global discriminator with the semantic representation to achieve global MI estimation Ωglobal

α,θg
. On the other hand, both the real and

fake feature maps are input into the local discriminator with the semantic representation to obtain local MI estimation Ωlocal
α,θl

. At the receiver-side, the noised
symbols ŷ are input into the MIJSCC decoder to reconstruct image ŝ, where the reconstruction loss MSE(s, ŝ) is derived to jointly optimize the MIJSCC
codec together with the estimated MI.

information of the N×N patches from the original image [35].
The second part Eϕ(·) summarizes the feature vectors into the
semantic representation, so that Eα = Eω ◦Eϕ. Therefore, we
derive the MI between each feature vector and the semantic
representation z following the same method in Section III-A,
then calculate the average MI of all patches as the local MI,

Ωlocal
α,θl

=
1

N2

N2∑
i=1

Î(JS)(F (i);Z)

=
1

N2

N2∑
i=1

Î(JS)(E(i)
ω (S);Eα(S)),

(17)

where F denotes the random variable sampled from the feature
map space F and F (i) denotes the i-th feature vector. θl
represents the parameters of the local discriminator model.

Different from conventional classification methods which
rely on labeled data for supervised learning, the proposed
semantic representation trained by local MI maximization
captures the structural knowledge of the margins detected
in each local patch, which is discriminative across image
samples of different categories. This unsupervised classifi-
cation approach focuses on identifying the similarities and
differences of the visual characteristics among image samples,
which can be applied label-free, rather than depending on
the matching between each sample and its assigned label. By
jointly training the MIJSCC encoder, global discriminator and

local discriminator, both the global MI and the local MI can
be optimized, thereby learning the semantic representation for
both classification tasks and reconstruction tasks. Furthermore,
the performance of reconstruction tasks is not only affected by
the semantic representation quality, but also by the generator
model. Therefore, in addition to maximizing the global MI that
captures the global image feature, we also minimize the MSE
between the original image s and the image ŝ generated by
the MIJSCC decoder Dβ(·), which aims to decrease the pixel-
level difference. Thus, the overall loss function of training the
MIJSCC model can be expressed as

L(α,β,θg,θl) = MSE(s, ŝ)− λ(µ1Ω
global
α,θg

+ µ2Ω
local
α,θl

),

(18)

where λ is the coefficient controlling the trade-off between
reconstruction performance and semantic representation learn-
ing. µ1 and µ2 controls the focus on global or local MI
maximization. By adjusting these hyperparameters, the pro-
posed MIJSCC framework can either focus on classifica-
tion/reconstruction tasks or balance the performance of both
tasks and complete them simultaneously.

Remark 1: Compared to conventional single-task loss func-
tions which either focus on minimizing the pixel-level recon-
struction loss, including MSE and structural similarity index
measure [36], or the cross-entropy loss for classification, the
proposed loss function aims to minimize the generative loss
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Algorithm 1 Training process of the proposed MIJSCC frame-
work

1: Initialize: Parameters α,β,θg,θl.
2: for epoch = 1 → 200 do
3: for each sample s in an image batch S do
4: Input: Image s.
5: Shuffle image s to create a fake image s′ for com-

parison.
6: Extract feature map f and f ′ from the original and

fake image via Eω(s) and Eω(s
′), respectively.

7: Derive the semantic representation z from the feature
map f via Eϕ(f).

8: Estimate global MI Ωglobal
α,θg

with s, s′, and z via (13).

9: Estimate local MI Ωlocal
α,θl

with f , f ′, and z via (17).
10: for each dimension j of the semantic representation

vector z do
11: Quantize each float number zj into q-bit integer zqj

via (8).
12: Dequantize zqj using (11) and restore the pre-

quantized value as ẑj .
13: end for
14: Reshape the dequantized semantic representation

vector into symbols x and perform power normal-
ization via (2).

15: Receive symbols y over wireless channel via (3) and
obtain noised symbols ŷ via (4).

16: Reshape ŷ into semantic representation vector ẑ.
17: Reconstruct image ŝ via Dβ(ẑ).
18: Calculate the loss value using (18) and update model

parameters α,β,θg,θl.
19: end for
20: end for

MSE(s, ŝ) as well as maximize the global information Ωglobal
α,θg

and local information Ωlocal
α,θl

in the semantic representation
simultaneously. Therefore, both the end-to-end target and the
intermediate semantics are actively learned, while in conven-
tional loss function design, the training process is merely
dominated by the target of a single task. Moreover, since
the MI can be learned in an unsupervised way, the proposed
loss function is optimized without the assistance of labels,
while in conventional task-driven semantic communication
frameworks, the labels are indispensable.

C. Training Method for MIJSCC

The training of MIJSCC is divided into two stages as
shown in Fig. 3, where stage 1 is unsupervised focusing
on reconstruction task and MI-based learning. Stage 2 is
supervised to achieve the lightweight classifier according to
personalized local tasks. During the training process, we
update the model parameters of the MIJSCC encoder, MIJSCC
decoder, global discriminator, and the local discriminator to
realize both semantic representation learning and full-image
generating. In order to achieve a MIJSCC codec that is robust
under various channel conditions, we train the above models

Algorithm 2 Inference process of the proposed MIJSCC
framework

1: Input: Image s.
2: Extract the semantic representation z from the original

image via Eα(s).
3: for each dimension j of the semantic representation z do
4: Quantize float number zj into q-bit integer zqj via (8).
5: Dequantize zqj using (11) and restore the pre-quantized

value as ẑj .
6: end for
7: Reshape the dequantized semantic representation vector

into symbols x and perform power normalization via (2).
8: Receive symbols y over wireless channel via (3) and

obtain noised symbols ŷ via (4).
9: Reshape ŷ into semantic representation vector ẑ.

10: Perform image classification via ψ(ẑ).
11: Reconstruct image ŝ via Dβ(ẑ).
12: Output: Reconstructed image ŝ and classification result.

under SNR ∈ {6, 21} dB, which is chosen randomly at
each update. At the inference stage, the global and local
discriminator are not used. For both image reconstruction tasks
and classification tasks, the MIJSCC encoder is implemented
for semantic representation extracting. The obtained semantic
representation is directly input into a given classifier for image
classification and the trained MIJSCC decoder for image
reconstruction. Here we achieve the classifier by freezing the
parameters of the MIJSCC encoder and training a 3-layer
fully-connected network using the semantic representation as
input. In practical use, this process can be completed on target
devices with a small amount of local task labels, which fine-
tunes the classifier based on the unsupervised, discriminative
semantic representations instead of training from scratch under
large-scale labeled-data as in other fully-supervised methods.
The training and inference method of the proposed MIJSCC
framework is summarized in Algorithm 1 and 2, respectively.

MIJSCC
encoder

MIJSCC
decoder

Wireless 
channel

Large-scale dataset
without labels

Stage 1: End-to-end joint training via (18)

(unsupervised & universal data)

MIJSCC
encoder

Wireless 
channelSmall-scale local 

dataset with labels

Stage 2: Local classifier training

(supervised & personalized data)

Parameter
frozen

Pragmatic

function 𝜓(∙)

Personalized
classifier

Fig. 3. The training process of the proposed MIJSCC framework.

IV. ADAPTIVE MIJSCC WITH ATTENTION-BASED
SEMANTIC ENHANCEMENT

To enhance the robustness of the proposed MIJSCC frame-
work against varying channel noise and further reduce the
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semantic transmission overhead, this section presents an adap-
tive MIJSCC framework, referred to as A-MIJSCC, which is
shown in Fig. 4. By introducing adaptive channel masking
and attention-based semantic enhancement, A-MIJSCC aims
to dynamically adjust the number of activated semantic fea-
ture dimensions under different channel conditions, thereby
improving semantic transmission efficiency while maintaining
task performance.

In traditional communication, adaptive modulation and cod-
ing (AMC) can dynamically adjust the modulation scheme and
coding rate based on channel conditions, adding redundancy
to combat noise effects and enhancing data transmission
reliability. Inspired by this, our study integrates the concept
of dynamic neural networks [37] into the proposed MIJSCC
framework to achieve adaptive channel coding. When the
channel SNR is low, the transmitter activates more dimensions
to mitigate the noise impact on the transmission of semantic
representations. Otherwise, fewer dimensions will be activated
to reduce the transmission overhead.

In practical application scenarios, devices can receive the
knowledge of channel conditions through the feedback chan-
nel, including SNR, fading, etc. Thus, the channel condition
can be input into a neural network as auxiliary knowledge,
which is trained to generate the noise-adaptive channel mask.
As illustrated in Fig. 4, a learnable noise encoder Nenc(·),
designed as a 4-layer multi-layer perceptron (MLP), is used
to map the scalar noise variance δ2 into a noise-aware feature
vector g ∈ Rd with the same dimension as the semantic
representation:

g = Nenc(δ
2), (19)

where each component gi is a non-negative, monotonically
increasing function of δ2 (as proven in Appendix B). This en-
sures the noise intensity meaningfully influence the activation
of semantic representation dimensions, emphasizing that the
channel mask in A-MIJSCC is not a set of random numbers
but a deterministic, structured function learned from the noise
variance δ2.

Each component gi of the noise feature vector g represents
the activation potential of the corresponding dimension zj of
the semantic representation z. However, the value distribution
of g is irregular. Thus, directly determining the activation state
of the semantic representation z according to g results in
discontinuous activation, which requires additional indicator
signals to be transmitted to the receiver. Therefore, to elim-
inate unnecessary communication overhead, the A-MIJSCC
framework aims to generate a consecutive channel mask by
multiplying g with an upper triangular matrix U ∈ Rd×d,
where d represents the dimension of the noise feature vector.
Then, the updated noise feature vector g̃ follows the decreasing
trend:

g̃ = g ·U , Uij =

{
1, if i ≤ j,

0, if i > j.
(20)

As shown in (20), the updated noise feature g̃ satisfies g̃j ≥
g̃j+1,∀j ∈ [0, d− 1]. Unlike other feature pruning techniques
[38], [39], which remove unnecessary dimensions without
considering the pruned index, the proposed A-MIJSCC frame-
work generates a consecutive, deterministic binary channel

mask. Therefore, the transmitted dimensions are successively
distributed and only one index indicating the ending position
is required to be transmitted, significantly reducing the trans-
mission and decoding overhead.

Next, a pruning threshold η is introduced to prune g̃ and
obtain the channel mask m, where each component mj

satisfies:

mj =

{
1, if g̃j > η,

0, if g̃j ≤ η.
(21)

By performing the Hadamard product between the semantic
representation z and the channel mask m, we obtain the
masked semantic representation z′ as:

z′ = m⊙ z. (22)

Noted that the pruning threshold η is a hyperparameter related
to task performance and loss design. By tuning the value
of η, unimportant dimensions will be temporarily deactivated
without affecting the training of the MIJSCC framework,
where the importance is automatically learned during the
joint training of the channel mask generator and the MIJSCC
model. Additionally, in each training batch, the value of δ2 is
randomly selected from a pre-defined noise variance range to
serve as input of the noise encoder network Nenc(·), which can
train Nenc(·) to generate channel masks that adapt to varying
channel conditions.

To compensate for the potential semantic information loss
introduced by channel mask operation, the masked semantic
representation z′ is further input into an attention-based se-
mantic enhancement module Nattn(·), which consists of two
fully connected layers and nonlinear activation functions. This
module generates and dynamically adjusts the weight w for
each dimension of z′, re-weighting the activated dimensions
to reinforce important semantic features while adapting to
varying channel SNRs. The enhanced semantic representation
is represented as:

z∗ = Nattn(z
′) = w ⊙ z′. (23)

Similar to the MIJSCC framework, the enhanced semantic
representation z∗ is quantized and then mapped into semantic
symbols x∗. In contrast, the A-MIJSCC framework activates
and transmits only a subset of the original semantic rep-
resentation dimensions, depending on the dynamic channel
conditions. The ratio of activated dimensions is denoted by
γ, and the receiver fills the inactive parts with zeros.

By jointly training the MIJSCC model, the noise encoder
Nenc(·), and the semantic enhancement module Nattn(·), the
proposed A-MIJSCC framework successively activates the
important dimensions of the original semantic representation
according to dynamic channel conditions. Afterwards, the
attention-based module will enhance the masked semantic
representation to mitigate potential performance degradation.
Algorithm 3 provides the detailed training procedure of the
A-MIJSCC framework.

Remark 2: The setting of pruning threshold η depends on
datasets, tasks, as well as the required trade-off level between
task performance and the semantic communication overhead.
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Fig. 4. The structure of the Adaptive MIJSCC with attention-based semantic enhancement. According to the channel mask generation module, the noise
variance is first input into the noise encoder Nenc(·) to achieve the noise feature g, which is multiplied with an unit upper triangular matrix. Then, the
updated noise feature g̃ is pruned with respected to the pruning threshold η to produce the channel mask m that performs Hadamard product with the
semantic representation z. Finally, the masked semantic representation is enhanced by the attention-based module Nattn(·), which aims to compensate for
the semantic information loss that may be caused by channel masking operations.

Algorithm 3 Training process of the A-MIJSCC framework
1: Initialize: Parameters α,β,θg,θl, noise encoder network
Nenc(·), semantic enhancement module Nattn(·) and
pruning threshold η.

2: for epoch = 1 → 200 do
3: for each sample s in an image batch S do
4: Input: Image s, current noise variance δ2.
5: Perform step 5-9 in Algorithm 1 and obtain z
6: Obtain the noise feature g via Nenc(δ

2).
7: Obtain the decreasing noise feature g̃ using (20).
8: Prune g̃ according to η and obtain m via (21).
9: Obtain masked semantic representation z′ via (22).

10: Generate attention weight w and obtain enhanced
semantic representation z∗ via (23).

11: Quantize z∗ and transmit to the receiver via step 10
to 15 in Algorithm 1 to obtain ŷ.

12: Reshape ŷ into vector and fill the masked dimensions
with zero to obtain ẑ.

13: Reconstruct image ŝ via Dβ(ẑ).
14: Compute the loss function (18) to update α,β,θg,θl,

Nenc(·) and Nattn(·).
15: end for
16: end for

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the simulta-
neous multi-task semantic communication system enabled by
the MIJSCC framework. The proposed MIJSCC framework
can be jointly trained on a server and moved to real net-
work devices for inference. First, we describe the experiment
settings including the dataset, hyperparameters, and model
structures. Then, we explain the comparison benchmarks.
Finally, we provide a detailed discussion on simulation results.

TABLE I
THE DNN STRUCTURES OF MIJSCC ENCODER AND DECODER

Layer Output Size Activation

MIJSCC
Encoder

Conv2D+BatchNorm 64× 32× 32 ReLU
ResidualBlock 64× 16× 16 ReLU
ResidualBlock 128× 8× 8 ReLU
ResidualBlock 256× 4× 4 ReLU

Conv2D 512× 1× 1 None

MIJSCC
Decoder

ConvTranspose2D+BatchNorm 256× 4× 4 ReLU
ConvTranspose2D+BatchNorm 128× 8× 8 ReLU
ConvTranspose2D+BatchNorm 64× 16× 16 ReLU
ConvTranspose2D+BatchNorm 3× 32× 32 Sigmoid

A. Experiment Settings

We evaluate the proposed simultaneous multi-task semantic
communication system on CIFAR10 dataset to complete clas-
sification tasks and reconstruction tasks at the same time. We
set the trade-off coefficient λ between the MSE loss and the
MI in a collection of {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005},
then test the system under each value to find a point which
has satisfying performance for both tasks (see Section V-B).
Afterwards, we fix the value of λ as 0.05 and 0.005 during
the tests. The hyperparameters µ1 and µ2 for global and
local MI maximization are fixed to 0.01 and 1, respectively.
The MIJSCC encoder, decoder, global discriminator and local
discriminator are jointly trained for 200 epochs using the
Adam optimizer with learning rate=0.001 and batch size=32.

The model structures and output sizes of the MIJSCC
encoder and decoder are demonstrated in Table I. The MI-
JSCC encoder mainly consists of three downsampling residual
blocks followed by a convolutional layer which controls the
dimension of the semantic representation vector. The MIJSCC
decoder is composed of four deconvolutional layers, each is
followed by a batch normalization layer and an activation
layer. The model structures of the global and local discrim-
inators are shown in Table II. In the global discriminator,
the image is flattened into vector and then concatenated with
the semantic representation vector to composite the input of
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TABLE II
THE MODEL STRUCTURES OF GLOBAL AND LOCAL DISCRIMINATOR

Layer Activation

Global Discriminator

Conv2D ReLU
Conv2D None

Flatten+Concatenate None
Fully-connected Layer ReLU
Fully-connected Layer ReLU
Fully-connected Layer None

Local Discriminator

Expand+Concatenate None
Conv2D ReLU
Conv2D ReLU
Conv2D None

fully-connected layers which derive the score. In the local
discriminator, the semantic representation is first expanded into
the same size of the feature map and then concatenated with
the feature map to composite the input of convolutional layers.

B. Performance Evaluation

We compare our proposed simultaneous multi-task semantic
communication system with the following benchmarks:

• Deep JSCC with MSE loss [5]: We compare with the
single-task semantic communication system for image
reconstruction using MSE as loss function, which is
a representative and widely-recognized baseline in the
field of image semantic communication. The Deep JSCC
framework has the same DNN structure with our MIJSCC
framework for fair comparison.

• Separate source-channel coding (SSCC): We compare
with the conventional communication system with better
portable graphics (BPG) as the source coding method
and consider error-free transmission within the channel
capacity ∆ = log2(1 + SNR). Therefore, we can obtain
the maximum required compression ratio as

Rmax =
bLHC

n∆
, (24)

where b = 8 denotes the number of bits allocated to each
color channel. Note that BPG offers significantly better
compression performance than JPEG, which serves as a
strong source coding benchmark. Additionally, for BPG
image compression, there exists a maximum achievable
compression ratio RBPG

max. Therefore, Rmax > RBPG
max may

occurs when facing bad channel condition (low SNR)
or less transmitted symbols. In this circumstance, the
SSCC scheme is infeasible since the required compres-
sion ratio exceeds the ability of the BPG compression
algorithm. To guarantee fair comparisons, we input the
BPG-compressed image into a pretrained classification
model which has the same structure as the MIJSCC
encoder plus the pragmatic classifier.

In Fig. 5, we demonstrate the impact of the hyperparameter
λ on the performance of both the classification task and the
reconstruction task. As defined in Section III-B, λ controls the
trade-off between the MI and the MSE loss. A larger value of
λ leads to greater focus on the maximization of the MI, which
promotes the learning of semantic representation. Otherwise, a
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Fig. 5. The classification accuracy and the PSNR of the proposed MIJSCC
framework w.r.t. MI hyperparameter λ.

smaller value of λ reflects a stronger emphasis on image recov-
ery, with λ = 0 equivalent to conventional single-task semantic
communication framework for only image reconstruction. It
can be observed that λ obtains the trade-off between task
performance of classification and reconstruction. To facilitate
the simultaneous implement of both tasks, a proper λ value
should be chosen to support the training of both the semantic
representation and the end-to-end target.

Then, we separately analyze the performance of the pro-
posed MIJSCC framework on classification tasks and recon-
struction tasks. As shown in Fig. 6(a), we compare the task
performance of classification among different schemes, includ-
ing the MIJSCC-based method under λ = 0.01, λ = 0.001 and
two baseline methods. It can be observed that larger λ leads
to higher classification accuracy, reflecting that discriminative
features are learned through MI maximization, thereby sup-
porting image classification without the supervision of labels.
However, the Deep JSCC with MSE loss only focuses on
minimizing the pixel-level differences between the original
and reconstructed images while neglecting the learning of
useful semantics in the representation. Therefore, the semantic
representation extracted from the MSE-based JSCC cannot
be directly used for classification tasks. Secondly, the con-
ventional SSCC scheme based on BPG compression fails to
perform the classification task under bad channel conditions
since the required compression ratio too high even under
full channel capacity, which exceeds the ability of the BPG
algorithm. Additionally, the SSCC suffers from the cliff effect
compared with our proposed MIJSCC framework, although
it achieves a comparable performance at 21 dB. Note that
although the performance of advanced task-oriented semantic
communication frameworks has surpassed 85%, these frame-
works are uniquely designed for classification task and cannot
be used for reconstruction.

The performance of image reconstruction tasks under differ-
ent schemes is shown in Fig. 6(b) and 6(c) in terms of PSNR
and Structural Similarity Index Measure (SSIM), respectively.
It can be seen that the proposed MIJSCC framework with
λ = 0.001 has only negligible performance loss in low-SNR
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Fig. 6. The performance of classification and reconstruction tasks w.r.t. SNR under different communication schemes.

region compared with the MSE-based deep JSCC framework,
which is specifically designed for image reconstruction targets.
Moreover, the MIJSCC framework outperforms the deep JSCC
under good channel conditions in terms of PSNR, indicating
that MI maximization can somehow assist the learning of
end-to-end goals. Furthermore, the MIJSCC framework with
λ = 0.01 undergoes marginal performance loss in terms
of both PSNR and SSIM due to the performance trade-off
between image reconstruction tasks and classification tasks,
however, it significantly outperforms the conventional SSCC
framework in low-SNR region. Thus, it is proved that employ-
ing both representation learning and end-to-end target training
with the proposed MIJSCC framework can effectively sup-
port discriminative feature learning while maintaining image
structure consistency. Fig. 7 presents the visualization results
of the image reconstruction task under different semantic
communication frameworks when SNR = 9 dB and SNR =
12 dB. It is observed that the proposed MIJSCC framework
achieves comparable performance to Deep JSCC with MSE
when λ = 0.001.

To further verify the robustness of the MIJSCC framework,
we conducted additional experiments under Rayleigh fading
channel incorporating LS channel estimation. We trained and
evaluated the MIJSCC using the estimated channel state in-
formation (CSI). The results show that imperfect CSI has a
negligible impact on the final performance, as demonstrated
in Fig. 8, which verifies the scalability of the MIJSCC method
under practical channel conditions.

Fig. 9 verifies the impact of global and local MI in the
MIJSCC loss function on the performance of image classifi-
cation tasks under different MI hyperparameter λ. According
to (18) in Section III-B, a larger λ refers to greater effect of
MI optimization. It can be observed that when λ increases, the
performance degradation of image classification tasks becomes
obvious when local MI is removed. This proves that the
optimization of local MI is directly related to the discrim-
inability of semantic representations, thereby determining the
performance of image classification tasks.

Furthermore, to evaluate the effectiveness of semantic quan-
tization for transmitted symbols, we compare the perfor-
mance of the MIJSCC framework with analog transmission
(without symbol quantization), 8-bit quantization, and 4-bit
quantization. For example, Fig. 10(a) represents the con-

stellation points before symbol quantization, which exhibits
full-resolution constellation mapping and contains the full
information extracted from the neural network represented
by single-precision floating-point format (Float32) in 32 bits.
Although this analog method preserves more information, it
maps the transmitted symbols into nearly-continuous constel-
lation points with indistinguishable amplitudes and phases,
which is unachievable for the implementation of RF modules
in current communication systems. Through quantizing the
semantic representation vector into 4-bit integers, the reshaped
symbols will be mapped into less constellation points with
a more discrete distribution, as shown in Fig. 10(b). It can
be observed that 4-bit constellation points exhibit a similar
distribution compared with the full-resolution constellation
points of the same image, but maintains a larger point-distance,
thereby providing distinguishable amplitude-shift and phase-
shift for further implementations in practical communication
systems with limited RF capabilities.

Then, we evaluate the performance of both classification
tasks and image reconstruction tasks on the quantized MI-
JSCC framework with different quantization precision. We
demonstrate the classification accuracy and the PSNR among
MIJSCC with analog transmission, 8-bit quantization, and 4-
bit quantization in Fig. 11(a) and Fig. 11(b), respectively. It
can be observed that, compared to the continuous constellation
points in analog signal transmission, the image classification
accuracy after 8-bit quantization experiences only a slight
reduction, while the PSNR remains almost unchanged. This
suggests that there is inherent redundancy in the semantic
symbols represented by 32-bit floating-point numbers. The
optimized 8-bit quantized symbols are able to efficiently utilize
bandwidth resources without significantly compromising task
performance. However, when the quantization is reduced to
4 bits, the performance of the MIJSCC framework for both
image classification and reconstruction tasks deteriorates. This
is primarily due to the low-precision quantization, where
fine-grained semantic information is mapped to a limited
number of constellation points. As a result, critical information
required for semantic decoding and noise mitigation is lost.
Consequently, this reduces the discriminative and generative
capabilities of the semantic representation.

We further evaluate the effect of the channel mask by com-
paring the fixed-length MIJSCC framework (without channel
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Fig. 7. Visualization examples of image reconstruction tasks under different semantic communication frameworks.
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Fig. 8. The performance of classification and reconstruction tasks w.r.t. SNR under Rayleigh fading channel with LS channel estimation.
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Fig. 9. The impact of removing global or local MI in the MIJSCC loss function on image classification tasks.

masking) and the proposed A-MIJSCC framework (with adap-
tive channel masking) under different pruning thresholds and
channel conditions. The 8-bit quantized MIJSCC framework is
used as the pre-trained model, and we fine-tune the A-MIJSCC
framework for 20 epochs. As shown in Fig. 12(a), the ratio of
activated dimensions γ decreases as the SNR increases. It indi-

cates that under improved channel conditions, the A-MIJSCC
framework tends to prune more redundant dimensions, thereby
reducing the semantic transmission overhead. Moreover, as
the pruning threshold η increases, the A-MIJSCC framework
becomes aggressive in pruning unimportant dimensions.

Fig. 12(b) and 12(c) respectively demonstrate the perfor-
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(b) Constellation points after 4-bit quantization.

Fig. 10. The distribution of constellation points before and after quantization.
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(a) The classification accuracy w.r.t. SNR.
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Fig. 11. The performance of classification and reconstruction tasks w.r.t. SNR under different quantization bits.
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Fig. 12. Ratio of activated dimensions in the semantic representation and the performance of reconstruction and classification tasks w.r.t. SNR under different
pruning thresholds η compared with fix-length MIJSCC.

mance of the A-MIJSCC framework in image reconstruction
and classification tasks under different pruning thresholds and
channel SNRs. To intuitively reflect the impact of adaptive

channel mask on task performance, the semantic enhancement
module is temporarily omitted. It can be observed that the
proposed A-MIJSCC framework can effectively reduce the
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TABLE III
PERFORMANCE COMPARISON OF A-MIJSCC ON RECONSTRUCTION TASKS

Methods
Performance of reconstruction tasks (PSNR/dB)

0dB 3dB 6dB 9dB 12dB 15dB 18dB 21dB

Adaptive MIJSCC
η = 0.6 19.68 22.11 23.97 25.17 25.89 26.28 26.46 26.50
η = 1.2 19.62 22.04 23.92 25.09 25.76 26.10 26.19 26.13
η = 2 19.52 21.97 23.82 24.94 25.55 25.77 25.77 25.44

Adaptive MIJSCC with attention
η = 0.6 20.17 22.20 23.87 25.09 25.90 26.37 26.61 26.72
η = 1.2 20.13 22.13 23.81 25.00 25.83 26.26 26.48 26.54
η = 2 20.07 22.06 23.72 24.91 25.70 26.06 26.18 26.16

TABLE IV
PERFORMANCE COMPARISON OF A-MIJSCC ON CLASSIFICATION TASKS

Methods
Performance of classification tasks (ACC/%)

0dB 3dB 6dB 9dB 12dB 15dB 18dB 21dB

Adaptive MIJSCC
η = 0.6 54.23 60.28 63.31 64.60 65.44 65.74 65.97 65.83
η = 1.2 53.31 59.25 62.60 64.05 64.56 64.89 64.68 64.48
η = 2 51.49 58.44 61.52 63.30 64.15 64.62 64.24 63.52

Adaptive MIJSCC with attention
η = 0.6 53.88 60.11 63.71 65.28 65.57 65.85 65.78 65.89
η = 1.2 53.93 59.17 62.93 64.39 65.53 65.63 65.41 65.50
η = 2 52.06 58.85 62.15 64.13 64.82 64.79 64.63 64.31

semantic transmission overhead according to the channel SNR
while maintaining the stability of task performance. Specifi-
cally, when η = 0.6, the proposed A-MIJSCC tends to reserve
more dimensions, without significantly affecting the robustness
of multi-task semantic communication. For image classifica-
tion tasks, pruning redundant dimensions helps reduce the
interference from irrelevant information, thus improving the
classification accuracy. When η = 2, the A-MIJSCC tends to
prune less critical dimensions in exchange for lower semantic
transmission overhead. However, when the SNR continues
to increase (e.g., SNR = 21 dB), both task performance
begins to degrade. This is because the A-MIJSCC framework
tends to generate a stricter channel mask under better channel
conditions, which filters out useful semantic information.

In order to compensate for the task performance degradation
caused by the strict channel mask under high SNR, a semantic
enhancement module based on the attention mechanism is in-
troduced in the A-MIJSCC framework. The attention weights
w of each dimension are gradually updated during the joint
training process to enhance the masked semantic represen-
tation. Tables IV and III respectively show the performance
of the A-MIJSCC framework on image reconstruction and
classification tasks before and after semantic enhancement.
Fig. 13(b) and 13(a) show the performance-overhead ratio of
image classification tasks and restoration tasks under different
semantic communication schemes and SNRs, respectively.

We can see that the A-MIJSCC with semantic enhancement
module further improves the performance-overhead ratio of
image classification and reconstruction tasks, which indicates
that the attention mechanism can enhance the representation
ability of semantics under consistent dimensions, thereby
improving the transmission efficiency and robustness of the
multi-task semantic communication system in scenarios with
dynamic channel conditions and limited wireless resources.

VI. CONCLUSION

In this paper, a semi-supervised multi-task semantic com-
munication system based on MIJSCC framework is designed,
where semantic representations are learned via global and
local MI maximization to obtain discriminate features for
direct classification, and the end-to-end target is learned via
MSE minimization to derive pixel-level information for re-
construction. To seamlessly implement the proposed MIJSCC
framework in practical communication systems with limited
RF capabilities, the continuous semantic representations are
quantized and mapped into discrete symbols with larger
constellation point distance for amplitude and phase iden-
tification. To support adaptive transmission under changing
channel conditions, an A-MIJSCC framework is introduced
to consecutively activate important dimensions in semantic
representations according to the channel noise. Simulation
results demonstrate that compared with benchmark frame-
works including single-task JSCC with MSE and conven-
tional SSCC, the proposed MIJSCC supports multiple tasks
with single transmission by extracting task-agnostic semantics.
Moreover, the A-MIJSCC is verified to facilitate adaptive
semantic transmission under varying channel environments
with lower transmission overhead, while maintaining similar
task performance with the MIJSCC.

APPENDIX A
RELATIONSHIP BETWEEN JENSEN-SHANNON DIVERGENCE

AND MI
Denote p(x) and p(y) as two marginal distributions, P =

p(x, y) and Q = p(x)p(y) stand for the joint and the product
of marginals, respectively. The JS divergence between P and
Q is the variant of their KL divergence, which is defined as

DJS(P∥Q) =
1

2
DKL

(
P∥P +Q

2

)
+

1

2
DKL

(
Q∥P +Q

2

)
.

(A.1)
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Fig. 13. The performance-overhead ratio comparison between the A-MIJSCC w/o attention and the A-MIJSCC with attention w.r.t. SNR under different
pruning thresholds η.

Thus, we consider a mixture distribution m(x, y) = P+Q
2 =

1
2 (p(x, y) + p(x)p(y)), which follows m(x) = p(x), m(y) =
p(y), and m(y|x) = 1

2 (p(y|x) + p(y)). With constants dis-
carded, (A.1) is rewritten in (A.2) at the top of the next
page, where the term inside the expectation is a monotonically
increasing convex function of p(y|x)

p(y) .

Since the pointwise MI is formulated as ln p(x,y)
p(x)p(y) =

ln p(y|x)
p(y) , it can be verified that maximizing the JS divergence

between P and Q is equivalent to maximizing the MI between
x and y.

APPENDIX B
MATHEMATICAL PROPERTIES OF THE MLP FUNCTION

The noise encoder network Nenc(·) is composed of M
linear layers, each followed by a Tanh activation. Therefore,
the noise feature g can be expressed as a composition of M
non-linear function as

g = Nenc(δ
2) = uM ◦ uM−1 · · ·u1(δ

2), (B.1)

where um denotes the m-th layer of the MLP network and is
expressed by

um(x) = tanh
(
H(m)x+ b(m)

)
. (B.2)

H(m) and b(m) represent the weight and bias of the m-th
layer. As stated in Section IV, each output gj should be a
non-negative increasing function to ensure its monotonicity
with the noise variance. Therefore, with a fixed pruning
threshold η, more dimensions will be activated under low-
SNR circumstances. Thus, gj should meet the subsequent
requirements:

gj ≥ 0; g′j =
∂gj
∂δ2

≥ 0. (B.3)

Since gj can be expressed as

gj = uM,j ◦ uM−1 · · ·u1(δ
2), (B.4)

where uM,j denotes the j-th output dimension of layer uM .
Thus, the derivative of gj can be calculated according to the
chain rule:

g′j = u′
M,j ◦ u′

M−1 · · ·u′
1(δ

2), (B.5)

where u′
m is obtained as the Jacobian matrix of um, and u′

M,j

is the j-th row of u′
M . Therefore, the derivation of (B.2) is

obtained as2

u′
m(x) = diag

(
1− tanh

(
H(m)x+ b(m)

))
·H(m). (B.6)

Under the setting of H(m) = abs(H̃(m)) and small bias, both
constraints in (B.3) are satisfied, indicating that gj is a non-
negative increasing function of the noise variance3.

REFERENCES

[1] Z. Qin, L. Liang, Z. Wang, S. Jin, X. Tao, W. Tong, and G. Y. Li,
“AI empowered wireless communications: From bits to semantics,”
Proceedings of the IEEE, vol. 112, no. 7, pp. 621–652, Jul. 2024.

[2] H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled
semantic communication systems,” IEEE Trans. Signal Process., vol. 69,
pp. 2663–2675, 2021.

[3] P. Zhang, W. Xu, H. Gao, K. Niu, X. Xu, X. Qin, C. Yuan, Z. Qin,
H. Zhao, J. Wei et al., “Toward wisdom-evolutionary and primitive-
concise 6G: A new paradigm of semantic communication networks,”
Engineering, vol. 8, pp. 60–73, 2022.

[4] W. Yang, H. Du, Z. Q. Liew, W. Y. B. Lim, Z. Xiong, D. Niyato,
X. Chi, X. Shen, and C. Miao, “Semantic communications for future
internet: Fundamentals, applications, and challenges,” IEEE Commun.
Surv. Tutor., vol. 25, no. 1, pp. 213–250, 2023.

[5] E. Bourtsoulatze, D. B. Kurka, and D. Gündüz, “Deep joint source-
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